JP3872364B2 - Manufacturing method of oil tempered wire for cold forming coil spring - Google Patents

Manufacturing method of oil tempered wire for cold forming coil spring Download PDF

Info

Publication number
JP3872364B2
JP3872364B2 JP2002074142A JP2002074142A JP3872364B2 JP 3872364 B2 JP3872364 B2 JP 3872364B2 JP 2002074142 A JP2002074142 A JP 2002074142A JP 2002074142 A JP2002074142 A JP 2002074142A JP 3872364 B2 JP3872364 B2 JP 3872364B2
Authority
JP
Japan
Prior art keywords
cold
coil spring
steel
tempered wire
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002074142A
Other languages
Japanese (ja)
Other versions
JP2003055741A (en
Inventor
英利 吉川
智弘 中野
隆之 榊原
将見 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Hatsujo KK
Original Assignee
Chuo Hatsujo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Hatsujo KK filed Critical Chuo Hatsujo KK
Priority to JP2002074142A priority Critical patent/JP3872364B2/en
Publication of JP2003055741A publication Critical patent/JP2003055741A/en
Priority to US10/385,656 priority patent/US20040079067A1/en
Priority to US11/086,410 priority patent/US7407555B2/en
Application granted granted Critical
Publication of JP3872364B2 publication Critical patent/JP3872364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Springs (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷間成形コイルばねの素材として用いられるオイルテンパー線、及びそれを用いて製造される冷間成形コイルばねに関する。
【0002】
【従来の技術】
近年、資源及び環境問題等の点から、自動車の燃費向上への要求が高まっている。それに伴い、単体としては比較的重量の大きい自動車部品である懸架ばねについては、軽量化への要求が特に強くなっている。もちろん、このような軽量化への要求は従来より絶え間なく出されており、以前は主にばねの使用応力を高める(高応力化)ことによりこのような要求に応えてきた。ばねの使用応力を高めるためには、その素材の強度(硬さ)を高める必要がある。従って、従来のばねの軽量化の方策としては、素材の高硬度化が中心であった。
【0003】
しかし、これは腐食疲労に対して悪影響を及ぼす懸念がある。そこで、軽量化及び腐食疲労強度を重視した熱間成形による高強度ばね(以下、熱間ばねと言う)が開発、使用されている。その一つに、炭素含有量を低くし、シリコン含有量をやや高くした鋼を素材とするものがある(例えば特開平11-241143号公報)。
【0004】
一方、従来から、小型ばねを中心とした冷間コイルばね(以下、冷間ばねと言う)材として、主にSAE(米国自動車技術者協会)規格の9254鋼を素材とし、高周波短時間誘導加熱処理(以下、短時間熱処理と言う)を施したものが使用されている。この短時間熱処理は、高周波誘導加熱を利用した直接加熱(自己加熱)による急速短時間加熱を特徴とした熱処理方法であり、微細な組織、結晶粒が得られるほか、表面脱炭が少ないという利点がある。
【0005】
【発明が解決しようとする課題】
上記の低炭素・高シリコン鋼は、熱間成形ばねとしては、十分な熱処理を施すことにより高い性能を得ることができるものの、高周波短時間誘導加熱処理では十分な熱処理を確保することが困難であり、熱間成形ばねと同等の性能を得ることが困難である。
【0006】
本発明者らは鋭意検討を重ねた結果、上記低炭素・高シリコン鋼素材に適した高周波誘導加熱の条件を見いだした。これにより、熱間成形コイルばねと同等以上の性能を有する冷間成形コイルばね用オイルテンパー線、及びそれを用いた冷間成形ばねを提供するものである。
【0007】
【課題を解決するための手段】
本発明に係る冷間成形コイルばね用オイルテンパー線の製造方法は、重量比にしてC:0.35〜0.55%、Si:1.8〜3.0%、Mn:0.5〜1.5%、Ni:0.5〜3.0%、Cr:0.1〜1.5%を含有し、残部がFe及び不可避不純物からなる鋼を素材とし、高周波誘導加熱による熱処理を行うことを特徴とする。
【0008】
なお、この素材は更にN:0.01〜0.025%、V:0.05〜0.5%を含有し、P:0.01%以下、S:0.01%以下としたものでもよい。
【0009】
上記の高周波誘導加熱の前に、熱間圧延で製造した線材を冷間加工により所定の減面率で伸線を行っておくことが望ましい。また、その際、鋼組織中のフェライト分率を50%以下としておくことが望ましい。更に、高周波誘導加熱においては、その最高加熱温度を900℃〜1020℃の範囲とすることが望ましい。その最高加熱温度における保持時間は、5〜20秒とすることが望ましい。そして、そのような条件でオイルテンパー処理を施した後の素材としては、結晶粒度番号が9以上であるようにし、また、引張強さが1830〜1980MPaとなるようにすることが望ましい。
【0010】
【発明の実施の形態】
本発明で素材として用いた鋼は、前記特開平11-241143号公報に記載のものとほぼ同じものである。その成分設計の基本的な考え方は該公報に記載の通り、耐腐食疲労強度を向上させる点にある。
【0011】
すなわち、へたりに関しては、一般的に材料の硬さを上げることによりへたりを有効に減少させることができる。また、理想的な状態の下では、限度はあるものの、材料の硬さの上昇が耐疲労性の向上につながる。しかし、例えば自動車懸架用のばねは自動車の車体の中でも最も水・泥等が付着しやすい箇所に装着されるものであるため、実際の使用を考慮すると、腐食の問題を第一に考えなければならない。腐食はばねの表面にピット(微小穴)を形成し、これを起点とした疲労破壊を引き起こすためである。
【0012】
腐食疲労による破壊の主な原因としては、(1)鋼の遅れ破壊現象、(2)腐食による表面ピット(微小穴)の生成、及び(3)長期間の使用による残留応力値の低下、が考えられる。
【0013】
遅れ破壊は高強度鋼に特有の現象であり、鋼に応力が付加されている際、表面に付着した水分や大気中の水蒸気から鋼中に水素が侵入し、結晶粒界や析出物と素地との境界等の不規則部分に集積して圧力を高め、ミクロな亀裂から最終的に破断に至るというものである。各種ばねに用いられる材料は近年特に高強度化が進んでおり、使用時には従来よりも高い応力が負荷されるようになっている上、上述の通り水分等が付着しやすい環境で使用されるため、腐食疲労強度の向上には材料の遅れ破壊特性を十分考慮する必要がある。
【0014】
腐食による表面ピットは応力集中源となり、疲労強度を著しく低下させる。これに対しては、腐食ピットをできるだけ生成させない、或いは、生成しても応力集中がなるべく少なくなるような形態で生成させるようにすることが一方の方策であり、他方には、腐食ピットが存在しても、そこから亀裂が生じにくいように材料側で対策を施しておくことが重要である。
【0015】
ばねの場合、残留応力はショットピーニングにより付与されるものであるが、それを詳しく説明すると、ショットピーニングにより表面が塑性変形すると、それよりも下層の塑性変形しない部分との間で変形度に差異が生じ、それによる歪が表面に圧縮の残留応力を生成するものである。従って、腐食により表面層が除去され、或いは表面に微小亀裂が生じると、歪が小さくなり、残留応力値が減少する。
【0016】
以上の点を踏まえて上記成分範囲を決定したものであるが、各化学成分範囲の下限値及び上限値を上記のように定めた理由は次の通りである。
【0017】
まず、C含有量を、熱間成形ばね用鋼として最も一般的に用いられているJIS−SUP7鋼、或いは各種オイルテンパー線の素材鋼よりも低い範囲に設定した。これは、硬さ(強度)を同じにした場合、C含有量を多くするよりも、C含有量を低下させて合金元素の含有量を増加した方が靭性が向上するためである。靭性の向上は、腐食ピットからの疲労亀裂の生成及び進展速度を低下させることにより、本発明が目的とする腐食疲労強度の向上に大きく寄与する。なお、C含有量の下限を0.35%としたのは、これ以下では、他の合金元素を最大限添加したとしても、熱処理後上記の硬さを得ることが難しいためである。また、上限を0.55%としたのは、これ以上含有させると材料の靭性が著しく劣化するためである。
【0018】
Siは耐へたり性向上に効果を有することが知られている。従って、耐へたり性をより向上させるために、本発明ではSi含有量の上限を従来鋼よりも高い値とした。ただし、Siは鋼の表面脱炭を助長する元素であり、3.00%を超えて含有させると、熱処理時の脱炭が無視し得ないものとなる。この場合、表面において上記硬さや残留応力値を得ることが困難となるため、上限をこのように規定した。
【0019】
Mnは焼入性向上に効果を有する元素である。ばねの中心まで十分な焼入・焼もどしを行なうのは、下記Ni等の合金元素による材料の靭性向上効果を十全に発揮させる上で必須の条件である。Mnが0.5%未満では大径のばねの場合、中心まで十分な焼入が得られないため、下限を0.5%とした。しかし、1.5%を超えて含有させても、通常用いられる大きさのばねにおいては焼入性向上効果が飽和するとともに、靭性の劣化が問題となるため、上限を1.5%とした。
【0020】
Niは鋼の靭性向上に効果を有するとともに、鋼の腐食を抑制する効果を有する。腐食の抑制は、上記の通り、腐食ピット生成の防止と、残留応力の減少の防止という両面からばねの腐食疲労強度を向上させる。このようなNiの効果は0.5%以上含有させないと得ることができない。しかし、3%を超えて含有させても、靭性向上効果は飽和する一方、逆に、オーステナイト安定化元素であることから、焼入時にオーステナイトを残留させ、マルテンサイトへの変態を不完全にするおそれがある。また、高価であるため、ばねのコストを大きく押し上げる要因ともなる。従って、上限を3%とした。
【0021】
CrはMn同様、焼入性向上に効果を有するとともに、表面脱炭を抑制する効果を有する。0.1%未満ではこのような効果が殆ど期待できないため、下限を0.1%とした。しかし、1.5%を超えて含有させてもこのような効果が飽和してしまう上、焼もどし組織を不均一にするという弊害が生ずる。このため上限を1.5%とした。
【0022】
Nは鋼中のAlと結合してAlNとなり、微細な粒子として鋼中に析出する。これにより結晶粒の成長が妨げられるため、Nは鋼の結晶粒を微細化するのに大きな効果を有する。このような効果を得るためには0.01%以上のNを含有させる必要がある。しかし、N含有量が多すぎると、鋼の製造時(凝固・冷却時)に鋼中でN2ガスとして発生し、鋼の内質を劣化させる。従って、その上限を0.025%とした。
【0023】
Vは、Cと結合して微細なVC(炭化バナジウム)として鋼中に析出し、上記AlNと同様に結晶粒を微細化させて鋼の靭性を高める。また、このような微細炭化物を鋼中に多数分散させることにより、外部から侵入したH(水素)が集積する場所を分散させ、上記遅れ破壊の生成を抑制することができる。このような効果を得るためには、Vを0.05%以上含有させる必要がある。しかし、0.5%を超えて含有させると、VCの析出サイトの数が増加することなく、VCが肥大化するだけとなってしまい、そのような効果が得られなくなる。従って上限を0.5%とした。
【0024】
Pは、鋼の靭性を低下させる。従って、その含有量を0.01%以下とすることにより、材料の靭性を向上させ、ひいては本発明に係るばねの腐食疲労強度を向上させる効果が得られる。特に、本発明は冷間成形ばねを対象とするものであるため、靭性の向上は特に重要なものとなる。
【0025】
Sは鋼中でMnと結合して鋼に不溶のMnSとなる。MnSは塑性変形しやすいため、圧延等により延伸して衝撃・疲労等による破壊の起点となりやすい。そこで、本発明ではSの上限を0.01%とすることにより、硬さが上昇したときの靭性及び耐疲労性が従来並みとなるようにした。
【0026】
図1に、日本工業規格(JIS)に規定されている弁ばね用クロムバナジウム鋼オイルテンパー線(SWOCV-V:JIS G3565)、弁ばね用シリコンクロム鋼オイルテンパー線(SWOSC-V:JIS G3566)、及び従来より小型ばねを中心とした冷間コイルばね材として多く用いられているSAE(米国自動車技術者協会)9254鋼の化学成分範囲と本発明の成分範囲を対比して掲げる。この表から明らかな通り、本発明に係るオイルテンパー線は従来のオイルテンパー線や冷間成形ばね用鋼と比較しても炭素含有量が全体として低くなっている一方、シリコン含有量が非常に高くなっている。このため、鋼のオーステナイト(Ac3)変態点が高くなり、一般的に短時間加熱である高周波誘導加熱処理には適切な条件設定が必要となる。
【0027】
高周波誘導加熱処理前に所定減面率で伸線加工を施すこと、及び前処理組織中のフェライト分率を50%以下とすることと定めたのは、そのためである。これらの処理により、高周波誘導加熱処理によっても十分なオーステナイト化が成され、上記熱間成形ばねと同様の性能を確保することが可能となる。
【0028】
加熱時間が短くても十分なオーステナイト化を達成するためには、加熱温度を上昇させる方法もある。しかし、過度の温度上昇はオーステナイト結晶粒の粗大化を招き、鋼の靭性を損なう可能性がある。そこで、本発明では、最高加熱温度についても規制を行い、高周波誘導熱処理時の最高加熱温度を1020℃以下とすることにした。この最高加熱温度は、望ましくは950℃以下とする。ただし、900℃以下ではオーステナイト化が不十分となるおそれがある。また、その最高加熱温度での保持時間ももちろんオーステナイト化と結晶粒の粗大化に大きな影響を与えるため、本発明では後述の基礎実験の結果に基づき、その時間を5〜20秒とした。
【0029】
上記成分範囲の鋼をこのような条件下で熱処理することにより、結晶粒の粗大化は自ずと抑えられるが、結晶粒度番号9以上とすることにより、冷間成形ばねとしての性能(特に耐腐食疲労性)はより確実に保証されるようになる。
【0030】
一方、加熱前の素材の表面にフェライト脱炭層が存在する場合がある。このようなフェライト脱炭層は、通常はそのままばねの表面に移行して、ばねの耐久性(耐疲労性)を著しく損なう。そこで、加熱前の素材の表面にフェライト脱炭層が存在する場合は、高周波誘導熱処理時の最高加熱温度を940℃以上とすることが望ましい。これにより、後述するように、素材の表面脱炭層深さが減少し、又は完全に解消される。
【0031】
引張強さを1830〜1980MPaとしたのは、この範囲未満の強さでは懸架ばねとして要求される耐久性を満たさないためであり、この範囲を超えると靭性の低下の悪影響が著しくなるためである。
【0032】
【実施例】
まず、熱処理条件を定めるために行った基礎実験の結果を述べる。基礎実験は、従来の冷間成形ばね用鋼であるSAE9254鋼を比較材として行った。図2に示す成分を有する鋼を溶製した後、図3に示すような小型試験片を作成し、焼入れをシミュレートした図4に示すようなヒートパターンで熱処理を施した。
【0033】
最初に、最高加熱温度Tmaxを900〜980℃の間で20℃刻みで5段階に変化させ、また、加熱保持時間thを5、10、20秒の3段階に変化させて図4のパターンの熱処理を行い、各条件下での試験片の内部硬さ(Hv20kg)及び旧オーステナイト結晶粒の粒度番号(JIS-G0551)を測定した。その結果(Time-Temperature-Austenitizing=TTA線図)を図5に示す。
【0034】
図5において加熱保持時間に着目すると、加熱保持時間thが5〜20秒の間では、内部硬さ、旧オーステナイト結晶粒度の間に顕著な差は見られず、この加熱保持時間の範囲内では、短時間熱処理に対する加熱保持時間の影響が少ないことがわかる。
【0035】
一方、加熱温度に着目すると、加熱温度が上昇しても内部硬さにはあまり変化が見られないが、粒度番号が小さくなっている(結晶粒が大きくなっている)ことがわかる。
【0036】
比較材であるSAE9254鋼の同様のグラフを図6に示す(川崎他,日本熱処理技術協会「熱処理」20(1980), pp. 281-288)。両者は加熱速度が異なるものの、それによるオーステナイト変態温度(Ac3点)の変化は約10℃程度(加熱速度の大きい比較材の方がAc3点が高くなる)と見込まれるので、それを考慮に入れても、本発明材の方が結晶粒度番号で2程度細かくなっている。これは、本発明材の方がAc3点が高いこと、及び、本発明材が含有するVの微細炭化物によるピン止め効果によるものと思われる。
【0037】
図5のTTA線図より、オーステナイト化の点で最も厳しい条件である最高加熱温度Tmax=900℃、加熱保持時間th=5秒という熱処理条件で熱処理を行い、表面からの硬さ分布を測定した結果を図7に示す。このような厳しい熱処理条件においても、本発明材では内部まで均一な硬さが得られていることがわかる。顕微鏡組織を観察しても、中心部まで正常なマルテンサイト組織となっていることが確認された。
【0038】
次に、高周波熱処理の前の組織(特にフェライト分率)が短時間熱処理に及ぼす影響を確認するため、本発明材について、熱処理によりフェライト分率が30%の試料と35%の試料を作成した。それらについて最高加熱温度Tmax=900〜980℃、加熱保持時間th=5秒の条件で図4のヒートパターンの熱処理を行った後、内部硬さと旧オーステナイト結晶粒度を測定した。その結果は図8及び図9に示す通り、フェライト分率が50%以下では前処理組織の影響はほとんど無いことが確認された。
【0039】
さらに、高周波熱処理の前の素材表面のフェライト脱炭層と高周波熱処理温度の関係を確認するため、本発明材について、表面に0.03mmのフェライト脱炭層が存在する試料を作成した。それについて最高加熱温度Tmax=900〜1000℃、加熱保持時間th=17.5秒の条件で図4のヒートパターンの熱処理を行った後、表面のフェライト脱炭深さを測定した。その結果は、図17及び図18に示す通り、加熱前に存在したフェライト脱炭層が、加熱温度940℃まではそのまま存在しているが、970℃にすることにより半分の0.015mmとなり、加熱温度を1000℃まで上げるとほぼ完全に消滅した。
【0040】
これは、加熱前の材料において表面にフェライト脱炭層が存在していても、通常よりも高い温度で短時間高周波誘導加熱を行うことにより、内部の炭素が拡散して表面のフェライト部に溶けこみ、フェライト脱炭層が減少又は解消されたものと考えられる。従来より、高周波誘導加熱は急速且つ短時間加熱であるために表面脱炭が少ないという利点が知られているが、本発明者らは、本発明に係る条件で加熱を行うことにより、既存の脱炭を解消して復炭することさえも可能であることを確認することができた。
【0041】
以上の基礎実験の結果を踏まえ、コイルばねによる耐久性等の実験を行った。本発明材については、図10(a)に示す工程でまず高周波加熱によるオイルテンパー線を作製し、そのオイルテンパー線より図10(b)に示す工程でコイルばねを作製した。なお、コイリングはもちろん冷間で行った。作製したコイルばねの諸元は図11に示す通りである。なお、比較材については、炉加熱によりオイルテンパー線を作製し、熱間成形で同一諸元のコイルばねを作製した。
【0042】
まず、図10(a)に示す工程の後、すなわちオイルテンパー線の状態での表面硬さ分布を測定した。その結果は図12に示す通りであり、高周波加熱による本発明材は、やはり表面脱炭による硬さの低下が最小限に抑えられている。
【0043】
図10(b)に示す工程でコイルばねを作製した後の表面圧縮残留応力の分布を測定した結果を図13に示す。本発明材はいずれの深さにおいても比較材よりも100〜200MPa程残留応力が大きくなっている。これは、図12に示す表面脱炭の影響が現れているものと思われる。
【0044】
発明材コイルばねと比較材コイルばねについて、平均応力τm=735MPa、応力振幅τa=550MPaの応力条件で疲労耐久試験を行った。その結果は図14に示す通り、本発明材は30万回の耐久寿命を有し、28万回である比較材とほぼ同等の耐久性を有することが確認された。
【0045】
次に、腐食疲労試験を行った。コイルばねの外側表面に0.4mmのピットを形成し、塩水で腐食させた後、平均応力τm=735MPa、応力振幅τa=196MPaの応力条件で疲労耐久試験を行った。その結果、図15に示すように、腐食疲労特性においても本発明材は比較材とほぼ同等の性能を有することが認められた。
【0046】
最後に、耐へたり性試験を行った。供試コイルばねを、表面の最大せん断応力が1200MPaとなるように締め付け、80℃の環境下に96時間置いて、へたりを生じさせた。この試験前後の自由高さの差より表面の残留せん断歪を算出した結果が図16である。耐へたり性においては、本発明材は比較材よりもやや良好な結果を出している。これは、鋼のシリコン成分が高いことのほか、熱処理の前の組織のコントロールが効果を奏しているものと思われる。
このように熱間コイルばね材に比べ遜色ない性能を有する冷間コイルばね材が提供できた。
【図面の簡単な説明】
【図1】 本発明の素材鋼と、従来のオイルテンパー線及び冷間成形コイルばね用鋼の成分範囲の表。
【図2】 実験を行った本発明材と比較材の素材鋼の化学成分の表。
【図3】 熱処理基礎実験で用いた試験片の形状及び寸法図。
【図4】 熱処理基礎実験で行った熱処理のヒートパターンの図。
【図5】 本発明材の熱処理基礎実験の結果を示すTTA図。
【図6】 比較材のTTA線図。
【図7】 本発明材を最も厳しい条件でオーステナイト化した場合の内部硬さ分布を示すグラフ。
【図8】 熱処理前のフェライト分率をパラメータとした、最高加熱温度と内部硬さの関係を示すグラフ。
【図9】 熱処理前のフェライト分率をパラメータとした、最高加熱温度と結晶粒度番号の関係を示すグラフ。
【図10】 試験を行ったオイルテンパー線及び冷間成形コイルばねの製造工程を示す工程図。
【図11】 試験を行ったコイルばねの諸元の表。
【図12】 オイルテンパー線の状態における本発明材及び比較材の表面硬さ分布のグラフ。
【図13】 コイルばねの状態における本発明材及び比較材の表面圧縮残留応力分布のグラフ。
【図14】 本発明材と比較材の耐久疲労試験結果の図。
【図15】 本発明材と比較材の人工ピット腐食疲労試験結果の図。
【図16】 本発明材と比較材の締め付けへたり試験結果の図。
【図17】 最高加熱温度とフェライト脱炭深さの関係を示すグラフ。
【図18】 最高加熱温度とフェライト脱炭深さの関係を示す表面組織顕微鏡写真。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an oil tempered wire used as a material for a cold-formed coil spring, and a cold-formed coil spring manufactured using the same.
[0002]
[Prior art]
In recent years, demands for improving fuel efficiency of automobiles are increasing from the viewpoint of resource and environmental problems. Along with this, the demand for weight reduction is particularly strong for suspension springs, which are automobile parts that are relatively heavy as a single unit. Of course, the demand for such weight reduction has been constantly given, and the former has responded to such demand mainly by increasing the use stress of the spring (high stress). In order to increase the operating stress of the spring, it is necessary to increase the strength (hardness) of the material. Therefore, as a measure for reducing the weight of conventional springs, the main focus has been on increasing the hardness of the material.
[0003]
However, this has a concern of adversely affecting corrosion fatigue. Therefore, high strength springs (hereinafter referred to as hot springs) by hot forming that emphasize weight reduction and corrosion fatigue strength have been developed and used. One of them is made of steel with a low carbon content and a slightly high silicon content (for example, JP-A-11-241143).
[0004]
On the other hand, as a material for cold coil springs (hereinafter referred to as “cold springs”), mainly small springs, SAE (American Automotive Engineers Association) standard 9254 steel is used as a material, and high-frequency short-time induction heating is used. What gave the process (henceforth a short time heat processing) is used. This short-time heat treatment is a heat treatment method characterized by rapid and short-time heating by direct heating (self-heating) using high-frequency induction heating, and has the advantage that fine structure and crystal grains can be obtained and surface decarburization is low. There is.
[0005]
[Problems to be solved by the invention]
Although the above-mentioned low carbon and high silicon steel can obtain high performance as a hot-formed spring by performing sufficient heat treatment, it is difficult to ensure sufficient heat treatment by high-frequency short-time induction heat treatment. Yes, it is difficult to obtain the same performance as a hot-formed spring.
[0006]
As a result of intensive studies, the present inventors have found a high-frequency induction heating condition suitable for the low-carbon / high-silicon steel material. Thus, an oil tempered wire for a cold-formed coil spring having performance equal to or higher than that of a hot-formed coil spring, and a cold-formed spring using the same are provided.
[0007]
[Means for Solving the Problems]
The manufacturing method of the oil-tempered wire for cold-formed coil springs according to the present invention is as follows: C: 0.35-0.55%, Si: 1.8-3.0%, Mn: 0.5- A steel containing 1.5%, Ni: 0.5-3.0%, Cr: 0.1-1.5% , the balance being Fe and inevitable impurities, is subjected to heat treatment by high frequency induction heating It is characterized by that.
[0008]
This material further contains N: 0.01 to 0.025%, V: 0.05 to 0.5%, P: 0.01% or less, and S: 0.01% or less. Good.
[0009]
Before the high-frequency induction heating described above, it is desirable to wire a wire produced by hot rolling at a predetermined area reduction rate by cold working. At that time, it is desirable that the ferrite fraction in the steel structure be 50% or less. Furthermore, in high frequency induction heating, the maximum heating temperature is desirably in the range of 900 ° C. to 1020 ° C. The holding time at the maximum heating temperature is desirably 5 to 20 seconds. And as a raw material after performing an oil temper process on such conditions, it is desirable to make the crystal grain size number 9 or more and to make the tensile strength 1830-1980 MPa.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The steel used as a raw material in the present invention is substantially the same as that described in JP-A-11-241143. The basic concept of the component design is to improve the corrosion fatigue strength as described in the publication.
[0011]
That is, with respect to sag, sag can generally be effectively reduced by increasing the hardness of the material. Under ideal conditions, although there is a limit, an increase in the hardness of the material leads to an improvement in fatigue resistance. However, for example, a spring for automobile suspension is attached to a place where water, mud, etc. are most likely to adhere to the body of an automobile, so in consideration of actual use, the corrosion problem must be considered first. Don't be. This is because corrosion forms pits (micro holes) on the surface of the spring and causes fatigue failure starting from this.
[0012]
The main causes of fracture due to corrosion fatigue are (1) delayed fracture phenomenon of steel, (2) generation of surface pits (micro holes) due to corrosion, and (3) decrease in residual stress value due to long-term use. Conceivable.
[0013]
Delayed fracture is a phenomenon peculiar to high-strength steel, and when stress is applied to the steel, hydrogen penetrates into the steel from moisture adhering to the surface and water vapor in the atmosphere, causing grain boundaries, precipitates and The pressure is increased by accumulating in irregular parts such as the boundary between the micro crack and finally the fracture. In recent years, the strength of materials used for various springs has been increasing, and during use, higher stress is applied than before, and as described above, it is used in an environment where moisture and the like are likely to adhere. In order to improve the corrosion fatigue strength, it is necessary to fully consider the delayed fracture characteristics of the material.
[0014]
Surface pits due to corrosion become a source of stress concentration and significantly reduce fatigue strength. For this, one measure is to generate corrosion pits as little as possible, or to generate stress pits in a form that reduces stress concentration as much as possible. Even so, it is important to take measures on the material side so that cracks do not easily occur.
[0015]
In the case of a spring, the residual stress is applied by shot peening. To explain it in detail, when the surface is plastically deformed by shot peening, the degree of deformation differs from the lower part where plastic deformation does not occur. And the resulting strain creates compressive residual stresses on the surface. Therefore, when the surface layer is removed by corrosion or a microcrack is generated on the surface, the strain is reduced and the residual stress value is reduced.
[0016]
Although the said component range was determined based on the above point, the reason for having determined the lower limit value and the upper limit value of each chemical component range as described above is as follows.
[0017]
First, the C content was set in a range lower than that of JIS-SUP7 steel, which is most commonly used as a hot forming spring steel, or a material steel of various oil tempered wires. This is because when the hardness (strength) is the same, the toughness is improved by decreasing the C content and increasing the alloy element content, rather than increasing the C content. The improvement of toughness greatly contributes to the improvement of the corrosion fatigue strength aimed by the present invention by reducing the generation and propagation rate of fatigue cracks from the corrosion pits. The reason why the lower limit of the C content is set to 0.35% is that below this, it is difficult to obtain the above hardness after heat treatment even if other alloy elements are added to the maximum. Further, the upper limit is set to 0.55% because the toughness of the material is remarkably deteriorated when it is contained more than this.
[0018]
It is known that Si has an effect for improving sag resistance. Therefore, in order to further improve the sag resistance, the upper limit of the Si content is set to a value higher than that of the conventional steel in the present invention. However, Si is an element that promotes the surface decarburization of steel, and if it exceeds 3.00%, decarburization at the time of heat treatment cannot be ignored. In this case, since it is difficult to obtain the hardness and residual stress value on the surface, the upper limit is defined in this way.
[0019]
Mn is an element that has an effect on improving hardenability. Sufficient quenching and tempering to the center of the spring is an indispensable condition for fully exhibiting the effect of improving the toughness of the material by alloy elements such as Ni described below. When Mn is less than 0.5%, in the case of a large diameter spring, sufficient quenching to the center cannot be obtained, so the lower limit was made 0.5%. However, even if the content exceeds 1.5%, the effect of improving the hardenability is saturated and the toughness deterioration becomes a problem in a spring having a size normally used. Therefore, the upper limit is set to 1.5%. .
[0020]
Ni has an effect of improving the toughness of the steel and has an effect of suppressing the corrosion of the steel. As described above, the suppression of corrosion improves the corrosion fatigue strength of the spring in terms of both preventing the formation of corrosion pits and preventing the reduction of residual stress. Such an effect of Ni cannot be obtained unless it contains 0.5% or more. However, even if the content exceeds 3%, the effect of improving toughness is saturated, but conversely, since it is an austenite stabilizing element, austenite remains at the time of quenching, and the transformation to martensite becomes incomplete. There is a fear. Moreover, since it is expensive, it becomes a factor which pushes up the cost of a spring largely. Therefore, the upper limit was made 3%.
[0021]
Cr, like Mn, has an effect of improving hardenability and an effect of suppressing surface decarburization. If less than 0.1%, such an effect can hardly be expected, so the lower limit was made 0.1%. However, even if the content exceeds 1.5%, such an effect is saturated, and the tempered structure becomes non-uniform. For this reason, the upper limit was made 1.5%.
[0022]
N combines with Al in the steel to become AlN and precipitates in the steel as fine particles. Since this prevents the growth of crystal grains, N has a great effect in refining the crystal grains of steel. In order to obtain such an effect, it is necessary to contain 0.01% or more of N. However, when the N content is too large, in the production of steel (during solidification and cooling) occurs as N 2 gas in steel, deteriorating the inner quality of the steel. Therefore, the upper limit was made 0.025%.
[0023]
V combines with C and precipitates as fine VC (vanadium carbide) in the steel, and refines the crystal grains in the same manner as the AlN to increase the toughness of the steel. Further, by dispersing a large number of such fine carbides in the steel, it is possible to disperse the places where H (hydrogen) that has entered from the outside accumulates, and to suppress the generation of delayed fracture. In order to acquire such an effect, it is necessary to contain V 0.05% or more. However, if the content exceeds 0.5%, the number of VC precipitation sites does not increase, and the VC is merely enlarged, and such an effect cannot be obtained. Therefore, the upper limit was made 0.5%.
[0024]
P decreases the toughness of the steel. Therefore, by setting the content to 0.01% or less, it is possible to improve the toughness of the material, and thus improve the corrosion fatigue strength of the spring according to the present invention. In particular, since the present invention is intended for cold-formed springs, the improvement in toughness is particularly important.
[0025]
S combines with Mn in steel to form MnS insoluble in steel. Since MnS is easily plastically deformed, it is easily stretched by rolling or the like, and tends to be a starting point of fracture due to impact, fatigue, or the like. Therefore, in the present invention, by setting the upper limit of S to 0.01%, the toughness and fatigue resistance when the hardness is increased are made to be the same as the conventional one.
[0026]
Fig. 1 shows chrome vanadium steel oil temper wire for valve springs (SWOCV-V: JIS G3565) and silicon chrome steel oil temper wire for valve springs (SWOSC-V: JIS G3566) stipulated in Japanese Industrial Standards (JIS). The chemical component range of SAE (American Automotive Engineers Association) 9254 steel, which has been widely used as a cold coil spring material centering on small springs, is compared with the component range of the present invention. As is apparent from this table, the oil tempered wire according to the present invention has a low carbon content as a whole compared to conventional oil tempered wires and cold forming spring steel, while the silicon content is very high. It is high. For this reason, the austenite (A c3 ) transformation point of steel becomes high, and it is necessary to set appropriate conditions for high-frequency induction heat treatment that is generally short-time heating.
[0027]
For this reason, it has been determined that the wire drawing is performed at a predetermined area reduction before the high frequency induction heat treatment, and that the ferrite fraction in the pretreated structure is 50% or less. By these treatments, sufficient austenitization is achieved also by high-frequency induction heat treatment, and it is possible to ensure the same performance as the hot-formed spring.
[0028]
In order to achieve sufficient austenitization even when the heating time is short, there is a method of increasing the heating temperature. However, excessive temperature rise leads to coarsening of austenite crystal grains, which may impair the toughness of steel. Therefore, in the present invention, the maximum heating temperature is also regulated, and the maximum heating temperature during high-frequency induction heat treatment is set to 1020 ° C. or lower. The maximum heating temperature is desirably 950 ° C. or lower. However, at 900 ° C. or lower, austenitization may be insufficient. In addition, since the holding time at the maximum heating temperature also has a great influence on austenitization and coarsening of crystal grains, of course, in the present invention, the time is set to 5 to 20 seconds based on the result of a basic experiment described later.
[0029]
By heat-treating the steel in the above component range under such conditions, coarsening of crystal grains is naturally suppressed, but by making the grain size number 9 or more, the performance as a cold-formed spring (especially corrosion fatigue) Gender) will be guaranteed more reliably.
[0030]
On the other hand, a ferrite decarburized layer may exist on the surface of the material before heating. Such a ferrite decarburized layer usually moves directly to the surface of the spring as it is and significantly deteriorates the durability (fatigue resistance) of the spring. Therefore, when a ferrite decarburized layer is present on the surface of the material before heating, it is desirable that the maximum heating temperature during high-frequency induction heat treatment be 940 ° C. or higher. Thereby, as will be described later, the surface decarburization layer depth of the material is reduced or completely eliminated.
[0031]
The reason why the tensile strength is set to 1830 to 1980 MPa is that if the strength is less than this range, the durability required as a suspension spring is not satisfied, and if this range is exceeded, the adverse effect of the decrease in toughness becomes remarkable. .
[0032]
【Example】
First, the results of a basic experiment conducted to determine the heat treatment conditions will be described. The basic experiment was conducted using SAE9254 steel, which is a conventional steel for cold forming springs, as a comparative material. After melting the steel having the components shown in FIG. 2, a small test piece as shown in FIG. 3 was prepared and heat-treated with a heat pattern as shown in FIG. 4 simulating quenching.
[0033]
First, the maximum heating temperature T max is changed in five steps in increments of 20 ° C. between 900 and 980 ° C., and the heating holding time t h is changed in three steps of 5, 10 and 20 seconds, as shown in FIG. The pattern was heat-treated, and the internal hardness (Hv 20 kg) of the test piece and the grain size number (JIS-G0551) of the prior austenite crystal grains were measured under each condition. The result (Time-Temperature-Austenitizing = TTA diagram) is shown in FIG.
[0034]
When attention is paid to the heating and holding time in FIG. 5, when the heating and holding time t h is 5 to 20 seconds, there is no significant difference between the internal hardness and the prior austenite crystal grain size. Thus, it can be seen that the influence of the heat holding time on the short-time heat treatment is small.
[0035]
On the other hand, paying attention to the heating temperature, it can be seen that although the internal hardness does not change much even when the heating temperature rises, the grain size number is small (the crystal grains are large).
[0036]
A similar graph of SAE9254 steel, a comparative material, is shown in FIG. 6 (Kawasaki et al., Japan Heat Treatment Technology Association “Heat Treatment” 20 (1980), pp. 281-288). Although both have different heating rates, the change in the austenite transformation temperature ( Ac3 point) is expected to be about 10 ℃ (comparative materials with higher heating rates have higher Ac3 points). Even if it is included, the material of the present invention is finer by about 2 in crystal grain size number. This is presumably due to the fact that the inventive material has a higher Ac3 point and the pinning effect due to the fine carbides of V contained in the inventive material.
[0037]
From the TTA diagram of Fig. 5, heat treatment is performed under the heat treatment conditions of maximum heating temperature T max = 900 ° C and heating holding time t h = 5 seconds, which are the most severe conditions in terms of austenitization, and the hardness distribution from the surface is determined. The measurement results are shown in FIG. It can be seen that even under such severe heat treatment conditions, the material of the present invention has a uniform hardness up to the inside. Even when the microscopic structure was observed, it was confirmed that a normal martensitic structure was obtained up to the center.
[0038]
Next, in order to confirm the influence of the structure (especially ferrite fraction) before induction heat treatment on the heat treatment for a short time, a sample with a ferrite fraction of 30% and a sample with 35% were prepared by heat treatment for the material of the present invention. . Maximum heating temperature T max = 900~980 ℃ about them, after the heat treatment heat pattern of Figure 4 under the conditions of heating and holding time t h = 5 seconds was measured internal hardness and austenite grain size. As a result, as shown in FIGS. 8 and 9, it was confirmed that there was almost no influence of the pretreated structure when the ferrite fraction was 50% or less.
[0039]
Furthermore, in order to confirm the relationship between the ferrite decarburization layer on the surface of the material before induction heat treatment and the induction heat treatment temperature, a sample having a 0.03 mm ferrite decarburization layer on the surface was prepared for the material of the present invention. Then, after heat treatment of the heat pattern shown in FIG. 4 under the conditions of maximum heating temperature T max = 900 to 1000 ° C. and heating holding time t h = 17.5 seconds, the surface ferrite decarburization depth was measured. As a result, as shown in FIG. 17 and FIG. 18, the ferrite decarburized layer that existed before the heating exists as it is until the heating temperature of 940 ° C., but by setting it to 970 ° C., it becomes half 0.015 mm, When the temperature was raised to 1000 ° C, it disappeared almost completely.
[0040]
This is because even if there is a ferrite decarburized layer on the surface of the material before heating, high-frequency induction heating is performed at a temperature higher than usual for a short time, so that the internal carbon diffuses and dissolves in the ferrite portion on the surface. It is thought that the ferrite decarburized layer was reduced or eliminated. Conventionally, high-frequency induction heating is known to have an advantage that surface decarburization is low because it is rapid and short-time heating, but the present inventors have been able to perform heating under the conditions according to the present invention. It was confirmed that it was possible to eliminate decarburization and even re-coalize.
[0041]
Based on the results of the above basic experiment, experiments such as durability with a coil spring were conducted. With respect to the material of the present invention, an oil tempered wire was first produced by high-frequency heating in the step shown in FIG. 10 (a), and a coil spring was produced from the oil tempered wire in the step shown in FIG. 10 (b). Of course, coiling was performed cold. The specifications of the produced coil spring are as shown in FIG. In addition, about the comparative material, the oil temper wire was produced by furnace heating and the coil spring of the same specification was produced by hot forming.
[0042]
First, the surface hardness distribution was measured after the step shown in FIG. 10A, that is, in the state of an oil tempered wire. The result is as shown in FIG. 12, and the material of the present invention by high-frequency heating is also kept to a minimum in hardness reduction due to surface decarburization.
[0043]
FIG. 13 shows the result of measuring the distribution of the surface compressive residual stress after the coil spring was produced in the step shown in FIG. The present invention material has a residual stress of about 100 to 200 MPa greater than that of the comparative material at any depth. This seems to be due to the effect of surface decarburization shown in FIG.
[0044]
A fatigue endurance test was conducted on the inventive material coil spring and the comparative material coil spring under the stress conditions of mean stress τm = 735 MPa and stress amplitude τa = 550 MPa. As a result, as shown in FIG. 14, it was confirmed that the material of the present invention has a durability life of 300,000 times and substantially the same durability as the comparative material of 280,000 times.
[0045]
Next, a corrosion fatigue test was performed. After forming 0.4 mm pits on the outer surface of the coil spring and corroding with salt water, a fatigue endurance test was conducted under the stress conditions of average stress τm = 735 MPa and stress amplitude τa = 196 MPa. As a result, as shown in FIG. 15, it was confirmed that the material of the present invention has almost the same performance as the comparative material in the corrosion fatigue characteristics.
[0046]
Finally, a sag resistance test was performed. The test coil spring was clamped so that the maximum shear stress on the surface was 1200 MPa, and was placed in an environment of 80 ° C. for 96 hours to cause sag. FIG. 16 shows the result of calculating the residual shear strain on the surface from the difference in free height before and after the test. In terms of sag resistance, the inventive material gives slightly better results than the comparative material. This seems to be because the control of the structure before the heat treatment is effective in addition to the high silicon content of the steel.
Thus, a cold coil spring material having performance comparable to that of a hot coil spring material could be provided.
[Brief description of the drawings]
FIG. 1 is a table showing the component ranges of a material steel of the present invention, a conventional oil temper wire and a steel for cold forming coil springs.
FIG. 2 is a table of chemical components of the material steel of the present invention and the comparative material that were tested.
FIG. 3 shows the shape and dimensions of a test piece used in a heat treatment basic experiment.
FIG. 4 is a heat pattern diagram of heat treatment performed in a heat treatment basic experiment.
FIG. 5 is a TTA diagram showing the results of a heat treatment basic experiment of the material of the present invention.
FIG. 6 is a TTA diagram of a comparative material.
FIG. 7 is a graph showing an internal hardness distribution when the material of the present invention is austenitized under the most severe conditions.
FIG. 8 is a graph showing the relationship between the maximum heating temperature and internal hardness using the ferrite fraction before heat treatment as a parameter.
FIG. 9 is a graph showing the relationship between the maximum heating temperature and the grain size number, using the ferrite fraction before heat treatment as a parameter.
FIG. 10 is a process diagram showing a manufacturing process of a tested oil tempered wire and a cold-formed coil spring.
FIG. 11 is a table of specifications of a coil spring that was tested.
FIG. 12 is a graph of surface hardness distribution of the material of the present invention and the comparative material in the state of oil tempered wires.
FIG. 13 is a graph of surface compressive residual stress distribution of the material of the present invention and the comparative material in the state of a coil spring.
FIG. 14 is a diagram of durability fatigue test results of the present invention material and the comparative material.
FIG. 15 is a diagram of the results of an artificial pit corrosion fatigue test of the material of the present invention and a comparative material.
FIG. 16 is a diagram of a tightening test result of the material of the present invention and a comparative material.
FIG. 17 is a graph showing the relationship between maximum heating temperature and ferrite decarburization depth.
FIG. 18 is a surface structure micrograph showing the relationship between maximum heating temperature and ferrite decarburization depth.

Claims (7)

重量比にしてC:0.35〜0.55%、Si:1.8〜3.0%、Mn:0.5〜1.5%、Ni:0.5〜3.0%、Cr:0.1〜1.5%を含有し、残部がFe及び不可避不純物からなる鋼を素材とし、
上記素材を熱間圧延により所定径の線材とし、冷間加工により所定の減面率で伸線して鋼組織中のフェライト分率を50%以下とした後、高周波誘導加熱による熱処理を行うことを特徴とする冷間成形コイルばね用オイルテンパー線の製造方法
C: 0.35-0.55%, Si: 1.8-3.0%, Mn: 0.5-1.5%, Ni: 0.5-3.0%, Cr: Containing 0.1-1.5% , the balance being steel consisting of Fe and inevitable impurities ,
The above material is hot rolled into a wire with a predetermined diameter, drawn with a predetermined reduction in area by cold working to reduce the ferrite fraction in the steel structure to 50% or less, and then subjected to heat treatment by high frequency induction heating. A method for producing an oil tempered wire for cold-formed coil springs.
上記高周波誘導加熱の最高加熱温度を940℃以上1020℃以下とすることを特徴とする請求項1に記載の冷間成形コイルばね用オイルテンパー線の製造方法2. The method for producing an oil tempered wire for a cold-formed coil spring according to claim 1, wherein the maximum heating temperature of the high-frequency induction heating is 940 ° C. or more and 1020 ° C. or less . 上記高周波誘導加熱の最高加熱温度における保持時間を5秒以上20秒以下とすることを特徴とする請求項1又は2に記載の冷間成形コイルばね用オイルテンパー線の製造方法The method for producing an oil tempered wire for a cold-formed coil spring according to claim 1 or 2, wherein the holding time at the maximum heating temperature of the high-frequency induction heating is 5 seconds or more and 20 seconds or less . 熱処理後の結晶粒度番号を9以上としたことを特徴とする請求項1〜3のいずれかに記載の冷間成形コイルばね用オイルテンパー線の製造方法The method for producing an oil tempered wire for a cold-formed coil spring according to any one of claims 1 to 3, wherein the grain size number after the heat treatment is 9 or more. 熱処理後の引張強さを1830〜1980MPaとしたことを特徴とする請求項1〜4のいずれかに記載の冷間成形コイルばね用オイルテンパー線の製造方法The tensile strength after heat processing was 1830-1980 MPa , The manufacturing method of the oil-tempered wire for cold forming coil springs in any one of Claims 1-4 characterized by the above-mentioned. 上記素材が更に、N:0.01〜0.025%、V:0.05〜0.5%を含有し、P:0.01%以下、S:0.01%以下、残部がFe及び不可避不純物からなるものであることを特徴とする請求項1〜5のいずれかに記載の冷間成形コイルばね用オイルテンパー線の製造方法The material further contains N: 0.01 to 0.025%, V: 0.05 to 0.5%, P: 0.01% or less, S: 0.01% or less, the balance being Fe and The method for producing an oil tempered wire for a cold-formed coil spring according to any one of claims 1 to 5, wherein the method comprises an inevitable impurity . 高周波誘導加熱により、高周波誘導加熱前に存在していた表面フェライト脱炭層を解消する請求項1〜6のいずれかに記載の冷間成形コイルばね用オイルテンパー線の製造方法 The manufacturing method of the oil-tempered wire for cold forming coil springs in any one of Claims 1-6 which eliminates the surface ferrite decarburization layer which existed before the high frequency induction heating by high frequency induction heating.
JP2002074142A 2001-06-07 2002-03-18 Manufacturing method of oil tempered wire for cold forming coil spring Expired - Fee Related JP3872364B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002074142A JP3872364B2 (en) 2001-06-07 2002-03-18 Manufacturing method of oil tempered wire for cold forming coil spring
US10/385,656 US20040079067A1 (en) 2002-03-18 2003-03-12 Oil tempered wire for cold forming coil springs
US11/086,410 US7407555B2 (en) 2001-06-07 2005-03-23 Oil tempered wire for cold forming coil springs

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001172307 2001-06-07
JP2001-172307 2001-06-07
JP2002074142A JP3872364B2 (en) 2001-06-07 2002-03-18 Manufacturing method of oil tempered wire for cold forming coil spring

Publications (2)

Publication Number Publication Date
JP2003055741A JP2003055741A (en) 2003-02-26
JP3872364B2 true JP3872364B2 (en) 2007-01-24

Family

ID=26616505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002074142A Expired - Fee Related JP3872364B2 (en) 2001-06-07 2002-03-18 Manufacturing method of oil tempered wire for cold forming coil spring

Country Status (1)

Country Link
JP (1) JP3872364B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4608242B2 (en) * 2004-06-07 2011-01-12 株式会社神戸製鋼所 Steel for cold bending
JP5001874B2 (en) * 2008-02-22 2012-08-15 中央発條株式会社 Cold forming spring having high fatigue strength and high corrosion fatigue strength, and method for producing spring steel wire
DE102009011118A1 (en) * 2008-11-21 2010-05-27 Muhr Und Bender Kg Tempered spring steel, spring element and method for producing a spring element
JP5064590B1 (en) * 2011-08-11 2012-10-31 日本発條株式会社 Compression coil spring and method of manufacturing the same

Also Published As

Publication number Publication date
JP2003055741A (en) 2003-02-26

Similar Documents

Publication Publication Date Title
EP2058414B1 (en) High-strength spring steel wire, high-strength springs and processes for production of both
EP2374904A1 (en) Steel wire material for spring and its producing method
JP5693126B2 (en) Coil spring and manufacturing method thereof
US7407555B2 (en) Oil tempered wire for cold forming coil springs
KR20000028786A (en) Steel wire for high-strength springs and method of producing the same
US6224686B1 (en) High-strength valve spring and it's manufacturing method
US20070267112A1 (en) Cold-formed spring having high fatigue strength and high corrosion fatigue strength, steel for such spring, and method of manufacturing such spring
JP2003105498A (en) High strength spring, and production method therefor
JPH11241143A (en) Spring improved in corrosion fatigue strength
JP4097151B2 (en) High strength spring steel wire and high strength spring with excellent workability
EP3020841B1 (en) Coil spring, and method for manufacturing same
JPH11246941A (en) High strength valve spring and its manufacture
JP5001874B2 (en) Cold forming spring having high fatigue strength and high corrosion fatigue strength, and method for producing spring steel wire
JP3872364B2 (en) Manufacturing method of oil tempered wire for cold forming coil spring
JP2008106365A (en) Spring with high corrosion resistance and fatigue strength
KR100957306B1 (en) Forging steel using high frequency heat treatment and method for manufacturing the same
CN116724131A (en) High-strength wire rod for cold heading having excellent heat treatment characteristics and hydrogen-induced delayed fracture resistance, heat-treated component, and method for producing same
JPH05331597A (en) Coil spring with high fatigue strength
JPH04247824A (en) Manufacture of high strength spring
JP4175933B2 (en) Nitride steel parts capable of obtaining high surface hardness and deep hardening depth by nitriding for a short time and method for producing the same
JP3142689B2 (en) Spring with excellent fatigue strength
JPH11246943A (en) High strength valve spring and its manufacture
JP2001049337A (en) Production of high strength spring excellent in fatigue strength
JP5523241B2 (en) Spring and manufacturing method thereof
JPS63303036A (en) High-strength steel wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061019

R150 Certificate of patent or registration of utility model

Ref document number: 3872364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees