JP4175933B2 - Nitride steel parts capable of obtaining high surface hardness and deep hardening depth by nitriding for a short time and method for producing the same - Google Patents

Nitride steel parts capable of obtaining high surface hardness and deep hardening depth by nitriding for a short time and method for producing the same Download PDF

Info

Publication number
JP4175933B2
JP4175933B2 JP2003092083A JP2003092083A JP4175933B2 JP 4175933 B2 JP4175933 B2 JP 4175933B2 JP 2003092083 A JP2003092083 A JP 2003092083A JP 2003092083 A JP2003092083 A JP 2003092083A JP 4175933 B2 JP4175933 B2 JP 4175933B2
Authority
JP
Japan
Prior art keywords
nitriding
steel
hardness
surface hardness
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003092083A
Other languages
Japanese (ja)
Other versions
JP2004300472A (en
Inventor
友章 西川
庸 住田
幸夫 伊藤
出 山本
秀雄 相原
修司 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toyota Motor Corp
Aichi Steel Corp
Original Assignee
Nippon Steel Corp
Toyota Motor Corp
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Toyota Motor Corp, Aichi Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003092083A priority Critical patent/JP4175933B2/en
Publication of JP2004300472A publication Critical patent/JP2004300472A/en
Application granted granted Critical
Publication of JP4175933B2 publication Critical patent/JP4175933B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば歯車部品といった自動車等で高面圧が負荷された状態で長時間使用される部位への使用に適し、短時間の窒化処理によって高い表面硬さと深い硬化深さが得られ、かつ冷鍛性にも優れた窒化鋼部品及びその製造方法に関する。
【0002】
【従来の技術】
自動車等省エネへの要求が強い製品に対しては、従来から各構成部品の軽量化のための開発が活発に行われている。その中でも歯車等高い面圧が負荷された状態で長時間継続して使用される部品に対しては、耐摩耗性、耐ピッチング性等で特に厳しい特性が要求されるため、従来からCr鋼、Cr−Mo鋼等の合金鋼に浸炭という表面硬化処理を施して、表面硬度を高め、高い面圧に耐える特性を確保している。これは、高い表面硬度(表面硬度Hv700以上)であって、かつ高面圧に耐えるのに十分な硬化深さ(Hv550以上で0.40mm以上)を得るのに、浸炭処理を実施すれば容易に達成することが可能であるからである。
【0003】
しかしながら、浸炭処理は従来から明らかなように大きな欠点がある。すなわち、変態点を超えた温度での加熱が必須となるために、処理後に熱歪や変態歪が発生し、その状態では部品の接触部の形状が不均一となりノイズの原因となるため、浸炭処理後の仕上加工作業が必要になったりして、品質あるいは生産性の低下、コストアップを招くという問題である。
【0004】
この浸炭処理における歪の問題を解決するための表面硬化方法として、従来から窒化処理が検討されている。窒化法は浸炭処理と異なり変態温度以下(550〜580℃程度)の加熱で処理するため、歪については浸炭処理に比較して小さく抑えられるため、歪の問題を重視しなければならない部品に対しては、従来から積極的に利用されている。
【0005】
しかしながら、通常広く行われている窒化処理方法であるガス窒化処理、ガス軟窒化処理は、浸炭処理に比較して歪を小さく抑えられるという利点がある一方で、その処理によって高い硬さの得られる範囲(Hv400以上の硬さが得られる範囲)は、化合物層及びその直下の非常にわずかな範囲に限られ、その深さは、表面からわずか0.15mm程度(ガス軟窒化処理で通常の処理温度である約570℃×4hrで処理した場合)と浸炭処理に比べかなり浅い。この程度の硬化深さでは、高面圧が継続して負荷される環境では安心して使用できない。そのため、高面圧環境での使用を可能とするために、例えば0.3mmを超える深い硬化深さを得ようとすると、処理時間を大幅に長くする必要があり(10時間以上) 、浸炭処理に比べ長時間の処理となって、生産性が著しく阻害される。従って、浸炭処理で歪が発生して問題となっている部品に対しても、簡単に浸炭処理から窒化処理に変更して問題を解決することができないでいた。
【0006】
このように、窒化処理によって高い表面硬さと深い硬化深さを得るには、浸炭に比べ長時間の処理が必要となるため、できるだけ短時間の処理で高い表面硬さと深い硬化深さの得られる鋼の開発が盛んに行われている。例えば、特許文献1、2等に示される窒化鋼が提案されている。
【0007】
【特許文献1】
特開平5−171347号公報
【特許文献2】
特開平10−306343号公報
【0008】
このうち、特許文献1に記載の発明は、Cr、V、Alを適量添加して軟窒化処理後の表面硬さ、硬化深さの向上を図るとともに、C、Mn量の調整により圧延後の組織をフェライト+パーライトの2相組織として冷鍛性についても優れた特性を確保可能にしたことを特徴とするものである。
【0009】
また、特許文献2に記載の発明は、軟窒化処理後の芯部硬さを改善するために、Cuを添加し、かつ窒化処理後の硬化深さを改善するため、フェライトの平均粒径を40μm以下として、窒化処理中のC、Nの拡散促進を図ったことを特徴とするものである。
【0010】
【発明が解決しようとする課題】
しかしながら、前記した従来の発明には次の問題がある。
前記した特許文献1、2等のように表面硬さと硬化深さを改善する鋼の開発が行われてきたことにより、従来鋼に比べれば窒化特性を改善することができた。しかし、改善されたといっても浸炭処理に比べれば硬化深さの点で依然として劣っている。短時間で深い硬化深さを得るには、浸炭処理の場合と同様であるが、処理温度を高くするという方法があり、それにより、比較的容易に処理時間を短くすることができる。
【0011】
しかしながら、処理温度を高くすると硬化深さを深くする点で効果が大きいものの、生成される窒化物が通常温度での処理に比べ大きく成長し、粗大化するため、得られる表面硬さが低下して、窒化処理による効果が低下するという問題がある。
【0012】
本発明は、通常の窒化処理に比べ高温で処理しても従来鋼に通常温度での窒化処理を行った場合と比較して同等以上の表面硬さを得ることができ、かつ高温で処理したことにより、大幅に処理時間を短縮することのできる窒化鋼部品及びその製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
請求項1の発明は、質量比にしてC:0.05〜0.20%、Si:0.30%未満、Mn:1.00%以下、Cr:0.50〜1.50%、Al:0.040%以下、N:0.0100%以下、Ti:0.50〜1.50%を含有し、かつTi−4×C−3.4N≧0.20を満足し、残部がFe及び不純物元素からなり、焼入処理した後の窒化処理後において、組織が焼もどしマルテンサイト組織からなり、かつ表面硬さがHv650以上、内部硬さがHv150以上であることを特徴とする短時間の窒化処理で高い表面硬さと深い硬化深さの得られる窒化鋼部品である。
【0014】
本発明の特徴は、硬い窒化物を形成するTiを従来の窒化鋼に比べ多量に添加することにより、得られる表面硬さを低下させることなく、高温での窒化処理を可能にしたことと、窒化処理前に焼入処理を施してCが均一に固溶したマルテンサイトからなる組織とすることにより、必要とする内部硬さを確保した点にある。
【0015】
前記したように、窒化処理は、浸炭処理に比べ得られる硬化深さが浅く、浸炭処理に近い硬化深さを得ようとすると、多大な時間が必要であった。一方、処理時間を短縮するために処理温度を高くすると所定の硬化深さを得るために必要な処理時間は短縮できるが、従来鋼や前記した特許文献に記載の提案鋼の場合、必要とする表面硬さが得られなくなるという問題があった。
【0016】
処理温度を高くすると表面硬さが低下する理由は、処理温度を高くすると生成した窒化物が粗大化したり、析出した窒化物の周囲の応力が緩和される等、析出硬化を利用して高強度を得る鋼における析出処理温度を上げすぎた場合に起きる過時効現象と同様な現象が生じているものと推定される。
【0017】
そこで、本発明者等は窒化物のうち、高温で加熱しても窒化物の粗大化が生じにくく、硬さ低下の小さい窒化物を生成できる合金成分が存在しないかについて詳細に調査した。その結果、前記したようなTiの多量添加鋼が従来鋼に比べ高い表面硬さを得ることができること、従来鋼と同様に処理温度を高めることにより、硬度は若干低下するものの、680℃以下の処理温度であれば、Hv650以上の表面硬さを確保できることを見出したものである。
【0018】
但し、本発明鋼の場合、多量にTiを添加しているため、本来マトリックスの強化に効果を発揮するCの大部分がTiと結合してTiCに変化してしまうため、圧延あるいは熱間鍛造等の熱間加工後の内部組織がフェライト単相中にTiCが析出した組織となり、Cが全く強度向上に寄与していない組織になってしまう。このような組織になった場合、窒化により強化される表面部分を除くと、Hv100程度の極めて低い硬さしか得られず、窒化処理しても内部硬さ不足を原因とする折損が起きることがわかった。そこで、その問題を解決するために窒化処理前に焼入処理を行って、TiとCが均一に固溶したマルテンサイト組織とすることにより、必要な内部硬さを確保できることを見出したものである。
【0019】
次に請求項1の発明における化学成分等の条件の限定理由について、以下に説明する。
C:0.05〜0.20%
Cは焼入後の硬さを上昇させ、強度確保のための内部硬さを得るために必要な元素であり、少なくとも0.05%以上の含有が必要である。しかしながら、窒化処理前に一度固溶させたTiCは窒化処理時の加熱によって再析出するため、Cの含有率が高いと再析出量も増加し、それによってTiを消費してしまう。このTiCは表面硬化層の硬さ向上に全く寄与しないため、同一の硬化深さを得ようとすると多量のTiの添加が必要となってしまう。また、Cの含有率が増加すると、焼入前においてはTiCが増加して被削性が低下するとともに、焼入後の硬さも上昇して、同様に被削性低下の原因となるため、含有率の上限を0.20%とした。
【0020】
Si:0.30%未満
本発明鋼は、前記したようにTiの多量添加が特徴である。Tiを多量添加するとオ−ステナイト化に必要な温度が大幅に上昇し、通常の焼入温度(850〜900℃程度)では焼入処理後にマルテンサイト組織が得られなくなる。また、Siもフェライトを安定にさせる元素であるため、多量の含有はオ−ステナイト化温度の上昇につながり、さらに必要な焼入温度が上昇することになる。従って、焼入温度の多少の上昇はやむを得ないが、できるだけ低い温度での焼入処理を可能にするため、Siの添加については脱酸に必要な最低限の量に抑え、上限を0.30%未満に限定した。また、Siは冷鍛性を低下する元素でもあり、本発明鋼は、窒化処理前に冷鍛する場合があるので、優れた冷鍛性を確保するためにも低減することが必要である。
【0021】
Mn:1.00%以下
Mnは固溶強化により硬さ向上に寄与する元素であるとともに、靭性向上に効果のある元素である。従って、適量の添加であれば、本発明にとって有益な効果を及ぼす元素である。しかしながら、添加しすぎると被削性が低下し、機械加工性が劣化するとともに、窒化処理後の硬化深さが低下する原因となるため、上限を1.00%とした。
【0022】
Cr:0.50〜1.50%
Crは窒化処理後の表面硬化層の硬さ向上に効果のある元素であり、0.50%以上の含有が必要である。しかしながら、多量の含有は窒素の拡散速度の低下につながり、表面硬さは上昇するが、目的とする硬化深さを得ることが難しくなるので、上限を1.50%とした。
【0023】
Al:0.040%以下
Alは鋼の精錬時に脱酸のために必要な元素である。しかし、Alを含有するとCrと同様に窒素の拡散速度の低下につながり、硬化深さが低下するとともに、アルミナ系介在物が増加して、鋼材製造時に割れ、表面疵等が発生しやすくなり、製造が難しくなる。本発明では、短時間の窒化処理による硬化深さの確保を最重要視しているため、Alは脱酸のために必要な最低限の量の含有に抑える必要があり、上限を0.040%とした。
【0024】
N:0.0100%以下
Nは、Tiと結合してTiNを形成し、これが介在物となって存在する。このTiNの大きな介在物が存在した場合、高面圧が負荷された環境で継続使用すると、破壊の起点となる可能性がある。また、窒化処理前の時点で存在するTiNは窒化処理によって形成されるTiNに比較して粗大であり、内部硬さの向上にはほとんど寄与しない。従って、Nの存在による影響は、TiN介在物の生成により窒化後の表面硬さ向上に効果を及ぼすTi量を減少させることと、前記介在物の生成による疲労特性の低下等、悪影響のみである。よって、このようなNはできるだけ低減することが好ましく、その上限を0.0100%とした。好ましくは、0.0080%以下とするのが良い。
【0025】
Ti:0.50〜1.50%
Tiは、窒化処理後に深い硬化深さを得るために必要な元素であり、本発明にとって最も重要な元素である。従って、これらの効果を十分に得るためには、ある程度多量に添加しないと達成されないため、含有率の下限を0.50%とした。但し、多量に添加しすぎるとマトリックスの脆化を招くとともに、コスト高となるため、上限を1.50%とした。
【0026】
Ti(%)−4C(%)−3.4N(%)≧0.20(%)
Tiは鋼中のC、Nと結合してTiC、TiNを生成する。TiCは後述するように焼入処理によってTiCを固溶させたとしても、その後の窒化処理時の加熱によって鋼中に析出してくる。また、窒化処理前の時点で既に存在しているTiNは、前記した通り、マトリックスの強化に寄与しない。従って、優れた窒化特性を得るためには、このようなTiC、TiNの生成によって消費されるTiを除いた有効Ti量を一定量以上確保する必要がある。有効Ti量はTi(%)−4C(%)−3.4N(%)により求めることができ、最低でもこの値を0.20%以上とする必要がある。
以上説明した範囲に含有成分を調整することにより、従来よりも短時間に深い硬化深さを確保することのできる窒化鋼部品を得ることができる。
【0027】
次に、化学成分以外の限定理由について、以下に説明する。
本発明鋼は溶解し、所定の精錬を行い、熱間圧延したままの状態では、多量のTiを含有している影響から、鋼中Cの大部分がTiCとなって析出するため、マトリックス中のC濃度が0に近くなり、フェライト中にTiCが析出した組織となる。このような組織では、所定の内部硬さを得ることができないため、熱間圧延し、熱間鍛造、冷間鍛造等によって所定形状に加工した後、オ−ステナイト域まで加熱してある程度のTiCを固溶させた後、焼入処理をし、Ti、Cが均一に固溶したマルテンサイト組織からなる鋼を製造する。これにより内部硬さを高めることができる。
【0028】
本発明鋼は焼入後、さらに窒化処理される。ここで、窒化処理にはガス窒化、ガス軟窒化、イオン窒化、プラズマ窒化等の方法があるが、本発明で言う窒化処理とは、このうちガス窒化処理とガス軟窒化処理を意味する。これはこの2種類の窒化処理が大量生産するのに有利な方法であるからである。
【0029】
そして、この窒化処理は通常の処理温度(550〜580℃)に比べ高温(600℃以上)で行うことにより、比較的短時間の処理(4時間程度)でHv650以上の表面硬さと0.40mm程度の深い硬化深さを得ることができる。この窒化処理による加熱によって組織が焼もどされ、焼もどしマルテンサイト組織となって若干硬度が低下するが、最終的にHv150以上の内部硬さを得ることができる。なお、表面硬さ、硬化深さは、文献、特許によって定義が異なっているが、本特許では、表面硬さは、表面から0.05mmの位置における硬さ、硬化深さは硬さがHv400となる深さと定義する。
【0030】
ここで、硬化深さの下限について特に限定していないのは、硬化深さは従来鋼でも処理時間を長時間とすることによって達成が可能であるからである。本発明は、従来鋼に比べ短時間(4時間程度)の窒化処理で、0.35mm以上、最適な条件で行った場合には、0.50mm程度の優れた硬化深さを容易に得ることができる。他の請求項についても硬化深さを限定していないのは同様の理由によるものである。
【0031】
次に請求項2に記載の発明は、請求項1の発明鋼に加えて、S:0.0050%以下、Ni:1.00%以下、Mo:0.30%以下、V:0.40%以下のうちの1種又は2種以上をさらに含有させたことを特徴とするものである。これらの元素は、請求項1の鋼の特性をさらに向上させるために必要に応じて含有させることができる。以下それぞれの成分の添加量の限定理由について説明する。
【0032】
S:0.050%以下
Sは被削性向上のために必要に応じて少量含有させることができる。本発明鋼は熱間圧延後の素材を熱間鍛造、冷間鍛造等の塑性加工によって所定の形状に加工されるが、さらに最終製品の寸法に精度良く仕上げるため、機械加工も当然行われる。従って、機械加工の内容によってはSを少量添加して被削性を向上させた鋼を使用することが望ましい。但し、多量の添加は硫化物系介在物を増加させ、高面圧負荷の環境において折損の原因となるため、上限を0.050%とした。
【0033】
Ni:1.00%以下、Mo:0.30%以下
Ni、Moはマトリックスの強度向上と靭性の向上に効果のある元素であり、必要に応じて請求項1記載の鋼に加えて、さらに含有させることができる。しかし、どちらも高価の元素であって、添加するほどコストが増加するとともに、一定量以上の添加はコスト増に見合う効果が得られないため、その上限をNiが1.00%、Moは0.30%とした。
【0034】
V:0.40%以下
VはTi、Crと同様に窒化処理後の表面硬化層の硬さ向上のために効果のある元素であり、必要に応じて含有させることのできる元素である。しかしながら、多量に含有させるとCrと同様に窒素の拡散の抵抗となり、表面硬さは向上するが、硬化深さが低下する原因となるとともに、コスト高となるので、上限を0.40%とした。
【0035】
次に、請求項3の発明は、請求項1または2に記載した窒化鋼部品の製造方法に関する発明である。化学成分の限定理由については既に説明した通りであるので、以下製造条件の限定理由について説明する。
【0036】
請求項3では、内部硬さを向上できる組織を得るため、熱間圧延後、所定形状に加工(熱間鍛造、冷間鍛造等による)後、焼入処理して、マルテンサイト組織からなる鋼材を製造する。なお、窒化処理温度が高い場合には、窒化処理による内部硬さの低下が大きくなるので、窒化処理後の内部硬さHv150以上を確保するには、焼入後の硬さをHv200以上としておくのが好ましい。
【0037】
本発明鋼はTiを多量添加しており、鋼中に存在するTiCを固溶させ、かつオ−ステナイト化するためには、通常のSCr、SCM等の肌焼鋼に比べ高温(1000℃以上)での加熱を必要とする。従って、焼入処理は少なくとも1000℃以上に加熱した状態で行う必要がある。焼入温度はTiCの固溶温度に合わせて調整する必要があるため、Tiの含有率が高い場合には、それにあわせてさらに高い温度とする必要がある。焼入温度を高くするほどTiCの固溶が進み、焼入後のマルテンサイト組織中の炭素含有率が増加し、Cの固溶強化による効果が大きくなるので、焼入硬さが上昇する。
【0038】
なお、焼入処理前の加工を熱間鍛造によって行う場合には、熱間鍛造時の加熱を利用して、鍛造直後に焼入することも可能である。勿論熱間鍛造し冷却した後、再加熱してから焼入しても良い。また、加熱温度の上限は特に限定していないが、TiCが固溶しオ−ステナイト化できる温度の中で低目の温度に設定した方が省エネの点からも有利である。
【0039】
また、焼入処理前に冷間鍛造を行う場合には、熱間圧延後に800〜900℃程度の温度で熱処理しておくことが望ましい。この熱処理により圧延ままの状態で一部固溶しているTi、Cが加熱中に析出し、それにより冷鍛時の限界加工率が大きく改善されるからである。
【0040】
本発明鋼は焼入処理し、マルテンサイト組織からなる鋼材を得た後、窒化処理される。但し、機械加工等の仕上げ加工が必要な場合には、窒化処理前に行っておくことが必要である。
【0041】
また、焼入処理をすると内部に残留応力が発生し、その残留応力が残存したままの状態で窒化処理すると、残存していた応力が解放され、製品に歪が生じる可能性がある。従って、焼入処理後にその後の窒化処理時の温度と同程度の温度に1時間程度加熱(焼もどし)してこの残留応力を解放しておくことが好ましい。この焼もどし処理後に必要に応じて所定形状に仕上加工してから窒化処理することにより、歪の問題を解決することが可能になる。
【0042】
本発明では必要に応じて機械加工等の仕上加工を行った後、窒化処理を実施する。この窒化処理により、表面硬さがHv650以上で内部硬さがHv150以上の焼もどしマルテンサイトからなる窒化鋼部品を得ることができる。
【0043】
次に請求項4に記載の発明は、窒化処理温度を通常の窒化処理温度(約570℃)より高い600〜680℃の温度で実施することを特徴とするものである。本発明鋼は言うまでもなく、通常の温度で窒化処理したとしても、従来鋼と比較して同等以上の表面硬さ、硬化深さを得ることができる。しかしながら、前記したように本発明鋼は高い温度で窒化処理しても表面硬さが劣化しないことが特徴であり、それにより短時間で高い表面硬さと深い硬化深さを得ることができる。処理温度の下限を600℃としたのは、これより低い温度では従来鋼に同じ処理を行った場合と比較して同等以上の表面硬さ、硬化深さは得られるが、本発明鋼を使用しても浸炭処理なみの硬化深さを得るには長時間の処理が必要となるためである。また、上限を680℃としたのは、これ以上高い温度で処理すると、焼入処理で得たマルテンサイト組織が軟化してHv150以上の硬さを得ることが難しくなるためと、表面硬さが低下するためである。従って、本発明鋼は、600〜680℃の範囲で窒化処理することにより、短時間の処理で満足できる深い硬化深さが得られるとともに、高い表面硬さを確保することができる。
【0044】
【実施例】
次に、本発明鋼の特徴を比較例と対比して、実施例により説明する。表1に実施例として用いた供試鋼の化学成分を示す。なお、供試鋼は短時間に多数の成分の鋼の評価をするため、本発明鋼、比較鋼については、30kg真空誘導溶解炉によって溶解した鋼塊を用い、1200℃に加熱して直径15mmの丸棒に鍛伸することにより準備し、従来鋼については実際に生産された圧延鋼材から入手し、1200℃に加熱して同様に直径15mmの丸棒に鍛伸することにより準備したものである。なお、鍛伸後全ての供試材について900℃×1hrの条件で熱処理(A〜O鋼については、固溶しているTiCを析出させるため。またP〜R鋼については焼ならし処理に相当)を行った。
【0045】
【表1】

Figure 0004175933
【0046】
表1において、A〜L鋼は本発明の成分範囲内の鋼であり、M〜Q鋼はいずれかの成分又は有効Ti量が本発明で規定する範囲を外れている比較鋼であり、R鋼は従来鋼であるJISのSACM645である。
【0047】
これら各供試鋼について、内部硬さ(900℃×1hrの熱処理後、焼入後、窒化処理後)及び窒化処理後の表面硬さ、硬化深さの測定を行った。以下に試験方法について説明する。
内部硬さは、焼入後に得られる内部硬さの確認と、窒化処理による硬さ低下がどの程度かを正確に評価するために、前記した鍛伸材から直径10mm、高さ15mmの試験片を作製し、それぞれの熱処理直後において硬さを測定したものである。なお、焼入は、焼入温度による影響を把握するため、950℃、1000℃と熱間鍛造される場合の一般的な温度である1200℃の3水準にて熱処理(温度保持時間30分→水冷)を行った。但し、従来鋼であるT鋼、比較鋼であるR、S鋼はTiを含有していないので、前記したような多量にTiを添加したことによる内硬低下の問題はなく、焼入処理の必要はないことから、焼入処理を行うことなく後述の窒化特性の評価を実施した。
【0048】
窒化特性は、焼入温度を1200℃で行った試験片について、通常の窒化処理温度に比べ高温である600℃、650℃の2水準でガス軟窒化処理を行って、処理後の表面硬さ、硬化深さを測定することにより評価した。なお、前記した定義に示す通り、測定した表面硬さは、表面から0.05mmの位置での値であり、硬化深さは、Hvが400となる深さで示したものである。結果を表2に示す。
【0049】
【表2】
Figure 0004175933
【0050】
表3から明らかなように、本発明鋼であるA〜L鋼は、900℃×1hrの熱処理後においては、前記したようにTiCが析出したフェライト単相の組織となっており、Hv100程度の低い硬さとなっていた。しかしながら、1000℃以上の温度で焼入処理を施すことにより、組織がマルテンサイト組織となり、焼入温度1000℃で硬さがHv180程度、1200℃での焼入処理により、硬さがHv253〜297と大幅に上昇した。このように焼入処理することによりTiを多量に添加した本発明鋼でも必要とする内部硬さを確保することができる。なお、焼入温度が高いほど高い焼入硬さが得られるのは、温度が高いほどTiCが多量に固溶して焼入後のマルテンサイト組織中の炭素含有率が上昇し、Cの固溶強化による強度向上効果が大きく得られるためである。
【0051】
このように焼入処理により組織をマルテンサイトとして硬さを向上させているので、窒化処理によって焼もどし効果により若干硬さが低下するものの、窒化温度が650℃と非常に高くした場合でもHv180以上の内部硬さを確保することができた。
【0052】
それに対し、本発明鋼でも焼入温度が950℃と低い場合には、Hv150程度の不十分な硬さしか得られなかった。これは、この温度ではTiCの固溶が不十分となってCの固溶強化による効果が不十分になるためと、本発明のTi含有鋼では、950℃では完全にオーステナイト単相の状態にならないため、焼入後の組織が一部フェライトの残存した組織になってしまうためである。
【0053】
また、本発明鋼は、窒化特性についても著しく優れた結果を示した。すなわち、わずか4時間の処理で通常の窒化処理では到底不可能な0.35〜0.55mmの硬化深さを達成するとともに、表面硬さもHv660〜762と非常に高い値を示した。
【0054】
一方、比較鋼であるM〜Q鋼は、一部の成分が本発明で規定した範囲外であるため、優れた結果が得られなかった。具体的には、M鋼は、C含有率が低いため、焼入後の硬さが低くなり、十分な内部硬さが得られなかったものであり、N鋼は、Mn含有率が高く、O鋼は、有効Ti量が少ないため、窒化処理後の硬さが低下したものである。また、Tiを含有していないP、Q鋼は、焼入処理しなくても窒化処理後においてHv150以上の内部硬さが得られるが、硬化深さが著しく劣り、かつ本実施例のような高い温度で窒化処理した場合には表面硬さが大きく劣るものである。さらに、従来の窒化鋼であるSACM645は、表面硬さが優れるものの、硬化深さが著しく劣るものである。
【0055】
【発明の効果】
以上説明した通り、本発明鋼は、多量のTiを添加し、かつ焼入してマルテンサイト組織としてから、窒化処理を施すことにより、必要な内部硬さを確保しつつ、深い硬化深さと、高い表面硬さを得ることができる。特に本発明鋼は、Tiの多量添加により、通常の窒化処理温度に比べ高温で処理しても高い表面硬さが得られる(従来鋼では高い窒化温度では表面硬さが劣化する。)ので、通常温度での処理に比べ短時間の処理で深い硬化深さを達成することができ、深い硬化深さと低歪が要求される部品に使用すると、従来の窒化鋼を用いて製造した場合に比べ、生産性を大幅に向上させることができる。従って、産業への貢献は極めて大きいものである。[0001]
BACKGROUND OF THE INVENTION
The present invention is suitable for use in a part that is used for a long time in a state where a high surface pressure is applied, such as an automobile such as a gear part, and a high surface hardness and a deep hardening depth are obtained by a short nitriding treatment, The present invention also relates to a nitrided steel part having excellent cold forgeability and a method for producing the same.
[0002]
[Prior art]
For products such as automobiles, which have a strong demand for energy saving, development for reducing the weight of each component has been actively conducted. Among them, parts such as gears that are used continuously for a long time under a high surface pressure are required to have particularly severe characteristics such as wear resistance and pitting resistance. Alloy steel such as Cr-Mo steel is subjected to a surface hardening treatment called carburizing to increase the surface hardness and to secure the characteristics to withstand high surface pressure. This is easy if carburizing treatment is performed to obtain a high surface hardness (surface hardness Hv 700 or more) and a sufficient curing depth (Hv 550 or more 0.40 mm or more) to withstand high surface pressure. This is because it is possible to achieve this.
[0003]
However, the carburizing process has a major drawback as is apparent from the prior art. That is, since heating at a temperature exceeding the transformation point is indispensable, thermal strain and transformation strain occur after the treatment, and in that state, the shape of the contact part of the part becomes non-uniform and causes noise. This is a problem that finishing work after processing becomes necessary, leading to a decrease in quality or productivity and an increase in cost.
[0004]
Conventionally, nitriding has been studied as a surface hardening method for solving the problem of distortion in the carburizing treatment. Unlike the carburizing process, the nitriding method is processed by heating at a transformation temperature or lower (about 550 to 580 ° C.), so the strain can be kept small compared to the carburizing process. Have been actively used in the past.
[0005]
However, gas nitriding treatment and gas soft nitriding treatment, which are usually widely used nitriding treatment methods, have an advantage that distortion can be suppressed as compared with carburizing treatment, but high hardness can be obtained by the treatment. The range (the range in which hardness of Hv400 or more can be obtained) is limited to the compound layer and a very slight range immediately below it, and the depth is only about 0.15 mm from the surface (normal treatment by gas soft nitriding treatment) The temperature is about 570 ° C. × 4 hours) and is considerably shallower than the carburizing process. At such a curing depth, it cannot be used with confidence in an environment where high surface pressure is continuously applied. Therefore, in order to enable use in a high surface pressure environment, for example, when trying to obtain a deep curing depth exceeding 0.3 mm, it is necessary to significantly increase the processing time (10 hours or more), and carburizing treatment. As a result, the productivity is remarkably hindered due to the longer processing time. Therefore, it is impossible to easily solve the problem by changing the carburizing process to the nitriding process even for parts which are problematic due to distortion caused by the carburizing process.
[0006]
As described above, in order to obtain a high surface hardness and a deep hardening depth by nitriding, a long time treatment is required as compared with carburizing. Therefore, a high surface hardness and a deep hardening depth can be obtained in as short a time as possible. Steel has been actively developed. For example, the nitrided steel shown by patent document 1, 2 grade | etc., Is proposed.
[0007]
[Patent Document 1]
JP-A-5-171347
[Patent Document 2]
JP-A-10-306343
[0008]
Of these, the invention described in Patent Document 1 is intended to improve the surface hardness and softening depth after soft nitriding by adding an appropriate amount of Cr, V, and Al, and after rolling by adjusting the amounts of C and Mn. The structure is characterized in that it has a two-phase structure of ferrite + pearlite, and it is possible to ensure excellent properties for cold forgeability.
[0009]
In addition, in the invention described in Patent Document 2, in order to improve the core hardness after the soft nitriding treatment, Cu is added, and in order to improve the hardening depth after the nitriding treatment, the average particle diameter of the ferrite is reduced. 40 μm or less is intended to promote diffusion of C and N during the nitriding treatment.
[0010]
[Problems to be solved by the invention]
However, the above-described conventional invention has the following problems.
As described in Patent Documents 1 and 2 and the like, the development of steel that improves the surface hardness and the hardening depth has been performed, so that the nitriding characteristics can be improved as compared with the conventional steel. However, even if improved, it is still inferior in terms of the depth of hardening compared to carburizing treatment. In order to obtain a deep hardening depth in a short time, as in the case of the carburizing process, there is a method of increasing the processing temperature, whereby the processing time can be shortened relatively easily.
[0011]
However, although the effect of increasing the treatment depth is great when the treatment temperature is increased, the resulting nitride grows larger and coarser than the treatment at normal temperature, resulting in a decrease in the surface hardness obtained. Therefore, there is a problem that the effect of the nitriding treatment is reduced.
[0012]
The present invention can obtain a surface hardness equal to or higher than that obtained by performing nitriding treatment at a normal temperature on a conventional steel even when treated at a high temperature compared to a normal nitriding treatment, and has been processed at a high temperature. Accordingly, it is an object of the present invention to provide a nitrided steel part and a method for manufacturing the same that can significantly reduce the processing time.
[0013]
[Means for Solving the Problems]
The invention of claim 1 mass C: 0.05 to 0.20%, Si: less than 0.30%, Mn: 1.00% or less, Cr: 0.50 to 1.50%, Al: 0.040% or less, N : 0.0100% or less, Ti: 0.50 to 1.50%, and satisfying Ti-4 × C-3.4N ≧ 0.20, with the balance being Fe and impurity elements, After quenching After nitriding treatment, the structure is tempered martensite structure, the surface hardness is Hv650 or more, and the internal hardness is Hv150 or more. This is a nitrided steel part obtained.
[0014]
The feature of the present invention is that by adding a large amount of Ti that forms hard nitride compared to conventional nitrided steel, it is possible to perform nitriding treatment at high temperature without reducing the surface hardness obtained, and A necessary internal hardness is secured by forming a structure composed of martensite in which C is uniformly solid-solved by quenching before nitriding.
[0015]
As described above, the nitriding treatment has a shallow hardening depth compared to the carburizing treatment, and much time is required to obtain a hardening depth close to the carburizing treatment. On the other hand, if the processing temperature is increased in order to shorten the processing time, the processing time required to obtain a predetermined hardening depth can be shortened, but this is necessary in the case of the conventional steel and the proposed steel described in the above-mentioned patent document. There was a problem that the surface hardness could not be obtained.
[0016]
The reason why the surface hardness decreases when the treatment temperature is increased is that the higher the treatment temperature is, the larger the generated nitride becomes, and the stress around the deposited nitride is relaxed. It is presumed that a phenomenon similar to the overaging phenomenon that occurs when the precipitation treatment temperature in the steel for obtaining a high temperature is excessively raised occurs.
[0017]
Accordingly, the present inventors have investigated in detail whether there is an alloy component that can form nitrides that are less likely to be coarsened even when heated at high temperatures, and that can generate nitrides with low hardness reduction. As a result, the steel with a large amount of Ti as described above can obtain a higher surface hardness than the conventional steel, and although the hardness is slightly reduced by increasing the treatment temperature in the same manner as the conventional steel, it is 680 ° C. or less. It has been found that a surface hardness of Hv650 or higher can be secured at a treatment temperature.
[0018]
However, in the case of the steel according to the present invention, since Ti is added in a large amount, most of C which is originally effective in strengthening the matrix is combined with Ti and changed to TiC, so rolling or hot forging The internal structure after hot working such as becomes a structure in which TiC is precipitated in the ferrite single phase, and C becomes a structure that does not contribute to strength improvement at all. In such a structure, except for the surface portion strengthened by nitriding, only a very low hardness of about Hv100 can be obtained, and even if nitriding is performed, breakage due to insufficient internal hardness may occur. all right. Therefore, in order to solve the problem, it was found that the necessary internal hardness can be secured by performing a quenching treatment before nitriding treatment to obtain a martensite structure in which Ti and C are uniformly dissolved. is there.
[0019]
Next, the reasons for limiting the conditions such as chemical components in the invention of claim 1 will be described below.
C: 0.05-0.20%
C is an element necessary for increasing the hardness after quenching and obtaining the internal hardness for securing the strength, and it is necessary to contain at least 0.05% or more. However, since TiC once dissolved before nitriding is reprecipitated by heating during nitriding, the amount of reprecipitation increases when the C content is high, thereby consuming Ti. Since this TiC does not contribute to the improvement of the hardness of the surface hardened layer at all, it is necessary to add a large amount of Ti to obtain the same hardening depth. Further, when the content of C increases, TiC increases before quenching and machinability decreases, and the hardness after quenching also increases, and similarly causes machinability degradation. The upper limit of the content rate was 0.20%.
[0020]
Si: Less than 0.30%
As described above, the steel of the present invention is characterized by the addition of a large amount of Ti. When a large amount of Ti is added, the temperature required for austenitization increases significantly, and a martensite structure cannot be obtained after quenching at a normal quenching temperature (about 850 to 900 ° C.). Further, since Si is an element that stabilizes ferrite, a large content leads to an increase in austenitizing temperature and further increases a necessary quenching temperature. Therefore, a slight increase in the quenching temperature is unavoidable, but in order to enable quenching at the lowest possible temperature, the addition of Si is limited to the minimum amount necessary for deoxidation, and the upper limit is 0.30. Limited to less than%. Further, Si is also an element that lowers cold forgeability, and the steel of the present invention may be cold forged before nitriding treatment, so it is necessary to reduce it in order to ensure excellent cold forgeability.
[0021]
Mn: 1.00% or less
Mn is an element that contributes to improving the hardness by solid solution strengthening and an element that is effective in improving toughness. Therefore, if it is added in an appropriate amount, it is an element having a beneficial effect for the present invention. However, if too much is added, the machinability is reduced, the machinability is deteriorated, and the hardening depth after nitriding is reduced, so the upper limit was made 1.00%.
[0022]
Cr: 0.50 to 1.50%
Cr is an element effective in improving the hardness of the hardened surface layer after nitriding, and needs to be contained in an amount of 0.50% or more. However, a large amount leads to a decrease in the diffusion rate of nitrogen and the surface hardness increases, but it becomes difficult to obtain the desired curing depth, so the upper limit was made 1.50%.
[0023]
Al: 0.040% or less
Al is an element necessary for deoxidation when refining steel. However, if Al is contained, it leads to a decrease in the diffusion rate of nitrogen as in the case of Cr, and the hardening depth is decreased, and alumina inclusions are increased. Manufacturing becomes difficult. In the present invention, it is most important to secure the hardening depth by nitriding for a short time, so Al needs to be contained in the minimum amount necessary for deoxidation, and the upper limit is 0.040. %.
[0024]
N: 0.0100% or less
N combines with Ti to form TiN, which is present as an inclusion. When this large inclusion of TiN exists, if it is continuously used in an environment loaded with a high surface pressure, it may become a starting point of destruction. Further, TiN existing before the nitriding treatment is coarser than TiN formed by the nitriding treatment, and hardly contributes to the improvement of the internal hardness. Therefore, the influence of the presence of N is only an adverse effect such as a decrease in the amount of Ti that has an effect on improving the surface hardness after nitriding due to the formation of TiN inclusions, and a decrease in fatigue characteristics due to the formation of the inclusions. . Therefore, it is preferable to reduce N as much as possible, and the upper limit is set to 0.0100%. Preferably, it is 0.0080% or less.
[0025]
Ti: 0.50 to 1.50%
Ti is an element necessary for obtaining a deep hardening depth after nitriding treatment, and is the most important element for the present invention. Therefore, in order to obtain these effects sufficiently, it is not achieved unless a large amount is added to some extent. Therefore, the lower limit of the content rate is set to 0.50%. However, too much addition causes embrittlement of the matrix and increases the cost, so the upper limit was made 1.50%.
[0026]
Ti (%)-4C (%)-3.4N (%) ≧ 0.20 (%)
Ti combines with C and N in the steel to produce TiC and TiN. Even if TiC is solid-dissolved by quenching as described later, TiC is precipitated in the steel by heating during the subsequent nitriding treatment. Further, TiN already present before the nitriding treatment does not contribute to the strengthening of the matrix as described above. Therefore, in order to obtain excellent nitriding characteristics, it is necessary to secure a certain amount of effective Ti amount excluding Ti consumed by the generation of such TiC and TiN. The effective Ti amount can be obtained from Ti (%)-4C (%)-3.4N (%), and at least this value needs to be 0.20% or more.
By adjusting the content of the components to the ranges described above, a nitrided steel part capable of securing a deeper hardening depth in a shorter time than before can be obtained.
[0027]
Next, reasons for limitation other than chemical components will be described below.
The steel of the present invention is melted, subjected to predetermined refining, and in the hot-rolled state, a large amount of Ti is contained, so that most of C in the steel is precipitated as TiC. The C concentration becomes close to 0, and a structure in which TiC is precipitated in the ferrite is obtained. In such a structure, since a predetermined internal hardness cannot be obtained, it is hot-rolled, processed into a predetermined shape by hot forging, cold forging, etc., and then heated to the austenite region to some extent. Then, a steel having a martensitic structure in which Ti and C are uniformly dissolved is produced. Thereby, internal hardness can be raised.
[0028]
The steel of the present invention is further nitrided after quenching. Here, the nitriding treatment includes methods such as gas nitriding, gas soft nitriding, ion nitriding, plasma nitriding, etc. The nitriding treatment referred to in the present invention means gas nitriding treatment and gas soft nitriding treatment. This is because these two types of nitriding treatments are advantageous methods for mass production.
[0029]
This nitriding treatment is performed at a higher temperature (600 ° C. or higher) than the normal processing temperature (550 to 580 ° C.), so that the surface hardness of Hv 650 or higher and 0.40 mm can be obtained in a relatively short time (about 4 hours). A deep curing depth can be obtained. Although the structure is tempered by heating by this nitriding treatment and becomes a tempered martensite structure, the hardness is slightly lowered, but finally an internal hardness of Hv 150 or more can be obtained. The definitions of surface hardness and curing depth differ depending on the literature and patent. In this patent, the surface hardness is the hardness at a position of 0.05 mm from the surface, and the curing depth is Hv400. It is defined as the depth to be.
[0030]
Here, the lower limit of the hardening depth is not particularly limited because the hardening depth can be achieved even by using a conventional steel by increasing the processing time. In the present invention, an excellent hardening depth of about 0.50 mm can be easily obtained when nitriding is performed in a shorter time (about 4 hours) than conventional steel and is performed under optimum conditions of 0.35 mm or more. Can do. The reason why the depth of curing is not limited in other claims is also the same reason.
[0031]
Next, in addition to the invention steel of claim 1, the invention described in claim 2 includes S: 0.0050% or less, Ni: 1.00% or less, Mo: 0.30% or less, V: 0.40. % Or less of one or more of them is further contained. These elements can be contained as necessary in order to further improve the properties of the steel of claim 1. Hereinafter, the reasons for limiting the amount of each component added will be described.
[0032]
S: 0.050% or less
S can be contained in a small amount as required for improving machinability. The steel according to the present invention is processed into a predetermined shape by plastic working such as hot forging and cold forging after hot rolling, but machining is also naturally performed to finish the final product with high accuracy. Therefore, it is desirable to use steel whose machinability is improved by adding a small amount of S depending on the content of machining. However, addition of a large amount increases sulfide inclusions and causes breakage in an environment with a high surface pressure load, so the upper limit was made 0.050%.
[0033]
Ni: 1.00% or less, Mo: 0.30% or less
Ni and Mo are elements effective in improving the strength and toughness of the matrix, and can be further contained in addition to the steel according to claim 1 as necessary. However, both are expensive elements, and the cost increases as they are added, and addition of a certain amount or more cannot provide an effect commensurate with the increase in cost, so the upper limit is Ni 1.00% and Mo is 0 30%.
[0034]
V: 0.40% or less
V, like Ti and Cr, is an element effective for improving the hardness of the surface hardened layer after the nitriding treatment, and can be contained as necessary. However, if it is contained in a large amount, it becomes resistance to diffusion of nitrogen like Cr, and the surface hardness is improved, but it causes a decrease in the curing depth and increases the cost, so the upper limit is 0.40%. did.
[0035]
Next, invention of Claim 3 is invention regarding the manufacturing method of the nitrided steel components described in Claim 1 or 2. Since the reason for limiting the chemical component is as described above, the reason for limiting the manufacturing condition will be described below.
[0036]
In Claim 3, in order to obtain the structure | tissue which can improve internal hardness, after hot rolling, after processing into a predetermined shape (by hot forging, cold forging, etc.), it quenches and the steel material which consists of a martensitic structure Manufacturing. In addition, when the nitriding temperature is high, the decrease in internal hardness due to nitriding increases, so in order to ensure the internal hardness Hv150 or higher after nitriding, the hardness after quenching is set to Hv200 or higher. Is preferred.
[0037]
The steel of the present invention contains a large amount of Ti, and in order to dissolve TiC present in the steel and to austenitize it, it is at a higher temperature (1000 ° C. or more) than ordinary SCr, SCM and other case-hardened steels. ) Is required. Therefore, it is necessary to perform the quenching process in a state heated to at least 1000 ° C. or more. Since the quenching temperature needs to be adjusted according to the solid solution temperature of TiC, when the Ti content is high, it is necessary to set the temperature higher accordingly. As the quenching temperature is increased, TiC solid solution progresses, the carbon content in the martensitic structure after quenching increases, and the effect of solid solution strengthening of C increases, so that the quenching hardness increases.
[0038]
In addition, when the process before a quenching process is performed by hot forging, it is also possible to quench immediately after forging using the heating at the time of hot forging. Of course, it may be quenched after hot forging and cooling, and then reheating. The upper limit of the heating temperature is not particularly limited, but it is more advantageous from the viewpoint of energy saving to set the lower temperature among the temperatures at which TiC can be dissolved into austenite.
[0039]
Moreover, when performing cold forging before quenching, it is desirable to heat-treat at a temperature of about 800 to 900 ° C. after hot rolling. This is because Ti and C, which are partly dissolved in the as-rolled state, are precipitated during heating by this heat treatment, thereby greatly improving the critical working rate during cold forging.
[0040]
The steel of the present invention is subjected to quenching treatment to obtain a steel material having a martensite structure, and then subjected to nitriding treatment. However, when finishing such as machining is necessary, it is necessary to perform it before nitriding.
[0041]
Further, if a quenching process is performed, residual stress is generated inside, and if the nitriding process is performed with the residual stress remaining, the remaining stress is released, which may cause distortion in the product. Therefore, it is preferable to release this residual stress by heating (tempering) for about 1 hour to a temperature similar to the temperature during the subsequent nitriding treatment after the quenching treatment. By performing nitriding after finishing to a predetermined shape as necessary after the tempering treatment, the problem of distortion can be solved.
[0042]
In the present invention, nitriding is performed after finishing such as machining as required. By this nitriding treatment, a nitrided steel part made of tempered martensite having a surface hardness of Hv650 or higher and an internal hardness of Hv150 or higher can be obtained.
[0043]
Next, the invention described in claim 4 is characterized in that the nitriding temperature is 600 to 680 ° C. higher than the normal nitriding temperature (about 570 ° C.). Needless to say, the steel according to the present invention can obtain surface hardness and hardening depth equal to or higher than those of conventional steel even when nitriding is performed at a normal temperature. However, as described above, the steel of the present invention is characterized in that the surface hardness does not deteriorate even when nitriding is performed at a high temperature, whereby a high surface hardness and a deep hardening depth can be obtained in a short time. The lower limit of the processing temperature is set to 600 ° C. The surface hardness and the hardening depth are equal to or higher than those obtained when the same processing is performed on the conventional steel at a lower temperature, but the steel of the present invention is used. This is because a long time treatment is required to obtain a hardening depth similar to that of the carburizing treatment. Further, the upper limit was set to 680 ° C., because the martensite structure obtained by the quenching process is softened and it becomes difficult to obtain a hardness of Hv 150 or higher when processed at a higher temperature. It is because it falls. Accordingly, the steel according to the present invention can be nitrided in the range of 600 to 680 ° C. to obtain a satisfactory depth of hardening in a short time and ensure high surface hardness.
[0044]
【Example】
Next, the characteristics of the steel of the present invention will be described by way of examples in comparison with comparative examples. Table 1 shows chemical components of the test steels used as examples. In addition, in order to evaluate steel of many components in a short time for the test steel, the steel of the present invention and the comparative steel were heated to 1200 ° C. using a steel ingot melted by a 30 kg vacuum induction melting furnace, and the diameter was 15 mm. It was prepared by forging into a round bar, and for conventional steel, it was obtained from the rolled steel material actually produced, and it was prepared by heating to 1200 ° C and similarly forging into a round bar with a diameter of 15 mm. is there. It should be noted that all specimens after forging were heat treated under the condition of 900 ° C. × 1 hr (in order to precipitate TiC dissolved in the case of A to O steels, and in the normalizing treatment for P to R steels). Equivalent).
[0045]
[Table 1]
Figure 0004175933
[0046]
In Table 1, A to L steels are steels within the component range of the present invention, and M to Q steels are comparative steels in which any component or effective Ti amount is outside the range defined by the present invention, R The steel is JIS SACM645 which is a conventional steel.
[0047]
With respect to each of these test steels, the internal hardness (after 900 ° C. × 1 hr heat treatment, after quenching, after nitriding treatment), and the surface hardness and hardening depth after nitriding treatment were measured. The test method will be described below.
The internal hardness is a specimen having a diameter of 10 mm and a height of 15 mm from the forged material in order to confirm the internal hardness obtained after quenching and to accurately evaluate the degree of hardness reduction due to nitriding. And the hardness was measured immediately after each heat treatment. In addition, in order to grasp the influence by quenching temperature, quenching is performed at three levels of 1200 ° C., which is a general temperature when hot forging at 950 ° C. and 1000 ° C. (temperature holding time 30 minutes → Water cooling) was performed. However, T steel, which is a conventional steel, and R and S steels, which are comparative steels, do not contain Ti. Since it is not necessary, the nitriding characteristics described below were evaluated without performing a quenching process.
[0048]
The nitriding characteristics were obtained by subjecting a test piece with a quenching temperature of 1200 ° C. to gas soft nitriding treatment at two levels of 600 ° C. and 650 ° C., which are higher than the normal nitriding treatment temperature, and after processing Evaluation was made by measuring the curing depth. Note that, as shown in the above definition, the measured surface hardness is a value at a position of 0.05 mm from the surface, and the curing depth is a depth at which Hv is 400. The results are shown in Table 2.
[0049]
[Table 2]
Figure 0004175933
[0050]
As is clear from Table 3, the steels A to L of the present invention have a ferrite single-phase structure in which TiC is precipitated as described above after the heat treatment at 900 ° C. × 1 hr, which is about Hv100. The hardness was low. However, when the quenching process is performed at a temperature of 1000 ° C. or higher, the structure becomes a martensite structure. The hardness is about Hv 180 at a quenching temperature of 1000 ° C., and the hardness is Hv 253 to 297 by the quenching process at 1200 ° C. And rose significantly. By performing the quenching treatment in this way, the required internal hardness can be ensured even in the steel of the present invention to which a large amount of Ti is added. The higher the quenching temperature, the higher the quenching hardness can be obtained. The higher the temperature, the greater the amount of TiC solid-solved, and the higher the carbon content in the martensite structure after quenching. It is because the strength improvement effect by melt strengthening can be greatly obtained.
[0051]
As described above, the hardness is improved with the structure being martensite by the quenching treatment. Therefore, although the hardness is slightly lowered by the tempering effect by the nitriding treatment, even when the nitriding temperature is very high as 650 ° C., the Hv is 180 or more. Was able to ensure the internal hardness.
[0052]
On the other hand, when the quenching temperature was as low as 950 ° C., only the insufficient hardness of about Hv 150 was obtained. This is because at this temperature, TiC solid solution is insufficient and the effect of solid solution strengthening of C becomes insufficient, and in the Ti-containing steel of the present invention, it is completely in an austenite single phase state at 950 ° C. This is because the structure after quenching becomes a structure in which some ferrite remains.
[0053]
In addition, the steel of the present invention showed remarkably excellent results with respect to nitriding characteristics. That is, in a treatment of only 4 hours, a hardening depth of 0.35 to 0.55 mm which cannot be achieved by a normal nitriding treatment was achieved, and the surface hardness was a very high value of Hv660 to 762.
[0054]
On the other hand, since the M to Q steels which are comparative steels are outside the range defined in the present invention, some results were not obtained. Specifically, M steel has a low C content, so the hardness after quenching is low and sufficient internal hardness cannot be obtained. N steel has a high Mn content, Since O steel has a small amount of effective Ti, the hardness after nitriding is lowered. Further, P and Q steels not containing Ti can have an internal hardness of Hv150 or higher after nitriding without quenching, but the hardening depth is remarkably inferior, as in this example. When nitriding is performed at a high temperature, the surface hardness is greatly inferior. Furthermore, SACM645, which is a conventional nitrided steel, has excellent surface hardness, but is extremely inferior in curing depth.
[0055]
【The invention's effect】
As described above, the steel according to the present invention is a deep hardening depth while securing necessary internal hardness by adding a large amount of Ti and quenching to obtain a martensite structure and then performing nitriding treatment, High surface hardness can be obtained. In particular, the steel according to the present invention can obtain a high surface hardness even when treated at a higher temperature than the normal nitriding temperature by adding a large amount of Ti (the surface hardness of the conventional steel deteriorates at a high nitriding temperature). Deep hardening depth can be achieved in a short time compared to processing at normal temperature, and when used for parts that require deep hardening depth and low strain, compared to the case of manufacturing using conventional nitrided steel , Productivity can be greatly improved. Therefore, the contribution to the industry is extremely large.

Claims (4)

質量比にしてC:0.05〜0.20%、Si:0.30%未満、Mn:1.00%以下、Cr:0.50〜1.50%、Al:0.040%以下、N:0.0100%以下、Ti:0.50〜1.50%を含有し、かつTi−4×C−3.4N≧0.20を満足し、残部がFe及び不純物元素からなり、焼入処理した後の窒化処理後における組織が焼もどしマルテンサイト組織からなり、かつ表面硬さがHv650以上、内部硬さがHv150以上であることを特徴とする短時間の窒化処理で高い表面硬さと深い硬化深さの得られる窒化鋼部品。C: 0.05 to 0.20% in terms of mass ratio, Si: less than 0.30%, Mn: 1.00% or less, Cr: 0.50 to 1.50%, Al: 0.040% or less, N: 0.0100% or less, Ti: contains 0.50 to 1.50%, and satisfies the Ti-4 × C-3.4N ≧ 0.20, the balance being Fe and impurity elements, baked The structure after the nitriding treatment after the nitriding treatment is composed of a tempered martensite structure, the surface hardness is Hv 650 or more, and the internal hardness is Hv 150 or more. Nitride steel parts with deep hardening depth. 請求項1記載の窒化鋼部品に加えて、S:0.050%以下、Ni:1.00%以下、Mo:0.30%以下、V:0.40%以下の1種又は2種以上をさらに含有させたことを特徴とする短時間の窒化処理で高い表面硬さと深い硬化深さの得られる窒化鋼部品。  In addition to the nitrided steel part according to claim 1, one or more of S: 0.050% or less, Ni: 1.00% or less, Mo: 0.30% or less, V: 0.40% or less A nitrided steel part that has a high surface hardness and a deep hardening depth by nitriding for a short time, characterized in that it is further incorporated. 請求項1または2に記載の成分を含有する熱間圧延鋼材を所定の形状に加工した後、1000℃以上の温度から焼入処理することにより、マルテンサイト組織からなる鋼材を製造し、必要に応じて仕上加工を行った後、窒化処理を施すことにより、組織が焼もどしマルテンサイト組織であって、表面硬さがHv650以上、内部硬さがHv150以上である鋼材を製造することを特徴とする短時間の窒化処理で高い表面硬さと深い硬化深さの得られる窒化鋼部品の製造方法。  After processing the hot-rolled steel material containing the component according to claim 1 or 2 into a predetermined shape, a steel material having a martensite structure is produced by quenching from a temperature of 1000 ° C. or higher. According to the present invention, after finishing, the structure is tempered and martensitic, and the steel has a surface hardness of Hv650 or higher and an internal hardness of Hv150 or higher. A method of manufacturing a nitrided steel part that can obtain a high surface hardness and a deep hardening depth by a short nitriding treatment. 窒化処理温度を600〜680℃で行うことを特徴とする請求項3に記載の短時間で高い表面硬さと深い硬化深さの得られる窒化鋼部品の製造方法。  The method for producing a nitrided steel part capable of obtaining a high surface hardness and a deep hardening depth in a short time according to claim 3, wherein the nitriding temperature is 600 to 680 ° C.
JP2003092083A 2003-03-28 2003-03-28 Nitride steel parts capable of obtaining high surface hardness and deep hardening depth by nitriding for a short time and method for producing the same Expired - Fee Related JP4175933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003092083A JP4175933B2 (en) 2003-03-28 2003-03-28 Nitride steel parts capable of obtaining high surface hardness and deep hardening depth by nitriding for a short time and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003092083A JP4175933B2 (en) 2003-03-28 2003-03-28 Nitride steel parts capable of obtaining high surface hardness and deep hardening depth by nitriding for a short time and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004300472A JP2004300472A (en) 2004-10-28
JP4175933B2 true JP4175933B2 (en) 2008-11-05

Family

ID=33405286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003092083A Expired - Fee Related JP4175933B2 (en) 2003-03-28 2003-03-28 Nitride steel parts capable of obtaining high surface hardness and deep hardening depth by nitriding for a short time and method for producing the same

Country Status (1)

Country Link
JP (1) JP4175933B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4946617B2 (en) * 2007-05-14 2012-06-06 Jfeスチール株式会社 Steel sheet for soft nitriding treatment and method for producing the same
US9284632B2 (en) 2010-03-16 2016-03-15 Nippon Steel & Sumitomo Metal Corporation Steel for nitrocarburizing, nitrocarburized steel part, and producing method of nitrocarburized steel part
CN115261715A (en) * 2021-04-29 2022-11-01 宝山钢铁股份有限公司 High-temperature carburized gear shaft steel and manufacturing method thereof
CN113564476A (en) * 2021-07-28 2021-10-29 马鞍山钢铁股份有限公司 Base plate for nitriding steel, production method, nitriding steel with excellent corrosion resistance, nitriding method and application thereof

Also Published As

Publication number Publication date
JP2004300472A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
JP5378512B2 (en) Carburized parts and manufacturing method thereof
JP5129564B2 (en) Carburized induction hardening parts
JP5530763B2 (en) Carburized steel parts with excellent low cycle bending fatigue strength
CN100443614C (en) Steel with excellent delayed fracture resistance and tensile strength of 1600 mpa class or more, its shaped articles, and methods of production of the same
JP4385019B2 (en) Manufacturing method for steel nitrocarburized machine parts
KR101726251B1 (en) Steel for nitrocarburizing and nitrocarburized component, and methods for producing said steel for nitrocarburizing and said nitrocarburized component
JP3562192B2 (en) Component for induction hardening and method of manufacturing the same
JPH0892690A (en) Carburized parts excellent in fatigue resistance and its production
JP2010007120A (en) Method for manufacturing high-strength carburized component
JP4737601B2 (en) High temperature nitriding steel
JP3606024B2 (en) Induction-hardened parts and manufacturing method thereof
JP3550886B2 (en) Manufacturing method of gear steel for induction hardening excellent in machinability and fatigue strength
JP4175933B2 (en) Nitride steel parts capable of obtaining high surface hardness and deep hardening depth by nitriding for a short time and method for producing the same
JP4219863B2 (en) High-strength bainite-type nitrided parts and manufacturing method thereof
EP4215636A1 (en) High-plasticity thermoformed steel having oxidation resistance for automobile, and thermoforming process
JPH10226817A (en) Production of steel for soft-nitriding and soft-nitrided parts using this steel
JPH0565592A (en) High fatigue strength steel for structural purpose and steel member made of the same
JP4265819B2 (en) Cold forging steel with excellent nitriding properties and method for producing the same
JPH11131135A (en) Induction-hardened parts and production thereof
JP2000119818A (en) Martensitic heat resistant steel excellent in cold workability
KR100206354B1 (en) Manufacturing method of forging die and tool steel and the same product
JPH09316540A (en) Manufacture of steel for machine structural use for contour induction hardening, excellent in cold forgeability, and manufacture of cold forged part
JP6394844B1 (en) Shaft member
JP2006022351A (en) Precipitation hardening type nitrided steel component and production method therefor
JP2003055741A (en) Oil tempered steel wire for cold formed coil spring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4175933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees