JP2011149036A - Method for manufacturing coil spring for automotive suspension, and coil spring for automotive suspension - Google Patents

Method for manufacturing coil spring for automotive suspension, and coil spring for automotive suspension Download PDF

Info

Publication number
JP2011149036A
JP2011149036A JP2010009072A JP2010009072A JP2011149036A JP 2011149036 A JP2011149036 A JP 2011149036A JP 2010009072 A JP2010009072 A JP 2010009072A JP 2010009072 A JP2010009072 A JP 2010009072A JP 2011149036 A JP2011149036 A JP 2011149036A
Authority
JP
Japan
Prior art keywords
coil spring
compressive residual
coil
residual stress
shot peening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010009072A
Other languages
Japanese (ja)
Other versions
JP5550359B2 (en
Inventor
Toshihiro Nakano
智弘 中野
Takayuki Sakakibara
隆之 榊原
Takaki Kuno
隆紀 久野
Shingo Mimura
真吾 三村
Masami Wakita
将見 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Hatsujo KK
Chuo Spring Co Ltd
Original Assignee
Chuo Hatsujo KK
Chuo Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Hatsujo KK, Chuo Spring Co Ltd filed Critical Chuo Hatsujo KK
Priority to JP2010009072A priority Critical patent/JP5550359B2/en
Priority to US12/892,445 priority patent/US8349095B2/en
Priority to US12/892,444 priority patent/US8328169B2/en
Priority to DE201010046776 priority patent/DE102010046776A1/en
Priority to US12/892,439 priority patent/US8789817B2/en
Priority to US12/892,434 priority patent/US8936236B2/en
Publication of JP2011149036A publication Critical patent/JP2011149036A/en
Application granted granted Critical
Publication of JP5550359B2 publication Critical patent/JP5550359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/04Wound springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2226/00Manufacturing; Treatments

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology for manufacturing a coil spring superior in setting resistance, durability and corrosion-fatigue resistance, for an automotive suspension. <P>SOLUTION: A method for manufacturing the coil spring for the automotive suspension includes: heat-treating a formed coil; subjecting the heat-treated coil to warm-shot-peening treatment; and subjecting the coil after the warm-shot-peening treatment to hot-setting treatment. The method for manufacturing the coil spring for the automotive suspension may use steel as a raw material, which includes, by mass ratio, 0.35-0.55% C, 1.60-3.00% Si, 0.20-1.50% Mn, 0.10-1.50% Cr, further one or more from among 0.40-3.00% Ni, 0.05-0.50% Mo and 0.05-0.50% V, and the balance Fe with unavoidable impurities. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、自動車懸架用コイルばねの製造方法と、自動車懸架用コイルばねに関する。   The present invention relates to a manufacturing method of a coil spring for automobile suspension and a coil spring for automobile suspension.

非特許文献1は、従来の自動車懸架用コイルばねの製造方法を開示している。この製造方法では、まず、熱間で線材をコイル状に成形し、成形後のコイルに熱処理(焼入れ焼戻し)を行う。次に、熱処理後のコイルに対してホットセッチングを行い、次いで温間ショットピーニングを行い、さらにその後にセッチング、塗装を行う。この製造方法では、ホットセッチングによってコイルの耐へたり性が向上され、温間ショットピーニングによって耐久性が向上される。   Non-Patent Document 1 discloses a conventional method of manufacturing a coil spring for automobile suspension. In this manufacturing method, first, a wire is hot-formed into a coil shape, and heat treatment (quenching and tempering) is performed on the formed coil. Next, hot setting is performed on the coil after heat treatment, then warm shot peening is performed, and then setting and coating are performed. In this manufacturing method, the sag resistance of the coil is improved by hot setting, and the durability is improved by warm shot peening.

日本ばね学会編 「ばね」第4版 508ページThe Spring Society of Japan "Spring" 4th edition, page 508

自動車懸架用コイルばねには高い耐へたり性、耐久性が求められる。非特許文献1の製造方法では、一応の耐へたり性及び耐久性の向上は図られているものの、より高い耐へたり性、耐久性が求められている。   Automotive suspension coil springs are required to have high sag resistance and durability. In the manufacturing method of Non-Patent Document 1, although improvement in sag resistance and durability is achieved, higher sag resistance and durability are required.

本発明は、従来技術よりも高い耐へたり性、耐久性を有する自動車懸架用コイルばねを製造するための技術を提供することを目的とする。   An object of the present invention is to provide a technique for manufacturing a coil spring for automobile suspension having higher sag resistance and durability than the prior art.

上述したように、従来の自動車懸架用コイルばねの製造方法では、熱処理後にホットセッチングを行い、その後に温間ショットピーニングが行われていた。本発明者による鋭意検討の結果、無方向性の塑性加工である温間ショットピーニングをホットセッチングの後に行うと、ホットセッチングによってコイルに付与される方向性のある圧縮残留応力が、温間ショットピーニングによって打ち消されることが判明した。そして、製造工程を種々に入れ替えて実験を行った結果、成形後のコイルに対して、温間ショットピーニングを行い、その後ホットセッチングを行うことで、温間ショットピーニングによってコイル表面に付与される圧縮残留応力と、ホットセッチングによってコイルに付与される方向性のある圧縮残留応力とが、共に有効に残留することが判明した。   As described above, in the conventional manufacturing method of a coil spring for automobile suspension, hot setting is performed after heat treatment, and then warm shot peening is performed. As a result of intensive studies by the present inventors, when hot shot peening, which is non-directional plastic processing, is performed after hot setting, the directional compressive residual stress imparted to the coil by hot setting becomes warm shot peening. Turned out to be countered. Then, as a result of conducting experiments with various manufacturing processes being changed, the shot is subjected to warm shot peening, and then hot setting is performed on the coil after molding, thereby compressing the coil surface by warm shot peening. It has been found that both the residual stress and the directional compressive residual stress applied to the coil by hot setting remain effectively.

本発明の自動車懸架用コイルばねの製造方法は、上記の知見に基づいて創作されたものである。この製造方法では、素材をコイル状に成形し、成形後のコイルに対して熱処理を行い、熱処理後のコイルに対して温間ショットピーニングを行い、温間ショットピーニング後のコイルに対してホットセッチングを行う。この製造方法によれば、耐へたり性、耐久性に優れた自動車懸架用コイルばねを得ることができる。   The manufacturing method of the automotive suspension coil spring of the present invention was created based on the above findings. In this manufacturing method, the material is formed into a coil shape, the formed coil is heat-treated, the heat-treated coil is subjected to warm shot peening, and the hot shot peened coil is subjected to hot setting. I do. According to this manufacturing method, a car suspension coil spring excellent in sag resistance and durability can be obtained.

この自動車懸架用コイルばねの製造方法では、質量比にしてC:0.35〜0.55%、Si:1.60〜3.00%、Mn:0.20〜1.50%、Cr:0.10〜1.50%を含有するとともに、Ni:0.40〜3.00%、Mo:0.05〜0.50%、V:0.05〜0.50%のうちいずれか1種類以上を含有し、残部がFe及び不可避不純物からなる鋼を素材として用いることができる。素材として用いる鋼に含有される各元素の成分範囲を上記のように定めることにより、さらに耐へたり性、耐久性、耐腐食疲労性を向上することができる。   In the manufacturing method of the coil spring for automobile suspension, the mass ratio is C: 0.35 to 0.55%, Si: 1.60 to 3.00%, Mn: 0.20 to 1.50%, Cr: 0.10 to 1.50%, Ni: 0.40 to 3.00%, Mo: 0.05 to 0.50%, V: 0.05 to 0.50% Steels containing more than one kind and the balance being Fe and inevitable impurities can be used as a raw material. By determining the component ranges of each element contained in the steel used as a raw material as described above, it is possible to further improve sag resistance, durability, and corrosion fatigue resistance.

また、本発明は、耐久性、耐へたり性に優れた新規な自動車懸架用コイルばねを提供する。すなわち、本発明の自動車懸架用コイルばねは、ばね素線の少なくとも一部に圧縮残留応力が付与されている。そして、その圧縮残留応力が付与された位置における、素線の軸線方向から135°と315°方向の圧縮残留応力の和と45°と225°方向の圧縮残留応力の和との比が、(135°方向の圧縮残留応力+315°方向の圧縮残留応力)/(45°方向の圧縮残留応力+225°方向の圧縮残留応力)によって求められる場合において、素線表面から線径中心に向かう方向への距離が0.2mmの位置における、135°と315°方向の圧縮残留応力の和と45°と225°方向の圧縮残留応力の和との比が、素線表面における、135°と315°方向の圧縮残留応力の和と45°と225°方向の圧縮残留応力の和との比よりも大きくされている。   The present invention also provides a novel automobile suspension coil spring excellent in durability and sag resistance. That is, in the automotive suspension coil spring of the present invention, a compressive residual stress is applied to at least a part of the spring element wire. The ratio of the sum of the compressive residual stresses in the 135 ° and 315 ° directions to the sum of the compressive residual stresses in the 45 ° and 225 ° directions from the axial direction of the strand at the position where the compressive residual stress is applied is ( Compressive residual stress in the direction of 135 ° + compressive residual stress in the direction of 315 °) / (compressive residual stress in the direction of 45 ° + compressive residual stress in the direction of 225 °). The ratio of the sum of 135 ° and 315 ° compressive residual stresses to the sum of 45 ° and 225 ° compressive residual stresses at the distance of 0.2 mm is the 135 ° and 315 ° directions on the wire surface. And the ratio of the sum of compressive residual stresses in the direction of 45 ° and 225 ° to the sum of compressive residual stresses.

一般的に、自動車懸架用コイルばねを使用する場合、コイルばねの素線にかかる引張応力の方向は、素線の軸線方向から135°,315°の対角線方向であることが知られている。このため、コイルばねの素線に135°,315°の対角線方向に高い圧縮残留応力を有していると、この圧縮残留応力により引張応力が効果的に打ち消され、コイルばねの耐久性、耐へたり性が高くなる。特に、135°,315°の対角線方向の圧縮残留応力が、直交する45°,225°の対角線方向の圧縮残留応力より大きい場合は、コイルばねの耐久性、耐へたり性を高めるための圧縮残留応力が効果的に付与されていることになる。さらに、自動車懸架用コイルばねでは、コイルばねの使用環境に応じて素線表面が腐食等によって削られてゆく。このため、自動車懸架用コイルばねの耐久性、耐へたり性を向上するためには、コイルばねの素線表面だけではなく、素線表面から所定の深さの位置で圧縮残留応力が付与されていることが極めて重要となる。具体的には、自動車懸架用コイルばねが、素線表面から線径中心に向かう方向への距離が0.2mmの位置において上記の135°,315°の対角線方向に高い圧縮残留応力を有していれば、コイルばねの使用環境に応じてコイルばねの素線表面が腐食したり、削られたりした場合であっても、コイルばねの圧縮残留応力が有効に残留することとなる。その結果、圧縮残留応力が素線表面にのみ備わっている場合に比べてコイルばねの耐久性、耐へたり性が高くなる。   Generally, when using a coil spring for automobile suspension, it is known that the direction of tensile stress applied to the wire of the coil spring is a diagonal direction of 135 ° and 315 ° from the axial direction of the wire. For this reason, if the strands of the coil spring have a high compressive residual stress in the diagonal direction of 135 ° and 315 °, the tensile stress is effectively canceled by this compressive residual stress, and the durability and resistance of the coil spring are reduced. Increases drooping. In particular, when the compressive residual stress in the diagonal direction of 135 ° and 315 ° is larger than the compressive residual stress in the diagonal direction of 45 ° and 225 ° perpendicular to each other, the compression is performed to increase the durability and sag resistance of the coil spring. Residual stress is effectively applied. Furthermore, in the coil spring for automobile suspension, the surface of the wire is scraped by corrosion or the like according to the use environment of the coil spring. Therefore, in order to improve the durability and sag resistance of the coil spring for automobile suspension, compressive residual stress is applied not only on the surface of the wire of the coil spring but also at a predetermined depth from the surface of the wire. It is extremely important that Specifically, the coil spring for automobile suspension has high compressive residual stress in the diagonal directions of 135 ° and 315 ° described above at a position where the distance from the surface of the wire toward the center of the wire diameter is 0.2 mm. If so, the compressive residual stress of the coil spring remains effectively even if the surface of the wire of the coil spring is corroded or scraped according to the use environment of the coil spring. As a result, the durability and sag resistance of the coil spring are higher than when the compressive residual stress is provided only on the wire surface.

本発明の自動車懸架用コイルばねは、圧縮残留応力が付与された位置において、素線表面から線径中心に向かう方向への距離が0.2mmの位置における、135°と315°方向の圧縮残留応力の和と45°と225°方向の圧縮残留応力の和との比が、素線表面における、135°と315°方向の圧縮残留応力の和と45°と225°方向の圧縮残留応力の和との比よりも大きい。すなわち、素線表面から線径中心に向かう方向への距離が0.2mmの位置において、耐久性、耐へたり性を高めるために有効な圧縮残留応力が効果的に付与されている。そのため、本発明の自動車懸架用コイルばねは、高い耐へたり性、耐久性を発揮することができる。   The coil spring for automobile suspension according to the present invention has a compressive residual in the directions of 135 ° and 315 ° at a position where the distance from the surface of the strand toward the center of the wire diameter is 0.2 mm at the position where the compressive residual stress is applied. The ratio of the sum of stresses to the sum of compressive residual stresses in the 45 ° and 225 ° directions is the sum of the compressive residual stresses in the 135 ° and 315 ° directions and the compressive residual stresses in the 45 ° and 225 ° directions on the strand surface. Greater than the ratio with the sum. That is, effective compressive residual stress is effectively applied to improve durability and sag resistance at a position where the distance from the surface of the strand toward the center of the wire diameter is 0.2 mm. Therefore, the automotive suspension coil spring of the present invention can exhibit high sag resistance and durability.

この自動車懸架用コイルばねは、素線表面から線径中心に向かう方向への距離が0.2mmの位置における、135°方向の圧縮残留応力と、315°方向の圧縮残留応力とが、800〜1200MPaであることが好ましい。この自動車懸架用コイルばねは、素線表面から線径中心に向かう方向への距離が0.2mmの位置において、135°と315°方向に、800〜1200MPaの範囲の高い圧縮残留応力を有する。従って、本発明の自動車懸架用コイルばねは、高い耐へたり性、耐久性を発揮することができる。   This automotive suspension coil spring has a compressive residual stress in the 135 ° direction and a compressive residual stress in the 315 ° direction at a position where the distance from the surface of the strand toward the center of the wire diameter is 0.2 mm. It is preferably 1200 MPa. This automotive suspension coil spring has a high compressive residual stress in the range of 800 to 1200 MPa in the 135 ° and 315 ° directions at a position where the distance from the surface of the strand toward the center of the wire diameter is 0.2 mm. Therefore, the automotive suspension coil spring of the present invention can exhibit high sag resistance and durability.

この自動車懸架用コイルばねは、ばね硬さがHRC50〜56であることが好ましい。この自動車懸架用コイルばねは、自動車懸架用コイルばねに要求される基準の硬さを備えている。従って、本発明の自動車懸架用コイルばねは、高い耐へたり性、耐久性を発揮することができる。   This automobile suspension coil spring preferably has a spring hardness of HRC 50 to 56. This automobile suspension coil spring has a standard hardness required for an automobile suspension coil spring. Therefore, the automotive suspension coil spring of the present invention can exhibit high sag resistance and durability.

自動車懸架用コイルばねの素材に含有される各物質の質量比を示す表。The table | surface which shows the mass ratio of each substance contained in the raw material of the coil spring for motor vehicle suspension. 本発明例1、比較例1の自動車懸架用コイルばねの諸元を示す表。The table | surface which shows the specification of the coil spring for motor vehicle suspension of this invention example 1 and the comparative example 1. FIG. 本発明例2、比較例2の自動車懸架用コイルばねの諸元を示す表。The table | surface which shows the item of the coil spring for motor vehicle suspension of this invention example 2 and the comparative example 2. FIG. 締め付けへたり試験結果を示す表。Table showing the tightening test results. 耐久試験結果を示す表。The table | surface which shows an endurance test result. 腐食疲労試験結果を示す表。The table | surface which shows a corrosion fatigue test result. コイルばねの表面からの距離と圧縮残留応力の関係を示すグラフ。The graph which shows the relationship between the distance from the surface of a coil spring, and compressive residual stress. コイルばねの表面における各測定角の圧縮残留応力を示すグラフ。The graph which shows the compressive residual stress of each measurement angle in the surface of a coil spring. 深さ0.1mmにおける各測定角の圧縮残留応力を示すグラフ。The graph which shows the compressive residual stress of each measurement angle | corner in depth 0.1mm. 深さ0.2mmにおける各測定角の圧縮残留応力を示すグラフ。The graph which shows the compressive residual stress of each measurement angle | corner in depth 0.2mm. 深さ0.3mmにおける各測定角の圧縮残留応力を示すグラフ。The graph which shows the compressive residual stress of each measurement angle | corner in depth 0.3mm. (135°の圧縮残留応力+315°の圧縮残留応力)/(45°の圧縮残留応力+225°の圧縮残留応力)の計算結果を示す表。The table | surface which shows the calculation result of (135 degree compressive residual stress +315 degree compressive residual stress) / (45 degree compressive residual stress +225 degree compressive residual stress). コイルばねの表面からの距離毎の、各測定角の圧縮残留応力と、(135°の圧縮残留応力+315°の圧縮残留応力)/(45°の圧縮残留応力+225°の圧縮残留応力)により求められる比とを示す表。Compressive residual stress at each measurement angle for each distance from the surface of the coil spring and (135 ° compressive residual stress + 315 ° compressive residual stress) / (45 ° compressive residual stress + 225 ° compressive residual stress) The table which shows the ratio. X線応力測定法によるコイルばねの圧縮残留応力の測定方法を示す側面図。The side view which shows the measuring method of the compressive residual stress of a coil spring by the X-ray stress measuring method. X線応力測定法によるコイルばねの圧縮残留応力の測定方法を示す平面図。The top view which shows the measuring method of the compressive residual stress of a coil spring by a X-ray stress measuring method.

本発明を具現化した一実施形態に係る自動車懸架用コイルばねの製造方法について説明する。本実施形態の製造方法では、コイル成形、熱処理、温間ショットピーニング、ホットセッチング、冷間ショットピーニング、冷間セッチング、の各工程をこの順序で行うことによって自動車懸架用コイルばねを製造する。以下、本明細書では、自動車懸架用コイルばねを単にコイルばねと呼ぶ場合がある。   A method of manufacturing a coil spring for automobile suspension according to an embodiment embodying the present invention will be described. In the manufacturing method of this embodiment, a coil spring for automobile suspension is manufactured by performing coil molding, heat treatment, warm shot peening, hot setting, cold shot peening, and cold setting in this order. Hereinafter, in this specification, the automobile suspension coil spring may be simply referred to as a coil spring.

コイル成形工程では、線材をコイル状に成形する。線材の成形は、線材の径やコイルばねの寸法等に応じて、熱間(線材の再結晶温度以上の温度)で行ってもよいし、温間(線材の再結晶温度未満の温度)又は冷間(室温)で行ってもよい。熱間で成形する場合には、例えば、800〜1000℃で行うことができる。温間で成形する場合には、例えば、50〜400℃で行うことができる。また、コイル状に成形する方法には、従来公知の種々の方法を用いることができ、例えば、コイリングマシンを用いて成形してもよいし、芯金に巻き付ける方法によって成形してもよい。   In the coil forming step, the wire is formed into a coil shape. The wire may be formed hot (temperature above the recrystallization temperature of the wire) or warm (temperature lower than the recrystallization temperature of the wire) or depending on the wire diameter, coil spring size, etc. You may carry out by cold (room temperature). In the case of hot molding, for example, it can be performed at 800 to 1000 ° C. In the case of warm molding, for example, it can be performed at 50 to 400 ° C. Moreover, conventionally well-known various methods can be used for the method of shape | molding in a coil shape, For example, you may shape | mold using a coiling machine and may shape | mold by the method of winding around a metal core.

線材として用いる材料には、例えば、質量比にしてC:0.35〜0.55%、Si:1.60〜3.00%、Mn:0.20〜1.50%、Cr:0.10〜1.50%を含有するとともに、Ni:0.40〜3.00%、Mo:0.05〜0.50%、V:0.05〜0.50%のうちいずれか1種類以上を含有し、残部がFe及び不可避不純物からなる鋼材を好適に用いることができる。このような鋼材を用いることで、耐へたり性、耐久性、耐腐食疲労性を向上することができる。なお、各元素についての具体的な上限及び下限を設定した理由は次の通りである。   Examples of the material used as the wire include C: 0.35 to 0.55%, Si: 1.60 to 3.00%, Mn: 0.20 to 1.50%, and Cr: 0.0. 10 to 1.50%, Ni: 0.40 to 3.00%, Mo: 0.05 to 0.50%, V: 0.05 to 0.50%, any one or more A steel material containing Fe and the balance of Fe and inevitable impurities can be suitably used. By using such a steel material, sag resistance, durability, and corrosion fatigue resistance can be improved. The reason why specific upper and lower limits are set for each element is as follows.

C:0.35〜0.55%。Cは鋼線の強度を高めるために必須の元素であるが、0.35%未満では十分な強度が得られず、逆に0.55%を越えると成形性及び靭性が低下するためである。   C: 0.35-0.55%. C is an essential element for increasing the strength of the steel wire, but if it is less than 0.35%, sufficient strength cannot be obtained, and conversely if it exceeds 0.55%, formability and toughness deteriorate. .

Si:1.60〜3.00%。Siはばねの強度、硬度と耐へたり性を確保するために必要な元素であり、少ない場合は必要な強度、耐へたり性が不足するため、1.60%を下限とした。また多量に添加しすぎると、材料を硬化させるだけでなく、脆化するため、3.00%を上限とした。   Si: 1.60 to 3.00%. Si is an element necessary for ensuring the strength, hardness and sag resistance of the spring, and when it is small, the necessary strength and sag resistance are insufficient, so 1.60% was made the lower limit. Moreover, since it will not only harden | cure a material but to embrittle if it adds too much, 3.00% was made the upper limit.

Mn:0.20〜1.50%。Mnは鋼の焼入性を向上させ、鋼中のSを固定してその害を阻止する。しかし、0.20%未満ではその効果がない。逆に1.50%を越えると靭性の低下を招き、成形性を損ねる恐れがある。   Mn: 0.20 to 1.50%. Mn improves the hardenability of the steel and fixes S in the steel to prevent its damage. However, if it is less than 0.20%, the effect is not obtained. On the other hand, if it exceeds 1.50%, the toughness is lowered and the moldability may be impaired.

Cr:0.10〜1.50%。Crは焼入れ性を向上させるとともに焼戻し軟化抵抗を付与する。0.10%未満ではその効果は十分ではなく、1.50%を超えると炭化物の固溶を抑制し、強度の低下を招くため、やはり効果的ではない。   Cr: 0.10 to 1.50%. Cr improves hardenability and imparts temper softening resistance. If it is less than 0.10%, the effect is not sufficient, and if it exceeds 1.50%, solid solution of the carbide is suppressed and the strength is lowered, so that it is not effective.

Ni:0.40〜3.00%、Mo:0.05〜0.50%、V:0.05〜0.50%のうちいずれか1種類以上を含有すること。Ni、Mo、Vはいずれも焼戻し時の軟化抵抗を増大させる元素である。このため、これらの元素を1種類以上含有することで、焼戻し時の軟化抵抗を増大させることができる。なお、上記の効果を得るための必要量は各元素により異なる。すなわち、Niは0.40〜3.00%であり、Moは0.05〜0.50%であり、Vは0.05〜0.50%である。各元素が下限値より少ないと、必要な軟化抵抗を得ることができない。一方、Ni:3.00%、Mo:0.50%、V:0.50%は、これらの元素による軟化抵抗増大効果が飽和する量であり、これ以上含有させることは無駄である他、過度の強度上昇により成形性が低下するおそれがある。   Containing any one or more of Ni: 0.40 to 3.00%, Mo: 0.05 to 0.50%, and V: 0.05 to 0.50%. Ni, Mo, and V are all elements that increase the softening resistance during tempering. For this reason, the softening resistance at the time of tempering can be increased by containing one or more of these elements. Note that the amount required to obtain the above-mentioned effect varies depending on each element. That is, Ni is 0.40 to 3.00%, Mo is 0.05 to 0.50%, and V is 0.05 to 0.50%. If each element is less than the lower limit, the necessary softening resistance cannot be obtained. On the other hand, Ni: 3.00%, Mo: 0.50%, V: 0.50% are amounts that saturate the softening resistance increasing effect by these elements, and it is useless to contain more than this, There is a possibility that moldability may be reduced due to an excessive increase in strength.

なお、コイルの素材として用いる線材には、上記の鋼材の他、従来からコイルばねの素材として用いられてきた種々の材料(例えば、ばね鋼等)を用いることができる。   In addition to the steel materials described above, various materials (for example, spring steel and the like) that have been conventionally used as a coil spring material can be used as the wire material used as the coil material.

熱処理工程では、上記の成形工程によってコイル状に成形されたコイルに対して熱処理を行う。この工程で行われる熱処理は、上記の成形工程を熱間で行ったか、温間又は冷間で行ったかによって異なる。すなわち、上記の成形工程を熱間で行った場合には、焼入れと焼戻しを行う。焼入れ焼戻しにより、コイルには強度と靭性が付与される。焼入れの温度条件は、800〜1000℃とすることができる。焼戻しの温度条件は、300〜500℃とすることができる。一方、上記の成形工程を温間又は冷間で行った場合には、低温焼鈍を行う。低温焼鈍により、コイル内部及び表面の有害な残留応力(引張りの残留応力)を除去することができる。低温焼鈍の条件は、300〜500℃で20〜60分とすることができる。コイルの焼入れ焼戻し、並びに、コイルの低温焼鈍の方法は、従来知られているいずれの方法によっても行うことができる。   In the heat treatment step, heat treatment is performed on the coil formed into a coil shape by the above-described forming step. The heat treatment performed in this step differs depending on whether the above molding step is performed hot, warm or cold. That is, when the above molding process is performed hot, quenching and tempering are performed. Quenching and tempering imparts strength and toughness to the coil. The temperature condition for quenching can be 800 to 1000 ° C. The temperature condition of tempering can be 300-500 degreeC. On the other hand, when the above molding process is performed warm or cold, low temperature annealing is performed. The low temperature annealing can remove harmful residual stress (residual tensile stress) inside and on the coil. The conditions for low-temperature annealing can be 20 to 60 minutes at 300 to 500 ° C. The method of quenching and tempering the coil and low-temperature annealing of the coil can be performed by any conventionally known method.

温間ショットピーニング工程では、上記の熱処理が行われたコイルを温間でショットピーニングする。温間ショットピーニングにより、コイル表面に大きな圧縮残留応力が付与され、コイルの耐久性、耐腐食疲労性が向上する。ここで、ショットピーニングを行う温度は、線材の再結晶温度以下で、かつ、室温より高い温度となる温度範囲内で適宜設定することができる。例えば、コイルの温度を150〜400℃とすることができ、より好ましくは250〜350℃とすることができる。このような温度範囲でショットピーニングを行うことで、コイル表面により大きな圧縮残留応力を付与することができる。また、ショットピーニングには、その直径が0.6〜1.2mmの鋼球(ショット)を用いることができる。このような鋼球を用いることで、コイル表面に有害な損傷を与えることなく、好適に圧縮残留応力を付与することができる。また、鋼球の投射速度は50〜100m/sとすることができる。また、カバレージは80%以上の範囲とすることができ、処理回数は1〜2回とすることができる。なお、鋼球のショット方法には、従来知られている種々の方法を用いることができる。   In the warm shot peening process, the coil subjected to the above heat treatment is warm shot peened. Warm shot peening imparts a large compressive residual stress to the coil surface, improving the durability and corrosion fatigue resistance of the coil. Here, the temperature at which shot peening is performed can be appropriately set within a temperature range that is equal to or lower than the recrystallization temperature of the wire and higher than room temperature. For example, the coil temperature can be set to 150 to 400 ° C., and more preferably 250 to 350 ° C. By performing shot peening in such a temperature range, a larger compressive residual stress can be applied to the coil surface. For shot peening, a steel ball (shot) having a diameter of 0.6 to 1.2 mm can be used. By using such a steel ball, compressive residual stress can be suitably imparted without causing harmful damage to the coil surface. Moreover, the projection speed of a steel ball can be 50-100 m / s. Moreover, the coverage can be in the range of 80% or more, and the number of processings can be 1 to 2 times. Various conventionally known methods can be used for the steel ball shot method.

ホットセッチング工程では、コイルの温度を温間とした状態でセッチングを行う。ホットセッチングにより、コイルに方向性のある圧縮残留応力が付加されて耐久性が向上し、また、コイルに比較的大きな塑性変形が生じることでコイルの耐へたり性が向上する。ここで、ホットセッチングを行う温度は、線材の再結晶温度以下で、かつ、室温より高い温度となる温度範囲内で適宜設定することができる。例えば、コイルの温度を150〜400℃の範囲で行うことができる。このような温度範囲でセッチングを行うことで、コイルに付与される塑性変形量を大きくでき、耐へたり性を向上することができる。なお、温間ショットピーニングを行うときの温度より低い温度でセッチングを行うようにすれば、温間ショットピーニング後にコイルを加熱する必要がないため好ましい。また、セッチングの残留せん断歪γが10×10−4〜40×10−4の範囲でセッチングを行うことが好ましい。この範囲でセッチングを行うことで、耐久性を低下させることなく、耐へたり性を向上することができる。なお、セッチングには、従来知られている種々の方法を用いることができる。 In the hot setting process, setting is performed in a state where the temperature of the coil is warm. By hot setting, a directional compressive residual stress is applied to the coil to improve durability, and a relatively large plastic deformation occurs in the coil, thereby improving the sag resistance of the coil. Here, the temperature at which hot setting is performed can be appropriately set within a temperature range that is equal to or lower than the recrystallization temperature of the wire and higher than room temperature. For example, the coil temperature can be in the range of 150 to 400 ° C. By performing setting in such a temperature range, the amount of plastic deformation imparted to the coil can be increased, and the sag resistance can be improved. Note that it is preferable to perform setting at a temperature lower than the temperature at which the warm shot peening is performed because it is not necessary to heat the coil after the warm shot peening. Moreover, it is preferable to perform setting in the range where the residual shear strain γ of the setting is 10 × 10 −4 to 40 × 10 −4 . By performing setting within this range, it is possible to improve the sag resistance without reducing the durability. For the setting, various conventionally known methods can be used.

冷間ショットピーニング工程では、コイルの温度を常温にした状態でショットピーニングを行う。温間ショットピーニングに加えてさらに冷間ショットピーニングを行うことにより、コイルの耐久性を一層向上させることができる。冷間ショットピーニングには、直径が0.1〜1.0mmの鋼球(ショット)を用いることができる。なお、冷間ショットピーニングで用いる鋼球の径を、温間ショットピーニングで用いる鋼球の径より小さくすることが好ましい。例えば、温間ショットピーニングに使用する鋼球の径を直径1.2mmとした場合、冷間ショットピーニングに使用する鋼球の径を0.8mmとする。温間ショットピーニングと冷間ショットピーニングを行うことで、先に行われる温間ショットピーニングでコイルに大きな圧縮残留応力が付与され、後に行われる冷間ショットピーニングでコイルの表面粗さが改善され、コイルの耐久性、耐腐食疲労性が一層向上する。なお、冷間ショットピーニングの諸条件、すなわち、投射速度は50〜100m/sとすることができ、カバレージは80%以上とすることができ、処理回数は1〜2回とすることができる。   In the cold shot peening process, shot peening is performed with the coil temperature at room temperature. By performing cold shot peening in addition to warm shot peening, the durability of the coil can be further improved. For cold shot peening, a steel ball (shot) having a diameter of 0.1 to 1.0 mm can be used. In addition, it is preferable to make the diameter of the steel ball used for cold shot peening smaller than the diameter of the steel ball used for warm shot peening. For example, when the diameter of the steel ball used for warm shot peening is 1.2 mm, the diameter of the steel ball used for cold shot peening is 0.8 mm. By performing warm shot peening and cold shot peening, a large compressive residual stress is imparted to the coil by the warm shot peening performed earlier, and the surface roughness of the coil is improved by the cold shot peening performed later, Coil durability and corrosion fatigue resistance are further improved. The conditions for cold shot peening, that is, the projection speed can be 50 to 100 m / s, the coverage can be 80% or more, and the number of treatments can be 1 to 2.

冷間セッチング工程では、コイルの温度を常温にした状態でセッチングを行う。上記ホットセッチングに加えて冷間セッチングを行うことにより、コイルの耐へたり性を一層向上させる。冷間セッチングは、残留せん断歪γが1×10−4〜10×10−4の範囲で行うことが好ましい。この範囲でセッチングを行うことで、耐へたり性をより向上させることができる。 In the cold setting process, setting is performed in a state where the temperature of the coil is set to room temperature. By performing cold setting in addition to the hot setting, the sag resistance of the coil is further improved. The cold setting is preferably performed in the range of residual shear strain γ of 1 × 10 −4 to 10 × 10 −4 . By performing setting in this range, the sag resistance can be further improved.

なお、上記の冷間ショットピーニング、冷間セッチングの各工程を省略し、温間ショットピーニング及びホットセッチングのみを行うこともできる。また、上記の各工程以外の他の工程を含んでいてもよい。例えば、ホットセッチング後に水冷する工程を行うようにしてもよい。なお、本実施形態の製造方法で製造したコイルばねは、ばね硬さがHRC50〜56の範囲となる。コイルばねのばね硬さは、HRC53±2の範囲となることがより好ましい。   In addition, each process of said cold shot peening and cold setting can be abbreviate | omitted, and only warm shot peening and hot setting can also be performed. Moreover, you may include other processes other than said each process. For example, a water cooling process may be performed after hot setting. In addition, the spring hardness of the coil spring manufactured by the manufacturing method of the present embodiment is in the range of HRC50 to 56. The spring hardness of the coil spring is more preferably in the range of HRC53 ± 2.

(第1実施例)
本実施形態の製造方法で製造したコイルばねを用いて締め付けへたり試験、耐久試験、腐食疲労試験を行った例について説明する。本試験例では、本発明の製造方法で製造した本発明例1及び2と、従来の製造方法で製造した比較例1、2を用いて各試験を行った。
(First embodiment)
An example in which a tightening test, a durability test, and a corrosion fatigue test are performed using the coil spring manufactured by the manufacturing method of the present embodiment will be described. In this test example, each test was performed using Invention Examples 1 and 2 produced by the production method of the present invention and Comparative Examples 1 and 2 produced by a conventional production method.

図1は、試験に使用したコイルばねの素材となる鋼材A、Bに含有される各元素の質量比を示す表である。   FIG. 1 is a table showing the mass ratio of each element contained in the steel materials A and B, which are the materials of the coil spring used in the test.

鋼材Aは、質量比にしてC:0.47%、Si:2.00%、Mn:0.7%、P:0.005%、S:0.005%、Ni:0.55%、Cr:0.2%、V:0.2%を含有し、残部がFe及び不可避不純物からなる鋼である。本実施例では、質量比が上記のようになるように各物質を溶解した後、分塊圧延、線材圧延を行って線材としたものを、本発明例1、比較例1のコイルばねの素材とした。   Steel A has a mass ratio of C: 0.47%, Si: 2.00%, Mn: 0.7%, P: 0.005%, S: 0.005%, Ni: 0.55%, It is a steel containing Cr: 0.2%, V: 0.2%, the balance being Fe and inevitable impurities. In this example, after dissolving each substance so that the mass ratio is as described above, the material of the coil springs of the present invention example 1 and the comparative example 1 is obtained by carrying out ingot rolling and wire rod rolling. It was.

鋼材Bは、質量比にしてC:0.47%、Si:2.18%、Mn:0.44%、P:0.007%、S:0.006%、Ni:0.53%、Cu:0.01%、Cr:0.29%、Mo:0.09%、V:0.1%、Ti:0.023%、B:0.0021%を含有し、残部がFe及び不可避不純物からなる鋼である。本実施例では、質量比が上記のようになるように各物質を溶解した後、分塊圧延、線材圧延を行って線材としたものを、本発明例2、比較例2のコイルばねの素材とした。   Steel material B has a mass ratio of C: 0.47%, Si: 2.18%, Mn: 0.44%, P: 0.007%, S: 0.006%, Ni: 0.53%, Cu: 0.01%, Cr: 0.29%, Mo: 0.09%, V: 0.1%, Ti: 0.023%, B: 0.0021%, the balance being Fe and inevitable Steel made of impurities. In this example, after melting each substance so that the mass ratio is as described above, the material of the coil springs of the present invention example 2 and the comparative example 2 is obtained by carrying out the ingot rolling and wire rolling. It was.

〔本発明例1〕
本発明例1のコイルばねは、上記の鋼材Aからなる線材を材料としている。具体的な製造方法は、鋼材Aからなるオイルテンパー処理を施した線材に対し、冷間成形、テンパー処理(低温焼鈍)、温間ショットピーニング、ホットセッチング、水冷、冷間ショットピーニング、冷間セッチング、の各工程をこの順序で行った。
[Invention Example 1]
The coil spring of Example 1 of the present invention is made of the wire material made of the steel material A described above. The specific manufacturing method is cold forming, temper treatment (low temperature annealing), warm shot peening, hot setting, water cooling, cold shot peening, cold setting for the wire tempered wire made of steel A The steps were performed in this order.

本発明例1の製造過程における各条件は以下の通りである。低温焼鈍の条件は350℃で30分とした。温間ショットピーニングに用いる鋼球(ショット)の直径は1.2mmとした。温間ショットピーニング時のコイル温度を300℃とした。ホットセッチング時のコイル温度を200℃とし、へたり代を21mm(残留せん断歪γ=13.7×10−4)とした。冷間ショットピーニングに用いる鋼球の直径は0.8mmとした。冷間セッチングのへたり代は3mm(残留せん断歪γ=2×10−4)とした。 Each condition in the manufacturing process of Example 1 of the present invention is as follows. The conditions for the low-temperature annealing were set at 350 ° C. for 30 minutes. The diameter of the steel ball (shot) used for warm shot peening was 1.2 mm. The coil temperature during warm shot peening was set to 300 ° C. The coil temperature at the time of hot setting was 200 ° C., and the allowance was 21 mm (residual shear strain γ = 13.7 × 10 −4 ). The diameter of the steel ball used for cold shot peening was 0.8 mm. The allowance for cold setting was 3 mm (residual shear strain γ = 2 × 10 −4 ).

上記のようにして製造した本発明例1のコイルばねは、ばね硬さがHRC53となり、また、図2に示す諸元を備えた。すなわち、本発明例1のコイルばねは、円筒片側ピッグ型で、線径12.6mm、コイル平均径162.6mm、自由長318.5mm、有効巻3.12巻、ばね定数が24.0N/mmであった。   The coil spring of Example 1 of the present invention manufactured as described above has a spring hardness of HRC53 and has the specifications shown in FIG. That is, the coil spring of Example 1 of the present invention is a cylindrical single-sided pig type, and has a wire diameter of 12.6 mm, a coil average diameter of 162.6 mm, a free length of 318.5 mm, an effective winding of 3.12 windings, and a spring constant of 24.0 N / mm.

〔比較例1〕
比較例1のコイルばねは、本発明例1と同様に上記の鋼材Aからなる線材を材料として製造した。具体的には、鋼材Aからなるオイルテンパー処理を施した線材に対し、冷間成形、テンパー処理(低温焼鈍)、ホットセッチング、温間ショットピーニング、水冷、冷間ショットピーニング、冷間セッチング、の各工程をこの順序で行ってコイルばねとしたものである。ホットセッチングを温間ショットピーニングより前に行う点が本発明例1の製造手順と異なる。この比較例1の製造手順は、従来の自動車懸架用コイルばねの製造方法に従った手順である。
[Comparative Example 1]
The coil spring of Comparative Example 1 was manufactured by using the wire made of the steel material A as a material in the same manner as Example 1 of the present invention. Specifically, for the wire tempered wire made of steel A, cold forming, tempering (low temperature annealing), hot setting, warm shot peening, water cooling, cold shot peening, cold setting, Each process is performed in this order to form a coil spring. The point which performs hot setting before warm shot peening differs from the manufacture procedure of the example 1 of this invention. The manufacturing procedure of Comparative Example 1 is a procedure according to a conventional manufacturing method of a suspension coil for automobile suspension.

比較例1の製造過程における各条件は、以下の通りである。温間ショットピーニングを行う温度は200℃とした。ホットセッチングを行う温度は300℃とした。その他の条件は、本発明例1の製造過程における各条件と共通する。   Each condition in the manufacturing process of Comparative Example 1 is as follows. The temperature for performing warm shot peening was 200 ° C. The temperature for performing hot setting was 300 ° C. Other conditions are the same as those in the manufacturing process of Example 1 of the present invention.

比較例1のコイルばねも、本発明例1と同様にばね硬さがHRC53であり、図2に示す諸元を有する。   The coil spring of Comparative Example 1 also has a spring hardness of HRC53 as in Example 1 of the present invention, and has the specifications shown in FIG.

〔本発明例2〕
本発明例2のコイルばねは、上記の鋼材Bからなる線材を材料としている。具体的な製造方法は、鋼材Bからなる線材に対し、焼入れ加熱、熱間成形、焼入れ(油冷)、焼戻し、温間ショットピーニング、ホットセッチング、水冷、冷間ショットピーニング、冷間セッチング、の各工程をこの順序で行ってコイルばねとしたものである。
[Invention Example 2]
The coil spring of the present invention example 2 is made of the wire material made of the steel material B described above. A specific manufacturing method includes quenching heating, hot forming, quenching (oil cooling), tempering, warm shot peening, hot setting, water cooling, cold shot peening, cold setting for the wire made of steel B. Each process is performed in this order to form a coil spring.

本発明例2の製造過程における各条件は以下の通りである。焼入れ加熱の条件は990℃、焼戻し加熱の条件は370℃とした。温間ショットピーニングに用いるショットの直径は1.0mmとした。温間ショットピーニング時のコイル温度は350℃とした。ホットセッチング時のコイル温度を180℃とし、へたり代を36mm(残留せん断歪γ=26×10−4)とした。冷間ショットピーニングに用いるショットの直径は0.6mmとした。冷間セッチングのへたり代は4mm(残留せん断歪γ=2×10−4)とした。 Each condition in the manufacturing process of Example 2 of the present invention is as follows. The quenching heating conditions were 990 ° C., and the tempering heating conditions were 370 ° C. The diameter of the shot used for warm shot peening was 1.0 mm. The coil temperature during warm shot peening was set to 350 ° C. The coil temperature at the time of hot setting was 180 ° C., and the allowance was 36 mm (residual shear strain γ = 26 × 10 −4 ). The diameter of the shot used for cold shot peening was 0.6 mm. The allowance for cold setting was 4 mm (residual shear strain γ = 2 × 10 −4 ).

上記のようにして製造した本発明例2のコイルばねは、ばね硬さがHRC54となり、図3に示す諸元を備えた。即ち、本発明例2のコイルばねは、円筒型で、線径12.4mm、コイル平均径110.9mm、自由長323.0mm、有効巻5.55巻、ばね定数39.1N/mmであった。   The coil spring of Example 2 of the present invention manufactured as described above has a spring hardness of HRC54 and has the specifications shown in FIG. That is, the coil spring of Example 2 of the present invention has a cylindrical shape with a wire diameter of 12.4 mm, an average coil diameter of 110.9 mm, a free length of 323.0 mm, an effective volume of 5.55, and a spring constant of 39.1 N / mm. It was.

〔比較例2〕
比較例2のコイルばねは、本発明例2と同様に上記の鋼材Bからなる線材を材料として製造した。具体的には、鋼材Bからなる線材に対し、焼入れ加熱、熱間成形、焼入れ(油冷)、焼戻し、ホットセッチング、温間ショットピーニング、水冷、冷間ショットピーニング、冷間セッチング、の各工程をこの順序で行った。ホットセッチングを温間ショットピーニングより前に行う点が本発明例2の製造手順と異なる。この比較例2の製造手順も、従来の自動車懸架用コイルばねの製造方法に従った手順である。
[Comparative Example 2]
The coil spring of Comparative Example 2 was manufactured using the wire made of the steel material B as a material in the same manner as Example 2 of the present invention. Specifically, each process of quenching heating, hot forming, quenching (oil cooling), tempering, hot setting, warm shot peening, water cooling, cold shot peening, cold setting is performed on the wire made of steel material B. In this order. The point which performs hot setting before warm shot peening differs from the manufacture procedure of the example 2 of this invention. The manufacturing procedure of Comparative Example 2 is also a procedure according to a conventional manufacturing method of a suspension coil for automobile suspension.

比較例2の製造過程における各条件は、以下の通りである。温間ショットピーニング時のコイル温度を230℃とした。ホットセッチング時のコイル温度を330℃とした。その他の条件は、本発明例2の製造過程における条件と共通する。   Each condition in the manufacturing process of Comparative Example 2 is as follows. The coil temperature during warm shot peening was 230 ° C. The coil temperature during hot setting was set to 330 ° C. Other conditions are the same as those in the manufacturing process of Example 2 of the present invention.

比較例2のコイルばねも、本発明例2と同様にばね硬さがHRC54であり、図3に示す諸元を備えた。   The coil spring of Comparative Example 2 also had the spring hardness HRC54 as in Example 2 of the present invention, and had the specifications shown in FIG.

(1.締め付けへたり試験)
締め付けへたり試験は、本発明例1と比較例1を対象として行った。この締め付けへたり試験は、コイルばねに最大荷重時高さで締め付けを行い、所定時間恒温槽に投入する試験である。試験前後での取付け高さでの荷重の変化を測定し、残留せん断歪量を算出した。ここで、締め付け荷重は5472Nとした。恒温槽温度を80℃とし、試験時間を96時間とした。また、この締め付けへたり試験では、本発明例1と比較例1を2本ずつ用意し、それぞれについて同じ試験を行った。試験の結果を図4に示す。図4中、加工順の欄の「SP→HS」は、「温間ショットピーニング後にホットセッチングを行った」ことを示す。同様に「HS→SP」は、「ホットセッチング後に温間ショットピーニングを行った」ことを示す(以下の各図について同じ)。また、図中の数値は、それぞれへたり量(残留せん断歪量(×10−4))を示す。図4に示すように、本発明例1の各コイルばねのへたり量は、いずれも比較例1のへたり量より小さくなった。
(1. Tightening test)
The tightening sagging test was conducted on Example 1 of the present invention and Comparative Example 1. This tightening sagging test is a test in which a coil spring is tightened at a height at the maximum load and is put into a constant temperature bath for a predetermined time. The change in load at the mounting height before and after the test was measured, and the amount of residual shear strain was calculated. Here, the tightening load was 5472N. The thermostat temperature was 80 ° C. and the test time was 96 hours. In this tightening test, two inventive examples 1 and two comparative examples 1 were prepared, and the same test was performed for each. The result of the test is shown in FIG. In FIG. 4, “SP → HS” in the processing order column indicates that “hot setting was performed after warm shot peening”. Similarly, “HS → SP” indicates that “warm shot peening was performed after hot setting” (the same applies to the following drawings). Moreover, the numerical value in a figure shows the amount of sag (residual shear strain amount ( x10-4 )), respectively. As shown in FIG. 4, the amount of sag of each coil spring of Example 1 of the present invention was smaller than the amount of sag of Comparative Example 1.

上記試験結果が示すように、温間ショットピーニング後にホットセッチングを行って製造した本発明例1のコイルばねは、ホットセッチング後に温間ショットピーニングを行って製造した比較例1のコイルばねよりも高い耐へたり性を有した。   As the above test results show, the coil spring of Example 1 of the present invention manufactured by performing hot setting after warm shot peening is higher than the coil spring of Comparative Example 1 manufactured by performing warm shot peening after hot setting. Has sag resistance.

(2.耐久試験)
耐久試験は、本発明例2と比較例2を対象として行った。この耐久試験では、コイルばねに作用する荷重を周期的に変動させ、コイルばねが破損するまでの加振回数(耐久回数)を測定した。ここで、コイルばねに加える応力は主応力で735±550MPaとした。この耐久試験でも、本発明例2と比較例2のコイルばねを2本ずつ用意し、それぞれについて同じ試験を行った。試験の結果を図5に示す。図中の数値は、それぞれ耐久回数(万回)を示す。図5に示すように、本発明例2のコイルばねの耐久回数は、いずれも比較例2の耐久回数より著しく多くなった(約2倍程度)。
(2. Endurance test)
The endurance test was conducted on Example 2 of the present invention and Comparative Example 2. In this durability test, the load acting on the coil spring was periodically changed, and the number of times of vibration (the number of durability) until the coil spring was damaged was measured. Here, the stress applied to the coil spring was 735 ± 550 MPa as the main stress. Also in this durability test, two coil springs of Example 2 and Comparative Example 2 were prepared, and the same test was performed for each. The test results are shown in FIG. The numerical values in the figure indicate the number of endurance (10,000 times), respectively. As shown in FIG. 5, the durability of the coil spring of Example 2 of the present invention was remarkably greater than the durability of Comparative Example 2 (about twice).

上記試験結果が示すように、温間ショットピーニング後にホットセッチングを行って製造した本発明例2のコイルばねは、ホットセッチング後に温間ショットピーニングを行って製造した比較例2のコイルばねよりも高い耐久性を有した。   As the above test results show, the coil spring of Example 2 of the present invention manufactured by hot setting after warm shot peening is higher than the coil spring of Comparative Example 2 manufactured by performing warm shot peening after hot setting. Durable.

(3.腐食疲労試験)
腐食疲労試験は、本発明例2と比較例2を対象として行った。なお、この腐食疲労試験に使用される本発明例2のコイルばねと比較例2のコイルばねには、事前に塗装が施されているものとする。この腐食疲労試験は、以下の方法で行った。まず、コイルばねを玄武岩JIS7号砕石の上に落下させ、90°ずつ回転させる処理を4回行い、コイルばねの塗膜に傷をつける(チッピング)。次に、コイルばねに対して{塩水噴霧(5%NaCl、35℃)6h+乾燥(60℃、RH20%)6h+湿潤(50℃、RH95%)12h}を1サイクルとする腐食処理を60サイクル行う。腐食処理5サイクル毎に3000回ずつ加振する。60サイクル終了後は、コイルばねをさらに加振し、耐久回数を測定した。なお、コイルばねの加振方法は上記の耐久試験と同様である。コイルばねに加える応力は主応力で735±550MPaとした。この腐食疲労試験でも、本発明例2と比較例2のコイルばねを2本ずつ用意し、それぞれについて同じ試験を行った。試験の結果を図6に示す。図中の数値は、それぞれ耐久回数(万回)を示す。図6に示すように、本発明例2のコイルばねの耐久回数は、いずれも比較例2の耐久回数より多くなった。
(3. Corrosion fatigue test)
The corrosion fatigue test was conducted on Example 2 of the present invention and Comparative Example 2. It is assumed that the coil spring of Example 2 of the present invention and the coil spring of Comparative Example 2 used in this corrosion fatigue test are pre-coated. This corrosion fatigue test was performed by the following method. First, the coil spring is dropped on basalt JIS No. 7 crushed stone and rotated by 90 ° four times to scratch the coil spring coating (chipping). Next, 60 cycles of corrosion treatment with {salt spray (5% NaCl, 35 ° C.) 6 h + dry (60 ° C., RH 20%) 6 h + wet (50 ° C., RH 95%) 12 h} for one cycle are performed on the coil spring. . Shake 3000 times every 5 cycles of corrosion treatment. After the end of 60 cycles, the coil spring was further vibrated, and the durability was measured. The method for exciting the coil spring is the same as in the above durability test. The stress applied to the coil spring was 735 ± 550 MPa as the main stress. Also in this corrosion fatigue test, two coil springs of Invention Example 2 and Comparative Example 2 were prepared, and the same test was performed for each. The test results are shown in FIG. The numerical values in the figure indicate the number of endurance (10,000 times), respectively. As shown in FIG. 6, the durability of the coil spring of Example 2 of the present invention was higher than that of Comparative Example 2.

上記試験結果が示すように、温間ショットピーニング後にホットセッチングを行って製造した本発明例2のコイルばねは、ホットセッチング後に温間ショットピーニングを行って製造した比較例2のコイルばねよりも高い耐腐食疲労性を有した。   As the above test results show, the coil spring of Example 2 of the present invention manufactured by hot setting after warm shot peening is higher than the coil spring of Comparative Example 2 manufactured by performing warm shot peening after hot setting. Has corrosion fatigue resistance.

(第2実施例)
本実施形態の製造方法で製造したコイルばねに対して、残留応力を測定した例について説明する。本試験例では、温間ショットピーニング後にホットセッチングを行って製造した本発明例3のコイルばねと、ホットセッチング後に温間ショットピーニングを行って製造した比較例3のコイルばねのそれぞれについて、当該コイルばねのコイル外側面の一箇所を測定点として定め、その測定点に対するX線照射角度を45°ずつ変えながら、残留応力を測定した。具体的には、図14、15に示すように、コイルばねの素線の一部を切り出して、そのばね素線(サンプル)に対して斜め上方からX線を照射し、コイルばねから回折されるX線を測定することで、コイルばねに付与されている圧縮残留応力を測定した(いわゆる、X線応力測定法により圧縮残留応力を測定した)。また、図15に示すように、X線照射方向とコイルばねの素線の軸線方向とが一致する方向を測定角0°とし、その0°に対してコイルばねの素線を反時計回りに回転させる方向を正の方向とした。また、測定点の位置は変えずに、素線表面から径方向中心に向かう方向への距離を変えながら、同様の測定を繰り返し行った。なお、0°に対してコイルばねの素線を反時計回りに回転させる方向が正の方向となるのは、上記のコイルばねが右巻きの場合である。反対に、上記のコイルばねが左巻きの場合、0°に対してコイルばねの素線を時計回りに回転させる方向が正の方向となる。以下では、素線表面から径方向中心に向かう方向への距離のことを簡単に「表面からの距離」又は「深さ」と呼ぶ場合がある。また、測定点に対するX線照射角度のことを簡単に「測定角」と呼ぶ場合がある。なお、測定対象となる本発明例3、比較例3は、比較結果を明確に把握するため、ともに冷間ショットピーニング及び冷間セッチングを省略している。本発明例3と比較例3のその他の製造条件は、上記の本発明例2と同様とした。
(Second embodiment)
The example which measured the residual stress with respect to the coil spring manufactured with the manufacturing method of this embodiment is demonstrated. In this test example, for each of the coil spring of Invention Example 3 manufactured by performing hot setting after warm shot peening and the coil spring of Comparative Example 3 manufactured by performing warm shot peening after hot setting, the coil One location on the outer surface of the coil of the spring was determined as a measurement point, and the residual stress was measured while changing the X-ray irradiation angle with respect to the measurement point by 45 °. Specifically, as shown in FIGS. 14 and 15, a part of the wire of the coil spring is cut out and X-rays are irradiated obliquely from above to the spring wire (sample) and diffracted from the coil spring. By measuring X-rays, the compressive residual stress applied to the coil spring was measured (the compressive residual stress was measured by the so-called X-ray stress measurement method). Further, as shown in FIG. 15, the direction in which the X-ray irradiation direction and the axial direction of the coil spring wire coincide with each other is defined as a measurement angle of 0 °, and the coil spring wire is rotated counterclockwise with respect to 0 °. The direction of rotation was the positive direction. Further, the same measurement was repeatedly performed while changing the distance from the surface of the strand toward the radial center without changing the position of the measurement point. Note that the direction in which the wire of the coil spring is rotated counterclockwise with respect to 0 ° is the positive direction when the coil spring is clockwise. On the other hand, when the above-described coil spring is left-handed, the direction in which the wire of the coil spring is rotated clockwise with respect to 0 ° is the positive direction. Hereinafter, the distance from the surface of the wire toward the center in the radial direction may be simply referred to as “distance from the surface” or “depth”. In addition, the X-ray irradiation angle with respect to the measurement point may be simply referred to as “measurement angle”. In addition, in the present invention example 3 and comparative example 3 which are measurement objects, cold shot peening and cold setting are both omitted in order to clearly grasp the comparison result. The other production conditions of Invention Example 3 and Comparative Example 3 were the same as those of Invention Example 2 described above.

図7は、コイルばねの表面からの距離と圧縮残留応力の関係を示すグラフである。横軸は表面からの距離(mm)、縦軸は圧縮残留応力(MPa)をそれぞれ示す。縦軸の圧縮残留応力は、表面からの距離が同一で、測定点に対する異なる8方向からのX線照射角度毎の測定結果の平均値を示している。図7に示すように、本発明例3の圧縮残留応力は、表面からの距離が浅い領域から深い領域まで全ての領域で、比較例3の圧縮残留応力より高くなった。   FIG. 7 is a graph showing the relationship between the distance from the surface of the coil spring and the compressive residual stress. The horizontal axis represents the distance (mm) from the surface, and the vertical axis represents the compressive residual stress (MPa). The compressive residual stress on the vertical axis indicates the average value of the measurement results for each X-ray irradiation angle from the eight different directions with respect to the measurement point at the same distance from the surface. As shown in FIG. 7, the compressive residual stress of Example 3 of the present invention was higher than the compressive residual stress of Comparative Example 3 in all regions from a shallow region to a deep region from the surface.

図8〜図11は、表面からの距離(深さ)に応じた、当該測定点に対するX線照射角度毎の圧縮残留応力の分布を示す。図8はコイルばねの表面、図9は深さ0.1mm、図10は深さ0.2mm、図11は深さ0.3mmにおいて定めた各測定点における、各測定角の圧縮残留応力をそれぞれ示す。図8〜図11において、中心から45°毎に放射状に表された8本の軸は、測定角が45°,90°,・・315°となる各場合における圧縮残留応力(MPa)をそれぞれ示す。図8に示すように、コイルばね表面において、本発明例3は測定角135°,315°の対角線方向に高い圧縮残留応力が表れている。比較例3と比べるとその差は顕著である。この135°,315°の対角線方向は、本発明例3と比較例3のコイルばねにかかる引張応力の方向と同じである。このため、135°,315°の対角線方向に高い圧縮残留応力を有していると、この圧縮残留応力により引張応力が効果的に打ち消される。その結果、135°,315°方向に高い残留応力が表れている本発明例3のコイルばねは、比較例3のコイルばねに比べて高い耐久性、耐へたり性を有する。   8 to 11 show the distribution of compressive residual stress for each X-ray irradiation angle with respect to the measurement point, according to the distance (depth) from the surface. FIG. 8 shows the surface of the coil spring, FIG. 9 shows the compression residual stress at each measurement angle at each measurement point determined at a depth of 0.1 mm, FIG. 10 shows a depth of 0.2 mm, and FIG. 11 shows a depth of 0.3 mm. Each is shown. 8 to 11, the eight axes radially expressed at intervals of 45 ° from the center indicate the compressive residual stress (MPa) in each case where the measurement angles are 45 °, 90 °,. Show. As shown in FIG. 8, on the surface of the coil spring, Example 3 of the present invention shows high compressive residual stress in the diagonal direction with the measurement angles of 135 ° and 315 °. Compared with Comparative Example 3, the difference is remarkable. The diagonal directions of 135 ° and 315 ° are the same as the directions of the tensile stress applied to the coil springs of Example 3 and Comparative Example 3. For this reason, if there is a high compressive residual stress in the diagonal direction of 135 ° and 315 °, the tensile stress is effectively canceled out by this compressive residual stress. As a result, the coil spring of Example 3 of the present invention in which high residual stress appears in the 135 ° and 315 ° directions has higher durability and sag resistance than the coil spring of Comparative Example 3.

本発明例3のコイルばねに、耐久性、耐へたり性に好適な影響を与える135°,315°方向の圧縮残留応力が効果的に付与されていることは、135°,315°方向の圧縮残留応力と、その135°,315°方向と直交する45°,225°方向の比を求めることで定量的に評価することができる。このため、135°,315°方向の圧縮残留応力と45°,225°方向の圧縮残留応力の比を、(135°の圧縮残留応力+315°の圧縮残留応力)/(45°の圧縮残留応力+225°の圧縮残留応力)により求めた。得られた計算結果を図12に示す。図12に示すように、本発明例3の計算値は全ての深さで1よりも大きくなった。このことからも、本発明例3のコイルばねには135°,315°方向の圧縮残留応力が高く備えられていることが明らかとなる。   The 135 ° and 315 ° direction compressive residual stresses that have a favorable influence on durability and sag resistance are effectively applied to the coil spring of Example 3 of the present invention. It is possible to quantitatively evaluate the compression residual stress by obtaining the ratio of the 45 ° and 225 ° directions orthogonal to the 135 ° and 315 ° directions. Therefore, the ratio of the compressive residual stress in the 135 ° and 315 ° directions to the compressive residual stress in the 45 ° and 225 ° directions is expressed as (135 ° compressive residual stress + 315 ° compressive residual stress) / (45 ° compressive residual stress). + 225 ° compressive residual stress). The obtained calculation results are shown in FIG. As shown in FIG. 12, the calculated value of Example 3 of the present invention was greater than 1 at all depths. This also reveals that the coil spring of Example 3 of the present invention has a high compressive residual stress in the 135 ° and 315 ° directions.

上記の各測定結果が示すように、温間ショットピーニング後にホットセッチングを行って製造した本発明例3のコイルばねは、ホットセッチング後に温間ショットピーニングを行って製造した比較例3のコイルばねに比べて高い耐へたり性、耐久性を有する。   As shown in the above measurement results, the coil spring of Example 3 of the present invention manufactured by performing hot setting after warm shot peening is the same as the coil spring of Comparative Example 3 manufactured by performing warm shot peening after hot setting. Compared to high sag resistance and durability.

(第3実施例)
本実施形態の製造方法で製造したコイルばねに対して、残留応力を測定した他の例について説明する。本試験例では、温間ショットピーニング後にホットセッチングを行って製造した本発明例4、5のコイルばねと、ホットセッチング後に温間ショットピーニングを行って製造した比較例4、5のコイルばねのそれぞれについて、測定角45°、135°、225°、315°のそれぞれのときの圧縮残留応力を測定した。また、測定点の位置は変えずに、素線表面からの深さを変えながら、同様の測定を繰り返し行った。なお、測定対象となる本発明例4、5、及び比較例4、5は、比較結果を明確に把握するため、ともに冷間ショットピーニング及び冷間セッチングを省略している。本発明例4、5及び比較例4、5のその他の製造条件は、上記の本発明例2と同様とした。また、圧縮残留応力の測定方法は、上記の第2実施例と同様とした。
(Third embodiment)
Another example in which the residual stress is measured for the coil spring manufactured by the manufacturing method of this embodiment will be described. In this test example, the coil springs of Examples 4 and 5 of the present invention manufactured by performing hot setting after warm shot peening, and the coil springs of Comparative Examples 4 and 5 manufactured by performing warm shot peening after hot setting, respectively. The compression residual stress at each of the measurement angles of 45 °, 135 °, 225 °, and 315 ° was measured. Moreover, the same measurement was repeatedly performed, changing the depth from the strand surface, without changing the position of a measurement point. In addition, in the present invention examples 4 and 5 and comparative examples 4 and 5 which are measurement objects, cold shot peening and cold setting are both omitted in order to clearly grasp the comparison results. The other production conditions of Invention Examples 4 and 5 and Comparative Examples 4 and 5 were the same as those of Invention Example 2 described above. The compressive residual stress was measured in the same manner as in the second embodiment.

図13は、素線表面からの深さ(表面から径方向中心に向かう方向への距離)(mm)毎の、各測定角における圧縮残留応力(MPa)と、(135°の圧縮残留応力+315°の圧縮残留応力)/(45°の圧縮残留応力+225°の圧縮残留応力)により求められる圧縮残留応力の比とを示す表である。なお、図13において、測定方向「135°,315°」に対応する各圧縮残留応力の値(例えば、本発明例4の表面の圧縮残留応力の値「607,648」)は、前者(「607」)が135°方向の圧縮残留応力の値、後者(「648」)が315°方向の圧縮残留応力の値、をそれぞれ示す。同様に、「45°,225°」に対応する各圧縮残留応力の値も、前者が45°方向の圧縮残留応力の値、後者が225°方向の圧縮残留応力の値、をそれぞれ示す。   FIG. 13 shows the compressive residual stress (MPa) at each measurement angle and (135 ° compressive residual stress + 315) for each depth (distance from the surface toward the radial center) (mm) from the surface of the strand. It is a table | surface which shows the ratio of the compressive residual stress calculated | required by (compressive residual stress of (degree)) / (compressive residual stress of 45 degree + compressive residual stress of 225 degree). In FIG. 13, the values of the compressive residual stresses corresponding to the measurement directions “135 °, 315 °” (for example, the values of the compressive residual stress “607,648” of the surface of Example 4 of the present invention) are the former (“ 607 ") indicates the value of compressive residual stress in the 135 ° direction, and the latter (" 648 ") indicates the value of compressive residual stress in the 315 ° direction. Similarly, the value of each compressive residual stress corresponding to “45 °, 225 °” also indicates the value of the compressive residual stress in the 45 ° direction for the former, and the value of the compressive residual stress in the 225 ° direction for the latter.

上述したとおり、コイルばねが135°,315°の対角線方向に高い圧縮残留応力を有していると、この圧縮残留応力により引張応力が効果的に打ち消され、コイルばねの耐久性、耐へたり性が高くなる。さらに、コイルばねの素線表面から線径中心方向への距離が0.2mmの位置において、135°,315°の対角線方向に高い圧縮残留応力を有していれば、仮にコイルばねの素線表面が腐食した場合であっても、圧縮残留応力が有効に残留するため、高い圧縮残留応力が素線表面にのみ備わっている場合に比べてコイルばねの耐久性、耐へたり性が高くなる。   As described above, when the coil spring has a high compressive residual stress in the diagonal direction of 135 ° and 315 °, the tensile stress is effectively canceled by this compressive residual stress, and the durability and sag resistance of the coil spring are reduced. Increases nature. Further, if the coil spring has a high compressive residual stress in the diagonal direction of 135 ° and 315 ° at a position where the distance from the surface of the wire to the center of the wire diameter is 0.2 mm, the wire of the coil spring Even if the surface is corroded, the compressive residual stress remains effectively, so the durability and sag resistance of the coil spring are higher than when only a high compressive residual stress is provided on the wire surface. .

本実施例では、図13に示すように、本発明例4、5の圧縮残留応力の比は、いずれも、深さ0.2mmにおける値が、表面における値よりも大きい。しかも、深さ0.2mmにおける比の値は、いずれも1以上である。即ち、本発明例4、5のコイルばねには、引張応力に対して有効な135°,315°の対角線方向により高い圧縮残留応力が備わっている。これに対し、比較例4、5の圧縮残留応力の比は、いずれの深さにおいても1以下である。即ち、比較例4、5のコイルばねには、引張応力に対して有効な135°,315°の対角線方向に圧縮残留応力が有効に備わっていない。   In the present example, as shown in FIG. 13, the ratio of the compressive residual stress in Examples 4 and 5 of the present invention is greater at the depth of 0.2 mm than at the surface. Moreover, the ratio values at a depth of 0.2 mm are all 1 or more. That is, the coil springs of Examples 4 and 5 of the present invention have higher compressive residual stresses in the diagonal directions of 135 ° and 315 ° effective for tensile stress. On the other hand, the ratio of the compressive residual stress of Comparative Examples 4 and 5 is 1 or less at any depth. That is, the coil springs of Comparative Examples 4 and 5 are not effectively provided with compressive residual stress in the diagonal directions of 135 ° and 315 ° effective against tensile stress.

さらに、図13に示すように、本発明例4、5のコイルばねは、深さ0.2mmにおける135°の方向の圧縮残留応力の値及び315°の方向の圧縮残留応力の値がいずれも950MPaより大きい。一方、比較例4、5では、深さ0.2mmにおける135°の方向の圧縮残留応力の値及び315°の方向の圧縮残留応力の値がいずれも700〜750MPa程度である。即ち、本発明例4、5のコイルばねは、比較例4、5に比べて、引張応力に対して有効な方向(135°、315°)に、高い圧縮残留応力が備わっている。   Furthermore, as shown in FIG. 13, the coil springs of Examples 4 and 5 of the present invention have both values of compressive residual stress in the direction of 135 ° and compressive residual stress in the direction of 315 ° at a depth of 0.2 mm. Greater than 950 MPa. On the other hand, in Comparative Examples 4 and 5, the value of the compressive residual stress in the 135 ° direction and the value of the compressive residual stress in the 315 ° direction at a depth of 0.2 mm are both about 700 to 750 MPa. That is, the coil springs of Examples 4 and 5 of the present invention have higher compressive residual stress in the effective direction (135 °, 315 °) with respect to the tensile stress than those of Comparative Examples 4 and 5.

以上より、本発明例4、5のコイルばねには、比較例4、5に比べると、深さ0.2mmにおいて、135°,315°方向の圧縮残留応力が高く備えられていることが明らかとなる。上述の通り、深さ0.2mmにおいて、135°,315°方向の圧縮残留応力が高く備えられている本発明例4、5のコイルばねは、比較例4、5のコイルばねに比べて高い耐久性、耐へたり性を有する。   From the above, it is clear that the coil springs of Invention Examples 4 and 5 have higher compressive residual stresses in the 135 ° and 315 ° directions at a depth of 0.2 mm compared to Comparative Examples 4 and 5. It becomes. As described above, the coil springs of Examples 4 and 5 of the present invention having high compressive residual stress in the 135 ° and 315 ° directions at a depth of 0.2 mm are higher than the coil springs of Comparative Examples 4 and 5. Durability and sag resistance.

上記の各測定結果が示すように、温間ショットピーニング後にホットセッチングを行って製造した本発明例4、5のコイルばねは、ホットセッチング後に温間ショットピーニングを行って製造した比較例4、5のコイルばねに比べて高い耐へたり性、耐久性を有する。   As shown in the above measurement results, the coil springs of Examples 4 and 5 of the present invention manufactured by performing hot setting after warm shot peening are Comparative Examples 4 and 5 manufactured by performing warm shot peening after hot setting. Compared to coil springs, it has higher sag resistance and durability.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時の請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は、複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
In addition, the technical elements described in the present specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.

Claims (5)

素材をコイル状に成形し、成形後のコイルに対して熱処理を行い、熱処理後のコイルに対して温間ショットピーニングを行い、温間ショットピーニング後のコイルに対してホットセッチングを行うことを特徴とする自動車懸架用コイルばねの製造方法。   The material is formed into a coil shape, heat-treated on the coil after molding, warm shot peening is performed on the coil after heat treatment, and hot setting is performed on the coil after warm shot peening A manufacturing method of a coil spring for automobile suspension. 質量比にしてC:0.35〜0.55%、Si:1.60〜3.00%、Mn:0.20〜1.50%、Cr:0.10〜1.50%を含有するとともに、Ni:0.40〜3.00%、Mo:0.05〜0.50%、V:0.05〜0.50%のうちいずれか1種類以上を含有し、残部がFe及び不可避不純物からなる鋼を素材とすることを特徴とする請求項1に記載の自動車懸架用コイルばねの製造方法。   C: 0.35 to 0.55%, Si: 1.60 to 3.00%, Mn: 0.20 to 1.50%, Cr: 0.10 to 1.50% in terms of mass ratio Along with Ni: 0.40 to 3.00%, Mo: 0.05 to 0.50%, V: 0.05 to 0.50%, with the balance being Fe and inevitable The manufacturing method of the coil spring for automobile suspension according to claim 1, wherein steel made of impurities is used as a raw material. 自動車懸架用コイルばねであって、
ばね素線の少なくとも一部に圧縮残留応力が付与されており、
その圧縮残留応力が付与された位置における、135°と315°方向の圧縮残留応力の和と45°と225°方向の圧縮残留応力の和との比が、(135°方向の圧縮残留応力+315°方向の圧縮残留応力)/(45°方向の圧縮残留応力+225°方向の圧縮残留応力)によって求められる場合において、
素線表面から線径中心に向かう方向への距離が0.2mmの位置における、135°と315°方向の圧縮残留応力の和と45°と225°方向の圧縮残留応力の和との比が、
素線表面における、135°と315°方向の圧縮残留応力の和と45°と225°方向の圧縮残留応力の和との比よりも大きいことを特徴とする自動車懸架用コイルばね。
A coil spring for automobile suspension,
Compressive residual stress is applied to at least a part of the spring wire,
The ratio of the sum of the compressive residual stresses in the 135 ° and 315 ° directions and the sum of the compressive residual stresses in the 45 ° and 225 ° directions at the position where the compressive residual stress is applied is expressed as (compressive residual stress in the 135 ° direction + 315 Compressive residual stress in the direction of °) / (Compressive residual stress in the direction of 45 ° + Compressive residual stress in the direction of 225 °)
The ratio of the sum of compressive residual stresses in the 135 ° and 315 ° directions to the sum of compressive residual stresses in the 45 ° and 225 ° directions at a position where the distance from the surface of the strand toward the center of the wire diameter is 0.2 mm is ,
A coil spring for automobile suspension characterized in that it is larger than the ratio of the sum of compressive residual stresses in the 135 ° and 315 ° directions and the sum of compressive residual stresses in the 45 ° and 225 ° directions on the surface of the strand.
素線表面から線径中心に向かう方向への距離が0.2mmの位置における、135°方向の圧縮残留応力と、315°方向の圧縮残留応力とが、800〜1200MPaであることを特徴とする請求項3に記載の自動車懸架用コイルばね。   The compressive residual stress in the 135 ° direction and the compressive residual stress in the 315 ° direction at a position where the distance from the surface of the strand toward the center of the wire diameter is 0.2 mm is 800 to 1200 MPa. The automobile suspension coil spring according to claim 3. ばね硬さがHRC50〜56であることを特徴とする請求項3又は4に記載の自動車懸架用コイルばね。   5. The automobile suspension coil spring according to claim 3, wherein the spring hardness is HRC 50 to 56. 6.
JP2010009072A 2009-09-29 2010-01-19 Coil spring for automobile suspension Active JP5550359B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010009072A JP5550359B2 (en) 2010-01-19 2010-01-19 Coil spring for automobile suspension
US12/892,445 US8349095B2 (en) 2009-09-29 2010-09-28 Spring steel and spring having superior corrosion fatigue strength
US12/892,444 US8328169B2 (en) 2009-09-29 2010-09-28 Spring steel and spring having superior corrosion fatigue strength
DE201010046776 DE102010046776A1 (en) 2010-01-19 2010-09-28 Producing coil spring for motor vehicle chassis, comprises molding iron-containing metal material to screw spiral mold, heat-treating the material, hot-shot -peening heat-treated material, and then hot-hardening hot-shot-peened material
US12/892,439 US8789817B2 (en) 2009-09-29 2010-09-28 Spring steel and spring having superior corrosion fatigue strength
US12/892,434 US8936236B2 (en) 2009-09-29 2010-09-28 Coil spring for automobile suspension and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010009072A JP5550359B2 (en) 2010-01-19 2010-01-19 Coil spring for automobile suspension

Publications (2)

Publication Number Publication Date
JP2011149036A true JP2011149036A (en) 2011-08-04
JP5550359B2 JP5550359B2 (en) 2014-07-16

Family

ID=44314045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010009072A Active JP5550359B2 (en) 2009-09-29 2010-01-19 Coil spring for automobile suspension

Country Status (2)

Country Link
JP (1) JP5550359B2 (en)
DE (1) DE102010046776A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196308A1 (en) * 2013-06-04 2014-12-11 中央発條株式会社 Steel for springs, spring, and spring production method
JPWO2013099821A1 (en) * 2011-12-26 2015-05-07 中央発條株式会社 Spring manufacturing method and spring
KR101930979B1 (en) * 2011-08-11 2018-12-19 니혼 하츠쵸 가부시키가이샤 Compression coil spring and method for producing same
JP2022510381A (en) * 2019-05-21 2022-01-26 サムウォンスティール カンパニー,リミテッド A steel material for springs to omit the tempering process and a spring manufacturing method using this steel material
CN115055531A (en) * 2022-05-31 2022-09-16 鞍钢股份有限公司 Production method of automobile suspension spring with defect-free surface

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5250609B2 (en) * 2010-11-11 2013-07-31 日本発條株式会社 Steel for high strength spring, method for producing high strength spring, and high strength spring

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5578785A (en) * 1978-12-06 1980-06-13 Katsumi Sakamoto Presssin method of small diameter pipe
JPH01177318A (en) * 1987-12-30 1989-07-13 Nippon Steel Corp Manufacture of coiled spring excellent in fatigue strength
JPH01191745A (en) * 1988-01-26 1989-08-01 Nippon Steel Corp Manufacture of coiled spring having high fatigue strength by high frequency heating
JPH01205037A (en) * 1988-02-10 1989-08-17 Nippon Steel Corp Manufacture of coiled spring having high fatigue strength by high-frequency surface heating
JPH02217421A (en) * 1989-02-17 1990-08-30 Nippon Steel Corp Production of spring with high fatigue strength and steel wire for use therein
JPH0578785A (en) * 1991-06-19 1993-03-30 Mitsubishi Steel Mfg Co Ltd High strength spring steel
JPH11241143A (en) * 1997-11-17 1999-09-07 Chuo Spring Co Ltd Spring improved in corrosion fatigue strength
JP2000326036A (en) * 1999-05-17 2000-11-28 Togo Seisakusho Corp Manufacture of cold formed coil spring
JP2001082518A (en) * 1999-09-09 2001-03-27 Togo Seisakusho Corp Coil spring and its manufacturing method
JP2003105497A (en) * 2001-09-28 2003-04-09 Chuo Spring Co Ltd High strength spring
JP2003105498A (en) * 2001-09-28 2003-04-09 Togo Seisakusho Corp High strength spring, and production method therefor
WO2004085685A1 (en) * 2003-03-26 2004-10-07 Chuo Hatsujo Kabushiki Kaisha Process for producing high-strength spring
WO2006022009A1 (en) * 2004-08-26 2006-03-02 Daido Tokushuko Kabushiki Kaisha Steel for high strength spring, and high strength spring and method for manufacture thereof
JP2008133539A (en) * 2006-10-31 2008-06-12 Kobe Steel Ltd Hard drawn spring steel wire superior in fatigue characteristic and wire drawing property
JP2011074430A (en) * 2009-09-29 2011-04-14 Chuo Spring Co Ltd Spring steel and spring having superior corrosion fatigue strength
JP2011074431A (en) * 2009-09-29 2011-04-14 Chuo Spring Co Ltd Spring steel and spring having superior corrosion fatigue strength

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5578785A (en) * 1978-12-06 1980-06-13 Katsumi Sakamoto Presssin method of small diameter pipe
JPH01177318A (en) * 1987-12-30 1989-07-13 Nippon Steel Corp Manufacture of coiled spring excellent in fatigue strength
JPH01191745A (en) * 1988-01-26 1989-08-01 Nippon Steel Corp Manufacture of coiled spring having high fatigue strength by high frequency heating
JPH01205037A (en) * 1988-02-10 1989-08-17 Nippon Steel Corp Manufacture of coiled spring having high fatigue strength by high-frequency surface heating
JPH02217421A (en) * 1989-02-17 1990-08-30 Nippon Steel Corp Production of spring with high fatigue strength and steel wire for use therein
JPH0578785A (en) * 1991-06-19 1993-03-30 Mitsubishi Steel Mfg Co Ltd High strength spring steel
JPH11241143A (en) * 1997-11-17 1999-09-07 Chuo Spring Co Ltd Spring improved in corrosion fatigue strength
JP2000326036A (en) * 1999-05-17 2000-11-28 Togo Seisakusho Corp Manufacture of cold formed coil spring
JP2001082518A (en) * 1999-09-09 2001-03-27 Togo Seisakusho Corp Coil spring and its manufacturing method
JP2003105497A (en) * 2001-09-28 2003-04-09 Chuo Spring Co Ltd High strength spring
JP2003105498A (en) * 2001-09-28 2003-04-09 Togo Seisakusho Corp High strength spring, and production method therefor
WO2004085685A1 (en) * 2003-03-26 2004-10-07 Chuo Hatsujo Kabushiki Kaisha Process for producing high-strength spring
WO2006022009A1 (en) * 2004-08-26 2006-03-02 Daido Tokushuko Kabushiki Kaisha Steel for high strength spring, and high strength spring and method for manufacture thereof
JP2008133539A (en) * 2006-10-31 2008-06-12 Kobe Steel Ltd Hard drawn spring steel wire superior in fatigue characteristic and wire drawing property
JP2011074430A (en) * 2009-09-29 2011-04-14 Chuo Spring Co Ltd Spring steel and spring having superior corrosion fatigue strength
JP2011074431A (en) * 2009-09-29 2011-04-14 Chuo Spring Co Ltd Spring steel and spring having superior corrosion fatigue strength

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101930979B1 (en) * 2011-08-11 2018-12-19 니혼 하츠쵸 가부시키가이샤 Compression coil spring and method for producing same
US10359090B2 (en) 2011-08-11 2019-07-23 Nhk Spring Co., Ltd. Compression coil spring and method for producing same
JPWO2013099821A1 (en) * 2011-12-26 2015-05-07 中央発條株式会社 Spring manufacturing method and spring
WO2014196308A1 (en) * 2013-06-04 2014-12-11 中央発條株式会社 Steel for springs, spring, and spring production method
JPWO2014196308A1 (en) * 2013-06-04 2017-02-23 中央発條株式会社 Spring steel, spring and spring manufacturing method
JP2022510381A (en) * 2019-05-21 2022-01-26 サムウォンスティール カンパニー,リミテッド A steel material for springs to omit the tempering process and a spring manufacturing method using this steel material
CN115055531A (en) * 2022-05-31 2022-09-16 鞍钢股份有限公司 Production method of automobile suspension spring with defect-free surface
CN115055531B (en) * 2022-05-31 2024-04-16 鞍钢股份有限公司 Production method of surface non-defective automobile suspension spring

Also Published As

Publication number Publication date
DE102010046776A1 (en) 2011-07-21
JP5550359B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5357994B2 (en) Machine structural steel for cold working and method for producing the same
JP5624503B2 (en) Spring and manufacturing method thereof
JP5550359B2 (en) Coil spring for automobile suspension
EP2444203B1 (en) Vehicle suspension coil spring and method for manufacturing same
US8328169B2 (en) Spring steel and spring having superior corrosion fatigue strength
EP2444200B1 (en) Method for manufacturing coil spring
JP6528860B2 (en) Steel wire for non-heat treatment machine parts and non-heat treatment machine parts
JP6284279B2 (en) Strength member and manufacturing method thereof
JP5653022B2 (en) Spring steel and spring with excellent corrosion fatigue strength
JP5711539B2 (en) Spring with excellent corrosion fatigue strength
CN108368583B (en) Steel wire for non-heat-treated machine part and non-heat-treated machine part
JP5511067B2 (en) Coil spring manufacturing method
JP2010513713A (en) Ball pins and ball bushes made of rust-proof steel
JP5653020B2 (en) Spring steel and springs with excellent corrosion fatigue strength
WO2020230880A1 (en) Steel wire and hot-rolled wire material
JP2004100038A (en) Low alloy steel material having spheroidized structure in as hot rolled state, and its manufacturing method
JP5653021B2 (en) Spring steel and spring with excellent corrosion fatigue strength
WO2014196308A1 (en) Steel for springs, spring, and spring production method
JP7355994B2 (en) High carbon steel plate and its manufacturing method
JPH08109437A (en) Steel stock for cold forging excellent in workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140520

R150 Certificate of patent or registration of utility model

Ref document number: 5550359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150