JP4674843B2 - Coil spring manufacturing method - Google Patents

Coil spring manufacturing method Download PDF

Info

Publication number
JP4674843B2
JP4674843B2 JP2004129220A JP2004129220A JP4674843B2 JP 4674843 B2 JP4674843 B2 JP 4674843B2 JP 2004129220 A JP2004129220 A JP 2004129220A JP 2004129220 A JP2004129220 A JP 2004129220A JP 4674843 B2 JP4674843 B2 JP 4674843B2
Authority
JP
Japan
Prior art keywords
sample
coil spring
treatment
projection material
amorphous particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004129220A
Other languages
Japanese (ja)
Other versions
JP2004346424A (en
Inventor
貢 梅村
覚 近藤
隆昭 西村
順功 黒崎
潔 奥村
英二 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Togo Seisakusho Corp
Original Assignee
Sintokogio Ltd
Togo Seisakusho Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd, Togo Seisakusho Corp filed Critical Sintokogio Ltd
Priority to JP2004129220A priority Critical patent/JP4674843B2/en
Publication of JP2004346424A publication Critical patent/JP2004346424A/en
Application granted granted Critical
Publication of JP4674843B2 publication Critical patent/JP4674843B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Springs (AREA)

Description

本発明は、コイルばねの製造方法に関する。
The present invention relates to a method for manufacturing a coil spring .

近年、自動車用エンジンは燃費の向上、軽量化を目的として高回転化並びに高出力化が追及されている。これに対応するため、コイルばねの高疲労強度化への要求が高まっている。現在、コイルばねの表面強化法としては、化学的表面硬化法である窒化処理、即ち、鋼の表面から窒素を拡散侵入させ鋼の表面を硬くする処理方法と、物理的表面硬化法であるショットピーニング処理の併用が一般的である。特にショットピーニングはコイルばね表面付近に圧縮残留応力を与えることで疲労破壊起点の発生を防止している。   2. Description of the Related Art In recent years, automobile engines have been pursued for higher rotation and higher output for the purpose of improving fuel efficiency and reducing weight. In order to cope with this, there is an increasing demand for higher fatigue strength of coil springs. Currently, the surface strengthening method for coil springs includes nitriding treatment, which is a chemical surface hardening method, that is, a treatment method in which nitrogen is diffused and penetrated from the steel surface to harden the steel surface, and a shot is a physical surface hardening method. A combination of peening treatment is common. In particular, shot peening prevents the occurrence of fatigue fracture starting points by applying compressive residual stress in the vicinity of the coil spring surface.

このようなコイルばねの高性能化に伴い、ショットピーニング処理工程においては、コイルばね表面に近い部分に極めて高い圧縮残留応力を付与する必要がある。従って一般的には、ばね材料の高硬度化及び窒化処理時の表面硬度の上昇に伴い、従来の投射材もより応力付与能の高い超硬等の高硬度なもの(特許文献1)やラウンドカットワイヤーが用いられることが一般的であった。
特開平8−323626号公報
With such high performance of the coil spring, in the shot peening process, it is necessary to apply an extremely high compressive residual stress to a portion close to the surface of the coil spring. Therefore, in general, as the hardness of the spring material is increased and the surface hardness is increased during nitriding treatment, the conventional projection material has a higher hardness such as cemented carbide having a higher stress imparting ability (Patent Document 1) or round. It has been common to use cut wires.
JP-A-8-323626

しかし、上記のような従来の超硬等の高硬度投射材をショットピーニング処理に使用すると、コイルばねの表面粗さが粗くなり、表面の切り欠き効果による疲労亀裂が入りやすくなったり、表面が過度に塑性変形されることで最表面部の圧縮残留応力が低下して、目的とは逆に疲れ強さを下げてしまうことがあった。
また、一般材であるラウンドカットワイヤー(以下RCWと示す)は、硬鋼線材を伸線加工し、この伸線を切断した後、剛壁へ投射を行うことによりエッジに丸みを付与するという製法上の限界から0.25mm以下の粒径で且つ高硬度の物を安価に製造することは難しく、課題のピーニング効果を達成可能なものは無かった。
本発明は上記の問題に鑑みて成されたもので、表面粗さを低く抑えることができると共に表面付近に高い圧縮残留応力を付与することができる、コイルばねの製造方法を提供することを目的とする。
However, if a conventional high-hardness projection material such as the above-mentioned carbide is used for shot peening, the surface roughness of the coil spring becomes rough, and it becomes easy for fatigue cracks due to the surface notch effect, Due to excessive plastic deformation, the compressive residual stress at the outermost surface portion may be reduced, and the fatigue strength may be reduced contrary to the purpose.
In addition, a round cut wire (hereinafter referred to as RCW), which is a general material, is a method of drawing a hard steel wire, cutting the wire, and then projecting it onto a rigid wall to round the edge. From the upper limit, it was difficult to produce a product having a particle size of 0.25 mm or less and a high hardness at low cost, and none of them could achieve the peening effect as a problem.
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method of manufacturing a coil spring that can suppress the surface roughness to a low level and can impart a high compressive residual stress in the vicinity of the surface. And

上記の目的を達成するためになされた本発明のコイルばねの製造方法は、質量%でC:0.5〜0.7%、Si:1.2〜2.5%、Mn:0.3〜1.0%、Cr:0.4〜2.0%、を含み、P:0.025%以下、S:0.025%以下に制限すると共に、必要に応じてMo:0.05〜2.0%、V:0.05〜0.3%の1種又は2種を含有し、残部鉄及び不可避的不純物からなるばね用線材を疵取加工、熱間圧延、皮むき、焼鈍しの各処理をした後、冷間伸線し、オイルテンパー処理後、コイリングし、ディスケール処理を行って得たコイルばねに、窒化処理を施した後、硬鋼線材を投射材として1段目のショットピーニング処理を行い、ビッカース硬さHvが800〜1100、ヤング率が100GPa以下で、更に、その粒子の平均粒径がφ0.035〜0.200mmであるアモルファス粒子を投射材として用いて2段目のショットピ−ニング処理をすることを特徴とする。
The manufacturing method of the coil spring of the present invention made to achieve the above object is as follows: C: 0.5 to 0.7%, Si: 1.2 to 2.5%, Mn: 0.3 in mass%. -1.0%, Cr: 0.4-2.0%, P: 0.025% or less, S: 0.025% or less, and Mo: 0.05- 2.0% V: containing one or 0.05 to 0.3% Kizuto machining a spring wire material the balance being iron and unavoidable impurities, hot rolling, peeling, annealing After coiling, cold drawing, oil tempering, coiling, and descaling, the coil spring was subjected to nitriding, and then the hard steel wire rod was used as the projection material in the first stage. The Vickers hardness Hv is 800 to 1100, the Young's modulus is 100 GPa or less, and the average particle diameter of the particles is φ0. 35~0.200mm a is an amorphous particles using a shot material in the second stage Shottopi - characterized by a hardening treatment.

本発明のアモルファス粒子を用いたショットピーニング処理により製造されたコイルばねは、高強度で疲労強度に優れ更に耐遅れ破壊性も良好である、しかも従来の超硬等を用いた製造方法と比較して極めて低コストである。
また、本発明の製造方法によれば、この高品質のコイルばねを容易に製造することが可能であり、近年、自動車用エンジンの燃費向上、軽量化を目的し、高回転化並びに高出力化に対する、コイルばねの市場ニーズに安価に対応する事が可能であり、工業的に利用価値が高い。
The coil spring manufactured by the shot peening process using the amorphous particles of the present invention has high strength, excellent fatigue strength, and good delayed fracture resistance, and compared with a conventional manufacturing method using carbide or the like. And extremely low cost.
In addition, according to the manufacturing method of the present invention, it is possible to easily manufacture this high-quality coil spring. In recent years, with the aim of improving the fuel consumption and reducing the weight of automobile engines, higher rotation and higher output are achieved. On the other hand, it is possible to respond to the market needs of coil springs at a low cost, and the industrial utility value is high.

本発明においては、質量%でC:0.5〜0.7%、Si:1.2〜2.5%、Mn:0.3〜1.0%、Cr:0.4〜2.0%、を含み、P:0.025%以下、S:0.025%以下に制限すると共に、必要に応じてMo:0.05〜2.0%、V:0.05〜0.3%の1種又は2種を含有し、残部鉄及び不可避的不純物からなるばね用線材を疵取加工、熱間圧延、皮むき、焼鈍しの各処理をした後、冷間伸線し、オイルテンパー処理後、コイリングし、ディスケール処理を行ってコイルばねを得る。そして得られたコイルばねにさらに窒化処理を施した後、硬鋼線材を投射材として1段目のショットピーニング処理を行い、さらにアモルファス粒子を投射材として用いて2段目のショットピーニング処理をする。なお、2段目の投射材として、ビッカース硬さHvが800〜1100、ヤング率が100GPa以下で、更に、その粒子の平均粒径がφ0.035〜0.200mmであるアモルファス粒子を用いる。
In the present invention, C: 0.5 to 0.7% by mass, Si: 1.2 to 2.5%, Mn: 0.3 to 1.0%, Cr: 0.4 to 2.0 P: 0.025% or less, S: 0.025% or less, and Mo: 0.05-2.0%, V: 0.05-0.3% as necessary It contains one or two, Kizuto machining a spring wire material the balance being iron and unavoidable impurities, hot rolling, peeling, after each process annealing, and cold drawing, oil tempering After the treatment, coiling is performed and a descaling process is performed to obtain a coil spring. The obtained coil spring is further subjected to nitriding treatment, and then the first stage shot peening treatment is performed using the hard steel wire as the projection material, and further the second stage shot peening treatment is performed using the amorphous particles as the projection material. . As the second-stage projection material, amorphous particles having a Vickers hardness Hv of 800 to 1100, a Young's modulus of 100 GPa or less, and an average particle diameter of φ0.035 to 0.200 mm are used.

このように、2段ショットピーニング処理において、2段目にアモルファス粒子を投射材に用いると優れた効果が得られる。
以下に実施例により、一定の条件で成形したコイルばねについて各種のショットピーニングを施して、各々について圧縮残留応力及び表面粗さの測定を行った結果を説明する。
Thus, in the two-stage shot peening process, an excellent effect can be obtained when amorphous particles are used for the projection material in the second stage.
The results of performing various types of shot peening on the coil springs molded under certain conditions and measuring the compressive residual stress and the surface roughness for each of the examples will be described below.

コイルばねの製造例:本製造例では、質量%でC:0.64%、Si:2.02%、Mn:0.30%、Cr:0.86%、P:0.010、S:0.005%、V:0.10%、引張り強さσB=2122MPaのばね用高強度オイルテンパー線を使用し、コイリング工程にあたる冷間コイリング成形を行うことにより線径がφ3.2mm、コイル中心径が20.0mm、総巻数が6、有効巻数が4、自由長が47mm、ばね定数が32N/mmのコイルばね素材を得た。   Production example of coil spring: In this production example, C: 0.64%, Si: 2.02%, Mn: 0.30%, Cr: 0.86%, P: 0.010, S: Using a high-strength oil tempered wire for springs of 0.005%, V: 0.10%, and tensile strength σB = 2122MPa, by performing cold coiling forming corresponding to the coiling process, the wire diameter is φ3.2mm, coil center A coil spring material having a diameter of 20.0 mm, a total number of turns of 6, an effective number of turns of 4, a free length of 47 mm, and a spring constant of 32 N / mm was obtained.

その後、440℃×15分の低温焼戻しを行い、有害な残留応力を除去した。次に、両座面を研削し、自由長47.0mmのコイルばねとした。このとき、ばね定数32N/mm であった。   Thereafter, low temperature tempering at 440 ° C. for 15 minutes was performed to remove harmful residual stress. Next, both seat surfaces were ground to obtain a coil spring having a free length of 47.0 mm. At this time, the spring constant was 32 N / mm 2.

その後、窒化工程にあたるガス窒化処理をアンモニア雰囲気480℃×4時間処理して、表面付近の窒化層0.050mmの深さで、ビッカース硬さHvが600〜850となった。   Thereafter, a gas nitriding treatment corresponding to the nitriding step was performed at 480 ° C. for 4 hours in an ammonia atmosphere, and the Vickers hardness Hv was 600 to 850 at a depth of 0.050 mm of the nitride layer near the surface.

次に、本発明でいうショットピーニング処理を行う。ショットピーニングは、1段目ショットピーニング処理として、後述する粒径φ0.6mm径の硬鋼線材を用いて行った。 Next, the shot peening process referred to in the present invention is performed. Shot peening was performed as a first-stage shot peening treatment using a hard steel wire having a particle diameter of φ0.6 mm, which will be described later.

また1段目ショットピーニング処理はインペラ−式のショットピーニング機(新東工業製)を用いて、投射速度70m/sec×投射時間400sec間のショットピ−ニング処理を行った。このときのアークハイトは、0.45mmA以上、カバレージ99%以上であった。   The first stage shot peening process was performed using an impeller-type shot peening machine (manufactured by Shinto Kogyo Co., Ltd.) for a projection speed of 70 m / sec × projection time of 400 sec. At this time, the arc height was 0.45 mmA or more and the coverage was 99% or more.

また前記ショット玉は、硬鋼線材を伸線加工して、この伸線を切断した後、剛壁へ投射を行うことによりエッジに丸みを付与したものであり、粒径φ0.6mmは、平均ビッカース硬さHv560を用いた。   The shot ball is obtained by drawing a hard steel wire rod, cutting the drawn wire, and then projecting it onto a rigid wall to round the edge. Vickers hardness Hv560 was used.

次に2段目のショットピーニングの処理条件を示す。2段目に用いる投射材は、製品最表面に適切な残留応力を付与するために、1段目より小サイズで且つ高硬度の投射材を用いる。従って、今回鉄系材料を用いた硬さがHvで800以上のアモルファス粒子を採用した。   Next, processing conditions for the second stage shot peening are shown. The projection material used in the second stage uses a projection material having a smaller size and higher hardness than the first stage in order to give an appropriate residual stress to the outermost surface of the product. Therefore, this time, amorphous particles having a hardness of Hv and higher than 800 using an iron-based material were employed.

アモルファス粒子は、同一硬さの結晶系投射材に比較して、ヤング率が低いことが特徴である。サンプルAは、ビッカース硬さHvが930、ヤング率が83GPa、粒径が0.1mmのアモルファス粒子を投射材として使用した。サンプルBは、ビッカース硬さHvが1400、ヤング率が210GPa、粒径が0.1mmの超硬ショットを投射材として使用した。サンプルCは、ビッカース硬さHvが800、ヤング率が210GPa、粒径が0.25mmのRCWを投射材として使用した。サンプルDは、ビッカース硬さHvが930、ヤング率が83GPa、粒径が0.03mmのアモルファス粒子を投射材として使用した。   Amorphous particles are characterized by a low Young's modulus compared to crystalline projection materials of the same hardness. For sample A, amorphous particles having a Vickers hardness Hv of 930, a Young's modulus of 83 GPa, and a particle size of 0.1 mm were used as the projection material. For sample B, a super hard shot having a Vickers hardness Hv of 1400, a Young's modulus of 210 GPa, and a particle size of 0.1 mm was used as a projection material. For sample C, RCW having a Vickers hardness Hv of 800, a Young's modulus of 210 GPa, and a particle size of 0.25 mm was used as a projection material. For sample D, amorphous particles having a Vickers hardness Hv of 930, a Young's modulus of 83 GPa, and a particle size of 0.03 mm were used as the projection material.

また、2段目のショットピーニングの処理条件は、エアー式のショットピーニング機(新東工業製)により投射圧力0.2MPa×投射時間420sec間の投射を行った。このときのアークハイトは、サンプルAが0.25mmN、サンプルBが0.31mmN、サンプルCが0.24mmN、サンプルDが0.17mmNであった。サンプルA、サンプルB、サンプルC、サンプルDいずれのサンプルもカバレージ99%以上であった。   The processing conditions for the second stage shot peening were as follows: projection was performed for a projection pressure of 0.2 MPa × projection time of 420 sec using an air-type shot peening machine (manufactured by Shinto Kogyo). The arc height at this time was 0.25 mmN for sample A, 0.31 mmN for sample B, 0.24 mmN for sample C, and 0.17 mmN for sample D. Samples A, B, C, and D all had a coverage of 99% or more.

次に、電気炉により2段目処理したコイルばねを加熱し、200℃×15分間の低温焼なましを実施して有害な残留応力の除去処理をおこなった。   Next, the coil spring subjected to the second stage treatment was heated by an electric furnace, and a low temperature annealing at 200 ° C. for 15 minutes was performed to remove harmful residual stress.

次にサンプルA〜Cの各々について圧縮残留応力を測定した。測定方法は非破壊的方法として一般的なX線残留応力測定法を用いた。その結果を図1のグラフに示す。   Next, the compressive residual stress was measured for each of the samples A to C. As a measurement method, a general X-ray residual stress measurement method was used as a non-destructive method. The result is shown in the graph of FIG.

図1のグラフから、RCW(サンプルC)以外の超硬ショット(サンプルB)並びにアモルファス粒子(サンプルA)を投射材として用いた場合には、表面付近の圧縮残留応力が高く且つ、深さも十分な圧縮残留応力分布が得られることが判る。更に超硬ショット(サンプルB)並びにアモルファス粒子(サンプルA)は、ワークの表面に極めて近い位置に圧縮残留応力のピークがあり深さも十分で、コイルばねの疲れ強さ向上に有効であることが確認できる。   From the graph of FIG. 1, when a carbide shot (sample B) and amorphous particles (sample A) other than RCW (sample C) are used as the projection material, the compressive residual stress near the surface is high and the depth is sufficient. It can be seen that a good compressive residual stress distribution can be obtained. Furthermore, the carbide shot (sample B) and the amorphous particles (sample A) have a peak of compressive residual stress at a position very close to the surface of the workpiece and have sufficient depth, and are effective in improving the fatigue strength of the coil spring. I can confirm.

しかし、アモルファス粒子であっても粒子サイズ0.03mmであるサンプルDは、ワーク表面に最大圧縮応力が得られるものの、表面から50μmに至るまでの分布が十分でなかった。このためコイルばねの疲れ強さ向上に特別な効果は得られなかった。   However, Sample A, which is an amorphous particle having a particle size of 0.03 mm, has a maximum compressive stress on the workpiece surface, but its distribution from the surface to 50 μm is not sufficient. For this reason, no special effect was obtained in improving the fatigue strength of the coil spring.

また、アモルファス粒子は、溶解された金属を極めて高い冷却速度で急冷凝固させる必要のある製造方法上の限界から0.200mm以上の粒子を安価に得ることは困難であり、ショットピーニング用の投射材として使用することは経済的に有効でない。   In addition, it is difficult to obtain particles having a size of 0.200 mm or more at low cost because of the limitation on the manufacturing method that requires the melted metal to be rapidly solidified at a very high cooling rate. It is not economically effective to use as.

次に、実施例のコイルばね(サンプルA)と比較例のコイルばね(サンプルB、サンプルC、サンプルD)との表面粗さを測定した結果を表1に示す。   Next, Table 1 shows the results of measuring the surface roughness of the coil spring of the example (sample A) and the coil springs of the comparative examples (sample B, sample C, sample D).

表1から、アモルファス粒子(サンプルA)を投射材として用いた場合には、表面粗さがRzで5.0μm以下となり極めて平滑な表面が創生されることが判る。それに比し、RCW(サンプルC)並びに超硬ショット(サンプルB)はRzで5.0μm以上の表面粗さであり平滑に仕上げることが困難である事がわかる。   From Table 1, it can be seen that when amorphous particles (sample A) are used as a projection material, the surface roughness is 5.0 μm or less in Rz, and an extremely smooth surface is created. In comparison, RCW (sample C) and carbide shot (sample B) have a surface roughness of Rz of 5.0 μm or more and are difficult to finish smoothly.

次に、図2にアモルファス粒子、図3に超硬ショットの投射材表面SEM写真を示す。図2、3の投射材表面のSEM観察から超硬ショットの表面(図3)は鋭角な凹凸であるがアモルファス粒子の表面(図2)は極めて滑らかであることが確認できる。   Next, FIG. 2 shows an amorphous particle, and FIG. From the SEM observation of the surface of the projection material in FIGS. 2 and 3, it can be confirmed that the surface of the carbide shot (FIG. 3) has sharp irregularities, but the surface of the amorphous particles (FIG. 2) is extremely smooth.

次に、図4にサンプルA、図5にサンプルBの弁ばねの表面SEM写真を示す。図4、5の観察からアモルファス粒子でピーニング処理した弁ばね(サンプルA)の表面(図4)は、超硬ショット(サンプルB)の表面(図5)と比較して極めて平滑な表面を創生できたことを確認できた。   Next, FIG. 4 shows a surface SEM photograph of the valve spring of sample A and FIG. 4 and 5, the surface (FIG. 4) of the valve spring (sample A) peened with amorphous particles creates a very smooth surface compared to the surface of the carbide shot (sample B) (FIG. 5). I was able to confirm that it was born.

このことより、アモルファス粒子は弁ばねの疲労寿命の観点から有害である鋭角な凹凸を付与することなくピーニング処理することが可能であることが明らかである。   From this, it is clear that amorphous particles can be peened without imparting sharp irregularities that are harmful from the viewpoint of fatigue life of the valve spring.

また、窒化により表面が硬化している4種類のばねの中で、表面が平滑なばね(サンプルA)は他のばねに比べ、耐衝撃性や耐遅れ破壊性の向上が期待できる。   Of the four types of springs whose surfaces are hardened by nitriding, the spring (sample A) having a smooth surface can be expected to have improved impact resistance and delayed fracture resistance compared to other springs.

上記表1から、アモルファス粒子を投射材として用いたサンプルAは、超硬ショット(サンプルB)やRCW(サンプルC)と比較して平滑なピーニング処理表面を創生した。且つ、図1に示されるように超硬ショット(サンプルB)と同等の圧縮残留応力が得られている。したがって、アモルファス粒子をピ−ニング処理用の投射材として使用した場合(サンプルA)、平滑な処理表面と高い圧縮応力が得られた結果として、疲労寿命が長いコイルばねを得ることが可能となる。   From Table 1 above, Sample A using amorphous particles as a projection material created a smooth peened surface compared to carbide shot (Sample B) and RCW (Sample C). In addition, as shown in FIG. 1, a compressive residual stress equivalent to that of the cemented carbide shot (sample B) is obtained. Therefore, when amorphous particles are used as a projection material for pinning treatment (sample A), a coil spring having a long fatigue life can be obtained as a result of obtaining a smooth treated surface and high compressive stress. .

表2に、実施例のコイルばね(サンプルA)と比較例のコイルばね(サンプルB、サンプルD)との疲労強度の試験結果を示す。   Table 2 shows the fatigue strength test results of the coil spring of the example (sample A) and the coil springs of the comparative examples (sample B and sample D).

疲労強度は、各サンプルの1×10回での値を表した。疲労強度はサンプルAとサンプルBが同等で、サンプルDは明らかにサンプルAとサンプルBに比べ低い疲労強度となった。サンプルAとサンプルBは表面近傍の圧縮残留応力が高い為に疲労寿命が長くなったと考える。 The fatigue strength represents a value at 1 × 10 7 times of each sample. Sample A and sample B were equivalent in fatigue strength, and sample D clearly had a lower fatigue strength than sample A and sample B. It is considered that samples A and B have a long fatigue life due to a high compressive residual stress near the surface.

上記表1から、アモルファス粒子を投射材として用いたサンプルAは、超硬ショット(サンプルB)やRCW(サンプルC)と比較して平滑なピーニング処理表面を創生した。且つ、図1に示されるように超硬ショット(サンプルB)と同等の圧縮残留応力が得られている。
したがって、アモルファス粒子をピーニング処理用の投射材として使用した場合(サンプルA)、平滑な処理表面と高い圧縮残留応力が得られた結果として、耐遅れ破壊性の優れたコイルばねを得ることが可能となる。
From Table 1 above, Sample A using amorphous particles as a projection material created a smooth peened surface compared to carbide shot (Sample B) and RCW (Sample C). In addition, as shown in FIG. 1, a compressive residual stress equivalent to that of the cemented carbide shot (sample B) is obtained.
Therefore, when amorphous particles are used as a projection material for peening treatment (Sample A), it is possible to obtain a coil spring with excellent delayed fracture resistance as a result of obtaining a smooth treated surface and high compressive residual stress. It becomes.

表3に、実施例のコイルばね(サンプルA)と比較例のコイルばね(サンプルB)との耐遅れ破壊性の試験結果を示す。   Table 3 shows the results of the delayed fracture resistance test of the coil spring of the example (sample A) and the coil spring of the comparative example (sample B).

※記号「×」は折損、「○」は未折損を示す。 * The symbol “×” indicates breakage, and “○” indicates unbreakage.

耐遅れ破壊性の試験は、各サンプルを1300MPaの応力条件で圧縮した後、0.1mass%硫酸、0.1mass%二硫化炭素の濃度に調整された腐食液中に浸漬させてコイルばねが折損するまでの時間で評価した。そのときの腐食液の温度は10〜15℃であり試験数はN=6で実施した。   In the delayed fracture resistance test, each sample was compressed under a stress condition of 1300 MPa and then immersed in a corrosive solution adjusted to a concentration of 0.1 mass% sulfuric acid and 0.1 mass% carbon disulfide to break the coil spring. It was evaluated by the time to do. The temperature of the corrosive liquid at that time was 10 to 15 ° C., and the number of tests was N = 6.

サンプルAが、24時間経過時に4ケのコイルばねが未折損であるのに対し、サンプルBは1ケのコイルばね以外は折損しておりサンプルAは明らかに耐遅れ破壊性能に優れている事がわかる。   In sample A, four coil springs are not broken after 24 hours, while sample B is broken except for one coil spring, and sample A is clearly superior in delayed fracture resistance. I understand.

一般に局部腐食成長のメカニズムは材料のミクロな凹が、金属の溶出を促進して腐食電流密度が大きくなり、結果として局部的に腐食が速い速度で進行して孔食となるといわれている。サンプルAはサンプルBと比較して、圧縮残留応力は同等であるが、表1に示したように表面粗さRzが5μm以下と平滑である特徴があり、その結果として腐食されにくく孔食の進行が遅い為に耐遅れ破壊性が優れた結果となったと考えられる。   In general, it is said that the mechanism of local corrosion growth is that the micro-concave of the material promotes metal elution to increase the corrosion current density, and as a result, local corrosion progresses at a high rate and causes pitting. Compared to sample B, sample A has the same compressive residual stress, but as shown in Table 1, the surface roughness Rz has a characteristic of smoothness of 5 μm or less, and as a result, it is hard to be corroded and pitting corrosion. It is considered that the delayed fracture resistance was excellent due to the slow progress.

実施例のコイルばね(サンプルA)と比較例のコイルばね(サンプルB、サンプルC、サンプルD)との残留応力測定結果を示すグラフである。It is a graph which shows the residual-stress measurement result of the coil spring (sample A) of an Example, and the coil spring (sample B, sample C, sample D) of a comparative example. アモルファス粒子の投射材表面SEM写真である。It is a projection material surface SEM photograph of an amorphous particle. 超硬ショットの投射材表面SEM写真である。It is a projection material surface SEM photograph of a super hard shot. サンプルAのコイルばねの表面SEM写真である。4 is a surface SEM photograph of a coil spring of Sample A. サンプルBのコイルばねの表面SEM写真である。It is a surface SEM photograph of the coil spring of sample B.

Claims (1)

質量%でC:0.5〜0.7%、Si:1.2〜2.5%、Mn:0.3〜1.0%、Cr:0.4〜2.0%、を含み、P:0.025%以下、S:0.025%以下に制限すると共に、必要に応じてMo:0.05〜2.0%、V:0.05〜0.3%の1種又は2種を含有し、残部鉄及び不可避的不純物からなるばね用線材を疵取加工、熱間圧延、皮むき、焼鈍しの各処理をした後、冷間伸線し、オイルテンパー処理後、コイリングし、ディスケール処理を行って得たコイルばねに、窒化処理を施した後、硬鋼線材を投射材として1段目のショットピーニング処理を行い、ビッカース硬さHvが800〜1100、ヤング率が100GPa以下で、更に、その粒子の平均粒径がφ0.035〜0.200mmであるアモルファス粒子を投射材として用いて2段目のショットピ−ニング処理をすることを特徴とするコイルばねの製造方法。 C: 0.5 to 0.7% by mass%, Si: 1.2 to 2.5%, Mn: 0.3 to 1.0%, Cr: 0.4 to 2.0%, While limiting to P: 0.025% or less, S: 0.025% or less, Mo: 0.05-2.0%, V: 0.05-0.3% 1 type or 2 as needed containing seeds, Kizuto machining a spring wire material the balance being iron and unavoidable impurities, hot rolling, peeling, after each process annealing, and cold drawing, after oil tempering treatment, and coiling The coil spring obtained by performing the descaling treatment is subjected to nitriding treatment, and then the first stage shot peening treatment is performed using a hard steel wire as a projection material, and the Vickers hardness Hv is 800 to 1100 and the Young's modulus is 100 GPa In the following, further, amorphous particles having an average particle diameter of φ0.035 to 0.200 mm are used as a projection material. Eye Shottopi - method of manufacturing a coil spring, which comprises the hardening treatment.
JP2004129220A 2003-04-28 2004-04-26 Coil spring manufacturing method Expired - Lifetime JP4674843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004129220A JP4674843B2 (en) 2003-04-28 2004-04-26 Coil spring manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003123234 2003-04-28
JP2004129220A JP4674843B2 (en) 2003-04-28 2004-04-26 Coil spring manufacturing method

Publications (2)

Publication Number Publication Date
JP2004346424A JP2004346424A (en) 2004-12-09
JP4674843B2 true JP4674843B2 (en) 2011-04-20

Family

ID=33543330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004129220A Expired - Lifetime JP4674843B2 (en) 2003-04-28 2004-04-26 Coil spring manufacturing method

Country Status (1)

Country Link
JP (1) JP4674843B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5039311B2 (en) 2006-03-15 2012-10-03 三菱重工業株式会社 Metal member manufacturing method and structural member
CH701025B1 (en) * 2009-05-05 2017-06-30 Geobrugg Ag Device for absorbing kinetic energy of a moving body.
JP5482559B2 (en) * 2009-08-18 2014-05-07 新日鐵住金株式会社 Bainite rail
CA2744992C (en) 2009-08-18 2014-02-11 Nippon Steel Corporation Pearlite rail
JP5540433B2 (en) * 2010-11-29 2014-07-02 住友電工スチールワイヤー株式会社 Spring excellent in sag resistance and durability and method for manufacturing the same
JP5624503B2 (en) 2011-03-04 2014-11-12 日本発條株式会社 Spring and manufacturing method thereof
JP2015145712A (en) * 2014-02-04 2015-08-13 中央発條株式会社 Spring and method for manufacturing spring
JP2017512142A (en) * 2014-02-14 2017-05-18 ザ・ナノスティール・カンパニー・インコーポレーテッド Shot material and shot peening method
JP6266076B2 (en) * 2016-11-11 2018-01-24 愛三工業株式会社 Fixing method of valve body and valve stem
JP6740908B2 (en) * 2017-01-11 2020-08-19 日立金属株式会社 Method for manufacturing shaft for magnetostrictive torque sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002036115A (en) * 2000-07-31 2002-02-05 Sintokogio Ltd Shot peening processing method and processed article thereof
JP2003105498A (en) * 2001-09-28 2003-04-09 Togo Seisakusho Corp High strength spring, and production method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002036115A (en) * 2000-07-31 2002-02-05 Sintokogio Ltd Shot peening processing method and processed article thereof
JP2003105498A (en) * 2001-09-28 2003-04-09 Togo Seisakusho Corp High strength spring, and production method therefor

Also Published As

Publication number Publication date
JP2004346424A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
JP5624503B2 (en) Spring and manufacturing method thereof
KR100514120B1 (en) High-strength spring steel and spring steel wire
JP5163241B2 (en) Case-hardened steel
JP4872846B2 (en) Rough shape for nitriding gear and nitriding gear
US20060060269A1 (en) Process for producing high-strength spring
JP5299140B2 (en) MATERIAL OF SHOT PEENING PROJECTION MATERIAL AND METHOD FOR PRODUCING SHOT PEENING PROJECTION MATERIAL
JP4674843B2 (en) Coil spring manufacturing method
JP5163242B2 (en) Case-hardened steel
JP5207805B2 (en) Steel parts with excellent bending fatigue strength and manufacturing method thereof
JP5711539B2 (en) Spring with excellent corrosion fatigue strength
KR20170118902A (en) Steel wire for machine structural parts
JP5653022B2 (en) Spring steel and spring with excellent corrosion fatigue strength
JP5184935B2 (en) Oil tempered wire manufacturing method and spring
WO2012133885A1 (en) Spring and method for producing same
JPH06240408A (en) Steel wire for spring and its production
JP6572216B2 (en) Stainless steel spring and method for producing stainless steel spring
JP2007332421A (en) Method of manufacturing soft-nitride part
JP2009263767A (en) Method for manufacturing high-strength case hardened steel part
JP5206459B2 (en) Case-hardened steel
JP2009249650A (en) High fatigue service life quenching/tempering steel tube and manufacturing method therefor
JP5816136B2 (en) Manufacturing method of seamless steel pipe for hollow spring
KR20100077250A (en) High-strength spring steel and
JP2009270150A (en) Method for manufacturing coil spring
WO2017169481A1 (en) Steel wire having excellent fatigue characteristics and method for manufacturing same
JP2009242918A (en) Component for machine structure having excellent rolling fatigue property, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4674843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250