JPH02217421A - Production of spring with high fatigue strength and steel wire for use therein - Google Patents

Production of spring with high fatigue strength and steel wire for use therein

Info

Publication number
JPH02217421A
JPH02217421A JP3633889A JP3633889A JPH02217421A JP H02217421 A JPH02217421 A JP H02217421A JP 3633889 A JP3633889 A JP 3633889A JP 3633889 A JP3633889 A JP 3633889A JP H02217421 A JPH02217421 A JP H02217421A
Authority
JP
Japan
Prior art keywords
strength
wire
spring
fatigue strength
steel wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3633889A
Other languages
Japanese (ja)
Other versions
JP2790303B2 (en
Inventor
Toshizo Tarui
敏三 樽井
Takayuki Asano
浅野 厳之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1036338A priority Critical patent/JP2790303B2/en
Publication of JPH02217421A publication Critical patent/JPH02217421A/en
Application granted granted Critical
Publication of JP2790303B2 publication Critical patent/JP2790303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve the fatigue strength of a coil spring by subjecting a steel in which respective contents of C, Si, Mn, and Cr are specified to wiredrawing and to torsional plastic working under respectively specified conditions and then to cold spring forming. CONSTITUTION:A steel wire rod which has a composition consisting of, by weight, 0.075-1.1% C, 1.0-2.0% Si, 0.2-1.0% Mn, 0.1-1.0% Cr, and the balance Fe with inevitable impurities and containing, if necessary, one or more kinds among 0.1-0.5% Mo, 0.05-0.5% V, 0.002-0.05% Ti, 0.005-0.2% Nb, and 0.01-0.1% Al is subjected to patenting treatment and then to wiredrawing at >=75% wiredrawing reduction in area. Successively, after subjected, if necessary, to annealing treatment at 400-600 deg.C for 5-300sec, the above wire is subjected to torsional plastic working at >=3 deg. tortion angle, followed by cold spring forming. By this method, strength in a Z direction can be improved, and residual stress generated at the time of coil spring forming can be reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、強度が200kgf/mw”以上で且つ疲労
強度の高い冷間成形コイルばねの製造方法及びそれに用
いるばね用鋼線に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a cold-formed coil spring with a strength of 200 kgf/mw" or more and high fatigue strength, and a steel wire for the spring used therein. .

[従来の技術] 車両の軽量化のニーズあるいはエンジンの高出力化に伴
い懸架ばね、弁ばね等において高設計応力が可能なコイ
ルばね用銅が求められている。設計応力は「最新ばね技
術」(日本ばね工業会、118頁)に記載されているよ
うに一般に疲労強度とへたり特性に依存するが、市場で
の疲労による折損が少ないことからへたり特性で設計応
力を決めているのが実状であった。しかしホットセッチ
ング、ストレスピーニング等の実用化によりへたり特性
は格段に改善されてきた。このため高設計応力化が可能
な疲労強度に優れたばね用銅が現在求められている。
[Prior Art] With the need to reduce the weight of vehicles or increase the output of engines, there is a need for copper for coil springs capable of high design stress in suspension springs, valve springs, etc. Design stress generally depends on fatigue strength and sag characteristics, as described in "Latest Spring Technology" (Japan Spring Industry Association, p. 118), but since there are few breakages due to fatigue in the market, design stress depends on sag characteristics. The actual situation was that the design stress was determined. However, with the practical application of hot setting, stress peening, etc., the settling characteristics have been significantly improved. For this reason, there is currently a need for copper for springs with excellent fatigue strength that allows for high design stress.

従来、パテンティング処理後常温で伸線加工を行って仕
上げられる冷間成形ばね用鋼線としては、JIS 35
22等に記載されるピアノ線が長い間使用されてきた。
Conventionally, cold-formed spring steel wires that are finished by drawing at room temperature after patenting are JIS 35.
Piano wire described in No. 22 etc. has been used for a long time.

このような冷間成形コイルばねの疲労強度は、基本的に
はばね材の降伏強度と冷間成形によって生じるばね表面
の引張り残留応力で決り、降伏強度が高いほど、引張り
残留応力が小さいほど疲労強度は増加する。従って、コ
イルばねの高疲労強度化を達成するためには、できるだ
け降伏強度を高め且つ冷間ばね成形時に生じる残留応力
を低減させる必要があるが、ここで問題点が2つ生じる
。1つは伸線材の強度が高いほどばね成形後の引張り残
留応力が増加するため、強度を高くしてもコイルばねの
疲労強度そのものはほとんど高くならないことである。
The fatigue strength of such cold-formed coil springs is basically determined by the yield strength of the spring material and the tensile residual stress on the spring surface caused by cold forming.The higher the yield strength, and the lower the tensile residual stress, the higher the fatigue strength. Intensity increases. Therefore, in order to achieve high fatigue strength of a coil spring, it is necessary to increase the yield strength as much as possible and reduce the residual stress generated during cold spring forming, but two problems arise here. One is that the tensile residual stress after spring forming increases as the strength of the drawn wire material increases, so even if the strength is increased, the fatigue strength of the coil spring itself will hardly increase.

もう1つは、冷間伸線加工材を用いたコイルばね特有の
現象であるが、残留応力が一定としても疲労強度に及ぼ
す降伏強度の効果が少ないことである。この原因は(ば
ね技術研究会昭和63年度春期講演会前刷集、ばね技術
研究会、7頁)によれば、伸線方向と直角方向(以後Z
方向と呼ぶ)の強度は伸線方向と平行方向(以後り方向
と呼ぶ)の強度に比べ低く、さらに伸線加工によるZ方
向の強度増加はL方向に比べて少ないためと考えられて
いる。
The other problem is that the effect of yield strength on fatigue strength is small even if the residual stress is constant, which is a phenomenon peculiar to coil springs using cold wire-drawn materials. The reason for this is according to (Spring Technology Research Group 1986 Spring Lecture Preprint Collection, Spring Technology Research Group, p. 7), the direction perpendicular to the wire drawing direction (hereinafter Z
This is thought to be because the strength in the direction parallel to the wire drawing direction (hereinafter referred to as the backward direction) is lower than the strength in the direction parallel to the wire drawing direction (hereinafter referred to as the backward direction), and the increase in strength in the Z direction due to wire drawing is smaller than in the L direction.

このように伸線加工材を用いた冷間成形コイルばねの高
疲労強度化には1強度と引張り残留応力という相反する
特性とZ方向の強度がL方向に比べ低いということのた
めに限界があった。
In this way, there are limits to increasing the fatigue strength of cold-formed coil springs using drawn wire materials due to the contradictory characteristics of 1 strength and tensile residual stress, and the fact that the strength in the Z direction is lower than in the L direction. there were.

[発明が解決しようとする課題] 本発明は上記の如き実状に鑑みなされたものであって1
強度が200kgf/am”以上の高強度伸線加工材の
Z方向の強度を増加させるとともに冷間ばね成形時に生
じる引張り残留応力を低下させて、コイルばねの高疲労
強度化を実現する方法を提供することを目的とするもの
である。
[Problems to be solved by the invention] The present invention has been made in view of the above-mentioned circumstances, and has the following problems:
Provides a method for increasing the Z-direction strength of a high-strength wire-drawn material with a strength of 200 kgf/am" or more and reducing the tensile residual stress generated during cold spring forming, thereby increasing the fatigue strength of a coil spring. The purpose is to

[課題を解決するための手段、作用] 本発明者らは上記の問題点解決のために鋭意研究した結
果、伸線加工材の2方向の強度を増加させるとともに冷
間ばね成形時に生じる引張り残留応力を低下させるため
には、冷間ばね成形前に伸線材にねじり角度で3度以上
のねじり塑性加工を施す必要があり、また鋼材組成ある
いは伸線加工後の熱処理条件を最適に選択することによ
り強度が200kgf/am”以上の伸線加工材におい
て3度以上のねじり塑性加工が可能という全く新たな知
見を得て本発明をなしたものである。
[Means and effects for solving the problem] As a result of intensive research to solve the above-mentioned problems, the present inventors have succeeded in increasing the strength in two directions of the wire-drawn material and reducing the tensile residual that occurs during cold spring forming. In order to reduce stress, it is necessary to apply torsional plastic processing to the wire drawn material with a twist angle of 3 degrees or more before cold spring forming, and the steel material composition and heat treatment conditions after wire drawing must be optimally selected. The present invention was made based on the completely new knowledge that torsional plastic working of 3 degrees or more is possible in a drawn wire material having a strength of 200 kgf/am'' or more.

本発明は以上の知見に基づいてなされたものであって、
その要旨とするところは、重量%で。
The present invention was made based on the above findings, and
The gist is in weight percent.

C:0.75〜1.1%、  Si:1.0〜2.0%
C: 0.75-1.1%, Si: 1.0-2.0%
.

Mn : 0.2〜1.0%、   Cr:0.1〜1
.0%を含み、その他必要に応じて Mo : 0.1〜0.5%、   V  :0.05
〜0.5%。
Mn: 0.2-1.0%, Cr: 0.1-1
.. Mo: 0.1-0.5%, V: 0.05, including 0%, and others as necessary.
~0.5%.

Ti : 0.002〜0.05%、 Nb : 0.
005〜0.2%。
Ti: 0.002-0.05%, Nb: 0.
005-0.2%.

A Q : 0.01〜0.1% の1種または2種以上を含有し、残部はFe及び不可避
不純物よりなる鋼線について、パテンティング処理後7
5%以上の伸線減面率で伸線を行い、づ続きねじり角度
で3度以上のねじり塑性加工をするか、あるいは400
〜600℃で5〜300秒焼鈍処理を行いねじり塑性加
工したる後、冷間ばね成形を行うことを特徴とする高疲
労強度ばね用鋼線及び高疲労強度ばねの製造方法に関す
るものである。
A Q: Regarding steel wires containing one or more of 0.01 to 0.1%, with the remainder consisting of Fe and unavoidable impurities, after patenting treatment 7
Draw the wire at a wire drawing area reduction rate of 5% or more, and then perform torsional plastic processing at a twist angle of 3 degrees or more, or
The present invention relates to a steel wire for a high fatigue strength spring and a method for manufacturing a high fatigue strength spring, which is characterized by performing annealing at ~600°C for 5 to 300 seconds, torsional plastic working, and then cold spring forming.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

まず本発明の対象とする鋼の成分限定理由について述べ
る。
First, the reasons for limiting the composition of steel, which is the object of the present invention, will be described.

C:Cはパテンティング材強度を高めるために必須の元
素であるが、0.75%未満では最終的な伸線材強度と
して目標とする200kgf/鵬m2以上の強度が得ら
れず、一方1.1%を越えるとパテンティング処理時に
初析セメンタイトがオーステナイト粒界に析出して伸線
性及び靭性を劣化させるので0゜75〜1.1%の範囲
に限定した。
C: C is an essential element to increase the strength of the patented material, but if it is less than 0.75%, the final strength of the drawn wire material of 200 kgf/m2 or more cannot be obtained; If it exceeds 1%, pro-eutectoid cementite will precipitate at the austenite grain boundaries during the patenting process, deteriorating wire drawability and toughness, so it is limited to a range of 0.75 to 1.1%.

Si:Siはパーライト中のフェライトを4強化させる
ためと鋼の脱酸のために有効であり、さらにねじり塑性
加工性を上げるために400〜600℃に焼鈍した際の
強度低下を抑制する効果を有するが。
Si: Si is effective for reinforcing ferrite in pearlite and deoxidizing steel, and also has the effect of suppressing strength loss when annealed at 400 to 600°C to increase torsional plastic workability. Although I have it.

1.0%未満では上記の効果が期待できず、一方2.0
%を越えると上記の効果が飽和するため1.0〜2.0
%に限定した。
If it is less than 1.0%, the above effect cannot be expected; on the other hand, if it is 2.0%,
If it exceeds 1.0 to 2.0%, the above effect will be saturated.
%.

Mn:Mnは脱酸、脱硫のために必要であるばかりでな
く、鋼の焼入性を向上させパテンティング材の強度を高
めるために有効な元素であるが、0゜2%未満では上記
の効果が得られず、一方1.0%を越えると上記の効果
が飽和しさらにパテンティング処理でパーライト変態を
完了させるために保持時間が長くなりすぎて実際的でな
いため0.2〜1.0%の範囲に制限した。
Mn: Mn is not only necessary for deoxidation and desulfurization, but is also an effective element for improving the hardenability of steel and increasing the strength of patented materials, but if it is less than 0.2%, the above On the other hand, if the content exceeds 1.0%, the above effects will be saturated and the holding time will be too long to complete the pearlite transformation in the patenting process, which is impractical. % range.

Cr:Crはパーライトのセメンタイト間隔を微細化さ
せてパテンティング材の強度を増加させ。
Cr: Cr refines the cementite spacing of pearlite and increases the strength of the patenting material.

さらに伸線加工後焼鈍処理を施した時の強度低下を少な
くするとともにねじり塑性加工性を向上させるために有
効な元素であるが、0.1%未満では前記作用の効果が
得られず、一方1.0%を越えるとパテンティング処理
時間が長くなりすぎるため、0.1〜1.0%に制限し
た。
Furthermore, it is an effective element for reducing strength loss when annealing is performed after wire drawing and improving torsional plastic workability, but if it is less than 0.1%, the above effect cannot be obtained; If it exceeds 1.0%, the patenting processing time becomes too long, so it is limited to 0.1 to 1.0%.

以上が本発明の対象とする鋼の基本成分であるが1本発
明においては、この他に鋼の焼入性を向上させパテンテ
ィング材の強度を増加させるとともにオーステナイト化
処理時の結晶粒度の粗大化の防止並びに伸線加工後の焼
鈍処理時の強度低下を減少させるためにMo、 V 、
 Ti、 Nb、 A Qの1種または2種以上を含有
せしめることもできる。
The above are the basic components of the steel that is the object of the present invention. In addition, the present invention also improves the hardenability of the steel, increases the strength of the patented material, and coarsens the grain size during austenitizing treatment. Mo, V,
It is also possible to contain one or more of Ti, Nb, and AQ.

Mo:Moはパテンティング材強度を増加させ。Mo: Mo increases the strength of the patenting material.

さらに焼鈍処理時の強度低下を減少させるために有効な
元素であるが、0.1未満では効果がなく。
Further, although it is an effective element for reducing strength loss during annealing treatment, it is ineffective if it is less than 0.1.

一方0.5%を越えても添加量に見合うだけの効果がな
いのでこれを上限とした。
On the other hand, even if it exceeds 0.5%, there is no effect commensurate with the added amount, so this was set as the upper limit.

v:vはMoと同様にパテンティング材強度を増加させ
、焼鈍処理時の強度低下を減少させる効果の他に、窒化
物を形成することによりオーステナイト化処理時の結晶
粒度の粗粒化を抑制する効果があるが、 0.05%未
満では前記作用の効果が得られず、一方0.5%を越え
ても効果が飽和するため0.05〜0.5%に限定した
v: Like Mo, v increases the strength of the patenting material and reduces the decrease in strength during annealing treatment, and also suppresses coarsening of the crystal grain size during austenitization treatment by forming nitrides. However, if it is less than 0.05%, the above effect cannot be obtained, and on the other hand, if it exceeds 0.5%, the effect is saturated, so it is limited to 0.05 to 0.5%.

Ti:TiはNと結合してTiNを形成することにより
オーステナイト化処理時の結晶粒度の粗大化を抑制する
効果があるが0.002%未満ではその効果が不十分で
あり、一方0.05%を越えるとばね疲労に有害な粗大
なTiNあるいはTiCが生成するので0.002〜0
.05%の範囲に制限した。
Ti: Ti has the effect of suppressing coarsening of crystal grain size during austenitizing treatment by combining with N to form TiN, but if it is less than 0.002%, the effect is insufficient; If it exceeds 0.002 to 0, coarse TiN or TiC will be generated which is harmful to spring fatigue.
.. It was limited to a range of 0.05%.

Nb:Nbはオーステナイト化処理時の結晶粒度の粗大
化を防止する効果があるが、 o、oos%未満ではそ
の効果が不十分であり、一方0.2%を越えると効果が
飽和するためo、oos〜0.2%に制限した。
Nb: Nb has the effect of preventing coarsening of the crystal grain size during austenitizing treatment, but if it is less than 0.00%, the effect is insufficient, while if it exceeds 0.2%, the effect is saturated. ,oos~0.2%.

Afi : AQ−4+Nb、Tiと同様な効果を有す
るが、0.01%未満ではその効果が発揮されず、一方
0.1%を越えても効果が飽和するため0.01〜0.
1%に限定した。
Afi: AQ-4+Nb has the same effect as Ti, but if it is less than 0.01%, the effect will not be exhibited, while if it exceeds 0.1%, the effect will be saturated, so 0.01 to 0.
Limited to 1%.

またコイルばね疲労に有害なP、Sの不純物元素の量は
特に規制はしないもののそれぞれ0.01%以下が望ま
しい。
Furthermore, the amounts of impurity elements P and S, which are harmful to coil spring fatigue, are not particularly regulated, but are preferably 0.01% or less each.

上記の成分範囲でパテンティング処理後、伸線減面率で
75%以上の伸線加工を施す必要がある。
After the patenting treatment with the above component range, it is necessary to perform wire drawing with a wire drawing area reduction rate of 75% or more.

これは本発明で目標とする200kgf/am”以上の
強度が75%未満の伸線加工度では得られないためであ
る。なおパテンティング処理後の強度としては135〜
160kgf/■■2が上記の成分範囲で得ることがで
きる。
This is because the strength of 200 kgf/am'' or more, which is the target of the present invention, cannot be obtained with a wire drawing degree of less than 75%.The strength after patenting treatment is 135~
160 kgf/■■2 can be obtained with the above component range.

次に本発明の最も重要な点である冷間ばね成形前のねじ
り塑性加工について説明する。伸線加工材にねじり角度
で3度以上のねじり塑性加工を施すことによって伸線材
のZ方向の強度を増加させるとともに冷間ばね成形時に
生じる引張り残留応力を格段に低減させることが可能と
なる。
Next, torsional plastic working before cold spring forming, which is the most important point of the present invention, will be explained. By subjecting the wire-drawn material to torsional plastic processing with a twist angle of 3 degrees or more, it is possible to increase the Z-direction strength of the wire-drawn material and to significantly reduce the tensile residual stress that occurs during cold spring forming.

まず本発明で言うところの3度以上のねじり角度とは、
第1図に示すような角度φが3度以上になることをいい
、ねじり塑性加工量を表すものである。このようなねじ
り塑性加工を種々のねじり角度で伸線材に施した場合の
り、Z方向の強度変化、冷間ばね成形前の残留応力変化
及びばね成形後の残留応力変化の一例を第1表に示す、
ねじり角度がO1即ち従来方法である伸線加工ままの状
態あるいはねじり角度が3度未満では、Z、方向の強度
がL方向に比べ極端に低く疲労強度が2方向の強度で律
速されることを示している。また伸線ままでは表層の残
留応力は引張りになっており、さらに冷間ばね成形時に
生じる引張り残留応力も高い、このようにZ方向の強度
がL方向に比べ低く、またばね成形後の引張り残留応力
が高いことは、L方向の強度を高めてもコイルばねの疲
労強度が増加しないことを意味する。これに対して本発
明であるねじり塑性加工量を3度以上にした鋼線では、
Z方向の強度が増加し、またねじり塑性加工によって伸
線材の残留応力が引張り側から圧縮側になるので冷間ば
ね成形時に生じる引張り残留応力はねじり塑性加工を施
さない鋼線に比べて格段に低い、この結果本発明による
コイルばねの疲労強度は、従来法で製造されるコイルば
ねよりも2方向の強度が高く、冷間ばね成形時に生じる
残留応力が低いため後述するように非常に高くなる。
First, in the present invention, a twist angle of 3 degrees or more means:
This refers to an angle φ of 3 degrees or more as shown in FIG. 1, and represents the amount of torsional plastic working. Table 1 shows examples of the strength change in the Z direction, the residual stress change before cold spring forming, and the residual stress change after spring forming when such torsional plastic processing is applied to drawn wire material at various twist angles. show,
When the torsion angle is O1, that is, as it is after wire drawing in the conventional method, or when the torsion angle is less than 3 degrees, the strength in the Z and L directions is extremely low compared to the L direction, and the fatigue strength is determined by the strength in the two directions. It shows. In addition, the residual stress in the surface layer is tensile when the wire is drawn, and the tensile residual stress generated during cold spring forming is also high.The strength in the Z direction is lower than that in the L direction, and the tensile residual stress after forming the spring is also high. High stress means that the fatigue strength of the coil spring does not increase even if the strength in the L direction is increased. On the other hand, in the steel wire of the present invention, which has undergone torsional plastic working of 3 degrees or more,
The strength in the Z direction increases, and the residual stress in the drawn wire material changes from the tensile side to the compressive side due to torsional plastic processing, so the tensile residual stress generated during cold spring forming is significantly greater than that of steel wire that is not subjected to torsional plastic processing. As a result, the fatigue strength of the coil spring according to the present invention is higher in two directions than the coil spring manufactured by the conventional method, and the residual stress generated during cold spring forming is low, so the fatigue strength is extremely high as will be described later. .

以上のようにZ方向の強度を増加させ且つ冷間ばね成形
時に生じる残留応力を低下させる。ためには、ねじり角
度で3度以上のねじり塑性加工を施す必要があるが第1
表から明らかなようにねじり塑性加工量が増すほど2方
向の強度が増加し、またばね成形後の残留応力も低くな
るため、好ましくは5度以上がよい。
As described above, the strength in the Z direction is increased and the residual stress generated during cold spring forming is reduced. In order to achieve this, it is necessary to perform torsional plastic processing with a twist angle of 3 degrees or more, but the first
As is clear from the table, as the amount of torsional plastic working increases, the strength in two directions increases, and the residual stress after spring forming also decreases, so it is preferably 5 degrees or more.

また本発明では、伸線加工材を400〜600℃で5〜
300秒の焼鈍処理を施した後ねじり塑性加工を行って
もよい、焼鈍処理の目的は二つあり、一つは降伏強度を
低下させて冷間ばね成形時に生じる残留応力を少なくす
るためである。もう一つは、本発明の成分系における伸
線加工材の強度がおよそ230kgf/■鵬2以上にな
るとねじり塑性加工時に亀裂が生じる場合があるので、
これを防止するためである。−例として、冷間ばね成形
時に生じる残留応力とねじり塑性加工性に及ぼす焼鈍処
理の効果を第2表に示す。焼鈍処理を施した鋼線の方が
、はね成形後の残留応力が低く、またねじり塑性加工性
もよい、従って、伸線材の強度がおよそ230kgf/
+a■2以上では、ねじり塑性加工前に焼鈍処理を施し
た方がコイルばねの品質上問題が少ない。
In addition, in the present invention, the wire drawing material is heated at 400 to 600°C to
Torsional plastic working may be performed after 300 seconds of annealing. The purpose of annealing is twofold. One is to lower the yield strength and reduce the residual stress generated during cold spring forming. . Another reason is that if the strength of the wire-drawn material in the composition system of the present invention exceeds approximately 230 kgf/■ 2, cracks may occur during torsional plastic processing.
This is to prevent this. - As an example, Table 2 shows the effect of annealing on the residual stress generated during cold spring forming and the torsional plastic workability. The annealed steel wire has lower residual stress after spring forming and has better torsional plastic workability. Therefore, the strength of the drawn wire material is approximately 230 kgf/
+a■2 or more, there are fewer problems with the quality of the coil spring if annealing is performed before torsional plastic working.

焼鈍処理条件としては、400℃未満では上記の効果が
得られず、一方600℃を超えると焼鈍処理による強度
低下が著しいため、 400〜600℃の温度範囲とし
た。また保定時間は5秒未満では焼鈍による上記の効果
が期待できず、一方300秒を超えても上記の効果が向
上しないばかりか、実用的でないため5〜300秒に限
定した。
The annealing treatment conditions were set at a temperature range of 400 to 600°C, since the above effects could not be obtained if the temperature was less than 400°C, and on the other hand, if the temperature exceeded 600°C, the strength would be significantly reduced by the annealing treatment. Further, if the retention time is less than 5 seconds, the above-mentioned effects of annealing cannot be expected, and if it exceeds 300 seconds, the above-mentioned effects will not improve and it is not practical, so it was limited to 5 to 300 seconds.

[実施例1コ 第3表に供試材の化学組成ならびにパテンティング材強
度、伸線減面率、伸線加工後の焼鈍条件、引張強度、ね
じり塑性加工性を示す、同表中試験番号1〜5,7.1
0が本発明例で、その他は比較例である。これらの供試
材はいずれも真空溶解により300kg鋼塊を溶製し、
鍛造および熱間圧延を行って製造されたものである。な
おパテンティング処理はオーステナイト化処理後、56
0〜590℃で30秒保定した。また、伸線減面率は素
材線径を変えることにより変化させ、最終線径はすべて
4IIIlφに仕上げた。
[Example 1 Table 3 shows the chemical composition, patenting material strength, wire drawing area reduction ratio, annealing conditions after wire drawing, tensile strength, and torsional plastic workability of the test materials, and the test numbers in the same table. 1-5, 7.1
0 is an example of the present invention, and the others are comparative examples. These test materials were made from 300kg steel ingots by vacuum melting.
Manufactured by forging and hot rolling. In addition, the patenting treatment is performed after the austenitization treatment.
The temperature was maintained at 0 to 590°C for 30 seconds. In addition, the wire drawing area reduction rate was varied by changing the material wire diameter, and the final wire diameter was 4IIIlφ for all.

同表に見られるように本発明例はいずれも強度が目標と
する200kgf/mm”以上になっており、またねじ
り塑性加工性も良好である。この結果前述したように、
2方向の強度が増加するとともにばね成形時に生じる残
留応力も従来の伸線加工ままに比べ低下させることが可
能となり、疲労強度は格段に上昇させることができる。
As seen in the same table, all of the examples of the present invention have a strength exceeding the target of 200 kgf/mm" and also have good torsional plastic workability. As a result, as mentioned above,
In addition to increasing the strength in two directions, the residual stress generated during spring forming can be reduced compared to the conventional wire drawing process, and the fatigue strength can be significantly increased.

これに対して比較例であるNo、6は化学組成は適正で
あるが、伸線減面率が70%と低いため強度が200k
gf/a1m2に達していない、また比較例であるNo
On the other hand, the comparative example No. 6 has an appropriate chemical composition, but the wire drawing area reduction rate is as low as 70%, so the strength is 200K.
gf/a1m2 and comparative example No.
.

8.9はいずれも伸線加工後の焼鈍条件が不適切な例で
ある。即ち、No、8は焼鈍温度が低すぎて引張強度は
高いものの、ねじり塑性加工時に割れが発生した例であ
る。 No、9は逆に焼鈍温度が高すぎてねじり塑性加
工性は優れているものの目標とする引張強度200kg
f/鳳閣2が得られていない、またNo。
8.9 are all examples of inappropriate annealing conditions after wire drawing. That is, No. 8 is an example in which the annealing temperature was too low and the tensile strength was high, but cracking occurred during torsional plastic working. No. 9, on the other hand, has a too high annealing temperature and has excellent torsional plastic workability, but the target tensile strength is 200 kg.
f/Hokaku 2 not obtained, No again.

11はSi量が低すぎるために強度が200kgf/m
+a”に達していない例である。 No、12はC量が
低すぎるためにパテンティング材強度が低く、強度が2
00kgf/am”未満となっている@ No−13は
Cr量が多すぎるために、パテンティング処理時にパー
ライト変態が完全に終了することができなかった例であ
る。この結果、伸線減面率で58%以上は伸線できず、
強度が低くかつねじり塑性加工性も悪くなっている。ま
たNo、14.15はSi量が低くCrを添加しかった
例であり、パテンティング材強度は本発明例に比べ非常
に低くなっている。この結果No、14では目標とする
強度が得られず、またNo、15は強度を増加させるた
めに伸線減面率を上げ、さらに焼鈍処理を施したにもか
かわらず、ねじり塑性加工時に割れが発生している。
11 has a strength of 200 kgf/m because the amount of Si is too low.
This is an example in which the strength of the patenting material is low because the C content is too low, and the strength is 2.
@ No. 13 with a value of less than 00 kgf/am" is an example in which the pearlite transformation could not be completely completed during the patenting process due to the excessive amount of Cr. As a result, the wire drawing area reduction rate 58% or more cannot be drawn,
It has low strength and poor torsional plastic workability. Moreover, No. 14.15 is an example in which the amount of Si is low and it is necessary to add Cr, and the strength of the patenting material is very low compared to the example of the present invention. As a result, No. 14 could not achieve the target strength, and No. 15 cracked during torsional plastic working despite increasing the wire drawing area reduction rate and annealing to increase strength. is occurring.

[実施例2] 第3表のうち1,3,10.14の供試鋼についてコイ
ルばねの疲労試験と耐へたり性を調べるためにコイルば
ねの締め付は試験を行った。線径4mm、ばね径26m
m 、ばね高さ64m閣、有効巻数5のコイルばねを冷
間成形後、300℃で10分の低温焼鈍を行い。
[Example 2] Tests were conducted on the tightening of the coil springs in order to investigate the fatigue test and fatigue resistance of the coil springs for the test steels 1, 3, 10.14 in Table 3. Wire diameter 4mm, spring diameter 26m
After cold forming a coil spring with a spring height of 64 m and an effective number of turns of 5, it was annealed at a low temperature of 300°C for 10 minutes.

引続きショットピーニング及び200℃で10分の時効
処理、セッチングをし、疲労試験ならびに締め付は試験
を行った。疲労試験は、ばね形状から計算される最大剪
断応力が60±40kgf/++m”になる条件で10
7回まで行い、また最大剪断応力が90kgf/11m
2になる荷重でコイルばねを締め付け、96時間放置し
た後のばね高さの変化からへたり特性の指標となる残留
歪を求めた。これらの結果を第4表に示す。
Subsequently, shot peening, aging treatment at 200° C. for 10 minutes and setting were performed, and a fatigue test and a tightening test were conducted. The fatigue test was conducted under the condition that the maximum shear stress calculated from the spring shape was 60±40kgf/++m".
Repeated up to 7 times, maximum shear stress was 90kgf/11m
The coil spring was tightened with a load of 2, and the residual strain, which is an index of the fatigue characteristics, was determined from the change in spring height after leaving it for 96 hours. These results are shown in Table 4.

第4表から明らかなように1本発明により製造したコイ
ルばねはいずれも比較例である伸線加工材ままで製造さ
れたものよりも疲労寿命が高くなっている。これは、伸
線加工材にねじり塑性加工を施すことによって伸線加工
材ままと比べてZ方向の強度が高くなることと、冷間ば
ね成形時に生じる引張り残留応力が小さくなることに起
因する。
As is clear from Table 4, all of the coil springs manufactured according to the present invention have a longer fatigue life than the comparative example, which was manufactured from wire-drawn processed material. This is due to the fact that by subjecting the wire-drawn material to torsional plastic working, the strength in the Z direction becomes higher than that of the wire-drawn material as is, and that the tensile residual stress generated during cold spring forming becomes smaller.

また本発明により製造されたコイルばねは残留剪断歪も
伸線加工材ままに比べ少ない。
In addition, the coil spring manufactured according to the present invention has less residual shear strain than the wire-drawn raw material.

[発明の効果] 以上の実施例からも明らかなごとく、本発明は鋼材組成
と伸線条件を最適に選択することによって引張強度を2
QOkgf/wm”以上とし、さらにねじり塑性加工を
施すことによってZ方向の強度を高めるとともに冷間コ
イルばね成形時に生じる残留応力を低下させることが可
能となる。この結果、最終的にZ方向の降伏強度の増加
と残留応力の低減によりコイルばねの高疲労強度化を可
能にしたものであり、産業上の効果は極めて顕著なもの
がある。
[Effects of the Invention] As is clear from the above examples, the present invention improves the tensile strength by optimally selecting the steel material composition and wire drawing conditions.
By setting the QOkgf/wm or more and applying torsional plastic working, it is possible to increase the strength in the Z direction and reduce the residual stress that occurs during cold coil spring forming.As a result, the yield in the Z direction can be reduced. This makes it possible to increase the fatigue strength of coil springs by increasing strength and reducing residual stress, and the industrial effect is extremely significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明でのねじり角度の定義を示した図 である。 Figure 1 is a diagram showing the definition of the twist angle in the present invention. It is.

Claims (3)

【特許請求の範囲】[Claims] (1)重量%で、 C:0.75〜1.1%、Si:1.0〜2.0%、M
n:0.2〜1.0%、Cr:0.1〜1.0%を含み
、その他必要に応じて Mo:0.1〜0.5%、V:0.05〜0.5%Ti
:0.002〜0.05%、Nb:0.005〜0.2
%Al:0.01〜0.1% の1種または2種以上を含有し、残部はFe及び不可避
不純物よりなる鋼線について、パテンティング処理後7
5%以上の伸線減面率で伸線を行い、引続きねじり角度
で3度以上のねじり塑性加工をしたる後、冷間ばね成形
を行うことを特徴とする高疲労強度ばねの製造方法。
(1) In weight%, C: 0.75-1.1%, Si: 1.0-2.0%, M
Contains n: 0.2-1.0%, Cr: 0.1-1.0%, Mo: 0.1-0.5%, V: 0.05-0.5% as necessary. Ti
:0.002~0.05%, Nb:0.005~0.2
%Al: 0.01 to 0.1% of steel wire containing one or more of 0.01 to 0.1%, the remainder being Fe and unavoidable impurities, after patenting treatment 7
A method for producing a high fatigue strength spring, which comprises drawing a wire at a wire drawing area reduction rate of 5% or more, followed by torsional plastic working at a twist angle of 3 degrees or more, and then cold spring forming.
(2)重量%で、 C:0.75〜1.1%、Si:1.0〜2.0%、M
n:0.2〜1.0%、Cr:0.1〜1.0%を含み
、その他必要に応じて Mo:0.1〜0.5%、V:0.05〜0.5%、T
i:0.002〜0.05%、Nb:0.005〜0.
2%、Al:0.01〜0.1% の1種又は2種以上を含有し、残部はFe及び不可避不
純物よりなる鋼線で、パテンティング処理後75%以上
の伸線減面率で伸線を行い、引続きねじり角度で3度以
上のねじり塑性加工を行ったことを特徴とする高疲労強
度ばね用鋼線。
(2) In weight%, C: 0.75-1.1%, Si: 1.0-2.0%, M
Contains n: 0.2-1.0%, Cr: 0.1-1.0%, Mo: 0.1-0.5%, V: 0.05-0.5% as necessary. , T
i: 0.002-0.05%, Nb: 0.005-0.
2%, Al: 0.01 to 0.1%, and the remainder is Fe and unavoidable impurities, with a drawing area reduction rate of 75% or more after patenting treatment. A high fatigue strength spring steel wire characterized by being drawn and then subjected to torsional plastic processing at a twist angle of 3 degrees or more.
(3)重量%で、 C:0.75〜1.1%、Si:1.0〜2.0%、M
n:0.2〜1.0%、Cr:0.1〜1.0%、を含
み、その他必要に応じて Mo:0.1〜0.5%、V:0.05〜0.5%、T
i:0.002〜0.05%、Nb:0.005〜0.
2%Al:0.01〜0.1% の1種または2種以上を含有し、残部はFe及び不可避
不純物よりなる鋼線で、パテンティング処理後75%以
上の伸線減面率で伸線を行い、引続き400〜600℃
で5〜300秒焼鈍処理を施したる後、ねじり角度で3
度以上のねじり塑性加工を行ったことを特徴とする高疲
労強度ばね用鋼線。
(3) In weight%, C: 0.75-1.1%, Si: 1.0-2.0%, M
Contains n: 0.2-1.0%, Cr: 0.1-1.0%, Mo: 0.1-0.5%, V: 0.05-0.5 as necessary. %, T
i: 0.002-0.05%, Nb: 0.005-0.
A steel wire containing one or more of 2% Al: 0.01 to 0.1%, with the remainder consisting of Fe and unavoidable impurities, and is drawn with a drawing area reduction rate of 75% or more after patenting treatment. 400-600℃
After annealing for 5 to 300 seconds at a twist angle of 3
A high fatigue strength steel wire for springs, which is characterized by having been subjected to torsional plastic working of more than 30 degrees.
JP1036338A 1989-02-17 1989-02-17 Method of manufacturing high fatigue strength spring and steel wire used for the method Expired - Fee Related JP2790303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1036338A JP2790303B2 (en) 1989-02-17 1989-02-17 Method of manufacturing high fatigue strength spring and steel wire used for the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1036338A JP2790303B2 (en) 1989-02-17 1989-02-17 Method of manufacturing high fatigue strength spring and steel wire used for the method

Publications (2)

Publication Number Publication Date
JPH02217421A true JPH02217421A (en) 1990-08-30
JP2790303B2 JP2790303B2 (en) 1998-08-27

Family

ID=12467045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1036338A Expired - Fee Related JP2790303B2 (en) 1989-02-17 1989-02-17 Method of manufacturing high fatigue strength spring and steel wire used for the method

Country Status (1)

Country Link
JP (1) JP2790303B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841533A (en) * 1994-07-28 1996-02-13 Togo Seisakusho:Kk Production of coil spring
JP2011149036A (en) * 2010-01-19 2011-08-04 Chuo Spring Co Ltd Method for manufacturing coil spring for automotive suspension, and coil spring for automotive suspension
WO2019080458A1 (en) * 2017-10-26 2019-05-02 山东汽车弹簧厂淄博有限公司 Micro-alloyed spring steel and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115926A (en) * 1979-02-28 1980-09-06 Nippon Steel Corp Production of high strength coil spring
JPS63227748A (en) * 1986-12-19 1988-09-22 Nippon Steel Corp High strength steel wire for spring and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115926A (en) * 1979-02-28 1980-09-06 Nippon Steel Corp Production of high strength coil spring
JPS63227748A (en) * 1986-12-19 1988-09-22 Nippon Steel Corp High strength steel wire for spring and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841533A (en) * 1994-07-28 1996-02-13 Togo Seisakusho:Kk Production of coil spring
JP2011149036A (en) * 2010-01-19 2011-08-04 Chuo Spring Co Ltd Method for manufacturing coil spring for automotive suspension, and coil spring for automotive suspension
WO2019080458A1 (en) * 2017-10-26 2019-05-02 山东汽车弹簧厂淄博有限公司 Micro-alloyed spring steel and preparation method thereof

Also Published As

Publication number Publication date
JP2790303B2 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
US7763123B2 (en) Spring produced by a process comprising coiling a hard drawn steel wire excellent in fatigue strength and resistance to setting
JP3940270B2 (en) Method for producing high-strength bolts with excellent delayed fracture resistance and relaxation resistance
JPH0257637A (en) Manufacture of spring with high fatigue strength and steel wire for spring for use therein
JP7247078B2 (en) Mechanical structural steel for cold working and its manufacturing method
JPS63109144A (en) High-strength spring steel
JP3550886B2 (en) Manufacturing method of gear steel for induction hardening excellent in machinability and fatigue strength
WO1998054372A1 (en) Non-tempered steel for mechanical structure
US20060057419A1 (en) High-strength steel product excelling in fatigue strength and process for producing the same
JPS6159379B2 (en)
JP2790303B2 (en) Method of manufacturing high fatigue strength spring and steel wire used for the method
JPH0967622A (en) Production of high strength non-heat treated steel wire for bolt, excellent in cold heading property
JP2708279B2 (en) Manufacturing method of high strength spring
JP2713346B2 (en) Stainless steel wire excellent in high strength properties and its manufacturing method
JPH05331597A (en) Coil spring with high fatigue strength
JP3211627B2 (en) Steel for nitriding and method for producing the same
JP4667961B2 (en) Manufacturing method of non-tempered high strength bolt
JPH01184259A (en) High-strength spring steel
JP3343505B2 (en) High strength bolt steel with excellent cold workability and delayed fracture resistance and its manufacturing method
JP3242336B2 (en) Cold forging steel excellent in cold forgeability and fatigue strength and method for producing cold forged member
JP2001049337A (en) Production of high strength spring excellent in fatigue strength
JP3371490B2 (en) Method of manufacturing tough steel for machine structure with excellent cold forgeability
JP3857970B2 (en) Cu precipitation hardening type high strength steel material and method for producing the same
JPH01184223A (en) Production of suspension spring for automobile having superior setting resistance at high temperature
JP2728084B2 (en) Manufacturing method of high strength parts
JPH04141521A (en) Production of induction hardened parts having shaft shape

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees