JP6284279B2 - Strength member and manufacturing method thereof - Google Patents

Strength member and manufacturing method thereof Download PDF

Info

Publication number
JP6284279B2
JP6284279B2 JP2015504458A JP2015504458A JP6284279B2 JP 6284279 B2 JP6284279 B2 JP 6284279B2 JP 2015504458 A JP2015504458 A JP 2015504458A JP 2015504458 A JP2015504458 A JP 2015504458A JP 6284279 B2 JP6284279 B2 JP 6284279B2
Authority
JP
Japan
Prior art keywords
temperature
less
strength member
point
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015504458A
Other languages
Japanese (ja)
Other versions
JPWO2014136966A1 (en
Inventor
真平 黒川
真平 黒川
鈴木 健
健 鈴木
紘介 柴入
紘介 柴入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Publication of JPWO2014136966A1 publication Critical patent/JPWO2014136966A1/en
Application granted granted Critical
Publication of JP6284279B2 publication Critical patent/JP6284279B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、耐へたり性や降伏強度に優れた強度部材およびその製造方法に関するものである。   The present invention relates to a strength member excellent in sag resistance and yield strength and a method for producing the same.

たとえば、自動車のエンジン用弁ばねのような強度部材の材料としては、従来、耐疲労性や耐へたり性の観点から焼戻しマルテンサイト組織を有するSi−Cr鋼オイルテンパー線が広く使用されている。これに対して、特許文献1には、コイリング後に、延性に優れた微細ベイナイトを主体とする組織を形成することにより、耐疲労性を低下させずに焼戻しマルテンサイト組織よりも大きな塑性歪みを付与する技術が提案されている。この技術では、耐へたり性に有害な転位の密度を低減させるとともに、歪み時効により効果的に転位を固着することで耐へたり性を向上させている。また、セッチングを行うことにより大きな塑性ひずみを付与するため、素線内部で大きな圧縮残留応力が付与され、耐へたり性とともに耐疲労性も向上させることができる。さらに、上記の技術では、低廉な材料を用いることができるので、製造コストを低減することができるという利点もある。   For example, Si-Cr steel oil tempered wires having a tempered martensite structure have been widely used as materials for strength members such as automotive engine valve springs from the viewpoint of fatigue resistance and sag resistance. . On the other hand, Patent Document 1 gives a larger plastic strain than a tempered martensite structure without reducing fatigue resistance by forming a structure mainly composed of fine bainite having excellent ductility after coiling. Techniques to do this have been proposed. In this technique, the density of dislocations harmful to sag resistance is reduced, and the sag resistance is improved by fixing the dislocations effectively by strain aging. Moreover, since a large plastic strain is imparted by performing setting, a large compressive residual stress is imparted inside the strand, and fatigue resistance can be improved as well as sag resistance. Further, the above technique has an advantage that the manufacturing cost can be reduced because an inexpensive material can be used.

特開2012−111992号公報JP 2012-111992 A

しかし、近年、これまで以上に自動車の低燃費化が求められる中で、ばねやボルトなどの強度部材には更なる高い耐へたり性や降伏強度が求められている。   However, in recent years, as fuel efficiency of automobiles is required more than ever, strength members such as springs and bolts are required to have higher sag resistance and yield strength.

したがって、本発明は、上記事情に鑑みてなされたもので、コストメリットを損なうことなく、また、大幅な工程の変更を加えることなく耐へたり性と降伏強度を大幅に向上させることができる強度部材およびその製造方法を提供することを目的としている。   Therefore, the present invention has been made in view of the above circumstances, strength that can significantly improve sag resistance and yield strength without impairing cost merit and without significant process changes. It aims at providing a member and its manufacturing method.

本発明者らは、上記課題を解決するために鋭意研究を行った結果、オーステンパー処理における水冷によって生成されるマルテンサイトを、焼戻しを行うことでフェライトとセメンタイトに分解するとともに転位を減少させることにより、耐へたり性が大幅に向上することを見出した。また、マルテンサイトにおける転位の減少とともに組織は急激に軟化し、疲労強度を低下させる原因となるのが一般的であるが、組織の主体を微細ベイナイトとすることにより、硬さの低下による疲労強度の低下が生じないことも見出した。一方、本発明による耐へたり性の向上は、降伏強度の上昇に伴うものであるため、高い降伏強度を要求されるボルトなどのねじ部材やタイロッドなどへ応用可能である。   As a result of diligent research to solve the above problems, the inventors of the present invention are able to decompose martensite generated by water cooling in austempering treatment into ferrite and cementite and reduce dislocations by tempering. Thus, it has been found that the sag resistance is greatly improved. In addition, it is common that the structure rapidly softens and decreases the fatigue strength as the number of dislocations in martensite decreases, but by using fine bainite as the main component of the structure, the fatigue strength due to the decrease in hardness It was also found that there was no decrease in. On the other hand, since the improvement in sag resistance according to the present invention is accompanied by an increase in yield strength, it can be applied to screw members such as bolts and tie rods that require high yield strength.

本発明の強度部材は、上記知見に基づいてなされたもので、質量%で、C:0.5〜0.7%、Si:1.0〜2.0%、Mn:0.1〜1.0%、Cr:0.1〜1.0%、P:0.035%以下、S:0.035%以下、残部が鉄及び不可避不純物からなる組成と、面積比率でベイナイトを65%以上有する組織を有し、任意の断面の平均転位密度が2.0×1016−2以下であることを特徴とする。The strength member of the present invention was made on the basis of the above knowledge, and in mass%, C: 0.5 to 0.7%, Si: 1.0 to 2.0%, Mn: 0.1 to 1 0.0%, Cr: 0.1-1.0%, P: 0.035% or less, S: 0.035% or less, the balance of iron and inevitable impurities, and bainite 65% or more by area ratio The average dislocation density of an arbitrary cross section is 2.0 × 10 16 m −2 or less.

また、本発明は、請求項1に記載の強度部材の製造方法であって、質量%で、C:0.5〜0.7%、Si:1.0〜2.0%、Mn:0.1〜1.0%、Cr:0.1〜1.0%、P:0.035%以下、S:0.035%以下、残部が鉄及び不可避不純物からなる成分を有する線材を製品の形状に成形する成形工程と、Ac3点〜(Ac3点+250℃)の温度でオ−ステナイト化後、20℃/秒以上の速度で冷却し、(Ms点−20℃)〜(Ms点+60℃)の温度で400秒以上保持し、次いで室温まで冷却する熱処理工程と、熱処理後の前記製品を350〜450℃の温度で保持する焼戻し工程とを備えたことを特徴とする。ここで、Ac3点とは、材料が加熱中にフェライト+オ−ステナイトの二相域からオ−ステナイト単相域に移行する境界温度であり、Ms点とは、冷却中にマルテンサイトが生成を開始する温度である。なお、強度部材がばねの場合には、製品にショットを投射するショットピ−ニング工程を備えることが望ましい。
Further, the present invention is a method for manufacturing a strength member according to claim 1, in mass%, C: 0.5~0.7%, Si : 1.0~2.0%, Mn: 0 0.1 to 1.0%, Cr: 0.1 to 1.0%, P: 0.035% or less, S: 0.035% or less, and a wire having a component composed of iron and inevitable impurities as a balance. After forming into a shape and austenitizing at a temperature of Ac3 point to (Ac3 point + 250 ° C.), it is cooled at a rate of 20 ° C./second or more, and (Ms point−20 ° C.) to (Ms point + 60 ° C.). ) For 400 seconds or more, and then cooled to room temperature, and a tempering step for holding the heat-treated product at a temperature of 350 to 450 ° C. Here, the Ac3 point is the boundary temperature at which the material shifts from the ferrite + austenite two-phase region to the austenite single-phase region during heating, and the Ms point is the formation of martensite during cooling. This is the starting temperature. When the strength member is a spring, it is desirable to provide a shot pinning process for projecting shots onto the product.

本発明は、ばねに限定されるものではなく、ボルトなどのねじ部材やタイロッドなどのように強度が求められるあらゆる強度部材に適用可能である。   The present invention is not limited to a spring, and can be applied to any strength member that requires strength, such as a screw member such as a bolt or a tie rod.

本発明によれば、任意の断面の平均転位密度を低下させることにより、コストメリットを損なうことなく、また、大幅な工程の変更を加えることなく耐へたり性と降伏強度を大幅に向上させることができる等の効果を得ることができる。   According to the present invention, by reducing the average dislocation density of an arbitrary cross section, the sag resistance and the yield strength can be significantly improved without impairing cost merit and without adding a significant process change. It is possible to obtain an effect such as

本発明の製造方法の工程を示す図である。It is a figure which shows the process of the manufacturing method of this invention. 本発明の実施例における焼戻し温度と平均転位密度との関係を示すグラフである。It is a graph which shows the relationship between the tempering temperature and average dislocation density in the Example of this invention. 本発明の実施例における焼戻し温度と残留せん断歪との関係を示すグラフである。It is a graph which shows the relationship between the tempering temperature and the residual shear strain in the Example of this invention. 本発明の実施例における焼戻し温度とばね素線の内部硬さとの関係を示すグラフである。It is a graph which shows the relationship between the tempering temperature in the Example of this invention, and the internal hardness of a spring strand.

まず、本発明に用いる鋼の化学成分の限定理由について説明する。なお、以下の説明において「%」は「質量%」を意味する。   First, the reasons for limiting the chemical components of the steel used in the present invention will be described. In the following description, “%” means “mass%”.

・C:0.5〜0.7%
Cは、所望の強度を確保するために重要な元素であり、そのような効果を得るためには0.5%以上含有させることが必要である。しかしながら、C濃度が過剰になると、軟質相である残留オ-ステナイト比率が増え過ぎて所望の強度を得ることが困難になるため、0.7%以下に抑える。
C: 0.5-0.7%
C is an important element for securing a desired strength, and in order to obtain such an effect, it is necessary to contain 0.5% or more. However, if the C concentration is excessive, the ratio of retained austenite, which is a soft phase, is excessively increased and it becomes difficult to obtain a desired strength.

・Si:1.0〜2.0%
Siは、固溶強化に寄与する元素であり、所望の強度を得るためには1.0%以上含有させることが必要である。ただし、Si量が過剰であると、軟質な残留オーステナイト比率が高くなり、逆に強度の低下を招くため2.0%以下に抑える。
・ Si: 1.0-2.0%
Si is an element that contributes to solid solution strengthening, and in order to obtain a desired strength, it is necessary to contain 1.0% or more. However, if the amount of Si is excessive, the ratio of soft retained austenite is increased, and conversely, the strength is reduced, so the content is suppressed to 2.0% or less.

・Mn:0.1〜1.0%
Mnは、精錬中の脱酸元素として添加されるが、一方で鋼材の焼入れ性を高めて強度を容易に向上できる元素であるため、所望の強度を得るためには0.1%以上含有させる必要がある。一方、含有量が過剰であると偏析が生じ加工性が低下しやすくなるため、1.0%以下に抑える。
Mn: 0.1 to 1.0%
Mn is added as a deoxidizing element during refining, but on the other hand, it is an element that can improve the hardenability of the steel material and easily improve the strength. Therefore, in order to obtain a desired strength, 0.1% or more is contained. There is a need. On the other hand, when the content is excessive, segregation occurs and the workability is liable to decrease, so the content is suppressed to 1.0% or less.

・Cr:0.1〜1.0%
Crは、鋼材の焼入れ性を高めて強度を容易に向上できる元素である。また、パーライト変態を遅延させる作用もあり、オーステナイト化加熱後の冷却時に安定してベイナイト組織を得る(パーライト組織を抑制する)ことができるため、0.1%以上含有させる必要がある。ただし、Crを過剰に含有すると鉄炭化物を生じ易くなるため、1.0%以下に抑える。
・ Cr: 0.1-1.0%
Cr is an element that can enhance the hardenability of the steel material and easily improve the strength. Further, it also has an effect of delaying the pearlite transformation, and a bainite structure can be stably obtained (cooling the pearlite structure) during cooling after austenitizing heating, so it is necessary to contain 0.1% or more. However, if excessively containing Cr, iron carbide is likely to be generated, so the content is suppressed to 1.0% or less.

・P,S:0.035%以下
PおよびSは、粒界偏析による粒界破壊を助長する元素であるため、その含有量は可能な限り低い方が望ましいが、不可避不純物であり低減するには製錬コストがかかるため、上限は0.035%とする。PおよびSの含有量は、好ましくは0.01%以下がよい。
-P, S: 0.035% or less P and S are elements that promote grain boundary destruction due to grain boundary segregation. Therefore, the content of P and S is preferably as low as possible. Since smelting costs are required, the upper limit is 0.035%. The content of P and S is preferably 0.01% or less.

次に、全組織におけるベイナイトの面積比率等の限定理由について説明する。・ベイナイト:65%以上 ベイナイトとは、従来、オ−ステナイト化された鋼材を550℃程度以下でマルテンサイト変態開始温度を上回る温度域にて等温変態させることによって得られる金属組織であり、ベイニティックフェライトと鉄炭化物で構成される。素地のベイニティックフェライトは転位密度が高く、また鉄炭化物は析出強化効果があるため、マルテンサイトにおける転位の減少により硬さが低下しても、ベイナイト組織をもって強度を高めることができる。   Next, the reasons for limitation such as the area ratio of bainite in the entire structure will be described. Bainite: 65% or more Bainite is a metal structure obtained by isothermally transforming an austenitic steel material at a temperature range of about 550 ° C. or less and exceeding the martensite transformation start temperature. Consists of tick ferrite and iron carbide. Since the base bainitic ferrite has a high dislocation density and the iron carbide has a precipitation strengthening effect, the strength can be increased with a bainite structure even if the hardness decreases due to the reduction of dislocations in martensite.

本発明の製造方法によれば、ベイナイト組織は、オ−ステナイト化された鋼材をMs点近傍で等温保持するので、微細なベイニティックフェライト地に鉄炭化物が微細析出した構造を得ることができ、粒界強度の低下が少なく高強度であっても延靭性の低下が小さい。したがって、大きな塑性ひずみを付与しても耐疲労性に有害なき裂等の欠陥は生じず、転位密度を低下させることができる。このように、ベイナイトは高強度と高延性を得るために不可欠な組織であり、その面積比率は高いほど望ましく、所望の高強度高延性を得るためには65%以上必要である。   According to the manufacturing method of the present invention, the bainite structure holds the austenitic steel material isothermally in the vicinity of the Ms point, so that a structure in which iron carbide finely precipitates on a fine bainitic ferrite ground can be obtained. In addition, the decrease in grain boundary strength is small and the decrease in ductility is small even if the strength is high. Therefore, even if a large plastic strain is applied, defects such as cracks harmful to fatigue resistance do not occur, and the dislocation density can be reduced. As described above, bainite is an indispensable structure for obtaining high strength and high ductility, and its area ratio is preferably as high as possible. In order to obtain desired high strength and high ductility, 65% or more is necessary.

一方、等温保持中の未変態オ−ステナイトは、その後室温まで冷却されることによりマルテンサイトや残留オ−ステナイトとなる。ベイナイト面積比率が65%未満の組織は、等温保持時間が短いことを意味し、その段階での未変態オ−ステナイト中のCの濃縮度は小さいため、その後の冷却によりマルテンサイト比率が高くなる。したがって、ベイナイト面積比率が65%未満である場合、マルテンサイトが多くなるため高強度は得られるが、切欠き感受性が著しく高くなるため、大きな塑性ひずみを付与することができず、耐へたり性は向上しない。   On the other hand, the untransformed austenite during isothermal holding becomes martensite and retained austenite by cooling to room temperature. A structure having a bainite area ratio of less than 65% means that the isothermal holding time is short, and the concentration of C in the untransformed austenite at that stage is small, so that the martensite ratio is increased by subsequent cooling. . Therefore, when the bainite area ratio is less than 65%, martensite is increased and high strength is obtained, but notch sensitivity is remarkably increased, so that a large plastic strain cannot be imparted and sag resistance is increased. Does not improve.

なお、残留オーステナイトは、軟質なため加工で生じたせん断歪が残留し易い。したがって、残留オーステナイトの量は残留せん断歪の量の指標となるものであり、その量が過剰であると耐へたり性を低下させる。この観点から残留オーステナイトの面積比率は、6.5%以下に抑えることが望ましい。   In addition, since retained austenite is soft, shear strain generated by processing tends to remain. Therefore, the amount of retained austenite serves as an index of the amount of residual shear strain, and if the amount is excessive, the sag resistance is lowered. From this viewpoint, it is desirable to keep the area ratio of retained austenite to 6.5% or less.

また、製品の任意横断面の中心のビッカース硬さは、製品に必要な荷重に耐え得る強度を確保するために450HV以上であることが望ましい。一方、硬さが過剰に高い場合は通常伸びが小さくなる上鋼材自体の切欠き 感受性が増加し、大きな塑性ひずみを付与することができないため、650HV以下であることが望ましい。   Further, it is desirable that the Vickers hardness at the center of an arbitrary cross section of the product is 450 HV or more in order to ensure the strength that can withstand the load required for the product. On the other hand, when the hardness is excessively high, the notch sensitivity of the upper steel material itself, which usually decreases in elongation, increases, and a large plastic strain cannot be imparted. Therefore, the hardness is desirably 650 HV or less.

次に本発明の強度部材の製造方法についてばねを例にとって説明する。図1(A)は実施形態の製造方法を示す図であり、図1(B)は従来の製造方法を示す図である。ばねは、上記化学成分の鋼材に対し、例えばコイリング工程の後、必要によりばねの両端面を研削する座研磨工程後、Ac3点〜(Ac3点+250℃)の温度でオーステナイト化後、20℃/秒以上の速度で冷却し、(Ms点−20℃)〜(Ms点+60℃)の温度で400秒以上保持し、次いで20℃/秒以上の冷却速度で室温まで冷却する熱処理工程の後、350〜450℃で焼戻しを行い、ショットピ−ニング工程の後、必要に応じてセッチング工程を行うことによって製造することができる。Ac3点以上に加熱する前の鋼の組織については特に制限されない。例えば、熱間鍛造や線引き加工した条鋼材を素材として使用することができる。以下に、各工程について説明し、必要に応じて限定理由を述べる。   Next, the manufacturing method of the strength member of the present invention will be described taking a spring as an example. FIG. 1A is a diagram showing a manufacturing method of the embodiment, and FIG. 1B is a diagram showing a conventional manufacturing method. For example, after the coiling step, the spring is austenitized at a temperature of Ac3 point to (Ac3 point + 250 ° C.) after the coiling step, and then at 20 ° C./(Ac3 point + 250 ° C.). After the heat treatment step of cooling at a rate of at least 2 seconds, holding at a temperature of (Ms point−20 ° C.) to (Ms point + 60 ° C.) for 400 seconds or more, and then cooling to room temperature at a cooling rate of 20 ° C./second or more, It can manufacture by performing tempering at 350-450 degreeC and performing a setting process as needed after a shot pinning process. There is no particular limitation on the structure of the steel before heating to Ac3 point or higher. For example, a hot-forged or drawn steel strip can be used as a raw material. Hereinafter, each step will be described, and the reasons for limitation will be described as necessary.

・コイリング工程
所望のコイル形状に冷間成形する工程である。成形方法はばね形成機(コイリングマシン)を用いる方法や、芯金を用いる方法等を利用すればよい。なお、コイルばね以外としては、板ばね、トーションバー、スタビライザーなど任意のばねに適用可能である。
・ Coiling process
This is a step of cold forming into a desired coil shape. As a forming method, a method using a spring forming machine (coiling machine), a method using a core metal, or the like may be used. In addition, it can apply to arbitrary springs, such as a leaf | plate spring, a torsion bar, and a stabilizer other than a coil spring.

・座面研磨工程
本工程は必要に応じて行うもので、ばねの両端面をばねの軸芯に対して直角な平面になるように研磨する工程である。
・ Surface polishing process
This step is performed as necessary, and is a step for polishing both end surfaces of the spring so as to be a plane perpendicular to the axis of the spring.

・熱処理工程
コイリング後のばねをオ−ステナイト化後、等温保持し、その後冷却することで熱処理工程は完了する。オ−ステナイト化を行う前の鋼の組織については特に制限されない。例えば、熱間鍛造や線引き加工した条鋼材を素材として使用できる。オ−ステナイト化の温度は、Ac3点〜(Ac3点+250℃)である必要がある。Ac3点以下ではオ−ステナイト化せず素材の組織構成のままとなる。また、(Ac3点+250℃)を超えると、旧オ−ステナイト粒径が粗大化し易くなり、延性の低下を招く恐れがある。
-Heat treatment process After the coiled spring is austenitized, the heat treatment process is completed by isothermal holding and then cooling. There are no particular restrictions on the structure of the steel before austenitization. For example, a hot-forged or drawn steel strip can be used as the material. The austenitizing temperature needs to be from Ac3 point to (Ac3 point + 250 ° C.). Below the Ac3 point, it does not become austenite and remains in the structure of the material. Moreover, when it exceeds (Ac3 point +250 degreeC), a prior austenite particle size becomes easy to coarsen and there exists a possibility of causing a fall of ductility.

オ−ステナイト化後に等温保持する温度までの冷却速度は速いほど良く、20℃/秒以上の冷却速度で行う必要があり、好ましくは50℃/秒以上がよい。冷却速度が20℃/秒未満では冷却途中でパ−ライトが生成し、65面積%以上のベイナイトを得ることができない。等温保持する温度は(Ms点−20℃)〜(Ms点+60℃)である必要があり、これは本発明のばね鋼およびばねを実現するための製造方法として非常に重要な制御因子である。等温保持する温度が(Ms点−20℃)未満では、変態初期に生成するマルテンサイト量が多く延性の向上を阻害するほか、65面積%以上のベイナイトを得ることができない。一方、等温保持する温度が(Ms点+60℃)を超える場合はベイナイトが粗大化するため引張強さが低下し、ばねとして荷重に耐える強度を得ることができない。そして、等温保持を上記のようなMs点近傍で行うことにより、微細なベイナイトを析出させることができる。微細なベイナイトが析出することにより、オーステナイトは微細な空間に残留し、微細な残留オーステナイト粒とすることができる。   The higher the cooling rate to the temperature at which the temperature is maintained isothermally after the austenitization, the better. When the cooling rate is less than 20 ° C./second, pearlite is generated during the cooling, and a bainite of 65 area% or more cannot be obtained. The temperature to be kept isothermally needs to be (Ms point−20 ° C.) to (Ms point + 60 ° C.), which is a very important control factor as a manufacturing method for realizing the spring steel and spring of the present invention. . When the isothermal holding temperature is less than (Ms point −20 ° C.), the amount of martensite generated at the early stage of transformation is large, and the improvement of ductility is inhibited, and more than 65 area% bainite cannot be obtained. On the other hand, when the isothermal holding temperature exceeds (Ms point + 60 ° C.), the bainite becomes coarse, so that the tensile strength decreases, and the spring cannot obtain the strength that can withstand the load. And fine bainite can be deposited by performing isothermal holding | maintenance in the Ms point vicinity as mentioned above. By the precipitation of fine bainite, austenite remains in a fine space and can be made into fine retained austenite grains.

等温保持によりオーステナイト中にベイナイトが析出する。等温保持の時間は、400秒以上である必要があり、これも本発明の製造方法として非常に重要な制御因子である。等温保持の時間が400秒未満ではベイナイト変態の進行が不充分なため、ベイナイト比率が小さく、ベイナイトの面積率は65%に満たなくなる。なお、等温保持する時間が長過ぎても生成されるベイナイト量は飽和量に達し、生産コストの増大を招くので3時間以内とすることが望ましい。   Bainite precipitates in austenite due to isothermal holding. The isothermal holding time needs to be 400 seconds or more, which is also a very important control factor for the production method of the present invention. If the isothermal holding time is less than 400 seconds, the progress of the bainite transformation is insufficient, so the bainite ratio is small and the area ratio of bainite is less than 65%. Even if the isothermal holding time is too long, the amount of bainite produced reaches the saturation amount and causes an increase in production cost.

等温保持後の冷却速度は、均一な組織を得るため速いほど良く、20℃/秒以上の冷却速度が好ましく、より好ましくは50℃/秒以上がよい。具体的には油冷や水冷が良い。   The cooling rate after isothermal holding is preferably as fast as possible in order to obtain a uniform structure. A cooling rate of 20 ° C./second or more is preferable, and more preferably 50 ° C./second or more. Specifically, oil cooling or water cooling is good.

・焼戻し工程
熱処理工程の後にばねを350〜450℃の温度で保持する焼戻し工程を行う。焼戻し温度が350℃未満では、マルテンサイトの分解が不充分となり、転位の低減が不充分となる。また、焼戻し温度が450℃を超えると、ばねの内部硬さの減少が著しくなり、強度と疲労強度が低下する。ばねの内部硬さの極端な減少を抑制するために焼戻し温度は400℃以下が望ましい。焼戻しの時間は25〜60分が望ましい。焼戻しの時間が25分未満では焼戻しが不充分となり、また、焼戻しの時間が60分を超えると不経済である。
-Tempering process The tempering process which hold | maintains a spring at the temperature of 350-450 degreeC is performed after a heat treatment process. If the tempering temperature is less than 350 ° C., the decomposition of martensite is insufficient and the reduction of dislocation is insufficient. On the other hand, when the tempering temperature exceeds 450 ° C., the internal hardness of the spring is remarkably reduced, and the strength and fatigue strength are lowered. In order to suppress an extreme decrease in the internal hardness of the spring, the tempering temperature is desirably 400 ° C. or lower. The tempering time is preferably 25 to 60 minutes. If the tempering time is less than 25 minutes, the tempering is insufficient, and if the tempering time exceeds 60 minutes, it is uneconomical.

・ショットピ-ニング工程
ショットピ−ニングは、ばねに金属や砂などからなるショットを衝突させ、表面に圧縮残留応力を付与するもので、これによりばねの耐疲労性が著しく向上する。本発明では通常のショットピーニングで得られる圧縮残留応力に加え、残留オーステナイトの加工誘起マルテンサイト変態によりさらに高く深い圧縮残留応力が形成される。ショットピ−ニングで使用するショットは、カットワイヤやスチールボール、FeCrB系などの高硬度粒子等を用いることできる。また、圧縮残留応力は、ショットの実効または平均球相当直径や投射速度、投射時間、および多段階の投射方式で調整することができる。
-Shot peening process In shot peening, a shot made of metal, sand, or the like is collided with a spring to impart compressive residual stress to the surface, thereby significantly improving the fatigue resistance of the spring. In the present invention, in addition to the compressive residual stress obtained by normal shot peening, a higher and deeper compressive residual stress is formed by processing-induced martensitic transformation of residual austenite. For shots used in shot pinning, high-hardness particles such as cut wires, steel balls, and FeCrB series can be used. Further, the compressive residual stress can be adjusted by the effective or average equivalent sphere diameter of the shot, the projection speed, the projection time, and the multi-stage projection method.

・セッチング工程
セッチングは、塑性ひずみを与えることにより、弾性限度が著しく向上することと、使用時のへたり量(永久変形量)を低減するために任意的に行う。この場合、200〜300℃でセッチング(温間セッチング)を行うことにより、耐へたり性を一層向上させることができる。また、セッチングにより残留オーステナイトが加工誘起変態し、より強度の高いマルテンサイトとなることが期待される。これにより、変態に伴う体積膨張により高い圧縮残留応力が付与されて耐疲労性をさらに向上させることができる。
-Setting process Setting is arbitrarily performed in order to significantly improve the elastic limit by applying plastic strain and to reduce the amount of sag during use (permanent deformation). In this case, sag resistance can be further improved by performing setting (warm setting) at 200 to 300 ° C. In addition, it is expected that the retained austenite undergoes processing-induced transformation by setting and becomes martensite with higher strength. Thereby, high compressive residual stress is given by the volume expansion accompanying transformation, and fatigue resistance can be further improved.

[第1実施例]
表1に記載の代表化学成分からなるSi−Cr鋼オイルテンパー線材(直径:4.1mm)を用いて、コイリングマシンにより所定形状に冷間コイリング後、熱処理(オーステンパー処理)を行った。熱処理は、ばねを加熱炉で830℃の温度で12分間保持してオ−ステナイト化し、次いで水冷し、300℃の温度に保持したソルトバスに40分間保持し、その後冷却した。
[First embodiment]
Using a Si—Cr steel oil temper wire (diameter: 4.1 mm) composed of the representative chemical components shown in Table 1, cold coiling into a predetermined shape was performed by a coiling machine, followed by heat treatment (austempering). In the heat treatment, the spring was austenitized by holding it in a heating furnace at a temperature of 830 ° C. for 12 minutes, then cooled in water, held in a salt bath maintained at a temperature of 300 ° C. for 40 minutes, and then cooled.

Figure 0006284279
Figure 0006284279

次いで、ばねに対して表2に示す温度で焼戻しを行った。焼戻しの時間は60分とした。次いで、ショットピ−ニングは球相当直径が0.1〜1.0mmの鋼製ショットを使用した。さらに、ばねを200〜300℃に加熱後、セッチングを行った。得られたばねに対し、以下の通り諸性質を調査した。   Next, the spring was tempered at the temperature shown in Table 2. Tempering time was 60 minutes. Next, a shot made of steel having a sphere equivalent diameter of 0.1 to 1.0 mm was used for shot pinning. Furthermore, setting was performed after heating the spring to 200 to 300 ° C. Various properties of the obtained spring were investigated as follows.

Figure 0006284279
Figure 0006284279

[相の区別]
相の区別は、試料を3%ナイタ−ル液に数秒間浸漬し、その後の組織を用いて次のように行った。まず、ベイナイトはナイタ−ルにより容易に腐食されるため、光学顕微鏡写真では黒色または灰色に見え、一方、残留オーステナイトは、ナイタ−ルに対する耐食性が高いため光学顕微鏡では白色に見える。この特性を利用し、光学顕微鏡写真を画像処理することでベイナイト(黒色及び灰色部)比率と、残留オーステナイト(白色部)の合計比率を求めた。残留オーステナイト比率は、バフ研磨仕上げの試料に対し、X線回折法を用いて求めた。なお、表2においてベイナイトおよび残留オーステナイトの残余の組織は、No.1およびNo.2ではマルテンサイトであり、No.3〜No.7ではフェライトおよびセメンタイトである。
[Phase distinction]
The phase was distinguished by immersing the sample in a 3% nital solution for several seconds and using the subsequent tissue as follows. First, since bainite is easily corroded by the night tar, it looks black or gray in the optical micrograph, while the residual austenite appears white in the optical microscope due to its high corrosion resistance to the night tar. Using this characteristic, the optical micrograph was subjected to image processing to determine the bainite (black and gray part) ratio and the total ratio of retained austenite (white part). The residual austenite ratio was determined by using an X-ray diffraction method for a buffed finish sample. In Table 2, the remaining structures of bainite and retained austenite are No. 1 and no. No. 2 is martensite. 3-No. In No. 7, ferrite and cementite.

[中心のビッカ−ス硬さ]
試料の横断面において、中心部でのビッカ−ス硬さを5点測定し、その平均値を求めた。
[Vickers hardness at the center]
In the cross section of the sample, five points of Vickers hardness at the center were measured, and the average value was obtained.

[平均転位密度]
平均転位密度ρは、文献(材料とプロセス:日本鉄鋼協会講演論文集17(3),396−399頁「X線回折を利用した転位密度の評価法」)を参考に以下に示す数1により歪εを求めることで算出した。
[Average dislocation density]
The average dislocation density ρ is expressed by the following equation (1) with reference to the literature (Materials and Processes: Proceedings of the Iron and Steel Institute of Japan 17 (3), pp. 396-399 “Evaluation method of dislocation density using X-ray diffraction”). It calculated by calculating | requiring distortion | strain (epsilon).

Figure 0006284279
ここで、bはバーガスベクトル(=2.5×10−10m)である。また、歪εは、試料の横断面において、中心部を0.3mmのコリメーターによりX線回折装置(Bruker社製D8 DISCOVER)でフェライトの(110)、(211)、(220)の回折ピークを測定し、各ピークの半価幅βを用いて、以下の数2の関係から各回折ピークのβcosθ/λとsinθ/λをグラフの縦軸と横軸にプロットし、それらの近似曲線の傾き2εを求めることで算出した。
Figure 0006284279
Here, b is a bar gas vector (= 2.5 × 10 −10 m). Further, the strain ε is a diffraction peak of ferrite (110), (211), (220) in the X-ray diffractometer (D8 DISCOVER made by Bruker) with a collimator having a center of 0.3 mm in the cross section of the sample. Using the half width β of each peak, β cos θ / λ and sin θ / λ of each diffraction peak are plotted on the vertical axis and horizontal axis of the graph from the relationship of the following formula 2, It calculated by calculating | requiring inclination 2 (epsilon).

Figure 0006284279
ここで、θはX線回折ピーク位置2θの半分の値、λはX線発生源として用いた管球のKα1線の波長、Dは結晶子サイズである。
Figure 0006284279
Here, θ is a half value of the X-ray diffraction peak position 2θ, λ is the wavelength of the Kα 1 line of the tube used as the X-ray generation source, and D is the crystallite size.

[残留せん断歪]
残留せん断歪はばねの耐へたり性を表す指標であり、値が低いほど耐へたり性に優れることを示す。ばねのへたり試験においては、試料を最大せん断応力が1050MPaとなるように荷重を加えて圧縮して固定し、165℃のシリコーンオイル中に浸漬した。浸漬開始から24時間経過後、試料をシリコーンオイル中から取り出し、室温になってから荷重を除荷した。へたり量は、ばねを所定高さまで圧縮した時の荷重を上記へたり試験前後で測定し、その荷重減少量ΔPを下記数3に代入して残留せん断歪を求めた。
[Residual shear strain]
Residual shear strain is an index representing the sag resistance of a spring, and the lower the value, the better the sag resistance. In the spring sag test, the sample was fixed under compression by applying a load so that the maximum shear stress was 1050 MPa, and immersed in 165 ° C. silicone oil. After 24 hours from the start of immersion, the sample was taken out from the silicone oil, and the load was removed after the temperature reached room temperature. The amount of sag was determined by measuring the load when the spring was compressed to a predetermined height before and after the sag test, and substituting the load reduction amount ΔP into the following formula 3 to obtain the residual shear strain.

Figure 0006284279
ここで、Dは平均コイル直径、dは線径、Gは横弾性係数(=78,500MPa)である。
Figure 0006284279
Here, D is an average coil diameter, d is a wire diameter, and G is a transverse elastic modulus (= 78,500 MPa).

上記のように測定した結果を表2に併記するとともに測定値と焼戻し温度との関係を図2〜図4に示す。図2に示すように、焼戻し温度が350℃以上のときに平均転位密度が急激に低下し、2.0×1016−2以下になることが確認された。これに伴い、図3に示すように、焼戻し温度が350℃以上のときに残留せん断歪も急激に低下し、6.7×10−4以下になることが確認された。残留せん断歪は、耐へたり性の指標となるもので、残留せん断歪が小さい程耐へたり性が高い。また、図4に示すように、焼戻し温度が400℃を超えるとばねの内部硬さが急激に低下することが確認された。The results measured as described above are shown together in Table 2, and the relationship between the measured value and the tempering temperature is shown in FIGS. As shown in FIG. 2, it was confirmed that when the tempering temperature was 350 ° C. or higher, the average dislocation density rapidly decreased to 2.0 × 10 16 m −2 or less. Accordingly, as shown in FIG. 3, it was confirmed that when the tempering temperature was 350 ° C. or higher, the residual shear strain was rapidly reduced to 6.7 × 10 −4 or less. Residual shear strain is an index of sag resistance. The smaller the residual shear strain, the higher the sag resistance. Moreover, as shown in FIG. 4, when the tempering temperature exceeded 400 degreeC, it was confirmed that the internal hardness of a spring falls rapidly.

以上のように、平均転位密度を2.0×1016−2以下とすることにより、残留せん断歪を6.7×10−4以下として耐へたり性を向上できることが確認された。As described above, it was confirmed that by setting the average dislocation density to 2.0 × 10 16 m −2 or less, the residual shear strain can be set to 6.7 × 10 −4 or less and the sag resistance can be improved.

[第2実施例]
表1に記載の代表化学成分からなるSi−Cr鋼硬引線材(直径:6.0mm)を所定寸法に切断し、頭部鍛造およびねじ転造を行ってボルトを成形後、熱処理(オーステンパー処理)を行った。熱処理では、ボルトを加熱炉で830℃の温度で12分間保持してオ−ステナイト化し、次いで水冷し、300℃の温度に保持したソルトバスに40分間保持し、その後冷却した。
[Second Embodiment]
A Si—Cr steel drawn wire rod (diameter: 6.0 mm) composed of the representative chemical components shown in Table 1 is cut to a predetermined size, subjected to head forging and screw rolling to form a bolt, and then heat treated (austempered). Treatment). In the heat treatment, the bolt was austenitized by holding it at a temperature of 830 ° C. for 12 minutes in a heating furnace, then cooled with water, held in a salt bath maintained at a temperature of 300 ° C. for 40 minutes, and then cooled.

次いで、ボルトに対して表3に示す温度で焼戻しを行った。焼戻しの時間は60分とした。得られたボルトに対して、実施例1と同じ方法で内部硬さ、平均転位密度、およびベイナイト面積比率を調査し、引張り強度および0.2%耐力を引張試験機によって測定した。それらの結果を表3に併記した。   Subsequently, the bolt was tempered at the temperature shown in Table 3. Tempering time was 60 minutes. For the obtained bolt, the internal hardness, average dislocation density, and bainite area ratio were investigated in the same manner as in Example 1, and the tensile strength and 0.2% proof stress were measured with a tensile tester. The results are also shown in Table 3.

Figure 0006284279
Figure 0006284279

表3に示すように、本発明例のボルトにおいては、平均転位密度を2.0×1016−2以下にすることで高い降伏比が得られることが確認された。As shown in Table 3, in the bolt of the present invention example, it was confirmed that a high yield ratio was obtained by setting the average dislocation density to 2.0 × 10 16 m −2 or less.

本発明は、コイルばね、板ばね、トーションバー、スタビライザーなどのばねや、ボルトなどのねじ部材やタイロッドなどのように強度が求められる強度部材に適用することができる。   The present invention can be applied to springs such as coil springs, leaf springs, torsion bars, and stabilizers, and strength members that require strength, such as screw members such as bolts and tie rods.

Claims (6)

質量%で、C:0.5〜0.7%、Si:1.0〜2.0%、Mn:0.1〜1.0%、Cr:0.1〜1.0%、P:0.035%以下、S:0.035%以下、残部が鉄及び不可避不純物からなる組成と、面積比率でベイナイトを65%以上有する組織を有し、任意の断面の平均転位密度が2.0×1016−2以下であることを特徴とする強度部材。 In mass%, C: 0.5 to 0.7%, Si: 1.0 to 2.0%, Mn: 0.1 to 1.0%, Cr: 0.1 to 1.0%, P: 0.035% or less, S: 0.035% or less, the balance is composed of iron and inevitable impurities, and has a structure having 65% or more of bainite by area ratio, and the average dislocation density of any cross section is 2.0. A strength member characterized by being not more than × 10 16 m -2 . 中心のビッカース硬さが450〜650HVであることを特徴とする請求項1に記載の強度部材。   The strength member according to claim 1, wherein the central Vickers hardness is 450 to 650 HV. 質量%で、C:0.5〜0.7%、Si:1.0〜2.0%、Mn:0.1〜1.0%、Cr:0.1〜1.0%、P:0.035%以下、S:0.035%以下、残部が鉄及び不可避不純物からなる成分を有する線材を製品の形状に成形する成形工程と、
Ac3点〜(Ac3点+250℃)の温度でオ−ステナイト化後、20℃/秒以上の速度で冷却し、(Ms点−20℃)〜(Ms点+60℃)の温度で400秒以上保持し、次いで室温まで冷却する熱処理工程と、
熱処理後の前記製品を350〜450℃の温度で保持する焼戻し工程と、
を備えたことを特徴とする請求項1に記載の強度部材の製造方法。
In mass%, C: 0.5 to 0.7%, Si: 1.0 to 2.0%, Mn: 0.1 to 1.0%, Cr: 0.1 to 1.0%, P: 0.035% or less, S: 0.035% or less, a molding step of molding a wire having a component consisting of iron and inevitable impurities into a product shape,
After austenitizing at a temperature of Ac3 point to (Ac3 point + 250 ° C.), cool at a rate of 20 ° C./second or more and hold at a temperature of (Ms point−20 ° C.) to (Ms point + 60 ° C.) for 400 seconds or more. And then a heat treatment step for cooling to room temperature,
A tempering step of holding the product after heat treatment at a temperature of 350 to 450 ° C .;
The method for producing a strength member according to claim 1, comprising :
前記焼戻し工程の後に前記製品にショットを投射するショットピ−ニング工程を備えたことを特徴とする請求項3に記載の強度部材の製造方法。   The method for manufacturing a strength member according to claim 3, further comprising a shot pinning step of projecting a shot onto the product after the tempering step. 室温まで冷却する際の冷却速度を20℃/秒以上とすることを特徴とする請求項3または4に記載の強度部材の製造方法。   The method for producing a strength member according to claim 3 or 4, wherein a cooling rate when cooling to room temperature is 20 ° C / second or more. 前記ショットピーニング工程の後に前記製品に永久ひずみを与えるセッチング工程を備えたことを特徴とする請求項4に記載の強度部材の製造方法。   The method for producing a strength member according to claim 4, further comprising a setting step for imparting permanent strain to the product after the shot peening step.
JP2015504458A 2013-03-08 2014-03-07 Strength member and manufacturing method thereof Active JP6284279B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013047106 2013-03-08
JP2013047106 2013-03-08
PCT/JP2014/056057 WO2014136966A1 (en) 2013-03-08 2014-03-07 Strength member and manufacturing method therefor

Publications (2)

Publication Number Publication Date
JPWO2014136966A1 JPWO2014136966A1 (en) 2017-02-16
JP6284279B2 true JP6284279B2 (en) 2018-02-28

Family

ID=51491473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015504458A Active JP6284279B2 (en) 2013-03-08 2014-03-07 Strength member and manufacturing method thereof

Country Status (5)

Country Link
EP (1) EP2966186B1 (en)
JP (1) JP6284279B2 (en)
CN (1) CN105008572A (en)
ES (1) ES2765274T3 (en)
WO (1) WO2014136966A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015217401B4 (en) * 2015-09-11 2018-04-05 Thyssenkrupp Ag Bourdon tube for motor vehicles and a method for producing a Bourdon tube
DE102015217399A1 (en) * 2015-09-11 2017-03-16 Thyssenkrupp Ag Bourdon tube for motor vehicles and a method for producing a Bourdon tube
KR102477323B1 (en) * 2016-11-29 2022-12-13 타타 스틸 이즈무이덴 베.뷔. Manufacturing method of hot-formed article and obtained article
CN108179355A (en) * 2018-01-31 2018-06-19 中钢集团郑州金属制品研究院有限公司 A kind of high-intensity and high-tenacity spring steel wire and its preparation process
JP7034794B2 (en) * 2018-03-27 2022-03-14 株式会社神戸製鋼所 Manufacturing methods for seatbelt torsion bar steel, seatbelt torsion bar steel, and seatbelt torsion bar parts
US20230271635A1 (en) * 2020-09-29 2023-08-31 Nippon Steel Corporation Railway axle
CN113930673A (en) * 2021-09-10 2022-01-14 河钢股份有限公司承德分公司 Steel for air knife baffle and preparation method thereof
WO2023120475A1 (en) * 2021-12-21 2023-06-29 日本発條株式会社 Compression coil spring and method for producing same
WO2023120491A1 (en) * 2021-12-21 2023-06-29 日本発條株式会社 Compression coil spring and method for manufacturing same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4174981A (en) * 1978-02-06 1979-11-20 Laclede Steel Company Method of manufacturing springs, including the production of rod therefor
JPH0236648B2 (en) * 1983-06-23 1990-08-20 Nisshin Steel Co Ltd KOKYODOKOENSEIKONOSEIHO
JP3318435B2 (en) * 1994-04-25 2002-08-26 新日本製鐵株式会社 Steel wire that is hard to delay fracture
JP4927899B2 (en) * 2009-03-25 2012-05-09 日本発條株式会社 Spring steel, method for producing the same, and spring
JP5683230B2 (en) * 2010-11-22 2015-03-11 日本発條株式会社 Spring and manufacturing method thereof
JP2012214859A (en) * 2011-04-01 2012-11-08 Nhk Spring Co Ltd Spring, and method for producing the same

Also Published As

Publication number Publication date
ES2765274T3 (en) 2020-06-08
EP2966186A4 (en) 2016-11-23
EP2966186B1 (en) 2019-10-16
WO2014136966A1 (en) 2014-09-12
EP2966186A1 (en) 2016-01-13
JPWO2014136966A1 (en) 2017-02-16
CN105008572A (en) 2015-10-28

Similar Documents

Publication Publication Date Title
JP6284279B2 (en) Strength member and manufacturing method thereof
US20200224288A1 (en) Steel wire and wire rod
JP5624503B2 (en) Spring and manufacturing method thereof
JP5674620B2 (en) Steel wire for bolt and bolt, and manufacturing method thereof
JP4476863B2 (en) Steel wire for cold forming springs with excellent corrosion resistance
US7763123B2 (en) Spring produced by a process comprising coiling a hard drawn steel wire excellent in fatigue strength and resistance to setting
US11378147B2 (en) Spring and manufacture method thereof
KR20020025065A (en) Method for Manufacturing High Strength Bolt Excellent in Resistance to Delayed Fracture and to Relaxation
US20160237518A1 (en) High tensile strength steel wire
JP2007063584A (en) Oil tempered wire and manufacturing method therefor
WO2012133885A1 (en) Spring and method for producing same
JP5653022B2 (en) Spring steel and spring with excellent corrosion fatigue strength
WO2012093506A1 (en) Spring having excellent corrosion fatigue strength
JP2003213372A (en) Steel wire for spring and spring
WO2013022033A1 (en) Material for springs, manufacturing process therefor, and springs
WO2013146214A1 (en) Steel for spring and method for producing same, and spring
JP6420656B2 (en) Spring steel, spring and method for producing them
JP5683230B2 (en) Spring and manufacturing method thereof
JP5523241B2 (en) Spring and manufacturing method thereof
WO2017170439A1 (en) Steel wire having excellent delayed fracture resistance
WO2013115404A1 (en) Coiled spring and manufacturing method therefor
JPH11100644A (en) Manufacture of spring steel with high strength and high toughness and spring

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180129

R150 Certificate of patent or registration of utility model

Ref document number: 6284279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250