KR20040032285A - A method for manufacturing medium carbon steel bar-in-coil with low deviation in mechanical properties - Google Patents

A method for manufacturing medium carbon steel bar-in-coil with low deviation in mechanical properties Download PDF

Info

Publication number
KR20040032285A
KR20040032285A KR1020020061239A KR20020061239A KR20040032285A KR 20040032285 A KR20040032285 A KR 20040032285A KR 1020020061239 A KR1020020061239 A KR 1020020061239A KR 20020061239 A KR20020061239 A KR 20020061239A KR 20040032285 A KR20040032285 A KR 20040032285A
Authority
KR
South Korea
Prior art keywords
steel
less
coil
carbon steel
cooling
Prior art date
Application number
KR1020020061239A
Other languages
Korean (ko)
Inventor
방양문
이덕락
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020020061239A priority Critical patent/KR20040032285A/en
Publication of KR20040032285A publication Critical patent/KR20040032285A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Abstract

PURPOSE: A method for manufacturing medium-carbon steel wire rod is provided which is capable of reducing material deviation inside coil due to nonuniformity of cooling rate by adding Ti to steel without addition of cooling facility, thereby forming titanium nitride (TiN) and properly controlling hot rolling conditions. CONSTITUTION: The method for manufacturing medium-carbon steel wire rod having low material deviation comprises the steps of reheating a steel slab comprising 0.42 to 0.48 wt.% of C, 0.15 to 0.35 wt.% of Si, 0.40 to 0.70 wt.% of Mn, 0.03 wt.% or less of P, 0.035 wt.% or less of S, 0.01 to 0.03 wt.% of Ti, 0.004 to 0.01 wt.% of N and a balance of Fe and other inevitable impurities to a temperature of 950 to 1,150 deg.C; finish rolling the reheated steel slab to a temperature of 700 to 850 deg.C; coiling the finish rolled steel; and air cooling the coiled steel.

Description

재질편차가 적은 중탄소강 선재의 제조방법{A METHOD FOR MANUFACTURING MEDIUM CARBON STEEL BAR-IN-COIL WITH LOW DEVIATION IN MECHANICAL PROPERTIES}Method for manufacturing medium carbon steel wire rod with low material deviation {A METHOD FOR MANUFACTURING MEDIUM CARBON STEEL BAR-IN-COIL WITH LOW DEVIATION IN MECHANICAL PROPERTIES}

본 발명은 산업 기계 부품 및 자동차 부품 등의 소재로 사용되는 중탄소강 선재에 관한 것으로서, 보다 상세하게는 강선재의 성분 및 열간압연 조건의 적절한 제어를 통하여 변태전 오스테나이트(Austenite) 조직을 미세화시켜 줌으로써, 열간압연 후 냉각과정에서 필연적으로 발생되는 냉각속도 불균일에 기인한 재질편차를 크게 개선시킨 중탄소강 선재의 제조방법에 관한 것이다.The present invention relates to a medium-carbon steel wire used as a material for industrial machinery parts and automobile parts, and more particularly, by miniaturizing the austenite structure before transformation through proper control of the components of the steel wire and hot rolling conditions. In addition, the present invention relates to a method for manufacturing a medium carbon steel wire rod which greatly improves the material deviation due to the cooling rate nonuniformity inevitably generated during the cooling process after hot rolling.

열간압연을 마친 중탄소강 선재의 미세조직은 주로 페라이트(Ferrite)와펄라이트(Pearlite)로 이루어진다. 통상적으로 선재 한 코일(coil)의 무게는 2톤인데, 냉각과정에서 코일 위치별로 냉각속도가 다르게 나타나게 된다. 따라서, 냉각속도의 불균일에 따른 코일 위치별 미세조직의 차이가 발생하게 된다.The microstructure of hot rolled medium carbon steel wire is mainly composed of ferrite and pearlite. Typically, the weight of a coil (wire) is 2 tons, and the cooling rate is different for each coil position during the cooling process. Therefore, the microstructure of each coil position according to the non-uniformity of the cooling rate occurs.

예를들면, 냉각속도가 상대적으로 빠른 부위는 페라이트의 크기가 작아지고 펄라이트의 분율이 높아지게 되어 강도가 높아진다. 이와는 달리 냉각속도가 상대적으로 느린 부위는 페라이트의 크기가 커지고 펄라이트 분율이 낮아져서 강도가 낮아진다. 따라서, 페라이트와 펄라이트를 주된 조직으로 하는 중탄소강 선재의 경우, 냉각속도 편차에서 기인하는 미세조직 편차 발생 및 이로 인한 재질 불균일을 피할 수가 없다.For example, the region where the cooling rate is relatively high increases the strength due to the smaller ferrite size and the higher fraction of pearlite. On the other hand, the relatively slow cooling rate increases the ferrite size and lower the pearlite fraction, resulting in lower strength. Therefore, in the case of the medium-carbon steel wire mainly composed of ferrite and pearlite, the occurrence of microstructure variation due to the cooling rate variation and the material non-uniformity due to this cannot be avoided.

통상적으로, 탄소함량 0.45%의 75kg/mm2급 강 선재를 코일 형태로 권취하여 냉각시키는 경우, 2톤 중량의 코일내 인장강도 편차는 약 10kg/mm2정도이다. 이러한 선재상태에서의 재질편차는 최종 제품의 재질편차로 이어져 제품 불량율을 높이게 되는 문제점을 야기시킨다.Typically, when coiling and cooling a 75 kg / mm class 2 steel wire having a carbon content of 0.45% in the form of a coil, the variation in tensile strength in the coil of 2 ton weight is about 10 kg / mm 2 . This material deviation in the wire state leads to a material deviation of the final product, causing a problem of increasing the product failure rate.

선재의 재질편차를 줄이기 위한 종래기술로는 일본 공개특허공보 평9-67622 호가 있다. 상기 종래기술에서는 중량%로, C: 0.15~0.35%, Si: 0.05% 이하, Mn: 0.70~1.50%, N: 0.005% 이하, Cr: 0.20% 이하로 조성되는 강을 열간압연 후, 2℃/초 이상의 속도로 냉각하여 얻은 선재를 20~30% 신선하여 인장강도 700~930N/mm2의 강선을 제조하는 것을 특징으로 하는 코일내 재질편차가 적은 강 선재의 제조방법을 제시하고 있다. 상기 종래기술의 경우, 일반 중탄소강을 단지 냉각속도만 제어함으로써 재질편차를 줄일 수 있다는 장점이 있다. 하지만, 냉각속도를 2℃/초 이상으로 하기 위해서는 선재 코일을 강제 냉각시켜주기 위한 냉각설비가 필요하며 이에 따른 생산비 증가의 문제점이 있다.The prior art for reducing the material deviation of the wire rod is Japanese Patent Laid-Open No. 9-67622. In the prior art, the steel is formed by weight%, C: 0.15 to 0.35%, Si: 0.05% or less, Mn: 0.70 to 1.50%, N: 0.005% or less, Cr: 0.20% or less after hot rolling, and then 2 ° C. It proposes a method for producing a steel wire with a low material deviation in the coil, characterized in that the wire obtained by cooling at a rate of more than / seconds 20 to 30% to produce a steel wire with a tensile strength of 700 ~ 930N / mm 2 . In the case of the prior art, there is an advantage that the material deviation can be reduced by controlling only the cooling rate of the general medium carbon steel. However, in order to increase the cooling rate to 2 ° C / sec or more, a cooling facility for forcibly cooling the wire coil is required, and thus there is a problem of increasing production cost.

본 발명은 상기한 문제점을 해결하기 위한 것으로, 냉각설비의 추가없이 강에 Ti를 첨가하여 티타늄질화물(TiN)을 형성시킴과 아울러 열간압연 조건을 적절히 조절함으로써, 변태전 오스테나이트 크기를 미세화시켜 냉각속도 불균일에 의한 코일내 재질편차를 줄일 수 있는 중탄소강 선재의 제조방법을 제공하고자 하는데, 그 목적이 있다.The present invention is to solve the above problems, by adding Ti to the steel without the addition of a cooling facility to form titanium nitride (TiN) and by appropriately adjusting the hot rolling conditions, by minimizing the size of austenite before transformation to cool It is an object of the present invention to provide a method for manufacturing a medium carbon steel wire rod which can reduce material variation in a coil due to speed unevenness.

도 1은 냉각속도 변화에 따른 발명강과 비교강의 경도 변화를 나타내는 그래프1 is a graph showing the hardness change of the invention steel and the comparative steel according to the cooling rate change

도 2는 발명재2와 비교재2의 미세조직 비교 사진2 is a microstructure comparison picture of the invention material 2 and the comparative material 2

도 3은 오스테나이트 크기와 경화 민감도 사이의 상관관계를 나타내는 그래프3 is a graph showing the correlation between austenite size and cure sensitivity

상기한 목적을 달성하기 위한 본 발명은 중량%로, C: 0.42~0.48%, Si: 0.15~0.35%, Mn: 0.40~0.70%, P: 0.03% 이하, S: 0.035% 이하, Ti: 0.01~0.03%, N: 0.004~0.01%, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 강편을 950~1150℃로 재가열한 후, 700~850℃로 마무리 압연한 후, 권취한 다음 공냉하는 것을 포함하여 이루어진다.The present invention for achieving the above object by weight, C: 0.42 ~ 0.48%, Si: 0.15 ~ 0.35%, Mn: 0.40 ~ 0.70%, P: 0.03% or less, S: 0.035% or less, Ti: 0.01 ~ 0.03%, N: 0.004% to 0.01%, the steel sheet composed of the remaining Fe and other unavoidable impurities, and reheated to 950 ~ 1150 ℃, finish rolling to 700 ~ 850 ℃, then wound and air-cooled .

이하, 본 발명에 대하여 보다 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은 강에 Ti를 첨가하여 티타늄질화물(TiN)을 형성시키고 열간압연 조건을 적절하게 조절함으로써, 변태전 오스테나이트 크기를 미세화시켜 냉각속도 불균일에 의한 코일내 재질편차를 줄인 중탄소강 선재의 제조방법에 관한 것이다.In the present invention, by adding Ti to the steel to form titanium nitride (TiN) and by appropriately adjusting the hot rolling conditions, the production of medium-carbon steel wire rods by miniaturizing the size of austenite before transformation to reduce material deviation in the coil due to uneven cooling rate It is about a method.

먼저, 본 발명의 강 성분에 대하여 상세하게 설명한다.First, the steel component of this invention is demonstrated in detail.

C: 0.42~0.48중량%C: 0.42-0.48 wt%

상기 C는 강의 기계적 성질에 가장 큰 영향을 미치는 원소이다. 상기 C의 함량이 0.42중량% 미만이면 목표하는 강도의 확보가 불가능하고, 0.48중량%를 초과하면 강도가 지나치게 증가되므로, 그 함량을 0.42~0.48중량%로 제한하는 것이 바람직하다.C is an element having the greatest influence on the mechanical properties of steel. If the content of C is less than 0.42% by weight, it is impossible to secure the target strength. If the content of C is more than 0.48% by weight, the strength is excessively increased. Therefore, the content is preferably limited to 0.42 to 0.48% by weight.

Si: 0.15~0.35중량%Si: 0.15 to 0.35 wt%

상기 Si은 통상 제강시 탈산 및 강도확보를 위해서 첨가하는 성분으로, 함량이 0.15중량% 미만이면 탈산작용이 원활이 이루어지지 않고 필요한 강도를 확보하기가 곤란하다. 또한, 함량이 0.35중량%를 초과하면 강도가 지나치게 증가하므로, 그 함량을 0.15~0.35중량%로 제한하는 것이 바람직하다.The Si is a component normally added for deoxidation and strength at steelmaking. If the content is less than 0.15% by weight, the deoxidation is not smoothly performed and it is difficult to secure necessary strength. In addition, since the strength is excessively increased when the content exceeds 0.35% by weight, it is preferable to limit the content to 0.15 to 0.35% by weight.

Mn: 0.40~0.70중량%Mn: 0.40 to 0.70 wt%

상기 Mn은 강의 강도를 증가시키는 성분이다. 상기 Mn의 함량이 0.40중량% 미만이면 강도확보가 부족하고, 0.70중량%를 초과하면 강도가 지나치게 증가하므로, 그 함량을 0.40~0.70중량%로 제한하는 것이 바람직하다.Mn is a component that increases the strength of the steel. If the content of Mn is less than 0.40% by weight, the strength is insufficient. If the content of Mn is more than 0.70% by weight, the strength is excessively increased. Therefore, the content is preferably limited to 0.40 to 0.70% by weight.

P: 0.03중량% 이하P: 0.03 wt% or less

상기 P은 입계에 편석되어 강의 인성을 떨어뜨리는 원소로서, 함량이 0.03중량%를 초과하는 경우에 강의 인성이 현저하게 떨어지게 되므로, 그 함량을 0.03중량% 이하로 제한하는 것이 바람직하다.P is an element that segregates at grain boundaries and degrades the toughness of the steel, and when the content exceeds 0.03% by weight, the toughness of the steel is remarkably decreased, so the content is preferably limited to 0.03% by weight or less.

S: 0.035중량% 이하S: 0.035 wt% or less

상기 S은 강의 충격인성을 감소시키는 원소로서, 함량이 0.035중량%를 초과하는 경우에 강의 충격인성이 현저하게 감소되므로, 그 함량을 0.035중량% 이하로 제한하는 것이 바람직하다.S is an element for reducing the impact toughness of the steel, and when the content exceeds 0.035% by weight, the impact toughness of the steel is significantly reduced, it is preferable to limit the content to 0.035% by weight or less.

Ti: 0.01~0.03중량%Ti: 0.01% to 0.03% by weight

상기 Ti은 본 발명에 있어서 핵심이 되는 성분으로, 고온에서 질소와 결합하여 질화물(TiN)을 형성시켜 오스테나이트(Austenite) 결정립 성장을 억제하고 조직을 미세화 시킴으로써, 강의 인성을 증가시키고 재질편차를 줄이는 역할을 한다. 상기 Ti의 함량이 0.01중량% 미만이면 재질편차를 줄이는 효과를 얻기 힘들고, 함량이 0.03중량%를 초과하면 재질편차 감소 효과가 포화되고 고가의 Ti첨가에 따른 생산비 증가를 초래하므로, 그 함량을 0.01~0.03중량%로 제한하는 것이 바람직하다.The Ti is a key component in the present invention, in combination with nitrogen at high temperature to form nitride (TiN) to inhibit the growth of austenite grains and to refine the structure, thereby increasing the toughness of the steel and reducing material deviations Play a role. If the content of Ti is less than 0.01% by weight, it is difficult to obtain the effect of reducing the material deviation. If the content is more than 0.03% by weight, the effect of reducing the material deviation is saturated and the production cost increases due to the addition of expensive Ti. It is preferable to limit to 0.03% by weight.

N: 0.004~0.01중량%N: 0.004-0.01 wt%

상기 N는 고온에서 Ti와 결합하여 질화물을 형성하므로써, 강의 조직을 미세화시키고 강의 인성을 증가시키는 성분이다. N의 함량이 0.004중량% 미만이면 상기 효과를 얻을 수 없고, 함량이 0.01중량%를 초과하면 질화물을 형성하지 못하는 자유 질소량이 증가하게 되어 강재의 인성을 저하시키므로, 그 함량을 0.004~0.01중량%로 제한하는 것이 바람직하다.N is a component that combines with Ti at high temperature to form nitride, thereby making the steel structure fine and increasing the toughness of the steel. If the content of N is less than 0.004% by weight, the above effect cannot be obtained, and if the content is more than 0.01% by weight, the amount of free nitrogen which does not form nitride increases, which lowers the toughness of the steel, and thus the content is 0.004 to 0.01% by weight. It is preferable to limit to.

상기와 같이 조성된 강편을 950~1150℃의 온도에서 재가열한다. 상기 재가열 온도가 950℃ 미만이면 강의 고온 변형저항이 너무 증가하여 압연기 부하가 과도하게 발생하고, 1150℃를 초과하면 강중에 석출되어 있는 티타늄질화물(TiN)이 재용해되어 오스테나이트 성장 억제 기능을 상실하게 되므로, 상기 재가열 온도는 950~1150℃로 제한하는 것이 바람직하다.The steel strips prepared as described above are reheated at a temperature of 950-1150 ° C. If the reheating temperature is less than 950 ° C., the high temperature deformation resistance of the steel is excessively increased, and the mill load is excessively generated. If the reheating temperature is higher than 1150 ° C., titanium nitride (TiN) precipitated in the steel is re-dissolved to lose austenite growth inhibiting function. Since it is, the reheating temperature is preferably limited to 950 ~ 1150 ℃.

상기 재가열 후, 열간압연을 행하게 된다. 이때, 마무리 압연은 700~850℃에서 행하게 된다. 상기 마무리 압연온도가 700℃ 미만이면 이상영역에서 압연이 이루어지게 되어 페라이트가 과도하게 연신되고 내부에 많은 에너지의 축적으로 강의 충격치 저하 및 지나친 경도의 증가를 초래한다. 또한, 마무리 압연온도가 850℃를 초과하면 열간변형 후 재결정 및 입성장이 활발하게 일어나기 때문에 냉각시 페라이트 핵생성 자리가 감소하게 되어 페라이트의 양이 줄어들고 상대적으로 펄라이트 양이 늘어나게 되어 재질편차가 심해지므로, 상기 마무리 압연은 700~850℃에서 행하는 것이 바람직하다.After the reheating, hot rolling is performed. At this time, finish rolling is performed at 700-850 degreeC. If the finish rolling temperature is less than 700 ℃ rolling is made in an abnormal region, the ferrite is excessively stretched, causing a decrease in the impact value of the steel and an excessive increase in hardness due to the accumulation of a lot of energy therein. In addition, if the finish rolling temperature exceeds 850 ℃ recrystallization and grain growth occurs actively after hot deformation, the ferrite nucleation site is reduced during cooling, the amount of ferrite is reduced and the amount of pearlite is relatively increased, so the material deviation is increased, It is preferable to perform the said finish rolling at 700-850 degreeC.

상기 마무리 압연 후, 권취하여 공냉하게 된다. 이때, 본 발명과 같이 권취된 선재코일을 냉각할 경우, 0.5~2℃/초의 냉각속도가 나오게 된다. 만일, 권취된 선재 코일을 물이나 압축공기 등의 매체를 이용하여 강제 냉각시키게 되면, 코일내에 국부적으로 저온변태 조직이 생성되어 재질편차를 증가시키게 되므로, 대기중에서 공냉하여 기계적 특성에 악영향을 미치는 베이나이트, 마르텐사이트 등의 저온변태 조직이 발생하지 않도록 하는 것이 바람직하다.After the said finish rolling, it winds up and air-cools. At this time, when cooling the wire coil wound as in the present invention, a cooling rate of 0.5 ~ 2 ℃ / second comes out. If the coiled wire coil is forcedly cooled using a medium such as water or compressed air, a low temperature transformation structure is generated locally in the coil to increase the material deviation, so that the bay is air-cooled in the air and adversely affects mechanical properties. It is preferable that low-temperature transformation tissues, such as knight and martensite, do not generate | occur | produce.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

하기 표 1과 같이 조성되는 강을 110mm x 110mm x 250 mm의 소형 강편으로 제작한 후, 1100℃로 90분간 재가열한 다음 열간압연을 실시한다. 이때 발명강은 900℃, 850℃ 및 800℃로, 비교강은 1000℃, 900℃ 및 800℃로 마무리 압연하였다. 마무리 압연 직후의 오스테나이트 크기를 측정하기 위해, 압연직후의 소재를 급냉시켜 오스테나이트 크기를 측정하여 하기 표 2에 나타내었다.After the steel composition as shown in Table 1 to produce a small steel piece of 110mm x 110mm x 250 mm, and reheated to 1100 ℃ for 90 minutes and then subjected to hot rolling. At this time, the invention steel is 900 ℃, 850 ℃ and 800 ℃, the comparative steel was finish-rolled to 1000 ℃, 900 ℃ and 800 ℃. In order to measure the austenite size immediately after the finish rolling, the material immediately after the rolling was quenched and the austenite size was measured.

한편, 마무리 압연이 끝난 일부 소재는 공냉을 통하여 상온까지 냉각한다. 이렇게 냉각시킨 발명재(1~2) 및 비교재(1~4)에 대하여서 경도를 측정하여 도 1에 나타내었으며, 발명재(2)와 비교재(2)의 미세조직을 촬영하여 도 2에 나타내었다.On the other hand, some finish-rolled material is cooled to room temperature through air cooling. The hardness of the inventive materials 1 to 2 and the comparative materials 1 to 4 thus cooled was measured and shown in FIG. 1, and the microstructures of the inventive material 2 and the comparative material 2 were photographed in FIG. 2. Indicated.

강성분(중량%)Steel component (wt%) CC SiSi MnMn PP SS TiTi NN 발명강Invention steel 0.450.45 0.220.22 0.510.51 0.0070.007 0.0100.010 0.0150.015 0.0060.006 비교강Comparative steel 0.450.45 0.240.24 0.700.70 0.0070.007 0.0090.009 -- 0.0030.003

재가열온도(℃)Reheating Temperature (℃) 마무리 압연온도(℃)Finish rolling temperature (℃) 오스테나이트 크기(㎛)Austenitic Size (μm) 발명강Invention steel 발명재1Invention 1 11001100 800800 15.615.6 발명재2Invention 2 850850 19.519.5 비교재1Comparative Material 1 900900 27.427.4 비교강Comparative steel 비교재2Comparative Material 2 800800 25.525.5 비교재3Comparative Material 3 900900 36.036.0 비교재4Comparative Material 4 10001000 93.193.1

상기 표 2에서 알 수 있는 바와 같이, 발명재(1~2)는 비교재(1~4)에 비하여 마무리 압연 직후의 오스테나이트 크기가 매우 작다. 이는 발명강 중에 함유된 Ti이 티타늄질화물(TiN)을 형성시켜 재가열시 오스테나이트 성장을 효과적으로 억제하였으며, 또한 마무리 압연온도도 낮기 때문이다. 상기 발명재(1~2)와 같이 오스테나이트 크기가 20㎛ 이하가 되면, 선재 코일내에서 냉각과정에서 얼마간 냉각속도 편차가 있더라도 심한 재질편차로 이어지지는 않는다. 이에 비해 비교강은 발명강 대비 상대적으로 오스테나이트 크기가 크고 압연온도를 800℃ 까지 낮추어도 20㎛ 이하의 오스테나이트를 얻을 수가 없음을 알 수 있다.As can be seen from Table 2, the invention materials (1-2) are very small austenite size immediately after the finish rolling compared to the comparative materials (1-4). This is because Ti contained in the inventive steel forms titanium nitride (TiN) to effectively suppress austenite growth upon reheating, and also has a low finish rolling temperature. When the austenite size is 20 µm or less, as in the invention materials 1 to 2, even if there is some cooling speed deviation in the cooling process in the wire coil does not lead to severe material deviation. On the contrary, it can be seen that the comparative steels have relatively larger austenite sizes than the invention steels, and that even when the rolling temperature is lowered to 800 ° C., austenite of 20 μm or less cannot be obtained.

도 1은 냉각속도 변화에 따른 경도 변화를 보여주는 그래프로써, 발명강과 비교강모두 냉각속도가 증가함에 따라 경도가 증가하고 있다. 이는 냉각속도가 증가함에 따라 연질상인 페라이트는 줄어들고 경질상인 펄라이트는 늘어나기 때문이다. 그런데, 동일한 범위의 냉각속도 변화에 대해서 발명강은 비교강에 비해 경도 증가량이 훨씬 적다. 이는 코일 위치에 따른 냉각속도에 차이가 있을 때, 발명강의 경도 편차가 비교강 대비 훨씬 감소한다는 의미이다. 도 1에서 보면 냉각속도가 낮을때, 얻을 수 있는 최저 경도값이 195Hv이다. 동일 코일내에서 허용 가능한 경도값 편차는 약 25 Hv 정도 이므로, 냉각속도를 증가시켜도 최대 경도값이 220Hv를 넘지 않아야 한다. 발명강을 마무리 압연온도 850℃ 이하로 압연하는 경우(발명재1~2), 주어진 냉각속도 편차 범위에서 예상되는 경도변화는 195~215Hv로써, 재질편차는 20Hv 이하가 됨을 알 수 있다. 그러나, 비교재(1~4)의 경우, 예상되는 경도변화는 195~250Hv로써, 재질편차는 30~55Hv임을 도 1을 통하여 알 수 있다.1 is a graph showing the change in hardness according to the cooling rate change, the hardness of both the invention steel and the comparative steel increases as the cooling rate increases. This is because as the cooling rate increases, the soft phase ferrite decreases and the hard phase pearlite increases. However, in the same range of cooling rate changes, the invention steel has a much smaller increase in hardness than the comparative steel. This means that when there is a difference in the cooling rate according to the coil position, the hardness variation of the inventive steel is much reduced compared to the comparative steel. 1, when the cooling rate is low, the lowest hardness value that can be obtained is 195 Hv. The allowable variation of hardness value in the same coil is about 25 Hv, so the maximum hardness value should not exceed 220Hv even if the cooling rate is increased. When the invention steel is rolled to a finish rolling temperature of 850 ° C. or lower (inventive materials 1 to 2), the expected hardness change in a given cooling speed deviation range is 195 to 215 Hv, and it can be seen that the material deviation is 20 Hv or less. However, in the case of the comparative materials (1 to 4), the expected change in hardness is 195 ~ 250Hv, it can be seen through Figure 1 that the material deviation is 30 ~ 55Hv.

도 2는 발명재(2)와 비교재(2)의 냉각종료 후의 미세조직 사진이다. 발명재(2)의 경우 마무리 압연온도가 850℃로써, 800℃로 마무리 압연한 비교재(2)에 비하여, 마무리 압연온도가 높음에도 불구하고 조직은 더욱 미세하며, 경도 증가에 가장 큰 영향을 미치는 펄라이트 함량도 비교재(2)에 비하여 적음을 알 수 있다. 이렇게 미세조직을 살펴보더라도 발명재(1~2)는 비교재(1~4) 대비 재질편차가 줄어들게 됨을 알 수 있다.2 is a microstructure photograph of the invention material 2 and the comparative material 2 after the end of cooling. In the case of the inventive material (2), the finish rolling temperature is 850 ° C., compared to the comparative material (2) which was finish rolled at 800 ° C., although the finish rolling temperature is high, the structure is finer and has the greatest influence on the hardness increase. It can be seen that the perlite content is less than that of the comparative material (2). Looking at the microstructure in this way it can be seen that the material deviation of the invention materials (1-2) compared to the comparative materials (1-4).

도 3에는 변태전 오스테나이트 크기가 냉각속도 변화에 기인하는 경도 증가에 미치는 민감도를 표시하였다. 경화 민감도 값이 클수록 동일한 양의 냉각속도 편차에 대하여 경도 변화 폭이 크게 되며, 이는 재질편차가 심해진다는 것을 의미한다. 도 3에서 알 수 있듯이, 오스테나이트 크기가 증가함에 따라 재질편차에 대한 민감도 값이 커지게 된다. 발명재(1~2)의 경우, 오스테나이트 크기가 20um 이하로써 경화 민감도 값이 100이하로 비교재(1~4)에 비하여 매우 낮은 수준임을 알 수 있다.3 shows the sensitivity of the austenite size before transformation to increase in hardness due to the change in cooling rate. The larger the curing sensitivity value, the greater the change in hardness for the same amount of cooling rate variation, which means that the material deviation is increased. As can be seen in Figure 3, as the austenite size increases, the sensitivity value for the material deviation increases. In the case of the invention materials (1 ~ 2), it can be seen that the austenite size is 20um or less and the curing sensitivity value is 100 or less compared to the comparative materials (1-4).

상술한 바와 같이, 본 발명은 선재 코일내 위치별 냉각속도 편차에 기인한 재질편차가 적은 선재를 제조할 수 있게 하여, 생산성 향상 및 불량율 감소 등의 효과를 얻을 수 있다.As described above, the present invention makes it possible to manufacture a wire rod having a small material deviation due to the variation in the cooling speed for each position in the wire coil, thereby achieving effects such as productivity improvement and defect rate reduction.

Claims (1)

중량%로, C: 0.42~0.48%, Si: 0.15~0.35%, Mn: 0.40~0.70%, P: 0.03% 이하, S: 0.035% 이하, Ti: 0.01~0.03%, N: 0.004~0.01%, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 강편을 950~1150℃로 재가열한 후, 700~850℃로 마무리 압연한 후, 권취한 다음 공냉하는 것을 포함하여 이루어지는 재질편차가 적은 중탄소강 선재의 제조방법.By weight%, C: 0.42 to 0.48%, Si: 0.15 to 0.35%, Mn: 0.40 to 0.70%, P: 0.03% or less, S: 0.035% or less, Ti: 0.01 to 0.03%, N: 0.004 to 0.01% , The method for producing a medium carbon steel wire with a low material deviation, including re-heating the steel pieces composed of the remaining Fe and other unavoidable impurities to 950 ~ 1150 ℃, finish rolling to 700 ~ 850 ℃, then winding and air-cooled .
KR1020020061239A 2002-10-08 2002-10-08 A method for manufacturing medium carbon steel bar-in-coil with low deviation in mechanical properties KR20040032285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020061239A KR20040032285A (en) 2002-10-08 2002-10-08 A method for manufacturing medium carbon steel bar-in-coil with low deviation in mechanical properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020061239A KR20040032285A (en) 2002-10-08 2002-10-08 A method for manufacturing medium carbon steel bar-in-coil with low deviation in mechanical properties

Publications (1)

Publication Number Publication Date
KR20040032285A true KR20040032285A (en) 2004-04-17

Family

ID=37332197

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020061239A KR20040032285A (en) 2002-10-08 2002-10-08 A method for manufacturing medium carbon steel bar-in-coil with low deviation in mechanical properties

Country Status (1)

Country Link
KR (1) KR20040032285A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62253724A (en) * 1986-04-25 1987-11-05 Nippon Steel Corp Production of wire rod for cold forging having granular cementite structure
JPH03188217A (en) * 1989-12-18 1991-08-16 Sumitomo Metal Ind Ltd Production of high carbon sheet
JPH0967622A (en) * 1995-08-28 1997-03-11 Kobe Steel Ltd Production of high strength non-heat treated steel wire for bolt, excellent in cold heading property
JPH09202921A (en) * 1996-01-24 1997-08-05 Sumitomo Metal Ind Ltd Production of wire for cold forging

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62253724A (en) * 1986-04-25 1987-11-05 Nippon Steel Corp Production of wire rod for cold forging having granular cementite structure
JPH03188217A (en) * 1989-12-18 1991-08-16 Sumitomo Metal Ind Ltd Production of high carbon sheet
JPH0967622A (en) * 1995-08-28 1997-03-11 Kobe Steel Ltd Production of high strength non-heat treated steel wire for bolt, excellent in cold heading property
JPH09202921A (en) * 1996-01-24 1997-08-05 Sumitomo Metal Ind Ltd Production of wire for cold forging

Similar Documents

Publication Publication Date Title
KR101356773B1 (en) High carbon hot-cold rolled steel coil and manufactureing method thereof
KR101899674B1 (en) High strength steel sheet having excellent burring property in low-temperature region and manufacturing method for same
KR101318383B1 (en) Hot rolled steel sheet and methdo for manufacturing the same
KR101353551B1 (en) High carbon hot/cold rolled steel coil and manufactureing method thereof
KR101242692B1 (en) High carbon hot/cold rolled steel coil and manufactureing method thereof
KR20040032285A (en) A method for manufacturing medium carbon steel bar-in-coil with low deviation in mechanical properties
KR101153696B1 (en) Steel Sheet having Excellent Yield Strength and Stretch Flange Ability and Manufacturing Method Thereof
KR102292524B1 (en) Steel having enhanced cold formability and method for manufacturing the same
KR100435461B1 (en) A method for manufacturing steel material for cold forging with low property deviation
KR102168369B1 (en) Manufacturing method of high-carbon steel with improved bendability and the method for manufacturing the same
KR102462130B1 (en) Method of manufacturing ultra high strength hot rolled steel sheet having softening heat treatment and apparatus of manufacturing hot rolled steel sheet
KR102531584B1 (en) Hot rolled steel sheet and qt heat treated hot rolled steel sheet having excellent wear resistance and method of manufacturing thereof
KR102485008B1 (en) High carbon cold rolled steel sheet having high toughness and method of manufacturing the same
KR101568495B1 (en) High strength cold rolled steel sheet having excellent shape property and method for manufacturing the same
KR101384797B1 (en) High carbon hot/cold rolled steel coil and manufactureing method thereof
KR101062131B1 (en) Beo hardened steel sheet and manufacturing method
KR100400867B1 (en) Low carbon cold rolled steel sheet with low plastic anisotropy coefficient and excellent workability and manufacturing method
KR20230048865A (en) Wire rod with improved cold workability and manufacturing method therefor
KR20160063553A (en) Wire having high strength, and method for manufacturing thereof
KR101449128B1 (en) High carbon steel sheet having excellent uniformity and workability and method for manufacturing thereof
KR20040059581A (en) Method for manufacturing the high strength steel by grain refinement
KR101256618B1 (en) High carbon hot/cold rolled steel coil and manufactureing method thereof
KR20220055269A (en) High carbon hot rolled steel sheet having excellent wear resistance and method of manufacturing the same
KR20150075351A (en) Rolled steel and method of manufacturing the same
KR100957976B1 (en) Cr-Nb Added Bake Hardenable Steel Sheet with Excellent Strain Aging Resistance and Manufacturing Method Thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application