JP2003055741A - Oil tempered steel wire for cold formed coil spring - Google Patents

Oil tempered steel wire for cold formed coil spring

Info

Publication number
JP2003055741A
JP2003055741A JP2002074142A JP2002074142A JP2003055741A JP 2003055741 A JP2003055741 A JP 2003055741A JP 2002074142 A JP2002074142 A JP 2002074142A JP 2002074142 A JP2002074142 A JP 2002074142A JP 2003055741 A JP2003055741 A JP 2003055741A
Authority
JP
Japan
Prior art keywords
coil spring
cold
tempered wire
oil tempered
frequency induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002074142A
Other languages
Japanese (ja)
Other versions
JP3872364B2 (en
Inventor
Hidetoshi Yoshikawa
英利 吉川
Toshihiro Nakano
智弘 中野
Takayuki Sakakibara
隆之 榊原
Masami Wakita
将見 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Hatsujo KK
Chuo Spring Co Ltd
Original Assignee
Chuo Hatsujo KK
Chuo Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Hatsujo KK, Chuo Spring Co Ltd filed Critical Chuo Hatsujo KK
Priority to JP2002074142A priority Critical patent/JP3872364B2/en
Publication of JP2003055741A publication Critical patent/JP2003055741A/en
Priority to US10/385,656 priority patent/US20040079067A1/en
Priority to US11/086,410 priority patent/US7407555B2/en
Application granted granted Critical
Publication of JP3872364B2 publication Critical patent/JP3872364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Springs (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oil tempered steel wire for a cold formed coil spring which has performance equal to or above that of a hot formed coil spring, and to provide a cold formed spring using the same wire. SOLUTION: Steel containing, by weight, 0.35 to 0.55% C, 1.8 to 3.0% Si, 0.5 to 1.5% Mn, 0.5 to 3.0% Ni and 0.1 to 1.5% Cr is used as the stock. The fraction of ferrite in the steel sheet of the stock is controlled to <=50%, and the hot rolled wire rod is subjected to cold wire drawing at a prescribed reduction of area. After that, heat treatment by high-frequency induction heating is performed thereto. Desirably, the maximum heating temperature is controlled to 900 to 1,020 deg.C (more desirably, to 950 deg.C), and the holding time is controlled to 5 to 20 sec. As the stock after oil tempering treatment, desirably, the crystal grain size number is controlled to >=9, and its tensile strength is controlled to 1,830 to 1,980 MPa.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷間成形コイルば
ねの素材として用いられるオイルテンパー線、及びそれ
を用いて製造される冷間成形コイルばねに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oil tempered wire used as a material for a cold-formed coil spring, and a cold-formed coil spring manufactured using the oil-tempered wire.

【0002】[0002]

【従来の技術】近年、資源及び環境問題等の点から、自
動車の燃費向上への要求が高まっている。それに伴い、
単体としては比較的重量の大きい自動車部品である懸架
ばねについては、軽量化への要求が特に強くなってい
る。もちろん、このような軽量化への要求は従来より絶
え間なく出されており、以前は主にばねの使用応力を高
める(高応力化)ことによりこのような要求に応えてき
た。ばねの使用応力を高めるためには、その素材の強度
(硬さ)を高める必要がある。従って、従来のばねの軽
量化の方策としては、素材の高硬度化が中心であった。
2. Description of the Related Art In recent years, demands for improving fuel efficiency of automobiles have been increasing in view of resource and environmental problems. with this,
As for the suspension spring, which is a relatively heavy automobile component as a single unit, the demand for weight reduction is particularly strong. Needless to say, such a demand for weight reduction has been constantly made, and in the past, such demand has been met mainly by increasing the working stress of the spring (increasing the stress). In order to increase the working stress of the spring, it is necessary to increase the strength (hardness) of the material. Therefore, as a measure for reducing the weight of the conventional springs, increasing the hardness of the material has been the main focus.

【0003】しかし、これは腐食疲労に対して悪影響を
及ぼす懸念がある。そこで、軽量化及び腐食疲労強度を
重視した熱間成形による高強度ばね(以下、熱間ばねと
言う)が開発、使用されている。その一つに、炭素含有
量を低くし、シリコン含有量をやや高くした鋼を素材と
するものがある(例えば特開平11-241143号公報)。
However, this may have a bad influence on corrosion fatigue. Therefore, high-strength springs (hereinafter referred to as hot springs) have been developed and used by hot forming with emphasis on weight reduction and corrosion fatigue strength. One of them is made of steel having a low carbon content and a slightly high silicon content (for example, Japanese Patent Laid-Open No. 11-241143).

【0004】一方、従来から、小型ばねを中心とした冷
間コイルばね(以下、冷間ばねと言う)材として、主に
SAE(米国自動車技術者協会)規格の9254鋼を素
材とし、高周波短時間誘導加熱処理(以下、短時間熱処
理と言う)を施したものが使用されている。この短時間
熱処理は、高周波誘導加熱を利用した直接加熱(自己加
熱)による急速短時間加熱を特徴とした熱処理方法であ
り、微細な組織、結晶粒が得られるほか、表面脱炭が少
ないという利点がある。
On the other hand, conventionally, as a cold coil spring (hereinafter referred to as a cold spring) material centered on a small spring, mainly 9254 steel of SAE (American Society of Automotive Engineers) standard is used as a material, and high frequency short A material that has been subjected to time induction heat treatment (hereinafter referred to as short-time heat treatment) is used. This short-time heat treatment is a heat treatment method characterized by rapid short-time heating by direct heating (self-heating) using high-frequency induction heating, and has the advantage that a fine structure and crystal grains can be obtained and surface decarburization is small. There is.

【0005】[0005]

【発明が解決しようとする課題】上記の低炭素・高シリ
コン鋼は、熱間成形ばねとしては、十分な熱処理を施す
ことにより高い性能を得ることができるものの、高周波
短時間誘導加熱処理では十分な熱処理を確保することが
困難であり、熱間成形ばねと同等の性能を得ることが困
難である。
The above-mentioned low carbon / high silicon steel can obtain high performance as a hot-formed spring by sufficient heat treatment, but high-frequency short-time induction heating treatment is sufficient. It is difficult to secure sufficient heat treatment, and it is difficult to obtain the same performance as the hot-formed spring.

【0006】本発明者らは鋭意検討を重ねた結果、上記
低炭素・高シリコン鋼素材に適した高周波誘導加熱の条
件を見いだした。これにより、熱間成形コイルばねと同
等以上の性能を有する冷間成形コイルばね用オイルテン
パー線、及びそれを用いた冷間成形ばねを提供するもの
である。
As a result of intensive studies, the inventors of the present invention found a condition for high frequency induction heating suitable for the above low carbon / high silicon steel material. Thus, an oil tempered wire for a cold-formed coil spring having a performance equal to or higher than that of the hot-formed coil spring, and a cold-formed spring using the oil-tempered wire.

【0007】[0007]

【課題を解決するための手段】本発明に係る冷間成形コ
イルばね用オイルテンパー線は、重量比にしてC:0.
35〜0.55%、Si:1.8〜3.0%、Mn:
0.5〜1.5%、Ni:0.5〜3.0%、Cr:
0.1〜1.5%を含有する鋼を素材とし、高周波誘導
加熱による熱処理を行うことを特徴とする。
The oil tempered wire for a cold-formed coil spring according to the present invention has a weight ratio of C: 0.
35-0.55%, Si: 1.8-3.0%, Mn:
0.5-1.5%, Ni: 0.5-3.0%, Cr:
A steel containing 0.1 to 1.5% is used as a raw material, and heat treatment by high frequency induction heating is performed.

【0008】なお、この素材は更にN:0.01〜0.
025%、V:0.05〜0.5%を含有し、P:0.
01%以下、S:0.01%以下としたものでもよい。
This material is further N: 0.01-0.
0: 25%, V: 0.05-0.5%, P: 0.
It may be 01% or less and S: 0.01% or less.

【0009】上記の高周波誘導加熱の前に、熱間圧延で
製造した線材を冷間加工により所定の減面率で伸線を行
っておくことが望ましい。また、その際、鋼組織中のフ
ェライト分率を50%以下としておくことが望ましい。
更に、高周波誘導加熱においては、その最高加熱温度を
900℃〜1020℃の範囲とすることが望ましい。そ
の最高加熱温度における保持時間は、5〜20秒とする
ことが望ましい。そして、そのような条件でオイルテン
パー処理を施した後の素材としては、結晶粒度番号が9
以上であるようにし、また、引張強さが1830〜19
80MPaとなるようにすることが望ましい。
Prior to the above-mentioned high frequency induction heating, it is desirable that the wire rod manufactured by hot rolling is drawn by cold working at a predetermined area reduction rate. At that time, it is desirable that the ferrite fraction in the steel structure is 50% or less.
Further, in the high frequency induction heating, it is desirable that the maximum heating temperature is in the range of 900 ° C to 1020 ° C. The holding time at the maximum heating temperature is preferably 5 to 20 seconds. And, as the material after the oil tempering treatment under such conditions, the grain size number is 9
The tensile strength is 1830-19.
It is desirable to set it to 80 MPa.

【0010】[0010]

【発明の実施の形態】本発明で素材として用いた鋼は、
前記特開平11-241143号公報に記載のものとほぼ同じも
のである。その成分設計の基本的な考え方は該公報に記
載の通り、耐腐食疲労強度を向上させる点にある。
BEST MODE FOR CARRYING OUT THE INVENTION The steel used as a raw material in the present invention is
This is almost the same as that described in the above-mentioned JP-A No. 11-241143. The basic idea of the component design is to improve the corrosion fatigue strength as described in the publication.

【0011】すなわち、へたりに関しては、一般的に材
料の硬さを上げることによりへたりを有効に減少させる
ことができる。また、理想的な状態の下では、限度はあ
るものの、材料の硬さの上昇が耐疲労性の向上につなが
る。しかし、例えば自動車懸架用のばねは自動車の車体
の中でも最も水・泥等が付着しやすい箇所に装着される
ものであるため、実際の使用を考慮すると、腐食の問題
を第一に考えなければならない。腐食はばねの表面にピ
ット(微小穴)を形成し、これを起点とした疲労破壊を
引き起こすためである。
That is, regarding the sagging, generally, the sagging can be effectively reduced by increasing the hardness of the material. Also, under ideal conditions, although there is a limit, an increase in material hardness leads to an improvement in fatigue resistance. However, for example, springs for automobile suspension are mounted on the parts of the automobile body where water, mud, etc. are most likely to adhere, so considering actual use, the problem of corrosion must be considered first. I won't. This is because the corrosion forms pits (micro holes) on the surface of the spring and causes fatigue fracture starting from this.

【0012】腐食疲労による破壊の主な原因としては、
(1)鋼の遅れ破壊現象、(2)腐食による表面ピット
(微小穴)の生成、及び(3)長期間の使用による残留
応力値の低下、が考えられる。
The main causes of damage due to corrosion fatigue are:
Possible causes are (1) delayed fracture phenomenon of steel, (2) generation of surface pits (micro holes) due to corrosion, and (3) reduction of residual stress value due to long-term use.

【0013】遅れ破壊は高強度鋼に特有の現象であり、
鋼に応力が付加されている際、表面に付着した水分や大
気中の水蒸気から鋼中に水素が侵入し、結晶粒界や析出
物と素地との境界等の不規則部分に集積して圧力を高
め、ミクロな亀裂から最終的に破断に至るというもので
ある。各種ばねに用いられる材料は近年特に高強度化が
進んでおり、使用時には従来よりも高い応力が負荷され
るようになっている上、上述の通り水分等が付着しやす
い環境で使用されるため、腐食疲労強度の向上には材料
の遅れ破壊特性を十分考慮する必要がある。
Delayed fracture is a phenomenon peculiar to high strength steel,
When stress is applied to steel, hydrogen enters the steel from moisture adhering to the surface or water vapor in the atmosphere and accumulates at grain boundaries and irregular parts such as the boundary between the precipitate and the base material and pressure Is increased, leading to micro-cracks and finally rupture. In recent years, the strength of the materials used for various springs has been particularly high, and when used, they are subject to higher stresses than before, and as described above, they are used in an environment where moisture easily adheres. In order to improve the corrosion fatigue strength, it is necessary to fully consider the delayed fracture characteristics of the material.

【0014】腐食による表面ピットは応力集中源とな
り、疲労強度を著しく低下させる。これに対しては、腐
食ピットをできるだけ生成させない、或いは、生成して
も応力集中がなるべく少なくなるような形態で生成させ
るようにすることが一方の方策であり、他方には、腐食
ピットが存在しても、そこから亀裂が生じにくいように
材料側で対策を施しておくことが重要である。
Surface pits due to corrosion serve as a stress concentration source, which significantly reduces fatigue strength. On the other hand, one of the measures is to prevent the corrosion pits from being generated as much as possible, or to generate them in such a form that the stress concentration is as small as possible even if they are generated. Even so, it is important to take measures on the material side so that cracks are less likely to occur from there.

【0015】ばねの場合、残留応力はショットピーニン
グにより付与されるものであるが、それを詳しく説明す
ると、ショットピーニングにより表面が塑性変形する
と、それよりも下層の塑性変形しない部分との間で変形
度に差異が生じ、それによる歪が表面に圧縮の残留応力
を生成するものである。従って、腐食により表面層が除
去され、或いは表面に微小亀裂が生じると、歪が小さく
なり、残留応力値が減少する。
In the case of a spring, the residual stress is imparted by shot peening. To explain it in detail, when the surface is plastically deformed by shot peening, it is deformed between the lower layer and a portion which is not plastically deformed. There is a difference in degree, and the resulting strain produces a compressive residual stress on the surface. Therefore, when the surface layer is removed by corrosion or a microcrack is generated on the surface, the strain becomes small and the residual stress value decreases.

【0016】以上の点を踏まえて上記成分範囲を決定し
たものであるが、各化学成分範囲の下限値及び上限値を
上記のように定めた理由は次の通りである。
The above-mentioned component ranges have been determined in view of the above points, and the reason why the lower limit value and the upper limit value of each chemical component range are set as described above is as follows.

【0017】まず、C含有量を、熱間成形ばね用鋼とし
て最も一般的に用いられているJIS−SUP7鋼、或
いは各種オイルテンパー線の素材鋼よりも低い範囲に設
定した。これは、硬さ(強度)を同じにした場合、C含
有量を多くするよりも、C含有量を低下させて合金元素
の含有量を増加した方が靭性が向上するためである。靭
性の向上は、腐食ピットからの疲労亀裂の生成及び進展
速度を低下させることにより、本発明が目的とする腐食
疲労強度の向上に大きく寄与する。なお、C含有量の下
限を0.35%としたのは、これ以下では、他の合金元
素を最大限添加したとしても、熱処理後上記の硬さを得
ることが難しいためである。また、上限を0.55%と
したのは、これ以上含有させると材料の靭性が著しく劣
化するためである。
First, the C content was set to a range lower than that of JIS-SUP7 steel, which is the most commonly used steel for hot forming springs, or the material steel of various oil tempered wires. This is because when the hardness (strength) is the same, the toughness is improved when the C content is decreased and the alloy element content is increased rather than when the C content is increased. The improvement in toughness greatly contributes to the improvement in corrosion fatigue strength, which is the object of the present invention, by reducing the generation and growth rate of fatigue cracks from corrosion pits. The lower limit of the C content is set to 0.35% because it is difficult to obtain the above hardness after the heat treatment even if other alloy elements are added to the maximum if the lower limit is set to 0.35%. The upper limit is set to 0.55% because the toughness of the material remarkably deteriorates if it is contained more.

【0018】Siは耐へたり性向上に効果を有すること
が知られている。従って、耐へたり性をより向上させる
ために、本発明ではSi含有量の上限を従来鋼よりも高
い値とした。ただし、Siは鋼の表面脱炭を助長する元
素であり、3.00%を超えて含有させると、熱処理時
の脱炭が無視し得ないものとなる。この場合、表面にお
いて上記硬さや残留応力値を得ることが困難となるた
め、上限をこのように規定した。
It is known that Si has the effect of improving the sag resistance. Therefore, in order to further improve the sag resistance, the upper limit of the Si content in the present invention is set to a value higher than that of the conventional steel. However, Si is an element that promotes surface decarburization of steel, and if it is contained in excess of 3.00%, decarburization during heat treatment cannot be ignored. In this case, it becomes difficult to obtain the hardness and the residual stress value on the surface, so the upper limit is defined in this way.

【0019】Mnは焼入性向上に効果を有する元素であ
る。ばねの中心まで十分な焼入・焼もどしを行なうの
は、下記Ni等の合金元素による材料の靭性向上効果を
十全に発揮させる上で必須の条件である。Mnが0.5
%未満では大径のばねの場合、中心まで十分な焼入が得
られないため、下限を0.5%とした。しかし、1.5
%を超えて含有させても、通常用いられる大きさのばね
においては焼入性向上効果が飽和するとともに、靭性の
劣化が問題となるため、上限を1.5%とした。
Mn is an element effective in improving the hardenability. Sufficient quenching and tempering to the center of the spring is an essential condition for fully exerting the toughness improving effect of the material by the alloying elements such as Ni described below. Mn is 0.5
If it is less than 0.1%, in the case of a spring having a large diameter, sufficient quenching to the center cannot be obtained, so the lower limit was made 0.5%. But 1.5
Even if it is contained in excess of%, the hardenability improving effect saturates and the toughness deteriorates in a normally used spring, so the upper limit was made 1.5%.

【0020】Niは鋼の靭性向上に効果を有するととも
に、鋼の腐食を抑制する効果を有する。腐食の抑制は、
上記の通り、腐食ピット生成の防止と、残留応力の減少
の防止という両面からばねの腐食疲労強度を向上させ
る。このようなNiの効果は0.5%以上含有させない
と得ることができない。しかし、3%を超えて含有させ
ても、靭性向上効果は飽和する一方、逆に、オーステナ
イト安定化元素であることから、焼入時にオーステナイ
トを残留させ、マルテンサイトへの変態を不完全にする
おそれがある。また、高価であるため、ばねのコストを
大きく押し上げる要因ともなる。従って、上限を3%と
した。
Ni has the effect of improving the toughness of the steel and the effect of suppressing the corrosion of the steel. Suppression of corrosion is
As described above, the corrosion fatigue strength of the spring is improved from both aspects of prevention of corrosion pit formation and reduction of residual stress. Such an effect of Ni cannot be obtained unless the content of Ni is 0.5% or more. However, even if the content exceeds 3%, the toughness improving effect is saturated, while conversely, since it is an austenite stabilizing element, austenite remains during quenching and the transformation to martensite is incomplete. There is a risk. Further, since it is expensive, it also causes a significant increase in the cost of the spring. Therefore, the upper limit is set to 3%.

【0021】CrはMn同様、焼入性向上に効果を有す
るとともに、表面脱炭を抑制する効果を有する。0.1
%未満ではこのような効果が殆ど期待できないため、下
限を0.1%とした。しかし、1.5%を超えて含有さ
せてもこのような効果が飽和してしまう上、焼もどし組
織を不均一にするという弊害が生ずる。このため上限を
1.5%とした。
Like Mn, Cr has an effect of improving hardenability and an effect of suppressing surface decarburization. 0.1
If it is less than%, such an effect can hardly be expected, so the lower limit was made 0.1%. However, even if the content exceeds 1.5%, such an effect is saturated, and the tempering structure becomes nonuniform. Therefore, the upper limit is set to 1.5%.

【0022】Nは鋼中のAlと結合してAlNとなり、
微細な粒子として鋼中に析出する。これにより結晶粒の
成長が妨げられるため、Nは鋼の結晶粒を微細化するの
に大きな効果を有する。このような効果を得るためには
0.01%以上のNを含有させる必要がある。しかし、
N含有量が多すぎると、鋼の製造時(凝固・冷却時)に
鋼中でN2ガスとして発生し、鋼の内質を劣化させる。
従って、その上限を0.025%とした。
N combines with Al in steel to form AlN,
Precipitates in the steel as fine particles. This hinders the growth of crystal grains, so N has a great effect on refining the crystal grains of steel. To obtain such an effect, it is necessary to contain 0.01% or more of N. But,
If the N content is too large, it is generated as N 2 gas in the steel during steel production (solidification / cooling), deteriorating the internal quality of the steel.
Therefore, the upper limit is set to 0.025%.

【0023】Vは、Cと結合して微細なVC(炭化バナ
ジウム)として鋼中に析出し、上記AlNと同様に結晶
粒を微細化させて鋼の靭性を高める。また、このような
微細炭化物を鋼中に多数分散させることにより、外部か
ら侵入したH(水素)が集積する場所を分散させ、上記
遅れ破壊の生成を抑制することができる。このような効
果を得るためには、Vを0.05%以上含有させる必要
がある。しかし、0.5%を超えて含有させると、VC
の析出サイトの数が増加することなく、VCが肥大化す
るだけとなってしまい、そのような効果が得られなくな
る。従って上限を0.5%とした。
V combines with C and precipitates in the steel as fine VC (vanadium carbide), and like the above AlN, crystal grains are refined to enhance the toughness of the steel. Further, by dispersing a large number of such fine carbides in the steel, it is possible to disperse the places where H (hydrogen) that has entered from the outside accumulates and suppress the generation of the delayed fracture. In order to obtain such an effect, it is necessary to contain V in an amount of 0.05% or more. However, if the content exceeds 0.5%, VC
VC does not increase in number without increasing the number of precipitation sites, and such an effect cannot be obtained. Therefore, the upper limit was made 0.5%.

【0024】Pは、鋼の靭性を低下させる。従って、そ
の含有量を0.01%以下とすることにより、材料の靭
性を向上させ、ひいては本発明に係るばねの腐食疲労強
度を向上させる効果が得られる。特に、本発明は冷間成
形ばねを対象とするものであるため、靭性の向上は特に
重要なものとなる。
P reduces the toughness of steel. Therefore, by setting the content to 0.01% or less, the effect of improving the toughness of the material and, in turn, improving the corrosion fatigue strength of the spring according to the present invention can be obtained. In particular, since the present invention is intended for cold-formed springs, the improvement of toughness is particularly important.

【0025】Sは鋼中でMnと結合して鋼に不溶のMn
Sとなる。MnSは塑性変形しやすいため、圧延等によ
り延伸して衝撃・疲労等による破壊の起点となりやす
い。そこで、本発明ではSの上限を0.01%とするこ
とにより、硬さが上昇したときの靭性及び耐疲労性が従
来並みとなるようにした。
S is Mn which is insoluble in the steel by combining with Mn in the steel.
It becomes S. Since MnS is easily plastically deformed, it is easily stretched by rolling or the like and becomes a starting point of fracture due to impact or fatigue. Therefore, in the present invention, the upper limit of S is set to 0.01% so that the toughness and the fatigue resistance when the hardness is increased become equal to the conventional values.

【0026】図1に、日本工業規格(JIS)に規定され
ている弁ばね用クロムバナジウム鋼オイルテンパー線
(SWOCV-V:JIS G3565)、弁ばね用シリコンクロム鋼オ
イルテンパー線(SWOSC-V:JIS G3566)、及び従来より
小型ばねを中心とした冷間コイルばね材として多く用い
られているSAE(米国自動車技術者協会)9254鋼の化学
成分範囲と本発明の成分範囲を対比して掲げる。この表
から明らかな通り、本発明に係るオイルテンパー線は従
来のオイルテンパー線や冷間成形ばね用鋼と比較しても
炭素含有量が全体として低くなっている一方、シリコン
含有量が非常に高くなっている。このため、鋼のオース
テナイト(Ac3)変態点が高くなり、一般的に短時間加
熱である高周波誘導加熱処理には適切な条件設定が必要
となる。
FIG. 1 shows a chrome vanadium steel oil temper wire for valve springs (SWOCV-V: JIS G3565) and a silicon chrome steel oil temper wire for valve springs (SWOSC-V :) specified in Japanese Industrial Standards (JIS). JIS G3566), and the chemical composition range of SAE (American Society of Automotive Engineers) 9254 steel, which has been widely used as a cold coil spring material mainly for small springs, is compared with the composition range of the present invention. As is clear from this table, the oil-tempered wire according to the present invention has a low carbon content as a whole even when compared with the conventional oil-tempered wire and steel for cold forming springs, while the silicon content is very high. It's getting higher. Therefore, the austenite (A c3 ) transformation point of steel becomes high, and it is necessary to set appropriate conditions for the high frequency induction heat treatment, which is generally a short time heating.

【0027】高周波誘導加熱処理前に所定減面率で伸線
加工を施すこと、及び前処理組織中のフェライト分率を
50%以下とすることと定めたのは、そのためである。
これらの処理により、高周波誘導加熱処理によっても十
分なオーステナイト化が成され、上記熱間成形ばねと同
様の性能を確保することが可能となる。
This is the reason why it is decided to perform wire drawing at a predetermined area reduction ratio before the high frequency induction heating treatment and to set the ferrite fraction in the pretreatment structure to 50% or less.
By these treatments, sufficient austenitization is achieved even by the high frequency induction heating treatment, and it becomes possible to secure the same performance as that of the hot-formed spring.

【0028】加熱時間が短くても十分なオーステナイト
化を達成するためには、加熱温度を上昇させる方法もあ
る。しかし、過度の温度上昇はオーステナイト結晶粒の
粗大化を招き、鋼の靭性を損なう可能性がある。そこ
で、本発明では、最高加熱温度についても規制を行い、
高周波誘導熱処理時の最高加熱温度を1020℃以下と
することにした。この最高加熱温度は、望ましくは95
0℃以下とする。ただし、900℃以下ではオーステナ
イト化が不十分となるおそれがある。また、その最高加
熱温度での保持時間ももちろんオーステナイト化と結晶
粒の粗大化に大きな影響を与えるため、本発明では後述
の基礎実験の結果に基づき、その時間を5〜20秒とし
た。
In order to achieve sufficient austenitization even if the heating time is short, there is a method of raising the heating temperature. However, excessive temperature rise may cause coarsening of austenite crystal grains and impair the toughness of steel. Therefore, in the present invention, the maximum heating temperature is also regulated,
The maximum heating temperature during high-frequency induction heat treatment was set to 1020 ° C or lower. This maximum heating temperature is preferably 95
It shall be 0 ° C or lower. However, at 900 ° C. or lower, austenitization may be insufficient. Further, since the holding time at the maximum heating temperature also has a great influence on the austenitization and the coarsening of crystal grains, the time is set to 5 to 20 seconds in the present invention based on the result of the basic experiment described later.

【0029】上記成分範囲の鋼をこのような条件下で熱
処理することにより、結晶粒の粗大化は自ずと抑えられ
るが、結晶粒度番号9以上とすることにより、冷間成形
ばねとしての性能(特に耐腐食疲労性)はより確実に保
証されるようになる。
By subjecting the steel having the above-mentioned compositional range to heat treatment under such conditions, coarsening of the crystal grains is naturally suppressed, but when the grain size is 9 or more, the performance as a cold-formed spring (particularly Corrosion fatigue resistance) will be guaranteed more reliably.

【0030】一方、加熱前の素材の表面にフェライト脱
炭層が存在する場合がある。このようなフェライト脱炭
層は、通常はそのままばねの表面に移行して、ばねの耐
久性(耐疲労性)を著しく損なう。そこで、加熱前の素
材の表面にフェライト脱炭層が存在する場合は、高周波
誘導熱処理時の最高加熱温度を940℃以上とすること
が望ましい。これにより、後述するように、素材の表面
脱炭層深さが減少し、又は完全に解消される。
On the other hand, a ferrite decarburized layer may exist on the surface of the material before heating. Such a ferrite decarburized layer usually transfers to the surface of the spring as it is, and the durability (fatigue resistance) of the spring is significantly impaired. Therefore, when the ferrite decarburized layer is present on the surface of the raw material before heating, it is desirable to set the maximum heating temperature during the high frequency induction heat treatment to 940 ° C or higher. As a result, as will be described later, the surface decarburized layer depth of the material is reduced or completely eliminated.

【0031】引張強さを1830〜1980MPaとし
たのは、この範囲未満の強さでは懸架ばねとして要求さ
れる耐久性を満たさないためであり、この範囲を超える
と靭性の低下の悪影響が著しくなるためである。
The reason why the tensile strength is set to 1830 to 1980 MPa is that the strength less than this range does not satisfy the durability required as a suspension spring, and if it exceeds this range, the adverse effect of deterioration of toughness becomes remarkable. This is because.

【0032】[0032]

【実施例】まず、熱処理条件を定めるために行った基礎
実験の結果を述べる。基礎実験は、従来の冷間成形ばね
用鋼であるSAE9254鋼を比較材として行った。図2に示
す成分を有する鋼を溶製した後、図3に示すような小型
試験片を作成し、焼入れをシミュレートした図4に示す
ようなヒートパターンで熱処理を施した。
EXAMPLES First, the results of basic experiments conducted to determine the heat treatment conditions will be described. The basic experiment was conducted using the conventional cold-formed spring steel, SAE9254 steel, as a comparative material. After the steel having the components shown in FIG. 2 was melted, a small test piece as shown in FIG. 3 was prepared, and heat treatment was performed in a heat pattern as shown in FIG. 4 in which quenching was simulated.

【0033】最初に、最高加熱温度Tmaxを900〜980℃
の間で20℃刻みで5段階に変化させ、また、加熱保持時
間thを5、10、20秒の3段階に変化させて図4のパター
ンの熱処理を行い、各条件下での試験片の内部硬さ(Hv
20kg)及び旧オーステナイト結晶粒の粒度番号(JIS-G0
551)を測定した。その結果(Time-Temperature-Austen
itizing=TTA線図)を図5に示す。
First, the maximum heating temperature T max is set to 900 to 980 ° C.
Varied in five stages at 20 ° C. increments between, also by changing the heating and holding time t h in three stages of 10, 20 seconds was heat-treated in the pattern of Figure 4, the test piece under each condition Internal hardness of (Hv
20kg) and grain size number of old austenite crystal grains (JIS-G0
551) was measured. The result (Time-Temperature-Austen
Itizing = TTA diagram) is shown in FIG.

【0034】図5において加熱保持時間に着目すると、
加熱保持時間thが5〜20秒の間では、内部硬さ、旧オー
ステナイト結晶粒度の間に顕著な差は見られず、この加
熱保持時間の範囲内では、短時間熱処理に対する加熱保
持時間の影響が少ないことがわかる。
Focusing on the heating and holding time in FIG. 5,
No significant difference was observed between the internal hardness and the former austenite grain size when the heating and holding time t h was 5 to 20 seconds. Within this heating and holding time range, the heating and holding time for the short-time heat treatment was It can be seen that the impact is small.

【0035】一方、加熱温度に着目すると、加熱温度が
上昇しても内部硬さにはあまり変化が見られないが、粒
度番号が小さくなっている(結晶粒が大きくなってい
る)ことがわかる。
On the other hand, focusing on the heating temperature, it can be seen that the internal hardness does not change much even if the heating temperature rises, but the grain size number is smaller (the crystal grains are larger). .

【0036】比較材であるSAE9254鋼の同様のグラフを
図6に示す(川崎他,日本熱処理技術協会「熱処理」20
(1980), pp. 281-288)。両者は加熱速度が異なるもの
の、それによるオーステナイト変態温度(Ac3点)の変
化は約10℃程度(加熱速度の大きい比較材の方がAc3
が高くなる)と見込まれるので、それを考慮に入れて
も、本発明材の方が結晶粒度番号で2程度細かくなって
いる。これは、本発明材の方がAc3点が高いこと、及
び、本発明材が含有するVの微細炭化物によるピン止め
効果によるものと思われる。
A similar graph of SAE9254 steel, which is a comparative material, is shown in FIG. 6 (Kawasaki et al., Japan Heat Treatment Technical Association “Heat Treatment” 20
(1980), pp. 281-288). Although the heating rates of the two are different, the change in the austenite transformation temperature (A c3 point) due to it is expected to be about 10 ° C (A c3 point is higher in the comparative material with a higher heating rate), so consider that Even if it is put in, the material of the present invention is finer by about 2 in the grain size number. This is considered to be due to the fact that the material of the present invention has a higher A c3 point and the pinning effect by the V fine carbide contained in the material of the present invention.

【0037】図5のTTA線図より、オーステナイト化の
点で最も厳しい条件である最高加熱温度Tmax=900℃、
加熱保持時間th=5秒という熱処理条件で熱処理を行
い、表面からの硬さ分布を測定した結果を図7に示す。
このような厳しい熱処理条件においても、本発明材では
内部まで均一な硬さが得られていることがわかる。顕微
鏡組織を観察しても、中心部まで正常なマルテンサイト
組織となっていることが確認された。
From the TTA diagram of FIG. 5, the maximum heating temperature T max = 900 ° C., which is the most severe condition in terms of austenitization,
FIG. 7 shows the result of measuring the hardness distribution from the surface by performing heat treatment under the heat treatment condition of heat holding time t h = 5 seconds.
It can be seen that even under such severe heat treatment conditions, the material of the present invention can obtain uniform hardness even inside. It was confirmed by observation of the microscopic structure that a normal martensite structure was formed in the central part.

【0038】次に、高周波熱処理の前の組織(特にフェ
ライト分率)が短時間熱処理に及ぼす影響を確認するた
め、本発明材について、熱処理によりフェライト分率が
30%の試料と35%の試料を作成した。それらについて最
高加熱温度Tmax=900〜980℃、加熱保持時間th=5秒の
条件で図4のヒートパターンの熱処理を行った後、内部
硬さと旧オーステナイト結晶粒度を測定した。その結果
は図8及び図9に示す通り、フェライト分率が50%以下
では前処理組織の影響はほとんど無いことが確認され
た。
Next, in order to confirm the effect of the structure (particularly the ferrite fraction) before the high frequency heat treatment on the short time heat treatment, the ferrite fraction of the material of the present invention was changed by the heat treatment.
A 30% sample and a 35% sample were prepared. After subjecting them to the heat treatment of the heat pattern of FIG. 4 under the conditions of the maximum heating temperature T max = 900 to 980 ° C. and the heating holding time t h = 5 seconds, the internal hardness and the former austenite grain size were measured. As a result, as shown in FIGS. 8 and 9, it was confirmed that when the ferrite fraction was 50% or less, there was almost no influence of the pretreatment structure.

【0039】さらに、高周波熱処理の前の素材表面のフ
ェライト脱炭層と高周波熱処理温度の関係を確認するた
め、本発明材について、表面に0.03mmのフェライト脱炭
層が存在する試料を作成した。それについて最高加熱温
度Tmax=900〜1000℃、加熱保持時間th=17.5秒の条件
で図4のヒートパターンの熱処理を行った後、表面のフ
ェライト脱炭深さを測定した。その結果は、図17及び
図18に示す通り、加熱前に存在したフェライト脱炭層
が、加熱温度940℃まではそのまま存在しているが、970
℃にすることにより半分の0.015mmとなり、加熱温度を1
000℃まで上げるとほぼ完全に消滅した。
Further, in order to confirm the relationship between the ferrite decarburized layer on the surface of the material before the induction heat treatment and the induction heat treatment temperature, a sample having a ferrite decarburized layer of 0.03 mm on the surface was prepared for the material of the present invention. After heat-treating the heat pattern of FIG. 4 under the conditions of the maximum heating temperature T max = 900 to 1000 ° C. and the heating holding time t h = 17.5 seconds, the ferrite decarburization depth of the surface was measured. As a result, as shown in FIG. 17 and FIG. 18, the ferrite decarburized layer that was present before heating was still present up to the heating temperature of 940 ° C.
By changing the temperature to ℃, it becomes half, 0.015mm, and the heating temperature is 1
When it was raised to 000 ℃, it almost disappeared.

【0040】これは、加熱前の材料において表面にフェ
ライト脱炭層が存在していても、通常よりも高い温度で
短時間高周波誘導加熱を行うことにより、内部の炭素が
拡散して表面のフェライト部に溶けこみ、フェライト脱
炭層が減少又は解消されたものと考えられる。従来よ
り、高周波誘導加熱は急速且つ短時間加熱であるために
表面脱炭が少ないという利点が知られているが、本発明
者らは、本発明に係る条件で加熱を行うことにより、既
存の脱炭を解消して復炭することさえも可能であること
を確認することができた。
This is because even if there is a ferrite decarburized layer on the surface of the material before heating, by performing high-frequency induction heating at a temperature higher than usual for a short time, carbon inside diffuses and the ferrite part on the surface is heated. It is considered that the ferrite decarburized layer was dissolved or dissolved in the steel and the ferrite decarburized layer was reduced or eliminated. Conventionally, high-frequency induction heating is known to have an advantage that surface decarburization is small because it is rapid and short-time heating. However, the present inventors have performed heating under the conditions according to the present invention. We were able to confirm that it is even possible to eliminate decarburization and reconstitute.

【0041】以上の基礎実験の結果を踏まえ、コイルば
ねによる耐久性等の実験を行った。本発明材について
は、図10(a)に示す工程でまず高周波加熱によるオ
イルテンパー線を作製し、そのオイルテンパー線より図
10(b)に示す工程でコイルばねを作製した。なお、
コイリングはもちろん冷間で行った。作製したコイルば
ねの諸元は図11に示す通りである。なお、比較材につ
いては、炉加熱によりオイルテンパー線を作製し、熱間
成形で同一諸元のコイルばねを作製した。
Based on the results of the above basic experiments, experiments such as durability with coil springs were conducted. Regarding the material of the present invention, an oil tempered wire was first produced by high frequency heating in the step shown in FIG. 10 (a), and a coil spring was produced from the oil tempered wire in the step shown in FIG. 10 (b). In addition,
The coiling was of course cold. The specifications of the manufactured coil spring are as shown in FIG. As for the comparative material, an oil tempered wire was manufactured by heating in a furnace, and a coil spring having the same specifications was manufactured by hot forming.

【0042】まず、図10(a)に示す工程の後、すな
わちオイルテンパー線の状態での表面硬さ分布を測定し
た。その結果は図12に示す通りであり、高周波加熱に
よる本発明材は、やはり表面脱炭による硬さの低下が最
小限に抑えられている。
First, after the step shown in FIG. 10A, that is, the surface hardness distribution in the state of the oil temper wire was measured. The results are shown in FIG. 12, and the material of the present invention by high-frequency heating also has a minimal decrease in hardness due to surface decarburization.

【0043】図10(b)に示す工程でコイルばねを作
製した後の表面圧縮残留応力の分布を測定した結果を図
13に示す。本発明材はいずれの深さにおいても比較材
よりも100〜200MPa程残留応力が大きくなっている。こ
れは、図12に示す表面脱炭の影響が現れているものと
思われる。
FIG. 13 shows the results of measuring the distribution of the surface compressive residual stress after the coil spring was manufactured in the step shown in FIG. 10 (b). The material of the present invention has a residual stress larger than that of the comparative material by 100 to 200 MPa at any depth. This seems to be due to the effect of surface decarburization shown in FIG.

【0044】発明材コイルばねと比較材コイルばねにつ
いて、平均応力τm=735MPa、応力振幅τa=550MPaの応力
条件で疲労耐久試験を行った。その結果は図14に示す
通り、本発明材は30万回の耐久寿命を有し、28万回であ
る比較材とほぼ同等の耐久性を有することが確認され
た。
The invention material coil spring and the comparative material coil spring were subjected to a fatigue endurance test under stress conditions of an average stress τm = 735 MPa and a stress amplitude τa = 550 MPa. As a result, as shown in FIG. 14, it was confirmed that the material of the present invention has a durable life of 300,000 times and has a durability almost equal to that of the comparative material of 280,000 times.

【0045】次に、腐食疲労試験を行った。コイルばね
の外側表面に0.4mmのピットを形成し、塩水で腐食させ
た後、平均応力τm=735MPa、応力振幅τa=196MPaの応力
条件で疲労耐久試験を行った。その結果、図15に示す
ように、腐食疲労特性においても本発明材は比較材とほ
ぼ同等の性能を有することが認められた。
Next, a corrosion fatigue test was conducted. After forming 0.4 mm pits on the outer surface of the coil spring and corroding them with salt water, a fatigue endurance test was performed under the stress conditions of average stress τm = 735 MPa and stress amplitude τa = 196 MPa. As a result, as shown in FIG. 15, it was confirmed that the material of the present invention has substantially the same performance as the comparative material also in the corrosion fatigue property.

【0046】最後に、耐へたり性試験を行った。供試コ
イルばねを、表面の最大せん断応力が1200MPaとなるよ
うに締め付け、80℃の環境下に96時間置いて、へたりを
生じさせた。この試験前後の自由高さの差より表面の残
留せん断歪を算出した結果が図16である。耐へたり性
においては、本発明材は比較材よりもやや良好な結果を
出している。これは、鋼のシリコン成分が高いことのほ
か、熱処理の前の組織のコントロールが効果を奏してい
るものと思われる。このように熱間コイルばね材に比べ
遜色ない性能を有する冷間コイルばね材が提供できた。
Finally, a sag resistance test was conducted. The test coil spring was tightened so that the maximum shear stress on the surface was 1200 MPa, and the coil spring was placed in an environment of 80 ° C. for 96 hours to cause sagging. FIG. 16 shows the result of calculating the residual shear strain on the surface from the difference in free height before and after the test. In terms of sag resistance, the material of the present invention gives slightly better results than the comparative material. This seems to be due to the fact that the control of the structure before heat treatment is effective in addition to the high silicon content of steel. Thus, a cold coil spring material having a performance comparable to that of the hot coil spring material can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の素材鋼と、従来のオイルテンパー線
及び冷間成形コイルばね用鋼の成分範囲の表。
FIG. 1 is a table showing the composition range of the material steel of the present invention and the conventional oil tempered wire and steel for cold forming coil springs.

【図2】 実験を行った本発明材と比較材の素材鋼の化
学成分の表。
FIG. 2 is a table of chemical compositions of the material steels of the present invention material and the comparative material which were tested.

【図3】 熱処理基礎実験で用いた試験片の形状及び寸
法図。
FIG. 3 is a shape and dimension diagram of a test piece used in a heat treatment basic experiment.

【図4】 熱処理基礎実験で行った熱処理のヒートパタ
ーンの図。
FIG. 4 is a diagram of a heat pattern of heat treatment performed in a heat treatment basic experiment.

【図5】 本発明材の熱処理基礎実験の結果を示すTTA
図。
FIG. 5: TTA showing the result of the basic heat treatment experiment for the material of the present invention
Fig.

【図6】 比較材のTTA線図。FIG. 6 is a TTA diagram of the comparative material.

【図7】 本発明材を最も厳しい条件でオーステナイト
化した場合の内部硬さ分布を示すグラフ。
FIG. 7 is a graph showing the internal hardness distribution when the material of the present invention is austenitized under the most severe conditions.

【図8】 熱処理前のフェライト分率をパラメータとし
た、最高加熱温度と内部硬さの関係を示すグラフ。
FIG. 8 is a graph showing the relationship between the maximum heating temperature and internal hardness, with the ferrite fraction before heat treatment as a parameter.

【図9】 熱処理前のフェライト分率をパラメータとし
た、最高加熱温度と結晶粒度番号の関係を示すグラフ。
FIG. 9 is a graph showing the relationship between the maximum heating temperature and the grain size number, with the ferrite fraction before heat treatment as a parameter.

【図10】 試験を行ったオイルテンパー線及び冷間成
形コイルばねの製造工程を示す工程図。
FIG. 10 is a process drawing showing the manufacturing process of the oil tempered wire and the cold-formed coil spring which have been tested.

【図11】 試験を行ったコイルばねの諸元の表。FIG. 11 is a table of specifications of tested coil springs.

【図12】 オイルテンパー線の状態における本発明材
及び比較材の表面硬さ分布のグラフ。
FIG. 12 is a graph of surface hardness distributions of the material of the present invention and the comparative material in the state of oil tempered wire.

【図13】 コイルばねの状態における本発明材及び比
較材の表面圧縮残留応力分布のグラフ。
FIG. 13 is a graph of surface compressive residual stress distributions of the material of the present invention and the comparative material in the state of a coil spring.

【図14】 本発明材と比較材の耐久疲労試験結果の
図。
FIG. 14 is a diagram showing the results of a durability fatigue test of the material of the present invention and the comparative material.

【図15】 本発明材と比較材の人工ピット腐食疲労試
験結果の図。
FIG. 15 is a view showing results of an artificial pit corrosion fatigue test of the material of the present invention and the comparative material.

【図16】 本発明材と比較材の締め付けへたり試験結
果の図。
FIG. 16 is a diagram showing the results of a settling test of the material of the present invention and the comparative material.

【図17】 最高加熱温度とフェライト脱炭深さの関係
を示すグラフ。
FIG. 17 is a graph showing the relationship between the maximum heating temperature and the ferrite decarburization depth.

【図18】 最高加熱温度とフェライト脱炭深さの関係
を示す表面組織顕微鏡写真。
FIG. 18 is a surface structure micrograph showing the relationship between the maximum heating temperature and the ferrite decarburization depth.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C21D 8/06 C21D 8/06 A (72)発明者 榊原 隆之 名古屋市緑区鳴海町字上汐田68番地 中央 発條株式会社内 (72)発明者 脇田 将見 名古屋市緑区鳴海町字上汐田68番地 中央 発條株式会社内 Fターム(参考) 3J059 AB06 AD04 BA01 BB01 BD01 EA02 EA09 GA02 4K032 AA05 AA06 AA11 AA12 AA16 AA23 AA24 AA32 BA02 CH04 CH05 CH06 4K043 AA02 AB04 AB05 AB10 AB11 AB15 AB20 AB22 AB23 AB25 AB26 AB28 AB30 CA04 DA01 FA03 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) // C21D 8/06 C21D 8/06 A (72) Inventor Takayuki Sakakibara Kamishiota, Narumi-cho, Midori-ku, Nagoya No. 68 Chuo Joujo Co., Ltd. (72) Inventor Masami Wakita 68 Kamishiota, Narumi-cho, Midori-ku, Nagoya AA11 AA12 AA16 AA23 AA24 AA32 BA02 CH04 CH05 CH06 4K043 AA02 AB04 AB05 AB10 AB11 AB15 AB20 AB22 AB23 AB25 AB26 AB28 AB30 CA04 DA01 FA03

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 重量比にしてC:0.35〜0.55
%、Si:1.8〜3.0%、Mn:0.5〜1.5
%、Ni:0.5〜3.0%、Cr:0.1〜1.5%
を含有する鋼を素材とし、高周波誘導加熱による熱処理
を行うことを特徴とする冷間成形コイルばね用オイルテ
ンパー線。
1. A weight ratio of C: 0.35 to 0.55.
%, Si: 1.8 to 3.0%, Mn: 0.5 to 1.5
%, Ni: 0.5 to 3.0%, Cr: 0.1 to 1.5%
An oil tempered wire for a cold-formed coil spring, which is made of a steel containing iron and is heat-treated by high-frequency induction heating.
【請求項2】 上記素材を熱間圧延により所定径の線材
とした後、冷間加工により所定の減面率で伸線し、その
後、高周波誘導加熱による熱処理を行うことを特徴とす
る請求項1に記載の冷間成形コイルばね用オイルテンパ
ー線。
2. The method according to claim 1, wherein the material is hot-rolled into a wire having a predetermined diameter, drawn by cold-working at a predetermined surface-reduction rate, and then heat-treated by high-frequency induction heating. 1. An oil tempered wire for a cold-formed coil spring according to 1.
【請求項3】 高周波誘導加熱による熱処理の前の鋼組
織中のフェライト分率を50%以下とすることを特徴と
する請求項1又は2に記載の冷間成形コイルばね用オイ
ルテンパー線。
3. The oil tempered wire for a cold-formed coil spring according to claim 1, wherein the ferrite fraction in the steel structure before heat treatment by high-frequency induction heating is 50% or less.
【請求項4】 上記高周波誘導加熱の最高加熱温度を1
020℃以下とすることを特徴とする請求項1〜3のい
ずれかに記載の冷間成形コイルばね用オイルテンパー
線。
4. The maximum heating temperature of the high frequency induction heating is 1
The oil tempered wire for cold forming coil springs according to any one of claims 1 to 3, wherein the temperature is 020 ° C or lower.
【請求項5】 上記高周波誘導加熱の最高加熱温度を9
50℃以下とすることを特徴とする請求項1〜4のいず
れかに記載の冷間成形コイルばね用オイルテンパー線。
5. The maximum heating temperature of the high frequency induction heating is 9
The oil tempered wire for a cold-formed coil spring according to any one of claims 1 to 4, which has a temperature of 50 ° C or less.
【請求項6】 上記高周波誘導加熱の最高加熱温度を9
40℃以上とすることを特徴とする請求項1〜4のいず
れかに記載の冷間成形コイルばね用オイルテンパー線。
6. The maximum heating temperature of the high frequency induction heating is 9
It is 40 degreeC or more, The oil tempered wire for cold forming coil springs in any one of Claims 1-4 characterized by the above-mentioned.
【請求項7】 上記高周波誘導加熱の最高加熱温度を9
00℃以上とすることを特徴とする請求項1〜6のいず
れかに記載の冷間成形コイルばね用オイルテンパー線。
7. The maximum heating temperature of the high frequency induction heating is 9
The oil tempered wire for a cold-formed coil spring according to any one of claims 1 to 6, which has a temperature of 00 ° C or higher.
【請求項8】 上記高周波誘導加熱の最高加熱温度にお
ける保持時間を5秒以上とすることを特徴とする請求項
1〜7のいずれかに記載の冷間成形コイルばね用オイル
テンパー線。
8. The oil tempered wire for a cold-formed coil spring according to claim 1, wherein a holding time at the maximum heating temperature of the high frequency induction heating is 5 seconds or more.
【請求項9】 上記高周波誘導加熱の最高加熱温度にお
ける保持時間を20秒以下とすることを特徴とする請求
項1〜8のいずれかに記載の冷間成形コイルばね用オイ
ルテンパー線。
9. The oil tempered wire for a cold-formed coil spring according to claim 1, wherein a holding time at the maximum heating temperature of the high frequency induction heating is 20 seconds or less.
【請求項10】 熱処理後の結晶粒度番号を9以上とし
たことを特徴とする請求項1〜9のいずれかに記載の冷
間成形コイルばね用オイルテンパー線。
10. The oil tempered wire for cold forming coil spring according to claim 1, wherein the grain size number after heat treatment is 9 or more.
【請求項11】 熱処理後の引張強さを1830〜19
80MPaとしたことを特徴とする請求項1〜10のい
ずれかに記載の冷間成形コイルばね用オイルテンパー
線。
11. The tensile strength after heat treatment is 1830-19.
The oil tempered wire for cold forming coil spring according to any one of claims 1 to 10, wherein the oil tempered wire is 80 MPa.
【請求項12】 上記素材が更に、N:0.01〜0.
025%、V:0.05〜0.5%を含有し、P:0.
01%以下、S:0.01%以下としたことを特徴とす
る請求項1〜11のいずれかに記載の冷間成形コイルば
ね用オイルテンパー線。
12. The material further comprises N: 0.01-0.
0: 25%, V: 0.05-0.5%, P: 0.
The oil tempered wire for a cold-formed coil spring according to any one of claims 1 to 11, wherein the oil tempered wire is 01% or less and S: 0.01% or less.
【請求項13】 請求項1〜12のいずれかに記載のオ
イルテンパー線より製造した冷間成形コイルばね。
13. A cold-formed coil spring manufactured from the oil-tempered wire according to any one of claims 1 to 12.
JP2002074142A 2001-06-07 2002-03-18 Manufacturing method of oil tempered wire for cold forming coil spring Expired - Fee Related JP3872364B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002074142A JP3872364B2 (en) 2001-06-07 2002-03-18 Manufacturing method of oil tempered wire for cold forming coil spring
US10/385,656 US20040079067A1 (en) 2002-03-18 2003-03-12 Oil tempered wire for cold forming coil springs
US11/086,410 US7407555B2 (en) 2001-06-07 2005-03-23 Oil tempered wire for cold forming coil springs

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-172307 2001-06-07
JP2001172307 2001-06-07
JP2002074142A JP3872364B2 (en) 2001-06-07 2002-03-18 Manufacturing method of oil tempered wire for cold forming coil spring

Publications (2)

Publication Number Publication Date
JP2003055741A true JP2003055741A (en) 2003-02-26
JP3872364B2 JP3872364B2 (en) 2007-01-24

Family

ID=26616505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002074142A Expired - Fee Related JP3872364B2 (en) 2001-06-07 2002-03-18 Manufacturing method of oil tempered wire for cold forming coil spring

Country Status (1)

Country Link
JP (1) JP3872364B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005344199A (en) * 2004-06-07 2005-12-15 Kobe Steel Ltd Steel material to be cold-bent
JP2008190042A (en) * 2008-02-22 2008-08-21 Chuo Spring Co Ltd Cold-formed spring having high fatigue strength and high corrosion fatigue strength
JP2010133558A (en) * 2008-11-21 2010-06-17 Muhr & Bender Kg Hardened spring steel, spring element, and method for manufacturing the spring element
WO2013021828A1 (en) * 2011-08-11 2013-02-14 日本発條株式会社 Compression coil spring and method for producing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005344199A (en) * 2004-06-07 2005-12-15 Kobe Steel Ltd Steel material to be cold-bent
JP4608242B2 (en) * 2004-06-07 2011-01-12 株式会社神戸製鋼所 Steel for cold bending
JP2008190042A (en) * 2008-02-22 2008-08-21 Chuo Spring Co Ltd Cold-formed spring having high fatigue strength and high corrosion fatigue strength
JP2010133558A (en) * 2008-11-21 2010-06-17 Muhr & Bender Kg Hardened spring steel, spring element, and method for manufacturing the spring element
WO2013021828A1 (en) * 2011-08-11 2013-02-14 日本発條株式会社 Compression coil spring and method for producing same
JP2013036113A (en) * 2011-08-11 2013-02-21 Nhk Spring Co Ltd Compression coil spring and method for producing the same
US20140306389A1 (en) * 2011-08-11 2014-10-16 Nhk Spring Co., Ltd. Compression coil spring and method for producing same
US10359090B2 (en) 2011-08-11 2019-07-23 Nhk Spring Co., Ltd. Compression coil spring and method for producing same

Also Published As

Publication number Publication date
JP3872364B2 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
EP2058414B1 (en) High-strength spring steel wire, high-strength springs and processes for production of both
EP2017358B1 (en) Steel wire material for spring and its producing method
US7407555B2 (en) Oil tempered wire for cold forming coil springs
JP2001240940A (en) Bar wire rod for cold forging and its production method
US6224686B1 (en) High-strength valve spring and it&#39;s manufacturing method
US6193816B1 (en) Spring with corrosion fatigue strength
JPH0892690A (en) Carburized parts excellent in fatigue resistance and its production
CN112267074A (en) High-strength high-toughness bainite non-quenched and tempered steel for high-power engine crankshaft and preparation method thereof
US5897717A (en) High strength spring steel and process for producing same
JP2003105498A (en) High strength spring, and production method therefor
JPH11241143A (en) Spring improved in corrosion fatigue strength
CN112195412B (en) Nb-V microalloyed high-strength high-toughness bainite non-quenched and tempered steel for high-power engine crankshaft and preparation method thereof
JPH11131176A (en) Induction hardened parts and production thereof
JP7133705B2 (en) Wire rod for spring, steel wire with improved toughness and corrosion fatigue characteristics, and method for producing the same
JP3550886B2 (en) Manufacturing method of gear steel for induction hardening excellent in machinability and fatigue strength
JP4252351B2 (en) Cold forming spring having high fatigue strength and high corrosion fatigue strength and steel for spring
JP5001874B2 (en) Cold forming spring having high fatigue strength and high corrosion fatigue strength, and method for producing spring steel wire
EP3020841B1 (en) Coil spring, and method for manufacturing same
JP3872364B2 (en) Manufacturing method of oil tempered wire for cold forming coil spring
JP3644217B2 (en) Induction-hardened parts and manufacturing method thereof
JPH1162943A (en) Soft nitrided as rolled or normalized crankshaft and manufacture thereof
JPH05331597A (en) Coil spring with high fatigue strength
JP4175933B2 (en) Nitride steel parts capable of obtaining high surface hardness and deep hardening depth by nitriding for a short time and method for producing the same
JP2001049337A (en) Production of high strength spring excellent in fatigue strength
JP3142689B2 (en) Spring with excellent fatigue strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061019

R150 Certificate of patent or registration of utility model

Ref document number: 3872364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees