JP2003105498A - High strength spring, and production method therefor - Google Patents

High strength spring, and production method therefor

Info

Publication number
JP2003105498A
JP2003105498A JP2001302329A JP2001302329A JP2003105498A JP 2003105498 A JP2003105498 A JP 2003105498A JP 2001302329 A JP2001302329 A JP 2001302329A JP 2001302329 A JP2001302329 A JP 2001302329A JP 2003105498 A JP2003105498 A JP 2003105498A
Authority
JP
Japan
Prior art keywords
less
spring
strength
mpa
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001302329A
Other languages
Japanese (ja)
Inventor
Yuji Ishikawa
裕二 石川
Satoru Kondo
覚 近藤
Motohide Mori
元秀 森
Takeshi Kawamoto
剛 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Togo Seisakusho Corp
Toyota Motor Corp
Original Assignee
Togo Seisakusho Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Togo Seisakusho Corp, Toyota Motor Corp filed Critical Togo Seisakusho Corp
Priority to JP2001302329A priority Critical patent/JP2003105498A/en
Publication of JP2003105498A publication Critical patent/JP2003105498A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Springs (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel wire for a high strength spring which can combinedly have high strength and satisfactory cold spring formability. SOLUTION: The high strength spring has a composition containing, by mass, 0.55 to 0.65% C, 1.2 to 2.5% Si, 0.3 to 0.6% Mn, and 0.4 to 2.0% Cr, and in which the content of P is limited to <=0.015%, and S to <=0.015%, and if required, containing one or two metals selected from 0.05 to 2.0% Mo and 0.05 to 0.3% V (wherein, the total content of Mn and V is <=0.6%), and the balance iron with inevitable impurities. The dimensions of nonmetallic inclusions are <=15 μm, and its tensile strength is >=1,960 MPa, and its yield ratio (σ0.2/σB) is 0.8 to 0.9, or its yield ratio is >0.9, and also, the content of retained austenite is <=6%. Further, old austenite grain size number is >=11, its surface roughness Rmax is <=11, and the compressive residual stress of the surface part is >=600 MPa. Further, the steel has a durability of 1×10<7> times when mean stress τm=600 MPa, and amplitude stress τa=514 MPa.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高強度ばねとその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high strength spring and a manufacturing method thereof.

【0002】[0002]

【従来の技術】ばねは、高荷重を繰返し受けることが多
いため、高強度、耐へたり性、耐久性等が求められる。
特に、エンジン用バルブスプリング(弁ばね)などは、
高温下の厳しい環境で酷使されるため、ばねの性能とし
ての疲労強度とへたり特性が特に重要である。自動車エ
ンジンの弁ばねのように、高強度にも拘らず、線径が細
いものに関しては冷間コイリングが一般的で、最近では
懸架ばねのような太い線径のものに対しても冷間コイリ
ングが増加してきている。冷間コイルばねにはJIS
G 4801に示されるような、Si−Mn系やSi−
Cr系ばね鋼を用いたオイルテンパー線が用いられてい
た。またさらなる高強度化を図るため、特開平1−83
644号公報や特開平2−57637号公報のように上
述のベースとなるばね鋼にMo、Vなどの合金元素を添
加してオイルテンパー処理した鋼線が開発されてきた。
2. Description of the Related Art Since springs are often subjected to high loads repeatedly, high strength, sag resistance and durability are required.
In particular, engine valve springs (valve springs)
Fatigue strength and sag characteristics as spring performance are particularly important because they are used in severe environments at high temperatures. Cold coiling is generally used for thin wire diameters such as valve springs of automobile engines despite their high strength.Recently, cold coiling is also used for thick wire diameters such as suspension springs. Is increasing. JIS for cold coil springs
G-4801, Si-Mn system and Si-
An oil tempered wire made of Cr spring steel has been used. Further, in order to further increase the strength, JP-A-1-83
As described in Japanese Patent Laid-Open No. 644 and Japanese Laid-Open Patent Application No. 2-57637, steel wires have been developed in which an alloying element such as Mo or V is added to the above-described spring steel as a base and subjected to oil tempering.

【0003】一般にばね素材の引張強さまたは硬度を高
くすれば耐疲労性および耐へたり特性は向上することが
知られている。しかし、引張強さが1960MPaを超
える高強度ばねでは非金属介在物を起点とした疲労破壊
や粒界破壊など従来用いられていた低強度の材料では見
られない破壊の出現頻度が高くなる。更に冷間成形を行
うばねでは素材となるオイルテンパー線の加工性(ばね
成形性)が重要な因子となる。すなわち、オイルテンパ
ー線を用いて冷間成形によりコイルばねとする場合、オ
イルテンパー線の引張強さが高くなると破壊ひずみが小
さいため、コイリング中に折損する。
It is generally known that if the tensile strength or hardness of a spring material is increased, the fatigue resistance and the sag resistance are improved. However, in a high-strength spring having a tensile strength exceeding 1960 MPa, the frequency of occurrence of fracture such as fatigue fracture originating from nonmetallic inclusions and grain boundary fracture, which cannot be seen in the conventionally used low-strength materials, increases. Further, in a spring that is cold-formed, the workability (spring formability) of the oil-tempered wire that is the material is an important factor. That is, when a coil spring is formed by cold forming using an oil tempered wire, the breaking strain is small when the tensile strength of the oil tempered wire is high, so that the coil breaks during coiling.

【0004】高強度と良好なコイリング性を両立させる
ため、特開平4−247824号公報では温間における
コイリングが有効とされている。しかし、一般に用いら
れている冷間コイリング法と比較して生産性、作業性の
面で難があった。また、特開平3−162550号公報
では残留オーステナイトを利用し、コイリングによる加
工誘起変態によってひずみを開放し、折損を防止できる
と主張している。しかし、残留オーステナイト量の増加
に対して引張試験での伸び値は増加するが、ノッチ付き
試験片での曲げ試験における曲げ角度測定結果において
は残留オーステナイト量には影響しないか、むしろ低下
するなどの結果が示されており、その残留オーステナイ
ト量の影響は明確ではなかった。
In order to achieve both high strength and good coiling property, Japanese Patent Laid-Open No. 4-247824 discloses that warm coiling is effective. However, there are problems in productivity and workability as compared with the commonly used cold coiling method. Further, JP-A-3-162550 claims that retained austenite can be used to release strain by work-induced transformation by coiling and prevent breakage. However, the elongation value in the tensile test increases with the increase in the retained austenite amount, but in the bending angle measurement result in the bending test with the notched test piece, the retained austenite amount does not affect or rather decreases. The results are shown, and the effect of the amount of retained austenite was not clear.

【0005】本発明は、このような事情に鑑みてなされ
たものである。つまり、高強度で耐久性等に優れ、しか
も成形性にも優れた高強度ばね及びその製造方法を提供
することを目的とする。
The present invention has been made in view of such circumstances. That is, it is an object of the present invention to provide a high-strength spring having high strength, excellent durability, and the like, and a method of manufacturing the same.

【0006】[0006]

【課題を解決するための手段】そこで、本発明者はこの
課題を解決すべく鋭意研究し、疲労破壊の起点となる介
在物の大きさを小さくすると共に粒界を清浄化して粒界
強度を向上させる、疲労特性に影響するミクロ組織の旧
オーステナイト粒径を微細にする、等を総合的に満足す
るばね鋼を採用し、適切な加工を施すことにより優れた
特性のばねが得られることを見出し、本発明を完成させ
たものである。また、更に高い強度を得るためには、窒
化処理を採用すると共に、得られた窒化層の焼き戻し軟
化抵抗を高めるようにした。
Therefore, the present inventor has diligently studied in order to solve this problem, and reduces the size of inclusions which are the starting points of fatigue fracture and cleans the grain boundaries to improve the grain boundary strength. It is expected that springs with excellent properties can be obtained by adopting spring steel that comprehensively satisfies the requirements of improving, making the austenite grain size of the microstructure that affects the fatigue properties fine, and so on. The present invention has been completed under the heading. Further, in order to obtain higher strength, nitriding treatment was adopted and the tempering softening resistance of the obtained nitrided layer was increased.

【0007】すなわち、本発明の高強度ばねは、質量%
で、C:0.55〜0.65%、Si:1.2〜2.5
%、Mn:0.3〜0.6%、Cr:0.4〜2.0%
を含み、更にMo:0.05〜2.0%及びV:0.0
5〜0.3%の内の1種または2種を含み、かつMn+
Vが0.6%以下であり、P:0.015%以下、S:
0.015%以下に制限するとともに、残部鉄および不
可避的不純物を含み、非金属介在物の大きさが15μm
以下、引張強度が1960MPa以上を有し、降伏比
(σ0.2/σB)が0.8以上0.9以下、または降伏比
0.9超かつ残留オーステナイト量6%以下であり、更
に旧オーステナイト粒度番号が11番以上である鋼線で
形成され、表面粗さRmaxが11以下で、表面部分の
圧縮残留応力が600MPa以上であり、かつ疲労強度
が、平均応力τm=600MPaで振幅応力τa=51
4MPaの時に1x107回以上の耐久性をもつことを
特徴とする。本発明の高強度ばねは極めて高い疲労強度
をもつ。
That is, the high strength spring of the present invention has a mass%
C: 0.55 to 0.65%, Si: 1.2 to 2.5
%, Mn: 0.3 to 0.6%, Cr: 0.4 to 2.0%
In addition, Mo: 0.05 to 2.0% and V: 0.0
5 to 0.3% of 1 or 2 types, and Mn +
V is 0.6% or less, P: 0.015% or less, S:
The content is limited to 0.015% or less, and the balance of iron and unavoidable impurities is included, and the size of non-metallic inclusions is 15 μm.
Hereafter, the tensile strength is 1960 MPa or more, the yield ratio (σ0.2 / σB) is 0.8 or more and 0.9 or less, or the yield ratio is more than 0.9 and the amount of retained austenite is 6% or less. It is formed of a steel wire having a grain size number of 11 or more, a surface roughness Rmax of 11 or less, a compressive residual stress of the surface portion of 600 MPa or more, and a fatigue strength of an average stress τm = 600 MPa and an amplitude stress τa = 51
It is characterized by having durability of 1 × 10 7 times or more at 4 MPa. The high strength spring of the present invention has extremely high fatigue strength.

【0008】本発明の高強度ばねは、更に、その表面粗
さRmaxを8.3以下で、表面部分の圧縮残留応力が
1200MPa以上の窒化層をもつものとし、疲労強度
が、平均応力τm=700MPaで振幅応力τa=59
0MPaの時に1x106回以上の耐久性をもつものと
することができる。本発明の高強度ばねの製造方法は、
前記鋼線をコイリングした後、400〜500℃での低
温焼き鈍し、端面研削、ショットピーニング、低温焼き
鈍し、セッチングの処理を順次実施することを特徴とす
る。本発明の高強度ばねの製造方法において、端面研削
の後でかつショットピーニングの前に、デスケール及び
480℃以下でのガス窒化を実施するのが好ましい。
The high-strength spring of the present invention further has a surface roughness Rmax of 8.3 or less and a nitride layer having a compressive residual stress of 1200 MPa or more at the surface portion, and the fatigue strength is an average stress τm = Amplitude stress τa = 59 at 700 MPa
It can have a durability of 1 × 10 6 times or more at 0 MPa. The manufacturing method of the high strength spring of the present invention,
After coiling the steel wire, low temperature annealing at 400 to 500 ° C., end surface grinding, shot peening, low temperature annealing, and setting are sequentially performed. In the method for manufacturing a high-strength spring of the present invention, it is preferable to carry out descaling and gas nitriding at 480 ° C. or lower after end face grinding and before shot peening.

【0009】[0009]

【発明の実施の形態】本発明の高強度ばねに使用するば
ね鋼線は、質量%で、C:0.55〜0.65%、S
i:1.2〜2.5%、Mn:0.3〜0.6%、C
r:0.4〜2.0%を含み、更にMo:0.05〜
2.0%及びV:0.05〜0.3%の内の1種または
2種を含み、かつMn+Vが0.6%以下であり、P:
0.015%以下、S:0.015%以下に制限すると
ともに、残部鉄および不可避的不純物を含み、非金属介
在物の大きさが15μm以下、引張強度が1960MP
a以上を有し、降伏比(σ0.2/σB)が0.8以上0.
9以下、または降伏比0.9超かつ残留オーステナイト
量6%以下であり、更に旧オーステナイト粒度番号が1
1番以上である鋼線である。
BEST MODE FOR CARRYING OUT THE INVENTION The spring steel wire used in the high-strength spring of the present invention is C: 0.55 to 0.65%, S in mass%.
i: 1.2 to 2.5%, Mn: 0.3 to 0.6%, C
r: 0.4-2.0%, and Mo: 0.05-
2.0% and V: V-containing 0.05% to 0.3% of 1 or 2 types, Mn + V is 0.6% or less, and P:
0.015% or less, S: 0.015% or less, including the balance iron and unavoidable impurities, the size of non-metallic inclusions is 15 μm or less, tensile strength is 1960MP
a and the yield ratio (σ0.2 / σB) is 0.8 or more and 0.
9 or less, or the yield ratio is more than 0.9 and the residual austenite amount is 6% or less, and the former austenite grain size number is 1
It is steel wire that is No. 1 or more.

【0010】Cはばね鋼線の基本強度に大きな影響を及
ぼす元素であり、十分な強度を得るために0.55〜
0.65%とした。0.55%未満では焼戻し温度が低
くなるめ、工業的大量生産の手法で高い引張強度を得る
のが困難になり、0.65%を超えると過共析に近くな
り、V、Mo等と結びついて炭化物を生成し易いので上
限を0.65%とした。
C is an element having a great influence on the basic strength of the spring steel wire, and is 0.55 to 0.5% in order to obtain sufficient strength.
It was set to 0.65%. If it is less than 0.55%, the tempering temperature will be low, and it will be difficult to obtain high tensile strength by the method of industrial mass production. If it exceeds 0.65%, it will be close to hyper-eutectoid and V, Mo, etc. The upper limit was set to 0.65% because it is easy to form carbides due to binding.

【0011】Siはばねの強度、硬度と耐へたり性を確
保するために必要な元素であり、少ない場合は必要な強
度、耐へたり性が不足するため、1.2%を下限とし
た。また多量に添加しすぎると、材料を硬化させるだけ
でなく、脆化する。特にオイルテンパー後のコイリング
において折損を生じ易くなる。そこで焼入れ焼戻し後の
脆化を防ぐために2.5%を上限とした。
Si is an element necessary to secure the strength, hardness and sag resistance of the spring, and when the amount is small, the necessary strength and sag resistance are insufficient, so 1.2% was made the lower limit. . Further, if too much is added, not only the material is hardened but also embrittled. In particular, breakage is likely to occur during coiling after oil tempering. Therefore, in order to prevent embrittlement after quenching and tempering, 2.5% is made the upper limit.

【0012】Mnは硬度を十分に得るため、また鋼中に
存在するSをMnSとして固定し、強度低下を抑制する
ために0.3%を下限とする。Mnの上限値を0.6%
としたのはMn量が多いと、伸線前の圧延時にも局部的
な過冷組織を生じ易くなるためである。通常、圧延は局
部的な過冷組織を生じないよう注意深く行われるが、M
nが多量に含まれるとミクロ偏析の影響で突発的に生じ
る可能性が高い。このような過冷組織は引き続き行われ
る伸線工程において断線の原因になる。またMnは伸線
前の皮むき工程(シェービングあるいはピーリング工
程)において加工熱による表層マルテンサイト生成を促
進する。更にMnは残留オーステナイトの残留量に大き
な影響を与える元素で、後述する製造方法で製造した場
合、オイルテンパー後に残留オーステナイトを6%以下
に抑制するために多くを添加できない。本発明において
はSを制限するため、Mn添加量を機械的性質を確保で
きる最低限に制限した。
Mn has a lower limit of 0.3% in order to obtain sufficient hardness, and to fix S existing in steel as MnS and suppress the strength reduction. The upper limit of Mn is 0.6%
The reason is that if the Mn content is large, a local supercooled structure is likely to occur even during rolling before wire drawing. Normally, rolling is performed carefully so as not to cause local supercooling, but M
If n is included in a large amount, it is highly possible that it suddenly occurs due to the influence of microsegregation. Such a supercooled structure causes a disconnection in the subsequent wire drawing process. Further, Mn accelerates the generation of surface martensite due to processing heat in the peeling process (shaving or peeling process) before wire drawing. Further, Mn is an element that has a large effect on the residual amount of retained austenite, and when produced by the production method described below, a large amount cannot be added because the retained austenite is suppressed to 6% or less after oil tempering. In the present invention, since S is limited, the amount of Mn added is limited to the minimum that can secure mechanical properties.

【0013】Crは焼入れ性を向上させるとともに焼戻
し軟化抵抗を付与する。また窒化を行う鋼の場合、Nと
結びついて窒化物を生成し、鋼を硬化させる。0.4%
未満ではその効果は顕著ではなく、2.0%を超えると
Cr系炭化物を生成し、破壊特性を低下させる。従って
0.4%を下限、2.0%を上限と規定した。Pは鋼を
硬化させるが、更に偏析を生じ、材料を脆化させる。特
に粒界強度を低下させ、衝撃値の低下や水素の侵入によ
り遅れ破壊などを引き起こす。そのため少ない方が良
い。そこで脆化傾向が顕著となる0.015%以下と制
限した。
Cr improves hardenability and imparts temper softening resistance. Further, in the case of steel to be nitrided, it combines with N to form a nitride and hardens the steel. 0.4%
If it is less than 2.0%, the effect is not remarkable, and if it exceeds 2.0%, Cr-based carbides are formed and the fracture characteristics are deteriorated. Therefore, 0.4% was defined as the lower limit and 2.0% as the upper limit. Although P hardens the steel, it also causes segregation and embrittles the material. In particular, it lowers the grain boundary strength and causes a delayed fracture due to a reduced impact value and hydrogen intrusion. Therefore, the smaller the better. Therefore, it is limited to 0.015% or less at which the embrittlement tendency becomes remarkable.

【0014】SもPと同様に鋼中に存在すると鋼を脆化
させる。Mnによって極力その影響を小さくできるが、
MnSも介在物の形態をとるため、破壊特性は低下す
る。またMn添加の弊害を極力小さくするためにもSの
含有量を制限し、Mn添加量を最低限に抑制することが
必要である。従って、Sも極力少なくすることが望まし
く、その悪影響が顕著となる0.015%を上限とし
た。
Like S, if S is present in the steel, it makes the steel brittle. Although the effect can be minimized by Mn,
Since MnS also takes the form of inclusions, the fracture characteristics deteriorate. Further, in order to minimize the adverse effect of Mn addition, it is necessary to limit the S content and suppress the Mn addition amount to the minimum. Therefore, it is desirable to reduce S as much as possible, and the upper limit is set to 0.015% at which the adverse effect becomes remarkable.

【0015】Vを添加すれば、軟化抵抗を高めることが
できる。特に最近高強度のばねを得る手法としてばねの
窒化処理がしばしば適用され、この場合の窒化温度は3
80〜580℃という高温が適用される。このような高
温熱処理を受けた際の硬さ低下を防ぐ元素としてVは有
効な元素である。しかしその効果はVについては0.0
5%未満では効果がほとんど認められず、0.3%超で
は粗大な未固溶介在物を生成し、靭性を低下させる。ま
たVもMnと同様に残留オーステナイト生成に影響する
元素である。従ってMnとVとの合計添加量が0.6%
を超えると、残留オーステナイト量を6%以下にできな
い。そこでMn+Vを0.6%以下に制限した。
The softening resistance can be increased by adding V. In particular, recently, nitriding treatment of springs is often applied as a method for obtaining high-strength springs, and the nitriding temperature in this case is 3
A high temperature of 80-580 ° C is applied. V is an effective element as an element that prevents a decrease in hardness when subjected to such a high temperature heat treatment. But the effect is 0.0 for V
If it is less than 5%, almost no effect is observed, and if it exceeds 0.3%, coarse undissolved inclusions are formed, and the toughness is reduced. V, like Mn, is an element that affects the formation of retained austenite. Therefore, the total amount of Mn and V added is 0.6%.
If it exceeds, the amount of retained austenite cannot be reduced to 6% or less. Therefore, Mn + V is limited to 0.6% or less.

【0016】Moは焼入れ焼戻し後の軟化抵抗を与える
元素であり、窒化のような高温で処理された鋼の軟化を
抑制し、必要強度を与えることができる。Moが0.0
5%未満であればその効果が小さく、また2.0%超で
は鋼中で炭化物を生成し破壊特性を低下させることがあ
る。そのため、Mo含有量の下限を0.05%、上限を
2.0%とした。
Mo is an element that gives the softening resistance after quenching and tempering, and can suppress the softening of steel treated at a high temperature such as nitriding and give the required strength. Mo is 0.0
If it is less than 5%, its effect is small, and if it exceeds 2.0%, carbides may be formed in the steel to deteriorate the fracture characteristics. Therefore, the lower limit of the Mo content is 0.05% and the upper limit is 2.0%.

【0017】非金属介在物すなわち硬質な酸化物、窒化
物、硫化物については、その大きさが大きくなると疲労
強度に悪影響を及ぼす。本発明で対象とする1960M
Paの高強度では小さな介在物でも破壊起点となる。そ
のため、本発明の強度レベルで悪影響を及ぼさない非金
属介在物の大きさの上限は15μmであるので、これを
上限値として規定した。非金属介在物の測定方法は無作
為の位置から採取したばね鋼線の長手方向断面を光学顕
微鏡に取り付けた画像処理装置を用いて2000mm2
にわたって介在物を観察し、認められた最大の非金属介
在物の円相当径を本発明で規定する非金属介在物の大き
さとするものである。
With respect to non-metallic inclusions, that is, hard oxides, nitrides, and sulfides, the fatigue strength is adversely affected if the size thereof is increased. 1960M that is the object of the present invention
With a high strength of Pa, even small inclusions become the starting point of fracture. Therefore, the upper limit of the size of the non-metallic inclusions that does not adversely affect the strength level of the present invention is 15 μm, so this is defined as the upper limit. The measurement method for non-metallic inclusions is 2000 mm 2 using an image processing device in which a longitudinal section of a spring steel wire sampled from a random position is attached to an optical microscope.
The inclusions are observed over the entire length, and the largest circle equivalent diameter of the non-metallic inclusions recognized is the size of the non-metallic inclusions defined in the present invention.

【0018】ばね鋼線の強度であるが、高強度ばねに供
するにはばね鋼線の引張強さを1960MPa以上とし
なければならない。これ以下ではコイリング後のばねの
性能が従来のばね鋼線を用いたものと何ら変わりない性
能となる。ただし前述したとおり、コイリングにおける
ばね成形性の点からは降伏点に留意する必要がある。す
なわち冷間成形では室温付近での塑性変形によってばね
を成形するので、塑性変形の開始応力と破断応力が接近
した材料では破断寸前の応力負荷状態で成形しているこ
となる。このような状況では製造上のわずかな変動や、
打ちきずなどの要因により、破断する確率が非常に高く
なり、コイリング特性が悪くなる。
Regarding the strength of the spring steel wire, the tensile strength of the spring steel wire must be 1960 MPa or more in order to provide a high strength spring. Below this, the performance of the spring after coiling will be no different from that using the conventional spring steel wire. However, as described above, it is necessary to pay attention to the yield point in terms of spring formability in coiling. That is, in cold forming, the spring is formed by plastic deformation near room temperature, so that a material whose plastic deformation start stress and rupture stress are close to each other is formed in a stress load state just before rupture. In such a situation, slight fluctuations in manufacturing,
Due to factors such as scratches, the probability of breakage becomes extremely high, and the coiling characteristics deteriorate.

【0019】従って、塑性変形開始応力と破断応力の差
が大きい材料の方がコイリング特性が良いと考えられ
る。このような観点から、塑性変形開始応力と破断応力
の差を示す指標として降伏比を用い、引張強さが196
0MPaの場合、降伏比を0.9以下にすれば良いこと
を見出した。ここで降伏比とはばね鋼線のオフセット法
により測定した0.2%耐力(σ0.2)と引張試験にお
ける破断応力(σB)の比(σ0.2/σB)である。逆に
この降伏比が0.8未満になると十分なへたり特性を発
揮できない。そこでへたりの観点から降伏比を0.8以
上とした。ただしこの規定は残留オーステナイト量によ
っても変動するため残留オーステナイト量が6%以下で
は降伏比0.9超でも冷間コイリング可能である。
Therefore, it is considered that a material having a large difference between the plastic deformation start stress and the fracture stress has better coiling characteristics. From such a viewpoint, the yield ratio is used as an index showing the difference between the plastic deformation start stress and the fracture stress, and the tensile strength is 196
In the case of 0 MPa, it was found that the yield ratio should be 0.9 or less. Here, the yield ratio is a ratio (σ0.2 / σB) of 0.2% proof stress (σ0.2) measured by a spring steel wire offset method and a breaking stress (σB) in a tensile test. On the contrary, if the yield ratio is less than 0.8, sufficient sag characteristics cannot be exhibited. Therefore, the yield ratio was set to 0.8 or more from the viewpoint of settling. However, since this regulation also changes depending on the amount of retained austenite, cold coiling is possible even if the yield ratio exceeds 0.9 when the amount of retained austenite is 6% or less.

【0020】残留オーステナイト量6%以下とした理由
を述べる。残留オーステナイトは偏析部や旧オーステナ
イト粒界付近に残留することが多い。残留オーステナイ
トは加工誘起変態によってマルテンサイトとなるが、ば
ね成形時に誘起変態すると材料に局部的な高硬度部が生
成され、むしろばねとしてのコイリング特性を低下させ
ることを見出した。また最近のばねはショットピーニン
グやセッチングなど塑性変形による表面強化を行うが、
このように塑性変形を加える工程を複数含む製造工程を
有する場合、早い段階で生じた加工誘起マルテンサイト
が破壊ひずみを低下させ、加工性や使用中のばねの破壊
特性を低下させる。また打ちきず等の工業的に不可避の
変形が導入された場合にもコイリング中に容易に折損す
る。従って、残留オーステナイトを極力低減し、加工誘
起マルテンサイトの生成を抑制することで、加工性を向
上させる。
The reason why the amount of retained austenite is 6% or less will be described. Retained austenite often stays near the segregation part and the former austenite grain boundary. It was found that the retained austenite becomes martensite due to the work-induced transformation, but when the transformation is induced during the spring forming, a locally high hardness portion is generated in the material and rather the coiling property as a spring is deteriorated. In addition, recent springs strengthen the surface by plastic deformation such as shot peening and setting,
In the case of having a manufacturing process including a plurality of processes for applying plastic deformation as described above, the work-induced martensite generated at an early stage reduces the fracture strain, and the workability and the fracture property of the spring in use are degraded. Further, even when an industrially unavoidable deformation such as a scratch is introduced, it is easily broken during coiling. Therefore, the workability is improved by reducing the retained austenite as much as possible and suppressing the formation of the work-induced martensite.

【0021】残留オーステナイト量を6%以下とするに
は焼入れ時の冷却媒体の温度が60℃以上に上昇しない
ように制御して、焼入れを徹底させることが必要である
が、化学成分の点でも注意する必要がある。
In order to reduce the amount of retained austenite to 6% or less, it is necessary to control the temperature of the cooling medium at the time of quenching so as not to rise above 60 ° C. and to thoroughly quench it. You need to be careful.

【0022】オイルテンパー線は伸線材からオーステナ
イト化までの加熱、焼入れ、焼戻しという三つの工程を
連続的に行うことによって製造されるが、残留オーステ
ナイトの発生は合金元素の固容量、焼入れ時の線の温
度、焼戻しの3条件によって左右される。すなわち、合
金元素のうちオーステナイト安定化元素である炭素、M
n、Ni、Moといった元素がオーステナイト中に固溶
すると残留オーステナイトが発生し易くなる。また、合
金元素が添加されるとマルテンサイト変態開始温度(M
s点)、マルテンサイト変態終了温度(Mf点)が低下
し、一般の焼入れ剤による焼入れ温度ではMf点以下に
ならなくなって完全にマルテンサイト化できず、残留オ
ーステナイトが発生し易くなる。
The oil-tempered wire is manufactured by continuously performing three steps of heating, quenching and tempering from the wire drawing material to austenitization. The generation of residual austenite is caused by the solid volume of alloying elements and the wire at the time of quenching. Temperature and tempering conditions. That is, among the alloying elements, carbon, which is an austenite stabilizing element, M
When elements such as n, Ni and Mo form a solid solution in austenite, residual austenite is likely to occur. When alloying elements are added, the martensitic transformation start temperature (M
s point), the martensite transformation end temperature (Mf point) is lowered, and at the quenching temperature with a general quenching agent, the temperature does not fall below the Mf point, martensite cannot be completely formed, and retained austenite easily occurs.

【0023】発生した残留オーステナイトはその後の焼
戻し工程で分解するが、高強度を得るために焼戻し温度
が低い場合や焼戻し時間が短い場合には分解が完了せ
ず、鋼線内に残留することになる。合金元素の添加が少
なければ残留オーステナイトの発生量を容易に減少でき
るが、請求項1または3に規定した添加元素は鋼の軟化
抵抗を高め、高強度を得る観点から必要不可欠である。
請求項1または3の化学成分の鋼をオイルテンパー処理
において残留オーステナイトを6%以下とするには焼入
れ温度をなるべく低くし、十分冷却することが重要であ
り、焼入れ時の線の温度を45℃以下とすることにより
良好な結果が得られる。
The generated retained austenite decomposes in the subsequent tempering step, but if the tempering temperature is low or the tempering time is short in order to obtain high strength, the decomposition is not completed and remains in the steel wire. Become. If the addition of alloying elements is small, the amount of retained austenite generated can be easily reduced, but the additive elements defined in claim 1 or 3 are essential from the viewpoint of increasing the softening resistance of steel and obtaining high strength.
In order to reduce the retained austenite in the steel having the chemical composition according to claim 1 or 3 to 6% or less in the oil temper treatment, it is important to make the quenching temperature as low as possible and to sufficiently cool it. Good results are obtained by the following.

【0024】降伏比を適切にすれば残留オーステナイト
量が6%を超えてもコイリング可能であるが、残留オー
ステナイトはばねとして使用中に徐々に加工誘起マルテ
ンサイトとして分解が進行し、その全長を変化させるの
で、ばねのへたりの観点からは極力低い方が好ましい。
If the yield ratio is made appropriate, coiling is possible even if the amount of retained austenite exceeds 6%, but the retained austenite gradually decomposes as work-induced martensite during use as a spring, and its total length changes. Therefore, it is preferably as low as possible from the viewpoint of the fatigue of the spring.

【0025】すでに述べたとおり、旧オーステナイト粒
径が小さいほどばねとしての加工性とばね疲労強度の点
で優れる。本発明の高強度ばねにおいては旧オーステナ
イト粒径の粒度番号が11番に達しないと疲労強度の点
で劣る。従って旧オーステナイト粒度番号11番以上の
細粒であることを規定に加えた。
As described above, the smaller the prior austenite grain size, the better the workability as a spring and the spring fatigue strength. In the high-strength spring of the present invention, the fatigue strength is inferior unless the grain size number of the former austenite grain size reaches 11. Therefore, it has been added to the regulation that the fine particles have a grain size of 11 or more in the former austenite.

【0026】本発明の高強度ばねは、その表面粗さRm
axが11以下で表面部分の圧縮残留応力が600MP
a以上であり、その疲労強度が、平均応力τm=600
MPaで振幅応力τa=514MPaの時に1x107
回以上の耐久性をもつ。かかる表面粗さ、残留圧縮応力
及び疲労強度は、本発明に係るばね鋼線をコイリングし
た後400〜500℃で低温焼き鈍しを行い、適切なシ
ョットピーニングを行うことにより得られる。
The high strength spring of the present invention has a surface roughness Rm.
If ax is 11 or less, the compressive residual stress on the surface is 600MP
a or more, and the fatigue strength is an average stress τm = 600
1 × 10 7 when amplitude stress τa = 514 MPa at MPa
Has durability of more than one time. Such surface roughness, residual compressive stress and fatigue strength can be obtained by coiling the spring steel wire according to the present invention, followed by low temperature annealing at 400 to 500 ° C. and appropriate shot peening.

【0027】更に、表面粗さRmaxが8.3以下で表
面部分の圧縮残留応力が1200MPa以上の窒化層を
もち、その疲労強度が、平均応力τm=700MPaで
振幅応力τa=590MPaの時に1x106回以上の
耐久性をもつ高強度ばねは、本発明に係るばね鋼線をコ
イリングした後400〜500℃で低温焼き鈍しを行
い、その後480℃以下でガス窒化を実施して表面部を
窒化層とし、その後適切なショットピーニングを行うこ
とにより得られる。
Further, it has a nitride layer having a surface roughness Rmax of 8.3 or less and a compressive residual stress of 1200 MPa or more on the surface portion, and its fatigue strength is 1 × 10 6 when the average stress τm = 700 MPa and the amplitude stress τa = 590 MPa. The high-strength spring having durability of not less than one time, after coiling the spring steel wire according to the present invention, low temperature annealing is performed at 400 to 500 ° C., and then gas nitriding is performed at 480 ° C. or less to form a surface layer as a nitride layer. , And then by performing appropriate shot peening.

【0028】本発明の高強度ばねの製造方法で実施する
ショットピーニングは、ばねの表面に圧縮残留応力を付
与するもので、これによりばねの耐疲労性(疲労強度)
が著しく向上する。ショットピーニングで使用するショ
ットは、カットワイヤ(CW)でもスチールボール(S
B)でも良く、また、投射方法も空気噴射方式でも遠心
式でも良い。さらに、ショットピーニング工程は多段で
も良い。つまり、大径のショットを用いた第1ショット
ピーニング後に小径のショットを用いた第2ショットピ
ーニングを行っても良い。
Shot peening, which is carried out in the method for manufacturing a high strength spring of the present invention, imparts a compressive residual stress to the surface of the spring, which results in fatigue resistance (fatigue strength) of the spring.
Is significantly improved. The shot used in shot peening can be cut wire (CW) or steel ball (S
B) may be used, and the projection method may be an air injection method or a centrifugal method. Furthermore, the shot peening process may have multiple stages. That is, the second shot peening using the small diameter shot may be performed after the first shot peening using the large diameter shot.

【0029】本発明の高強度ばねの製造方法で実施する
窒化処理は、ばねの表面層の硬度を上げると共に、圧縮
残留応力が加わって、耐疲労性の向上に有効である。こ
の窒化処理は、例えば従来と同様にアンモニア雰囲気中
に500℃以下で1〜24時間で処理することにより所
定の窒化層を形成できる。得られる窒化層の表面付近の
硬度は、ビッカース硬さ700以上となる。
The nitriding treatment carried out by the method for manufacturing a high strength spring of the present invention is effective in increasing the hardness of the surface layer of the spring and adding a compressive residual stress to improve fatigue resistance. In this nitriding treatment, for example, a predetermined nitriding layer can be formed by treating in an ammonia atmosphere at 500 ° C. or lower for 1 to 24 hours as in the conventional case. The hardness of the obtained nitride layer near the surface is Vickers hardness of 700 or more.

【0030】荷重方向が一定のコイルばねには、ショッ
トピーニングの後にセッチングを行うのが好ましい。塑
性ひずみを与えることにより、弾性限(比例限)が著し
く向上するからである。更には、この後に低温焼きなま
しを行うことにより、弾性限を更に向上させることがで
きる。これはひずみ時効によるものであり、耐へたり性
を向上させるのに好ましい。通常、150〜300℃で
低温焼きなましを行う。また、200〜400℃の温間
セッチングを行うことにより、格別に耐へたり性を向上
させることができ、負荷される応力の大きい自動車の懸
架コイルばねやエンジン用バルブ・スプリングなどには
好ましい。
For a coil spring having a constant load direction, it is preferable to perform setting after shot peening. This is because the elastic limit (proportional limit) is significantly improved by giving plastic strain. Furthermore, by performing low temperature annealing after this, the elastic limit can be further improved. This is due to strain aging and is preferable for improving the sag resistance. Usually, low temperature annealing is performed at 150 to 300 ° C. By performing warm setting at 200 to 400 ° C., the sag resistance can be remarkably improved, which is preferable for suspension coil springs of automobiles, valve springs for engines, etc., where large stress is applied.

【0031】[0031]

【実施例】(ばね鋼)表1に本発明に係るばね鋼の化学
成分とともに比較例の化学成分を示す。本発明に係るば
ね鋼例および比較例は表1に示す化学成分に溶製され、
熱間圧延によりφ8mmの線材とした後、パテンチング
−皮剥き−伸線−焼鈍−オイルテンパーの各処理を施し
てφ3.2mmのオイルテンパー線を作成した。発明例
を含めて伸線過程で断線等の不具合は発生していない。
EXAMPLES (Spring Steel) Table 1 shows the chemical composition of the spring steel according to the present invention and the chemical composition of the comparative example. The spring steel examples and comparative examples according to the present invention are manufactured by melting the chemical components shown in Table 1,
After the wire rod having a diameter of 8 mm was formed by hot rolling, each processing of patenting-peeling-drawing-annealing-oil temper was performed to prepare an oil-tempered wire having a diameter of 3.2 mm. Including the invention examples, no problems such as disconnection occurred during the wire drawing process.

【0032】表2に発明に係るばね鋼および比較例のオ
イルテンパー線の熱処理条件および機械的性質等を示
す。発明に係るばね鋼のオイルテンパー線の強度は耐疲
労特性および耐へたり特性の観点から引張り強さを19
60MPa以上とした。比較例も一部を除き、基本的に
は同一強度としたが、化学成分等が本発明に係るばね鋼
の規定範囲外であったり、旧オーステナイト粒径などを
規定外とした。化学成分が規定範囲内のものであっても
熱処理条件の変更により旧オーステナイト粒度番号を変
化させた。
Table 2 shows heat treatment conditions and mechanical properties of the spring steel according to the invention and the oil tempered wire of the comparative example. The strength of the oil-tempered wire of the spring steel according to the invention has a tensile strength of 19 from the viewpoint of fatigue resistance and sag resistance.
It was set to 60 MPa or more. The comparative examples were basically made to have the same strength except for a part, but the chemical composition and the like were out of the specified range of the spring steel according to the present invention, and the former austenite grain size was out of the specified range. Even if the chemical composition was within the specified range, the former austenite grain size number was changed by changing the heat treatment conditions.

【0033】本発明に係るばね鋼はV、Mo等の未固溶
炭化物を避けるため、従来より加熱温度を高めた。通常
未固溶炭化物は加熱温度を高めると減少するが、そのこ
とは同時にオーステナイト粒径を粗大化させることにも
なる。そこでオーステナイト粒径を微細にするためにそ
の加熱時間は短いレベルとし、未溶解炭化物を避けつ
つ、旧オーステナイト粒径を微細に維持するという、高
度な制御を行った。更に残留オーステナイト量を抑制す
るために焼入れ温度を45℃以下とした。更に、焼戻し
温度を高めることにより、発生した残留オーステナイト
の分解を促進し、その量を6%以下に制御した。また、
ばね成形にあたって折損を避けるため、降伏比も0.8
〜0.9程度に調整した。一方、比較例は化学成分が規
定外の鋼線に加え、化学成分が本発明に係るばね鋼の規
定範囲内であっても残留オーステナイト量や旧オーステ
ナイト粒径番号など鋼線のミクロ組織や強度の点で規定
範囲外の例である。
The spring steel according to the present invention has a higher heating temperature than before in order to avoid undissolved carbides such as V and Mo. Usually, undissolved carbides are reduced by increasing the heating temperature, but at the same time, it also coarsens the austenite grain size. Therefore, in order to make the austenite grain size fine, the heating time was set to a short level, and advanced control was performed to keep the old austenite grain size fine while avoiding undissolved carbides. Further, the quenching temperature was set to 45 ° C. or lower in order to suppress the amount of retained austenite. Further, by increasing the tempering temperature, the decomposition of the generated retained austenite was promoted, and the amount thereof was controlled to 6% or less. Also,
The yield ratio is 0.8 to avoid breakage during spring forming.
It was adjusted to about 0.9. On the other hand, in the comparative example, in addition to the steel wire whose chemical composition is not specified, even if the chemical composition is within the specified range of the spring steel according to the present invention, the microstructure and strength of the steel wire such as the amount of retained austenite and the former austenite grain size number. This is an example outside the specified range.

【0034】オイルテンパー線は高強度になると、切り
欠き感受性が高まり、ばね成形加工時に微細なきずを起
点として折損を生じ易くなる。このばね成形性を評価す
る手法として、ばね成形前に先立ち、高合金製チップを
オイルテンパー線に押し付けて深さ25μmのノッチを
つけ、次にノッチに引張応力が負荷されるようにノッチ
の反対側に半径6.5mmのポンチで3点曲げ加工を与
え、折損までの曲げ角度を測定するノッチ曲げ試験を行
った。その概略は図1に示すとおりで、折損までの曲げ
角度θを測定した。
The higher the strength of the oil tempered wire, the higher the notch sensitivity, and the more likely it is that the oil tempered wire breaks from the fine flaws as starting points during the spring forming process. As a method of evaluating this spring formability, prior to spring forming, a high alloy tip is pressed against the oil temper wire to make a notch with a depth of 25 μm, and then the notch is placed opposite the notch so that tensile stress is applied. A three-point bending process was applied to the side with a punch having a radius of 6.5 mm, and a notch bending test was performed to measure the bending angle until breakage. The outline is as shown in FIG. 1, and the bending angle θ until the breakage was measured.

【0035】残留オーステナイト量はX線回折装置を利
用し、そのピークの積分強度の大きさから定量した質量
%で示す。この方法では質量%で残留オーステナイト量
2%以上あれば精度良く測定できるとされている。旧オ
ーステナイト粒度番号はJISに準拠し、鏡面研磨した
鋼線断面を7視野において測定し、その平均を各実施例
の旧オーステナイト粒度番号とした。
The amount of retained austenite is shown by mass% which is determined from the magnitude of the integrated intensity of the peak using an X-ray diffractometer. According to this method, it is said that the measurement can be performed accurately if the amount of retained austenite is 2% or more in mass%. The old austenite grain size number was measured according to JIS, and the mirror-polished steel wire cross section was measured in 7 fields of view, and the average was used as the old austenite grain size number of each example.

【0036】表2にはこれらの関係から各成分系におけ
るオイルテンパー処理条件、降伏比、残留オーステナイ
ト量、旧オーステナイト粒度番号、ばね成形性、疲労特
性および耐へたり性を示す。表2において成形性はばね
成形時の折損確率を表したもので、○:0.001%以
下、×:0.001%を超える場合である。更に疲労特
性は5×107回の繰り返し回数での平均負荷応力68
6MPaからの応力振幅でのばね折損の有無で表し、振
幅450MPa以上の場合、その評価を○:良、450
MPa以下の場合×:不良で示した。本発明に係るオイ
ルテンパー線は1960MPa以上の引張強さにもかか
わらず、前述のようなノッチ曲げ試験により優れた加工
性を有することがわかる。
From these relationships, Table 2 shows the oil temper treatment conditions, yield ratio, residual austenite amount, former austenite grain size number, spring formability, fatigue property and sag resistance in each component system. In Table 2, the formability represents the breakage probability at the time of spring forming, and is in the case of ◯: 0.001% or less and ×: more than 0.001%. Furthermore, the fatigue property is the average load stress of 68 when repeated 5 × 10 7 times.
It is expressed by the presence or absence of spring breakage at a stress amplitude from 6 MPa. When the amplitude is 450 MPa or more, the evaluation is ◯: good, 450
When MPa or less x: Shown as defective. It can be seen that the oil tempered wire according to the present invention has excellent workability by the notch bending test as described above, despite the tensile strength of 1960 MPa or more.

【0037】また表3に評価に用いたばねの諸元を示
す。2種類のばねにより、ばね成形性の評価と耐疲労特
性および耐へたり特性を評価した。ばね仕様1は耐疲労
特性および耐へたり性の評価用であり、ばね仕様2は冷
間でのばね成形性評価用である。表2にその評価結果を
示す。ばね仕様1のばねは窒化処理とショットピーニン
グを施して試験に供した。従来鋼によるオイルテンパー
線はばね成形性に優れるものは疲労強度および耐へたり
性に劣るのに対し、本発明に係るばね鋼であるオイルテ
ンパー線はばね成形時の折損がなく、耐疲労特性、耐へ
たり特性の点においても比較鋼と同等以上であった。特
にオーステナイト粒径が微細なばねは容易にコイルばね
に加工できただけでなく、ばねとしての疲労強度に優れ
ていた。
Table 3 shows the specifications of the spring used for the evaluation. Two types of springs were used to evaluate spring formability, fatigue resistance and sag resistance. Spring specification 1 is for evaluating fatigue resistance and sag resistance, and spring specification 2 is for evaluating spring formability in cold. Table 2 shows the evaluation results. The spring of the spring specification 1 was subjected to a nitriding treatment and shot peening and then subjected to the test. Oil tempered wire made of conventional steel has excellent spring formability and is inferior in fatigue strength and sag resistance, whereas oil tempered wire made of spring steel according to the present invention has no breakage during spring forming and fatigue resistance characteristics. In terms of sag resistance, it was equal to or higher than that of the comparative steel. In particular, a spring having a fine austenite grain size could be easily processed into a coil spring and was excellent in fatigue strength as a spring.

【0038】焼入れ温度を低くしてかなり工業的に無理
な方法で作成した鋼線や化学成分が本発明に係るばね鋼
の規定内であっても規定を超える大きさの非金属介在物
を含む鋼線や旧オーステナイト粒度番号が規定より小さ
く粒径が大きな鋼線を用いた場合、ばね加工は可能であ
ってもばねとしての疲労特性が劣った。
Even if the steel wire or the chemical composition produced by a method which is extremely industrially unreasonable by lowering the quenching temperature is within the specifications of the spring steel according to the present invention, it contains non-metallic inclusions having a size exceeding the specifications. When a steel wire or a steel wire having a former austenite grain size number smaller than the regulation and a large grain size was used, spring working was possible, but the fatigue property as a spring was poor.

【0039】図2に旧オーステナイト粒度番号と疲労特
性評価試験において5×107回の時間強さにおける応
力振幅の関係を示した。実施例1〜6(発明例)と本発
明に係るばね鋼の規定された化学成分で旧オーステナイ
ト粒度を故意に大きくした実施例13〜15(比較例)
の疲労強度評価結果を示した。疲労強度に関して旧オー
ステナイト粒度番号は影響することがわかる。その粒度
番号が11番を超えるとほぼ同等の疲労強度となり、そ
の効果が飽和することがわかる。また降伏比や残留オー
ステナイト量が規定外の場合にはコイリング時の折損確
率が高く、工業的製造が不可能と判定された。
FIG. 2 shows the relationship between the prior austenite grain size number and the stress amplitude at the time strength of 5 × 10 7 times in the fatigue property evaluation test. Examples 1 to 6 (Invention Examples) and Examples 13 to 15 (Comparative Examples) in which the prior austenite grain size was intentionally increased by the specified chemical composition of the spring steel according to the present invention.
The results of fatigue strength evaluation of It can be seen that the prior austenite grain size number has an effect on fatigue strength. It can be seen that when the grain size number exceeds 11, the fatigue strength becomes almost the same and the effect is saturated. When the yield ratio and the amount of retained austenite were out of the specified range, the probability of breakage during coiling was high, and it was judged that industrial production was impossible.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【表3】 [Table 3]

【0043】(高強度ばね)本実施例では、発明鋼種と
して合金成分が中央値に近い値のもので、炭素0.64
質量%(以下、%は特に明記されていない限り質量%を
意味する。)、珪素2.02%、マンガン0.30%、
燐0.010%、硫黄0.005%、クロム0.86
%、モリブデン0.10%、バナジウム0.10%、残
部は実質的に鉄とからなる組成のものを用いた。このば
ね用鋼材を使用し、疵取加工、熱間圧延、皮むき、焼き
鈍しの各処理した後、冷間伸線し、オイルテンパー処理
を行って直径3.2mmの本発明に係るばね用鋼線を得
た。この本発明に係るばね用鋼線の引張強さσBは21
48MPaであった。
(High-strength spring) In this example, the invention steel grade is one in which the alloy composition is close to the median value, and the carbon content is 0.64.
Mass% (hereinafter,% means mass% unless otherwise specified), silicon 2.02%, manganese 0.30%,
Phosphorus 0.010%, sulfur 0.005%, chromium 0.86
%, Molybdenum 0.10%, vanadium 0.10%, and the balance being substantially iron. Using this spring steel material, after each of scratching, hot rolling, peeling, and annealing, cold drawing and oil tempering are performed to obtain a spring steel of 3.2 mm in diameter according to the present invention. Got the line. The tensile strength σB of the spring steel wire according to the present invention is 21.
It was 48 MPa.

【0044】なお、比較例のばね用鋼線として、炭素
0.64%、珪素1.46%、マンガン0.72%、燐
0.010%、硫黄0.006%、クロム0.63、バ
ナジウム0.12%、残部は実質的に鉄とからなる合金
鋼のばね用鋼材を使用した。そして、同様に、疵取加
工、熱間圧延、皮むき、焼き鈍しの各処理した後、冷間
伸線し、オイルテンパー処理を行って直径3.2mmの
比較例のばね用鋼線(オイルテンパー線(SWOSC−
VHV)を得た。この比較例のばね用鋼線の引張強さσ
Bは2144MPaであった。
As the spring steel wire of the comparative example, carbon 0.64%, silicon 1.46%, manganese 0.72%, phosphorus 0.010%, sulfur 0.006%, chromium 0.63, vanadium. A spring steel material of alloy steel consisting of 0.12% and the balance substantially iron was used. Then, similarly, after each of the scratching, hot rolling, peeling, and annealing treatments, cold drawing and oil tempering treatment are performed to obtain a spring steel wire (oil temper) of a comparative example having a diameter of 3.2 mm. Line (SWOSC-
VHV) was obtained. Tensile strength σ of the steel wire for spring of this comparative example
B was 2144 MPa.

【0045】次に、これら2種類のばね用鋼線を用い、
冷間コイリング成形を行い、線径φ3.2mm、コイル
中心径φ20.0mm(コイル外径φ23.2mm)、
総巻数6.0巻、有効巻数4.0巻のコイルばねを得
た。得られた2種類のコイルばねを表4に示す加工条件
で加工しNo.11〜No.17及びの7種類の本発明
の高強度ばねと、No.18の1種類の比較例のばねを
製造した。具体的には、まず表4に示す低温焼き鈍し条
件で、炉内で30分行った。その後、両座面を研削し、
自由長47.0mmのコイルばねとした。
Next, using these two types of spring steel wires,
Performed cold coiling forming, wire diameter φ3.2mm, coil center diameter φ20.0mm (coil outer diameter φ23.2mm),
A coil spring having a total number of turns of 6.0 and an effective number of turns of 4.0 was obtained. The obtained two kinds of coil springs were processed under the processing conditions shown in Table 4 and No. 11-No. No. 17 and 7 types of high strength springs of the present invention; Eighteen types of one comparative spring were manufactured. Specifically, first, the low temperature annealing condition shown in Table 4 was performed in the furnace for 30 minutes. After that, grind both bearing surfaces,
A coil spring having a free length of 47.0 mm was used.

【0046】[0046]

【表4】 [Table 4]

【0047】次に、No.11〜No.15の5種類の
本発明の高強度ばねではガス窒化処理を行った。窒化処
理はアンモニア雰囲気中で465℃あるいは475℃で
3時間処理した。これにより、ばね表面部分に窒化層を
形成した。なお、No.16及びNo.17の2種類の
本発明の高強度ばねと、No.18の比較例のばねにつ
いては窒化処理を行わなかった。その後、表4に示すシ
ョット及び処理時間でショットピーニング処理を行っ
た。ショットピーニング処理の後、225℃で15分以
上の均熱の低温焼き鈍し、225℃、1350MPa、
10秒間のセッチングを行い、No.11〜No.17
の7種類の本発明の高強度ばねと、No.18の1種類
の比較例のばねを製造した。
Next, No. 11-No. The gas nitriding treatment was performed on 15 kinds of the high-strength springs of the present invention of 15 kinds. The nitriding treatment was performed in an ammonia atmosphere at 465 ° C. or 475 ° C. for 3 hours. As a result, a nitride layer was formed on the surface of the spring. In addition, No. 16 and No. 16 No. 17, two types of high-strength springs of the present invention; No nitriding treatment was performed on the 18 comparative springs. After that, shot peening treatment was performed with the shots and the treatment times shown in Table 4. After the shot peening treatment, low temperature annealing at 225 ° C. for 15 minutes or more was performed at 225 ° C., 1350 MPa,
Setting for 10 seconds, and No. 11-No. 17
7 types of high-strength springs according to the present invention; Eighteen types of one comparative spring were manufactured.

【0048】得られた8種類の高強度ばねの評価を行っ
た。評価はばねの表面粗さの測定、表面部分の硬さの測
定、X線による残留応力の測定、及び疲労強度を測定し
た。表面粗さ、表面部分の硬さ及びX線による残留応力
の測定結果を表5に、疲労強度の測定条件と測定結果を
表6に示す。
The eight types of high-strength springs thus obtained were evaluated. For evaluation, the surface roughness of the spring was measured, the hardness of the surface portion was measured, the residual stress was measured by X-ray, and the fatigue strength was measured. Table 5 shows the measurement results of the surface roughness, the hardness of the surface portion and the residual stress by X-ray, and Table 6 shows the measurement conditions and the measurement results of the fatigue strength.

【0049】[0049]

【表5】 [Table 5]

【0050】[0050]

【表6】 [Table 6]

【0051】硬さの測定は試験に供したばねを切断し切
断面上での硬さをヴィカース硬度計で測定した。残留応
力はX線によるSIN2ψ−側傾法で測定した。疲労強
度はSN法で求めた。表5の疲労強度の700±590
の数値は、平均応力τmが700MPaで振幅応力τa
が590MPaであることを示し、106、107は圧縮
応力が作用した回数を示し、○印は8個の試験ばね全て
が破壊しなかった回数を示す。
The hardness was measured by cutting the spring used in the test and measuring the hardness on the cut surface with a Vicas hardness meter. The residual stress was measured by the SIN 2 ψ-side tilt method using X-ray. Fatigue strength was determined by the SN method. Fatigue strength of Table 5 700 ± 590
Is the amplitude stress τa when the average stress τm is 700 MPa.
Indicates that it is 590 MPa, 10 6 and 10 7 indicate the number of times the compressive stress has acted, and the mark ◯ indicates the number of times that all eight test springs did not break.

【0052】本発明の実施例となるNo.11〜No.
17の7種類のばねはNo.18の比較例のばねに比較
し、疲労強度が極めて高い。特にNo.11〜No.1
5の窒化処理を行ったばねは700±500MPaの繰
り返し荷重に対して107回近い回数に耐えることがで
きる。この高い疲労強度は窒化処理とショットブラスト
処理により表面粗さをRmaxで8.3以下に抑え、1
200MPaと高い圧縮残留応力を付与した結果である
と考えられる。
No. 1 according to the embodiment of the present invention. 11-No.
Seven kinds of springs No. 17 are No. 17 springs. The fatigue strength is extremely higher than that of the springs of 18 comparative examples. Especially No. 11-No. 1
The spring subjected to the nitriding treatment of No. 5 can withstand a load of 700 ± 500 MPa nearly 10 7 times. This high fatigue strength suppresses the surface roughness of Rmax to 8.3 or less by nitriding treatment and shot blasting treatment.
This is considered to be the result of applying a high compressive residual stress of 200 MPa.

【0053】No.11のばねの疲労強度はNo.12
のばねの疲労強度に比較し極めて高い。この高い疲労強
度は高い最大圧縮残留応力に対応している。No.14
のばねの疲労強度から窒化処理温度が465℃とNo.
11のばねの窒化温度に対して10℃低い場合でも高い
疲労強度が得られることがわかる。
No. The fatigue strength of the spring of No. 11 is No. 12
Extremely high compared to the fatigue strength of springs. This high fatigue strength corresponds to a high maximum compressive residual stress. No. 14
From the fatigue strength of the spring No. 1, the nitriding temperature was 465 ° C. and No.
It can be seen that high fatigue strength can be obtained even when the nitriding temperature of the spring 11 is lower by 10 ° C.

【0054】[0054]

【発明の効果】本発明の高強度ばねは疲労強度が極めて
高い。これは冷間成形ができる1960MPa以上の高
強度オイルテンパー線を用いていること、及びばねの表
面粗さRmaxが11以下で表面部分の圧縮残留応力が
600MPa以上であることによる。本発明の高強度ば
ねは、SN法による1x107回の疲労強度が、平均応
力τm=600MPaとしたときに、振幅応力τa≧5
10MPa以上となる。
The high strength spring of the present invention has extremely high fatigue strength. This is because a high strength oil tempered wire of 1960 MPa or more that can be cold-formed is used, and the surface roughness Rmax of the spring is 11 or less and the compressive residual stress of the surface portion is 600 MPa or more. The high-strength spring of the present invention has an amplitude stress τa ≧ 5 when the fatigue strength of 1 × 10 7 times by the SN method is an average stress τm = 600 MPa.
It becomes 10 MPa or more.

【図面の簡単な説明】[Brief description of drawings]

【図1】ノッチ曲げ試験方法を示す図である。FIG. 1 is a diagram showing a notch bending test method.

【図2】疲労強度と旧オーステナイト粒度番号の関係を
示す図である。
FIG. 2 is a diagram showing the relationship between fatigue strength and prior austenite grain size number.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F16F 1/02 F16F 1/02 A B 1/06 1/06 A (72)発明者 近藤 覚 愛知県愛知郡東郷町大字春木字蛭池1番地 株式会社東郷製作所内 (72)発明者 森 元秀 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 河本 剛 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 3J059 AB11 AD05 BA01 BB01 BC02 EA08 4K032 AA06 AA11 AA12 AA16 AA19 AA20 AA27 AA29 AA32 AA36 BA02 4K042 AA01 BA01 BA05 CA06 CA08 CA13 DA03 DA06 DC02 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F16F 1/02 F16F 1/02 A B 1/06 1/06 A (72) Inventor Satoshi Kondo Aichi prefecture Aichi Togo-cho, Gunzai, Haruki-ji, Tobi Seisakusho Co., Ltd. 1 (72) Inventor Motohide Mori 1 Toyota-cho, Toyota-shi, Aichi Prefecture Toyota-motor Co., Ltd. (72) Go, Kawamoto 1 Toyota-cho, Toyota-shi, Aichi Address Toyota Motor Vehicle Co., Ltd. F-term (reference) 3J059 AB11 AD05 BA01 BB01 BC02 EA08 4K032 AA06 AA11 AA12 AA16 AA19 AA20 AA27 AA29 AA32 AA36 BA02 4K042 AA01 BA01 BA05 CA06 CA08 CA13 DA03 DA06 DC02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、C:0.55〜0.65%、
Si:1.2〜2.5%、Mn:0.3〜0.6%、C
r:0.4〜2.0%を含み、更にMo:0.05〜
2.0%及びV:0.05〜0.3%の内の1種または
2種を含み、かつMn+Vが0.6%以下であり、P:
0.015%以下、S:0.015%以下に制限すると
ともに、残部鉄および不可避的不純物を含み、非金属介
在物の大きさが15μm以下、引張強度が1960MP
a以上を有し、降伏比(σ0.2/σB)が0.8以上0.
9以下、または降伏比0.9超かつ残留オーステナイト
量6%以下であり、更に旧オーステナイト粒度番号が1
1番以上である鋼線で形成され、表面粗さRmaxが1
1以下で、表面部分の圧縮残留応力が600MPa以上
であり、かつ疲労強度が、平均応力τm=600MPa
で振幅応力τa=514MPaの時に1x107回以上
の耐久性をもつことを特徴とする高強度ばね。
1. In mass%, C: 0.55 to 0.65%,
Si: 1.2 to 2.5%, Mn: 0.3 to 0.6%, C
r: 0.4-2.0%, and Mo: 0.05-
2.0% and V: V-containing 0.05% to 0.3% of 1 or 2 types, Mn + V is 0.6% or less, and P:
0.015% or less, S: 0.015% or less, including the balance iron and unavoidable impurities, the size of non-metallic inclusions is 15 μm or less, tensile strength is 1960MP
a and the yield ratio (σ0.2 / σB) is 0.8 or more and 0.
9 or less, or the yield ratio is more than 0.9 and the residual austenite amount is 6% or less, and the former austenite grain size number is 1
It is made of steel wire that is No. 1 or more and has a surface roughness Rmax of 1
1 or less, the compressive residual stress of the surface portion is 600 MPa or more, and the fatigue strength is an average stress τm = 600 MPa.
A high-strength spring characterized by having a durability of 1 × 10 7 times or more when the amplitude stress τa = 514 MPa.
【請求項2】 前記表面粗さRmaxが8.3以下で表
面部分の圧縮残留応力が1200MPa以上の窒化層を
もち、かつ前記疲労強度が、平均応力τm=700MP
aで振幅応力τa=590MPaの時に1x106回以
上の耐久性をもつ請求項1記載の高強度ばね。
2. A nitride layer having a surface roughness Rmax of 8.3 or less and a compressive residual stress of the surface portion of 1200 MPa or more, and the fatigue strength having an average stress τm = 700 MP.
The high-strength spring according to claim 1, which has a durability of 1 × 10 6 times or more when the amplitude stress τa = 590 MPa at a.
【請求項3】 質量%で、C:0.55〜0.65%、
Si:1.2〜2.5%、Mn:0.3〜0.6%、C
r:0.4〜2.0%を含み、更にMo:0.05〜
2.0%及びV:0.05〜0.3%の内の1種または
2種を含み、かつMn+Vが0.6%以下であり、P:
0.015%以下、S:0.015%以下に制限すると
ともに、残部鉄および不可避的不純物を含み、非金属介
在物の大きさが15μm以下、引張強度が1960MP
a以上を有し、降伏比(σ0.2/σB)が0.8以上0.
9以下、または降伏比0.9超かつ残留オーステナイト
量6%以下であり、更に旧オーステナイト粒度番号が1
1番以上である鋼線をコイリングした後、400〜50
0℃での低温焼き鈍し、端面研削、ショットピーニン
グ、低温焼き鈍し、セッチングの処理を順次実施するこ
とを特徴とする高強度ばねの製造方法。
3. In mass%, C: 0.55 to 0.65%,
Si: 1.2 to 2.5%, Mn: 0.3 to 0.6%, C
r: 0.4-2.0%, and Mo: 0.05-
2.0% and V: V-containing 0.05% to 0.3% of 1 or 2 types, Mn + V is 0.6% or less, and P:
0.015% or less, S: 0.015% or less, including the balance iron and unavoidable impurities, the size of non-metallic inclusions is 15 μm or less, tensile strength is 1960MP
a and the yield ratio (σ0.2 / σB) is 0.8 or more and 0.
9 or less, or the yield ratio is more than 0.9 and the residual austenite amount is 6% or less, and the former austenite grain size number is 1
400 ~ 50 after coiling the steel wire which is more than 1
A method for manufacturing a high-strength spring, which comprises sequentially performing low-temperature annealing at 0 ° C., end surface grinding, shot peening, low-temperature annealing, and setting.
【請求項4】前記端面研削の後でかつ前記ショットピー
ニングの前に、デスケール及び480℃以下でのガス窒
化を実施する請求項3に記載の高強度ばねの製造方法。
4. The method for manufacturing a high-strength spring according to claim 3, wherein descaling and gas nitriding at 480 ° C. or lower are carried out after the end surface grinding and before the shot peening.
JP2001302329A 2001-09-28 2001-09-28 High strength spring, and production method therefor Pending JP2003105498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001302329A JP2003105498A (en) 2001-09-28 2001-09-28 High strength spring, and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001302329A JP2003105498A (en) 2001-09-28 2001-09-28 High strength spring, and production method therefor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004310031A Division JP2005120479A (en) 2004-10-25 2004-10-25 High strength spring and production method therefor

Publications (1)

Publication Number Publication Date
JP2003105498A true JP2003105498A (en) 2003-04-09

Family

ID=19122591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001302329A Pending JP2003105498A (en) 2001-09-28 2001-09-28 High strength spring, and production method therefor

Country Status (1)

Country Link
JP (1) JP2003105498A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004055226A1 (en) * 2002-12-13 2004-07-01 Sumitomo (Sei) Steel Wire Corp. Steel wire for spring
JP2004346424A (en) * 2003-04-28 2004-12-09 Sintokogio Ltd Method for producing helical spring and helical spring
JP2005344199A (en) * 2004-06-07 2005-12-15 Kobe Steel Ltd Steel material to be cold-bent
EP1712653A1 (en) * 2005-04-11 2006-10-18 Kabushiki Kaisha Kobe Seiko Sho Steel wire for cold-formed spring excellent in corrosion resistance and method for producing the same
JP2006349080A (en) * 2005-06-17 2006-12-28 Jtekt Corp Manufacturing method for torsion bar
JP2007254765A (en) * 2006-03-20 2007-10-04 National Institute For Materials Science High strength structural steel excellent in hydrogen embrittlement resistance, toughness and ductility and method for producing the same
JP2010163689A (en) * 2005-08-05 2010-07-29 Sumitomo Electric Ind Ltd Oil-tempered wire, method for manufacturing the same, and spring
JP2011149036A (en) * 2010-01-19 2011-08-04 Chuo Spring Co Ltd Method for manufacturing coil spring for automotive suspension, and coil spring for automotive suspension
WO2012014672A1 (en) * 2010-07-26 2012-02-02 中央発條株式会社 Method for manufacturing spring and device for heating by passage of electric current
CN102426068A (en) * 2011-09-14 2012-04-25 华东理工大学 Prediction method for surface thin film residual stress
JP2012117092A (en) * 2010-11-29 2012-06-21 Sumitomo Denko Steel Wire Kk Spring having excellent settling resistance and durability, and method for manufacturing the same
JP2012526948A (en) * 2009-05-05 2012-11-01 ジェオブルッグ・アーゲー A device that absorbs the kinetic energy of a moving body
WO2013058138A1 (en) * 2011-10-20 2013-04-25 ジャパンマテックス株式会社 Eyelet fitting with buffering function and manufacturing method therefor
US8789817B2 (en) 2009-09-29 2014-07-29 Chuo Hatsujo Kabushiki Kaisha Spring steel and spring having superior corrosion fatigue strength
US9068615B2 (en) 2011-01-06 2015-06-30 Chuo Hatsujo Kabushiki Kaisha Spring having excellent corrosion fatigue strength
CN112449654A (en) * 2019-07-01 2021-03-05 住友电气工业株式会社 Steel wire and spring
CN114651082A (en) * 2019-10-16 2022-06-21 日本制铁株式会社 Valve spring

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004055226A1 (en) * 2002-12-13 2004-07-01 Sumitomo (Sei) Steel Wire Corp. Steel wire for spring
JP2004346424A (en) * 2003-04-28 2004-12-09 Sintokogio Ltd Method for producing helical spring and helical spring
JP4674843B2 (en) * 2003-04-28 2011-04-20 新東工業株式会社 Coil spring manufacturing method
JP2005344199A (en) * 2004-06-07 2005-12-15 Kobe Steel Ltd Steel material to be cold-bent
JP4608242B2 (en) * 2004-06-07 2011-01-12 株式会社神戸製鋼所 Steel for cold bending
CN1847438B (en) * 2005-04-11 2011-04-20 株式会社神户制钢所 Steel wire for cold-formed spring excellent in corrosion resistance and method for producing the same
EP1712653A1 (en) * 2005-04-11 2006-10-18 Kabushiki Kaisha Kobe Seiko Sho Steel wire for cold-formed spring excellent in corrosion resistance and method for producing the same
US8043444B2 (en) 2005-04-11 2011-10-25 Kobe Steel, Ltd. Steel wire for cold-formed spring excellent in corrosion resistance and method for producing the same
JP2006349080A (en) * 2005-06-17 2006-12-28 Jtekt Corp Manufacturing method for torsion bar
JP2010163689A (en) * 2005-08-05 2010-07-29 Sumitomo Electric Ind Ltd Oil-tempered wire, method for manufacturing the same, and spring
JP2007254765A (en) * 2006-03-20 2007-10-04 National Institute For Materials Science High strength structural steel excellent in hydrogen embrittlement resistance, toughness and ductility and method for producing the same
JP4657128B2 (en) * 2006-03-20 2011-03-23 独立行政法人物質・材料研究機構 High strength structural steel with excellent hydrogen embrittlement resistance and toughness and its manufacturing method
JP2012526948A (en) * 2009-05-05 2012-11-01 ジェオブルッグ・アーゲー A device that absorbs the kinetic energy of a moving body
US8789817B2 (en) 2009-09-29 2014-07-29 Chuo Hatsujo Kabushiki Kaisha Spring steel and spring having superior corrosion fatigue strength
US8936236B2 (en) 2009-09-29 2015-01-20 Chuo Hatsujo Kabushiki Kaisha Coil spring for automobile suspension and method of manufacturing the same
JP2011149036A (en) * 2010-01-19 2011-08-04 Chuo Spring Co Ltd Method for manufacturing coil spring for automotive suspension, and coil spring for automotive suspension
WO2012014672A1 (en) * 2010-07-26 2012-02-02 中央発條株式会社 Method for manufacturing spring and device for heating by passage of electric current
US9623475B2 (en) 2010-07-26 2017-04-18 Chuo Hatsujo Kabushiki Kaisha Method for producing spring
JP2012117092A (en) * 2010-11-29 2012-06-21 Sumitomo Denko Steel Wire Kk Spring having excellent settling resistance and durability, and method for manufacturing the same
US9068615B2 (en) 2011-01-06 2015-06-30 Chuo Hatsujo Kabushiki Kaisha Spring having excellent corrosion fatigue strength
CN102426068A (en) * 2011-09-14 2012-04-25 华东理工大学 Prediction method for surface thin film residual stress
WO2013058138A1 (en) * 2011-10-20 2013-04-25 ジャパンマテックス株式会社 Eyelet fitting with buffering function and manufacturing method therefor
CN112449654A (en) * 2019-07-01 2021-03-05 住友电气工业株式会社 Steel wire and spring
CN112449654B (en) * 2019-07-01 2022-07-08 住友电气工业株式会社 Steel wire and spring
CN114651082A (en) * 2019-10-16 2022-06-21 日本制铁株式会社 Valve spring
CN114651082B (en) * 2019-10-16 2023-02-17 日本制铁株式会社 Valve spring

Similar Documents

Publication Publication Date Title
KR100336339B1 (en) Steel wire for high-strength springs and method of producing the same
KR100839726B1 (en) High strength spring steel wire with excellent coiling properties and hydrogen embrittlement resistance
EP2374904B1 (en) Steel wire material for spring and its producing method
JP5624503B2 (en) Spring and manufacturing method thereof
KR100711370B1 (en) Steel wire for high strength spring excellent in workability and high strength spring
JP4980496B2 (en) Heat-treated steel wire for high-strength springs and pre-drawn steel wire for high-strength springs
EP2453033A1 (en) Steel wire for high-strength spring
JP4478072B2 (en) High strength spring steel
JP2003105498A (en) High strength spring, and production method therefor
EP1801255A1 (en) Cold formable spring steel wire excellent in cold cutting capability and fatigue properties and manufacturing process thereof
JP2010163689A (en) Oil-tempered wire, method for manufacturing the same, and spring
KR20150126699A (en) Case-hardening steel material and case-hardening steel member
JP2007063584A (en) Oil tempered wire and manufacturing method therefor
KR20150013325A (en) Steel for leaf spring with high fatigue strength, and leaf spring component
JP2009052144A (en) High strength spring
JP2004315968A (en) Steel wire for high strength spring having excellent workability, and high strength spring
JPH11246941A (en) High strength valve spring and its manufacture
JP2021167444A (en) Compression coil spring
JP5941439B2 (en) Coil spring and manufacturing method thereof
JP5990428B2 (en) Steel for bearings with excellent rolling fatigue characteristics and method for producing the same
KR20100077250A (en) High-strength spring steel and
JP2003003241A (en) High strength spring steel wire
JP2005120479A (en) High strength spring and production method therefor
JP2003193197A (en) High strength coil spring and production method therefor
JP3872364B2 (en) Manufacturing method of oil tempered wire for cold forming coil spring

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050107