JPH09324212A - Production of hot rolled high carbon steel strip excellent in hardenability and cold workability - Google Patents

Production of hot rolled high carbon steel strip excellent in hardenability and cold workability

Info

Publication number
JPH09324212A
JPH09324212A JP14536796A JP14536796A JPH09324212A JP H09324212 A JPH09324212 A JP H09324212A JP 14536796 A JP14536796 A JP 14536796A JP 14536796 A JP14536796 A JP 14536796A JP H09324212 A JPH09324212 A JP H09324212A
Authority
JP
Japan
Prior art keywords
less
point
hardenability
temp
steel strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14536796A
Other languages
Japanese (ja)
Inventor
Tadao Tanomura
忠郎 田野村
Makoto Imanaka
誠 今中
Minoru Matsuzaki
実 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14536796A priority Critical patent/JPH09324212A/en
Publication of JPH09324212A publication Critical patent/JPH09324212A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a hot rolled high carbon steel strip having fine spheroidal carbide and excellent in hardenability and cold workability by heating a steel stock of specific C content to a specific temp., applying respectively specified roughing, cooling treatment, and finish rolling to the steel stock, and coiling the resultant steel strip at high temp. SOLUTION: A steel stock, which has a composition containing, by weight, 0.2-1.3% C, preferably containing 0.1-1.0% Si, 0.05-2.0% Mn, <=0.05% P, <=0.05% S, 0.001-0.2% Al, and <=0.05% Ni, further containing, if necessary, prescribed amounts of Cr, Ni, Mo, and B, and having the balance Fe with inevitable impurities, is used. This steel stock is heated to 1000-1300 deg.C and then roughed at a temp. between 950 deg.C and the Ar3 point or a temp. not lower than the Arcm point at >=50% draft to increase the number of pearlite nucleation sites. Within 10sec after roughing, cooling is performed down to a temp. not higher than the Ar1 point at a rate of >=1 deg.C/s to prevent the formation of coarse lamellar carbide. The resultant rolled stock is finish-rolled at a temp. between the Ar1 point and 500 deg.C at >=30% draft to decompose and refine pearlite, followed by coiling at 700-450 deg.C to form spheroidal carbide by self-retained heat.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、機械構造用、工具
用として用いられる高炭素熱延鋼帯の製造方法に関し、
とくに、微細な球状の炭化物を有する高炭素熱延鋼帯の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a high carbon hot-rolled steel strip used for machine structures and tools,
In particular, it relates to a method for producing a high carbon hot rolled steel strip having fine spherical carbides.

【0002】[0002]

【従来の技術】通常の製造条件で製造される熱間加工鋼
材の組織中に含まれる炭化物は、パーライトと呼ばれる
層状炭化物となっている。このような層状炭化物は、鋼
材の加工性を劣化させ、また焼入れ不良や、焼入れ焼戻
しなどの熱処理後の靱性を劣化させるため、次工程にお
いて炭化物を球状化し、延性を付与したり、硬度を低下
させたりするのが一般的である。この球状化処理とし
て、A1 点直下の温度に長時間加熱保持するか、A
1 点直上に適当時間加熱後、徐冷するか、A1 点をは
さんで、その直上と直下の温度に繰り返し加熱冷却す
る、等の方法がある。しかし、いずれの方法とも球状化
に長時間を要するため、球状化処理時間の短縮が望まれ
ていた。
2. Description of the Related Art Carbides contained in the structure of hot-worked steel produced under normal production conditions are layered carbides called pearlite. Such a layered carbide deteriorates the workability of the steel material, and also deteriorates the quenching failure and the toughness after heat treatment such as quenching and tempering. It is common to let them do it. As this spheroidizing treatment, heating at a temperature just below A 1 point for a long time or
After heating an additional period immediately above a point, or slow cooling, across a point A, repeatedly heating and cooling to a temperature directly above and below them, there is a method and the like. However, since spheroidizing requires a long time in any of the methods, it has been desired to shorten the spheroidizing treatment time.

【0003】そこで、特公昭63−14045号公報に
は、フェライトの動的再結晶温度以上A1 点より低い温
度で10%以上60%以下の加工を加えた後、630℃
以上A1 点より低い温度に5秒以上5時間以下保持する
球状化処理が提案されている。しかし、この方法によれ
ば、加工後再加熱を必要とすること、およびその温度管
理が難しいことなどの問題を残していた。
In view of this, Japanese Patent Publication No. 63-14045 discloses that after the processing of 10% or more and 60% or less at a temperature lower than the A 1 point of the dynamic recrystallization temperature of ferrite, 630 ° C.
Above, a spheroidizing treatment has been proposed in which the temperature is kept lower than the A 1 point for 5 seconds or more and 5 hours or less. However, according to this method, there remain problems such as the need for reheating after processing and the difficulty in controlling the temperature.

【0004】また、特開昭63−86814号公報に
は、熱間圧延の途中で冷却しフェライト−パーライト変
態を完了させたのち、急熱し、AC3点以下の温度域で1
0%以上70%以下の加工を加える方法が提案されてい
る。さらに、特開昭63−86815号公報には、熱間
圧延の途中で冷却しマルテンサイト変態を完了させたの
ち、あるいは、特開昭63−89617号公報には、熱
間圧延の途中で冷却しベーナイト変態を完了させたの
ち、急熱し、AC3点以下の温度域で10%以上70%以
下の加工を加える方法が提案されている。しかし、これ
らの方法によっても、球状化処理時間の大幅な短縮は達
成できなかったのである。
In Japanese Patent Laid-Open No. 63-86814, the ferrite-pearlite transformation is completed by cooling in the course of hot rolling, followed by rapid heating to a temperature range of less than A C3 point.
A method of adding processing of 0% or more and 70% or less has been proposed. Furthermore, in JP-A-63-86815, cooling is performed during hot rolling to complete the martensitic transformation, or in JP-A-63-89617, cooling is performed during hot rolling. After completing the bainite transformation, there is proposed a method of rapid heating and adding 10% or more and 70% or less of processing in a temperature range of A C3 or less. However, even with these methods, the spheroidizing treatment time could not be significantly shortened.

【0005】[0005]

【発明が解決しようとする課題】本発明は、球状化処理
時間の大幅な短縮が可能になる、微細な球状炭化物を有
する、高炭素熱延鋼帯の製造方法を提案することを目的
とする。
SUMMARY OF THE INVENTION It is an object of the present invention to propose a method for producing a high carbon hot-rolled steel strip having fine spheroidal carbide, which makes it possible to greatly reduce the spheroidizing treatment time. .

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく、鋭意検討を重ねた結果、仕上圧延前、あ
るいは、仕上圧延中にオーステナイトから層状パーライ
トへ変態を完了させたのち、圧延加工を施すことによ
り、炭化物が微細に分断され、さらに、高温で巻き取る
ことにより球状化することを新たに知見した。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies in order to achieve the above object, and as a result, after completing the transformation from austenite to layered pearlite before or during finish rolling. It was newly found that the carbide is finely divided by the rolling process and further spheroidized by being wound at a high temperature.

【0007】つぎに、本発明者らが行った実験について
述べる。0.79%CのSK5相当の組成を有する鋼素
材をAr3点以上950℃以下で粗圧延を終了し、粗圧延
終了後直ちにAr1以下に急冷し、仕上圧延(圧下率63
%)を行い、570℃で巻き取り、3.5mm厚の熱延
コイル(本発明材)とした。本コイルから採取した試験
片を用い、750℃で保持時間を変化させて加熱したの
ち、焼入れを行い、表面硬さを調査した。比較として、
従来工程材(高温での粗・仕上圧延)および球状化焼鈍
材(700℃×24hr)についても同様の実験を行っ
た。その結果を図1に示す。
Next, an experiment conducted by the present inventors will be described. Rough rolling of a steel material having a composition equivalent to SK5 of 0.79% C is completed at A r3 point or more and 950 ° C. or less, and immediately after completion of the rough rolling, it is rapidly cooled to A r1 or less and finish rolling (a reduction ratio of 63
%), And was wound at 570 ° C. to obtain a hot rolled coil (material of the present invention) having a thickness of 3.5 mm. Using a test piece collected from this coil, after heating at 750 ° C. while changing the holding time, quenching was performed and the surface hardness was investigated. As a comparison,
The same experiment was conducted for the conventional process material (rough / finish rolling at high temperature) and the spheroidized annealed material (700 ° C. × 24 hr). The result is shown in FIG.

【0008】従来工程材では、焼入れ温度に1000s
ec間保持しても焼入れ硬さは低い。また、球状化焼鈍
材は、1000sec保持後焼入れして初めて高い焼入
れ硬さに達する。これに対し、本発明材は、20sec
という短時間加熱で十分高い焼入れ硬さが得られる。こ
れは、図2に示す炭化物の平均粒径の違いにより説明で
きる。本発明材(a)の平均炭化物粒径は、0.03μ
m であるのに対し、従来工程材(b)の平均炭化物粒径
は、2μm である。このように、粗圧延の圧下率および
仕上圧延の圧下率を所定の温度範囲で一定値以上とする
ことにより、炭化物が微細に分断され、さらに、高温で
巻き取ることにより炭化物は微細な球状となる。本発明
は、かかる知見を基に構成されたものである。
With the conventional process material, the quenching temperature is 1000 s.
Quenching hardness is low even if held for ec. Further, the spheroidized annealed material reaches a high quenching hardness only after quenching after holding for 1000 seconds. On the other hand, the material of the present invention is 20 sec
A sufficiently high quenching hardness can be obtained by heating for a short time. This can be explained by the difference in the average grain size of the carbides shown in FIG. The average carbide particle size of the material (a) of the present invention is 0.03 μm.
The average carbide grain size of the conventional process material (b) is 2 μm, while m is 2. Thus, by setting the rolling reduction of the rough rolling and the rolling reduction of the finish rolling to be a certain value or more within a predetermined temperature range, the carbide is finely divided, and further, by winding at a high temperature, the carbide becomes a fine spherical shape. Become. The present invention is configured based on such knowledge.

【0009】すなわち、本発明は、重量%で、C:0.
2〜1.3%を含有する鋼素材を、1000℃ 〜13
00℃の温度に加熱し、950℃以下Ar3点あるいはA
rcm点以上で圧下率50%以上の粗圧延を施し、粗圧延
終了後10sec以内に冷却を開始し、Ar1点以下まで
1℃/s以上の冷却速度で冷却し、引き続いてAr1点以
下500℃以上の温度で圧下率30%以上の仕上圧延を
施したのち、700℃以下450℃以上の温度で巻き取
ることを特徴とする焼入性と冷間加工性に優れた高炭素
熱延鋼帯の製造方法である。
That is, according to the present invention, C: 0.
Steel material containing 2 to 1.3%, 1000 ℃ ~ 13
Heated to a temperature of 00 ° C, below 950 ° C, A r3 point or
subjected to rough rolling reduction rate of 50% or above rcm point, to start the rough rolling termination cooled within 10 sec, and cooled at 1 ° C. / s or more cooling rate to below A r1 point, following subsequent A r1 point High carbon hot rolling with excellent hardenability and cold workability, characterized in that after finish rolling with a rolling reduction of 30% or more at a temperature of 500 ° C or more, it is wound up at a temperature of 700 ° C or less and 450 ° C or more. It is a method of manufacturing a steel strip.

【0010】また、本発明は、前記鋼素材として重量%
で、C:0.2〜1.3%、Si:0.1〜1.0%、
Mn:0.05〜2.0%、P:0.05%以下、S:
0.05%以下、Al:0.001〜0.2%、N:
0.05%以下を含有し、残部Feおよび不可避的不純
物からなる鋼素材を用いることが好ましく、また、本発
明では、さらに、前記鋼素材として、重量%で、C:
0.2〜1.3%、Si:0.1〜1.0%、Mn:
0.05〜2.0%、P:0.05%以下、S:0.0
5%以下、Al:0.001〜0.2%、N:0.05
%以下、Cr:0.1〜5.0%を含有し、残部Feお
よび不可避的不純物からなる鋼素材を用いることが好ま
しい。
In the present invention, the weight percentage of the steel material is
And C: 0.2-1.3%, Si: 0.1-1.0%,
Mn: 0.05 to 2.0%, P: 0.05% or less, S:
0.05% or less, Al: 0.001-0.2%, N:
It is preferable to use a steel material containing 0.05% or less and the balance Fe and unavoidable impurities. Further, in the present invention, the steel material further comprises C:
0.2-1.3%, Si: 0.1-1.0%, Mn:
0.05-2.0%, P: 0.05% or less, S: 0.0
5% or less, Al: 0.001-0.2%, N: 0.05
% Or less, Cr: 0.1 to 5.0%, and it is preferable to use a steel material containing the balance Fe and unavoidable impurities.

【0011】また、本発明は、前記鋼素材として、重量
%で、C:0.2〜1.3%、Si:0.1〜1.0
%、Mn:0.05〜2.0%、P:0.05%以下、
S:0.05%以下、Al:0.001〜0.2%、
N:0.05%以下を含有し、Ni:0.1〜5.0
%、Mo:0.1〜1.0%、B:0.0005〜0.
0100%のうちから選ばれた1種または2種以上を含
有し、残部Feおよび不可避的不純物からなる鋼素材を
用いることが好ましい。
The present invention also provides, as the steel material, by weight, C: 0.2 to 1.3%, Si: 0.1 to 1.0.
%, Mn: 0.05 to 2.0%, P: 0.05% or less,
S: 0.05% or less, Al: 0.001-0.2%,
N: Contains less than 0.05%, Ni: 0.1-5.0
%, Mo: 0.1 to 1.0%, B: 0.0005 to 0.
It is preferable to use a steel material containing one kind or two or more kinds selected from 0100% and the balance Fe and unavoidable impurities.

【0012】また、さらに、本発明は、前記鋼素材とし
て、重量%で、C:0.2〜1.3%、Si:0.1〜
1.0%、Mn:0.05〜2.0%、P:0.05%
以下、S:0.05%以下、Al:0.001〜0.2
%、N:0.05%以下、Cr:0.1〜5.0%を含
有し、Ni:0.1〜5.0%、Mo:0.1〜1.0
%、B:0.0005〜0.0100%のうちから選ば
れた1種または2種以上を含有し、残部Feおよび不可
避的不純物からなる鋼素材を用いることが好ましい。
Further, in the present invention, as said steel material, C: 0.2-1.3%, Si: 0.1-% by weight.
1.0%, Mn: 0.05 to 2.0%, P: 0.05%
Hereinafter, S: 0.05% or less, Al: 0.001 to 0.2
%, N: 0.05% or less, Cr: 0.1 to 5.0%, Ni: 0.1 to 5.0%, Mo: 0.1 to 1.0
%, B: 0.0005 to 0.0100%, and it is preferable to use a steel material containing one or more selected from the balance Fe and unavoidable impurities.

【0013】[0013]

【発明の実施の形態】本発明は、熱間圧延のままで、特
別な球状化熱処理を必要としない鋼帯の製造方法であ
り、本発明の要旨は、仕上圧延前あるいは、仕上圧延中
にパーライト変態を完了させ、仕上圧延で、パーライト
を分断微細化してコイルに巻き取り、自己保有熱で球状
化させることにある。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is a method for producing a steel strip which is hot-rolled and does not require a special spheroidizing heat treatment. The gist of the present invention is that before or during finish rolling. The purpose is to complete the pearlite transformation and finish rolling to divide the pearlite into fine pieces, wind them into coils, and make them spherical by self-contained heat.

【0014】熱間圧延のための鋼素材の加熱は、完全な
溶体化ができればよく、1000℃〜1300℃が最適
である。まず、層間隔の小さい層状炭化物を均一に生成
させることが重要である。そのためには、変態前に、パ
ーライトの核生成サイトを均一に増やすことが大切であ
る。パーライトの均一生成のためには、粗圧延はAr3
以上の温度で行う必要があり、また、パーライトの核生
成サイトを増やすために、圧延温度は低くかつ加工量を
多くする必要がある。したがって、粗圧延は、950℃
以下Ar3点あるいはArcm 点以上の温度で、かつ圧下率
は50%以上が必要となる。
The heating of the steel material for hot rolling is sufficient if it can be completely solutionized, and 1000 ° C to 1300 ° C is optimal. First, it is important to uniformly generate layered carbides having a small layer spacing. For that purpose, it is important to uniformly increase the pearlite nucleation sites before the transformation. In order to uniformly generate pearlite, rough rolling needs to be performed at a temperature of A r3 point or higher, and in order to increase the nucleation sites of pearlite, it is necessary to lower the rolling temperature and increase the working amount. Therefore, the rough rolling is 950 ℃
Hereafter, it is necessary that the temperature is A r3 point or A rcm point or higher and the rolling reduction is 50% or higher.

【0015】粗圧延に続いて、鋼帯は、粗圧延終了後1
0sec以内に冷却を開始し、Ar1点以下まで1℃/s
以上の冷却速度で冷却される。これにより、変態速度の
遅いことによる層間隔の粗い層状炭化物の生成を防止で
きる。Ar1点以下まで冷却された鋼帯は、仕上圧延を施
される。仕上圧延は、Ar1点以下500℃以上の温度
で、圧下率は、30%以上を必要とする。仕上圧延温度
は500℃未満では、圧延負荷が過大となるため、50
0℃を下限とした。また、圧下率が30%未満では、パ
ーライトが分断されないため、30%を下限とした。な
お、95%を超える圧下は、圧延負荷が過大となるた
め、圧下率は、好ましくは、95%以下とする。
After the rough rolling, the steel strip is
Cooling starts within 0 sec and 1 ° C / s until A r1 point or less
It is cooled at the above cooling rate. As a result, it is possible to prevent the formation of layered carbide having a coarse layer spacing due to the low transformation rate. The steel strip cooled to A r1 point or less is subjected to finish rolling. The finish rolling requires a temperature of 500 ° C. or higher at A r1 point or lower and a reduction rate of 30% or higher. If the finish rolling temperature is less than 500 ° C, the rolling load becomes excessive, so 50
The lower limit was 0 ° C. Further, if the rolling reduction is less than 30%, pearlite is not divided, so 30% was made the lower limit. Since the rolling load becomes excessive when the rolling reduction exceeds 95%, the rolling reduction is preferably 95% or less.

【0016】仕上圧延を終了した鋼帯は、巻き取られ
る。巻取温度は、700℃以下450℃以上とした。本
発明では、巻き取り後に自己保有熱で球状化を達成す
る。450℃未満では、十分な球状化が達成できないた
め、450℃を下限とした。また、700℃超えでは、
脱炭が生じ、さらに加熱のため特別な装置を必要とする
ため700℃を上限とした。
The steel strip after finishing rolling is wound up. The winding temperature was 700 ° C or lower and 450 ° C or higher. In the present invention, spheroidization is achieved by self-contained heat after winding. If the temperature is lower than 450 ° C, sufficient spheroidization cannot be achieved, so the lower limit was 450 ° C. Also, above 700 ° C,
Decarburization occurs, and a special device is required for heating, so the upper limit was 700 ° C.

【0017】つぎに、本発明に適用できる好適な鋼の組
成について説明する。本発明に適用できる鋼は、基本的
に均一な層状炭化物を形成するものであればよいが、均
一な層状炭化物を生成するためには、炭素含有量が特に
重要である。他の合金成分範囲は、均一な層状炭化物を
生成する範囲で許容でき、とくに限定しないが、鋼帯特
性等の要求により必要に応じて添加できる。
Next, a suitable steel composition applicable to the present invention will be described. The steel applicable to the present invention may be any steel that can form basically uniform layered carbides, but the carbon content is particularly important in order to form uniform layered carbides. Other alloy component ranges are acceptable as long as they form uniform layered carbides, and are not particularly limited, but they can be added as required depending on the requirements such as steel strip characteristics.

【0018】C:0.2〜1.3% Cは、均一な層状炭化物を生成するために特に重要であ
る。0.2%未満では、冷却過程で均一な層状炭化物が
生成しない。また、1.3%を超えると網目状の粗大炭
化物が生成し均一な層状炭化物が得られない。したがっ
て、Cは0.2〜1.3%に限定した。
C: 0.2-1.3% C is particularly important for producing a uniform layered carbide. If it is less than 0.2%, uniform layered carbide is not formed in the cooling process. On the other hand, if it exceeds 1.3%, coarse coarse carbides are formed and uniform layered carbides cannot be obtained. Therefore, C is limited to 0.2 to 1.3%.

【0019】Si:0.1〜1.0% Siは、脱酸剤として作用するほか、強度確保、焼入性
向上に有効な元素であるが、0.1%未満では、その効
果がみられない。また、1.0%を超えると脆化するた
め、0.1〜1.0%の範囲とした。さらに、層状炭化
物形成の点から、0.05〜0.35%が好ましい。
Si: 0.1 to 1.0% In addition to acting as a deoxidizing agent, Si is an element effective in securing strength and improving hardenability, but if it is less than 0.1%, its effect can be seen. I can't. Further, if it exceeds 1.0%, it becomes brittle, so the range was made 0.1 to 1.0%. Further, from the viewpoint of forming a layered carbide, 0.05 to 0.35% is preferable.

【0020】Mn:0.05〜2.0% Mnも、強度確保、焼入性向上に有効な元素であるが、
0.05%未満では、その効果がみられないうえに、熱
間加工時に固溶Sが増加して、脆化を生ずる。Mnは、
セメンタイト内に固溶し、炭化物の球状化を阻害するた
め多量の添加は好ましくない。また、2.0%を超える
と靱性が劣化するため、Mnは、0.05〜2.0%の
範囲とした。さらに、層状炭化物形成の点から、0.0
5〜0.90%が好ましい。
Mn: 0.05 to 2.0% Mn is also an element effective in securing strength and improving hardenability,
If it is less than 0.05%, the effect is not observed, and the solid solution S increases during hot working to cause embrittlement. Mn is
It is not preferable to add a large amount because it forms a solid solution in cementite and inhibits spheroidization of carbides. Further, if over 2.0%, the toughness deteriorates, so Mn was made 0.05 to 2.0% in range. Furthermore, from the viewpoint of layered carbide formation, 0.0
5 to 0.90% is preferable.

【0021】P:0.05%以下 Pは、靱性、耐割れ性を劣化させる元素であり、できる
だけ低減する。0.05%を超えると粒界脆化が生じや
すくなるため上限とした。さらに、靱性を考慮して、
0.03%以下とするのが好ましい。 S:0.05%以下 Sは、介在物を形成して、延性、靱性の低下と機械的性
質の異方性の増加を招くことから、できるだけ低減する
べきであり、上限を0.05%とした。さらに、0.0
1%以下とするのが好ましい。
P: 0.05% or less P is an element that deteriorates toughness and crack resistance and is reduced as much as possible. If it exceeds 0.05%, grain boundary embrittlement is likely to occur, so the upper limit was made. Furthermore, considering the toughness,
It is preferably 0.03% or less. S: 0.05% or less S forms an inclusion and causes a decrease in ductility and toughness and an increase in anisotropy of mechanical properties, so it should be reduced as much as possible, and the upper limit is 0.05%. And Furthermore, 0.0
It is preferably 1% or less.

【0022】Al:0.001〜0.2% Alは、脱酸剤として添加するが、さらに、鋼中でNと
結合し、AlNとして結晶粒の微細化に寄与する。その
ためには、0.001%以上が必要である。しかし、
0.2%を超えると、靱性を劣化させるうえ、遊離カー
ボンを生成させるため、0.2%を上限とした。コス
ト、遊離カーボンの抑制、靱性から、0.001〜0.
1%の範囲が好適である。
Al: 0.001 to 0.2% Al is added as a deoxidizing agent, and is further combined with N in steel to contribute to the refinement of crystal grains as AlN. For that purpose, 0.001% or more is required. But,
If it exceeds 0.2%, the toughness is deteriorated and free carbon is generated, so 0.2% is made the upper limit. From the cost, suppression of free carbon, and toughness, 0.001 to 0.
A range of 1% is preferred.

【0023】N:0.05%以下 Nは、Alと結合して結晶粒の微細化に寄与する。ま
た、強度向上に有効な元素であり、積極的に添加する場
合もある。しかし、0.05%を超えると靱性が劣化す
るため、上限とした。強度向上の必要ないときは、0.
01%以下が好ましい。
N: 0.05% or less N combines with Al and contributes to refinement of crystal grains. Further, it is an element effective for improving the strength and may be added positively. However, if it exceeds 0.05%, the toughness deteriorates, so the upper limit was made. When it is not necessary to improve the strength, 0.
01% or less is preferable.

【0024】Cr:0.1〜5.0% Crは、強度、焼入性を向上させるとともに耐食性も向
上させ、また、炭化物の黒鉛化抑制効果も有する元素で
ある。0.1%未満では、その効果が認められない。一
方、5.0%を超えて添加すると、強度が高くなり脆化
する。このため、Crは、0.1〜5.0%の範囲とし
た。
Cr: 0.1 to 5.0% Cr is an element that improves strength and hardenability and corrosion resistance, and also has an effect of suppressing graphitization of carbides. If it is less than 0.1%, the effect is not recognized. On the other hand, if added in excess of 5.0%, the strength becomes high and embrittlement occurs. Therefore, Cr is set to the range of 0.1 to 5.0%.

【0025】Ni:0.1〜5.0%、Mo:0.1〜
1.0%、およびB:0.0005〜0.0100%の
うち1種または2種以上 Ni、Mo、Bいずれも焼入れ性を向上させ、強度を増
加させる元素であり、必要に応じ、強度以外の特性に合
わせ選択し添加できる。Niは、焼入性を向上させると
ともに靱性を高める元素である。0.01%未満では、
その効果が認めらず、5.0%を超えて添加しても効果
が飽和しコストアップになるため、Niは、0.1〜
5.0%の範囲とした。さらに球状炭化物の点から0.
1〜0.3%が好適である。
Ni: 0.1 to 5.0%, Mo: 0.1
1.0%, and B: 0.0005 to 0.0100%, one or more of Ni, Mo, and B are all elements that improve the hardenability and increase the strength, and if necessary, the strength. It can be selected and added according to the characteristics other than. Ni is an element that improves hardenability and toughness. Below 0.01%,
The effect is not recognized, and even if added over 5.0%, the effect is saturated and the cost increases, so Ni is 0.1 to 0.1%.
The range was 5.0%. Furthermore, from the point of spherical carbide,
1 to 0.3% is preferable.

【0026】Moは、強度、焼入性を向上させるととも
に、耐摩耗性を向上させ、また、耐焼戻し脆化も改善す
る元素である。0.1%未満では、その効果が認められ
ない。一方、5.0%を超えて添加しても、効果が飽和
しコストアップになる。このため、Moは、0.1〜
1.0%の範囲とした。Bは、焼入性を向上させる元素
であるが、0.0005%未満では、その効果が認めら
れない。一方、0.0100%を超えて添加すると、焼
き入れ性が阻害され、また粒界が脆化する。このため、
Bは、0.0005〜0.0100%の範囲とした。
Mo is an element that improves strength and hardenability, improves wear resistance, and also improves temper embrittlement resistance. If it is less than 0.1%, the effect is not recognized. On the other hand, even if added over 5.0%, the effect is saturated and the cost is increased. Therefore, Mo is 0.1 to
The range was 1.0%. B is an element that improves hardenability, but if it is less than 0.0005%, its effect is not recognized. On the other hand, if added in excess of 0.0100%, the hardenability is impaired and the grain boundary becomes brittle. For this reason,
B was made into the range of 0.0005-0.0100%.

【0027】[0027]

【実施例】【Example】

(実施例1)通常の工程に従って溶製された鋼を連鋳法
によって200mm厚のスラブとした。鋼の化学成分を
表1に示す。これらスラブを、加熱温度、粗圧延条件、
粗圧延から仕上圧延までの冷却条件、仕上圧延条件、巻
取り温度を変化し熱延コイルとした。熱延条件を表2〜
表4に示す。
(Example 1) A slab having a thickness of 200 mm was obtained by continuous casting of steel melted according to a normal process. Table 1 shows the chemical composition of steel. These slabs, heating temperature, rough rolling conditions,
A hot rolled coil was prepared by changing the cooling conditions from the rough rolling to the finish rolling, the finish rolling conditions, and the winding temperature. Table 2 for hot rolling conditions
It shows in Table 4.

【0028】このようにして得た熱延コイルから各試片
を採取して、加熱時間を変化して焼入れ、表面硬さを測
定した。焼入れ加熱時間と表面硬さの関係から、基準硬
さの95%以上となる、焼入れ硬さ到達加熱時間をもと
め、表3に示す。なお、基準硬さは、各鋼種について、
(Ar3点+30℃)×1000sec加熱後、焼入れた
時の表面硬さとした。
Each test piece was sampled from the hot-rolled coil thus obtained, quenched by changing the heating time, and the surface hardness was measured. From the relationship between the quenching heating time and the surface hardness, Table 3 shows the quenching hardness reaching heating time that is 95% or more of the standard hardness. The standard hardness is, for each steel type,
(A r3 point + 30 ° C.) × 1000 sec The surface hardness when quenched after heating.

【0029】また、熱延のまま材に冷間加工35%の冷
間加工を施し、耳割れ、板切れの発生状況を観察し、表
2〜表4に示す。本発明例の焼入れ硬さ到達加熱時間
は、従来例、比較例にくらべ、短時間である。また、本
発明例は、耳割れ板切れのは発生はなく、冷間加工性が
優れていることがわかる。
Further, the material as hot-rolled was cold-worked at a cold working rate of 35%, and the occurrence of edge cracks and sheet breaks was observed. The heating time for reaching the quenching hardness of the example of the present invention is shorter than that of the conventional example and the comparative example. In addition, it can be seen that in the examples of the present invention, no cracks in the edge cracking plate were generated, and the cold workability was excellent.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【表4】 [Table 4]

【0034】(実施例2)通常の工程に従って溶製され
た鋼を連鋳法によって200mm厚のスラブとした。鋼
の化学成分を表5に示す。これらスラブを、粗圧延、仕
上圧延により、熱延コイルとした。なお、熱延条件を表
6に示す。このようにして得た熱延コイルから各試片を
採取して、加熱時間を変化して焼入れ、表面硬さを測定
した。焼入れ加熱時間と表面硬さの関係から、基準硬さ
の95%以上となる、焼入れ硬さ到達加熱時間をもとめ
た。また、熱延のまま材を用いて、冷間加工を40%加
え加工状況を調べた。結果を表6に示す。
(Example 2) Steel manufactured by a conventional process was cast into a slab having a thickness of 200 mm by continuous casting. Table 5 shows the chemical composition of steel. These slabs were subjected to rough rolling and finish rolling to obtain hot rolled coils. Table 6 shows hot rolling conditions. Each test piece was sampled from the hot-rolled coil obtained in this manner, the heating time was changed, and quenching was performed to measure the surface hardness. From the relationship between the quenching heating time and the surface hardness, the quenching hardness reaching heating time, which is 95% or more of the standard hardness, was determined. Further, using the material as hot-rolled, 40% cold working was performed and the working condition was investigated. Table 6 shows the results.

【0035】従来例、比較例にくらべ、本発明例の焼入
れ硬さ到達加熱時間は短時間である。また、本発明例
は、従来例にくらべ、耳割れ、板切れを伴うことなく冷
間加工が可能である。
In comparison with the conventional example and the comparative example, the quenching hardness reaching heating time of the present invention example is shorter. Further, the example of the present invention can be cold-worked without causing edge cracking and plate breakage as compared with the conventional example.

【0036】[0036]

【表5】 [Table 5]

【0037】[0037]

【表6】 [Table 6]

【0038】[0038]

【発明の効果】本発明によれば、熱延工程のみで、微細
な球状炭化物を有し、焼入れ性および冷間加工性に優れ
た高炭素熱延鋼帯の製造が可能となる。また、本発明に
よる鋼帯は、熱延のままで微細な球状炭化物を有し、焼
入れの加熱時間や、球状化処理時間は短くてもよく、従
来に比べ、大幅な省エネルギーおよび生産性の向上に大
きく寄与できる。
According to the present invention, it is possible to produce a high carbon hot-rolled steel strip having fine spherical carbides and having excellent hardenability and cold workability only in the hot rolling step. Further, the steel strip according to the present invention has fine spherical carbides as hot-rolled, and the heating time for quenching and the spheroidizing treatment time may be short, resulting in a significant improvement in energy saving and productivity as compared with the conventional one. Can greatly contribute to

【図面の簡単な説明】[Brief description of drawings]

【図1】焼入れにおける加熱保持時間と焼入れ後の表面
硬さの関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the heat retention time in quenching and the surface hardness after quenching.

【図2】(a)本発明材と(b)従来工程材の断面の金
属組織写真を示す。
FIG. 2 shows a photograph of a metallographic structure of a cross section of (a) the material of the present invention and (b) a conventional process material.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.2〜1.3%を含有
する鋼素材を、1000℃〜1300℃の温度に加熱
し、950℃以下Ar3点あるいはArcm 点以上で圧下率
50%以上の粗圧延を施し、粗圧延終了後10sec以
内に冷却を開始し、Ar1点以下まで1℃/s以上の冷却
速度で冷却し、引き続いてAr1点以下500℃以上の温
度で圧下率30%以上の仕上圧延を施したのち、700
℃以下450℃以上の温度で巻き取ることを特徴とする
焼入性と冷間加工性に優れた高炭素熱延鋼帯の製造方
法。
1. A weight%, C: a steel material containing 0.2 to 1.3%, reduction at 1000 ° C. was heated to a temperature of to 1300 ° C., 950 ° C. or less A r3 point or A rcm point higher subjecting the rate of 50% or more of the rough rolling, the rough rolling after completion within starts cooling 10 sec, and cooled at 1 ° C. / s or more cooling rate to below a r1 point, followed by a r1 point below 500 ° C. or higher temperature After finishing rolling with a reduction rate of 30% or more, 700
A method for producing a high-carbon hot-rolled steel strip having excellent hardenability and cold workability, which comprises winding at a temperature of not higher than 450 ° C and not lower than 450 ° C.
【請求項2】 前記鋼素材が、重量%で、 C:0.2〜1.3%、 Si:0.1〜1.0%、 Mn:0.05〜2.0%、 P :0.05%以下、 S :0.05%以下、 Al:0.001〜0.2%、 N :0.05%以下、 を含有し、残部Feおよび不可避的不純物からなる鋼素
材である請求項1記載の焼入性と冷間加工性に優れた高
炭素熱延鋼帯の製造方法。
2. The steel material, in% by weight, C: 0.2 to 1.3%, Si: 0.1 to 1.0%, Mn: 0.05 to 2.0%, P: 0. 0.05% or less, S: 0.05% or less, Al: 0.001 to 0.2%, N: 0.05% or less, and a balance Fe and unavoidable impurities. 1. A method for producing a high carbon hot-rolled steel strip excellent in hardenability and cold workability according to 1.
【請求項3】 前記鋼素材が、重量%で、 C:0.2〜1.3%、 Si:0.1〜1.0%、 Mn:0.05〜2.0%、 P :0.05%以下、 S :0.05%以下、 Al:0.001〜0.2%、 N :0.05%以下 Cr:0.1〜5.0%、 を含有し、残部Feおよび不可避的不純物からなる鋼素
材である請求項1記載の焼入性と冷間加工性に優れた高
炭素熱延鋼帯の製造方法。
3. The steel material, in% by weight, C: 0.2 to 1.3%, Si: 0.1 to 1.0%, Mn: 0.05 to 2.0%, P: 0. 0.05% or less, S: 0.05% or less, Al: 0.001 to 0.2%, N: 0.05% or less, Cr: 0.1 to 5.0%, and the balance Fe and unavoidable. The method for producing a high-carbon hot-rolled steel strip excellent in hardenability and cold workability according to claim 1, which is a steel material made of mechanical impurities.
【請求項4】 前記鋼素材が、重量%で、 C:0.2〜1.3%、 Si:0.1〜1.0%、 Mn:0.05〜2.0%、 P :0.05%以下、 S :0.05%以下、 Al:0.001〜0.2%、 N :0.05%以下、 を含有し、さらに、 Ni:0.1〜5.0%、 Mo:0.1〜1.0%、 B :0.0005〜0.0100%、 のうちから選ばれた1種または2種以上を含有し、残部
Feおよび不可避的不純物からなる鋼素材である請求項
1記載の焼入性と冷間加工性に優れた高炭素熱延鋼帯の
製造方法。
4. The steel material, in% by weight, C: 0.2-1.3%, Si: 0.1-1.0%, Mn: 0.05-2.0%, P: 0. 0.05% or less, S: 0.05% or less, Al: 0.001 to 0.2%, N: 0.05% or less, and Ni: 0.1 to 5.0%, Mo. : 0.1 to 1.0%, B: 0.0005 to 0.0100%, a steel material containing one or more selected from the following, with the balance being Fe and inevitable impurities. Item 1. A method for producing a high carbon hot-rolled steel strip having excellent hardenability and cold workability according to Item 1.
【請求項5】 前記鋼素材が、重量%で、 C:0.2〜1.3%、 Si:0.1〜1.0%、 Mn:0.05〜2.0%、 P :0.05%以下、 S :0.05%以下、 Al:0.001〜0.2%、 N :0.05%以下、 Cr:0.1〜5.0%、 を含有し、さらに、 Ni:0.1〜5.0%、 Mo:0.1〜1.0%、 B :0.0005〜0.0100%、 のうちから選ばれた1種または2種以上を含有し、残部
Feおよび不可避的不純物からなる鋼素材である請求項
1記載の焼入性と冷間加工性に優れた高炭素熱延鋼帯の
製造方法。
5. The steel material, in% by weight, C: 0.2 to 1.3%, Si: 0.1 to 1.0%, Mn: 0.05 to 2.0%, P: 0. 0.05% or less, S: 0.05% or less, Al: 0.001 to 0.2%, N: 0.05% or less, Cr: 0.1 to 5.0%, and Ni. : 0.1 to 5.0%, Mo: 0.1 to 1.0%, B: 0.0005 to 0.0100%, and the balance Fe. The method for producing a high carbon hot-rolled steel strip excellent in hardenability and cold workability according to claim 1, which is a steel material comprising inevitable impurities.
JP14536796A 1996-06-07 1996-06-07 Production of hot rolled high carbon steel strip excellent in hardenability and cold workability Pending JPH09324212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14536796A JPH09324212A (en) 1996-06-07 1996-06-07 Production of hot rolled high carbon steel strip excellent in hardenability and cold workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14536796A JPH09324212A (en) 1996-06-07 1996-06-07 Production of hot rolled high carbon steel strip excellent in hardenability and cold workability

Publications (1)

Publication Number Publication Date
JPH09324212A true JPH09324212A (en) 1997-12-16

Family

ID=15383584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14536796A Pending JPH09324212A (en) 1996-06-07 1996-06-07 Production of hot rolled high carbon steel strip excellent in hardenability and cold workability

Country Status (1)

Country Link
JP (1) JPH09324212A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1149925A1 (en) * 1999-09-29 2001-10-31 Nkk Corporation Sheet steel and method for producing sheet steel
JP2008255451A (en) * 2007-04-09 2008-10-23 Jfe Steel Kk Method for producing abrasion resistant steel sheet
JP2012041638A (en) * 2011-09-28 2012-03-01 Jfe Steel Corp Method for producing abrasion resistant steel sheet
WO2015025746A1 (en) * 2013-08-22 2015-02-26 株式会社神戸製鋼所 Steel for mechanical structures which has excellent machinability
KR101529180B1 (en) * 2013-10-30 2015-06-16 현대제철 주식회사 Steel and method of manufacturing steel product using the same
WO2017153826A1 (en) * 2016-03-10 2017-09-14 Tata Steel Limited A method for heat treating an iron-carbon alloy
CN115595501A (en) * 2022-09-26 2023-01-13 首钢集团有限公司(Cn) CrNiMo alloy strip steel and preparation method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1149925A1 (en) * 1999-09-29 2001-10-31 Nkk Corporation Sheet steel and method for producing sheet steel
EP1149925A4 (en) * 1999-09-29 2005-01-12 Jfe Steel Corp Sheet steel and method for producing sheet steel
JP2008255451A (en) * 2007-04-09 2008-10-23 Jfe Steel Kk Method for producing abrasion resistant steel sheet
JP2012041638A (en) * 2011-09-28 2012-03-01 Jfe Steel Corp Method for producing abrasion resistant steel sheet
WO2015025746A1 (en) * 2013-08-22 2015-02-26 株式会社神戸製鋼所 Steel for mechanical structures which has excellent machinability
JP2015040335A (en) * 2013-08-22 2015-03-02 株式会社神戸製鋼所 Steel for machine structural use excellent in machinability
CN105473750A (en) * 2013-08-22 2016-04-06 株式会社神户制钢所 Steel for mechanical structures which has excellent machinability
KR101529180B1 (en) * 2013-10-30 2015-06-16 현대제철 주식회사 Steel and method of manufacturing steel product using the same
WO2017153826A1 (en) * 2016-03-10 2017-09-14 Tata Steel Limited A method for heat treating an iron-carbon alloy
US11021767B2 (en) 2016-03-10 2021-06-01 Tata Steel Limited Method for heat treating an iron-carbon alloy
CN115595501A (en) * 2022-09-26 2023-01-13 首钢集团有限公司(Cn) CrNiMo alloy strip steel and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5050433B2 (en) Method for producing extremely soft high carbon hot-rolled steel sheet
JP3857939B2 (en) High strength and high ductility steel and steel plate excellent in local ductility and method for producing the steel plate
JP4018905B2 (en) Hot rolled wire rod and bar for machine structure and manufacturing method thereof
JP4650006B2 (en) High carbon hot-rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same
JP2001240941A (en) Bar wire rod for cold forging and its production method
JP2008069452A (en) Hot-rolled high-carbon steel sheet and process for production of the same
JP4600196B2 (en) High carbon cold-rolled steel sheet with excellent workability and manufacturing method thereof
WO2019107042A1 (en) High-strength cold-rolled steel sheet and method for manufacturing same
JP2017179596A (en) High carbon steel sheet and manufacturing method therefor
JP3879446B2 (en) Method for producing high carbon hot-rolled steel sheet with excellent stretch flangeability
JP3879459B2 (en) Manufacturing method of high hardenability high carbon hot rolled steel sheet
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP3125978B2 (en) Method for producing high carbon steel strip with excellent workability
JP4696853B2 (en) Method for producing high-carbon cold-rolled steel sheet with excellent workability and high-carbon cold-rolled steel sheet
JPH08337843A (en) High carbon hot rolled steel sheet excellent in punching workability and its production
JP3468048B2 (en) Manufacturing method of high carbon cold rolled steel sheet with excellent formability
JP3879447B2 (en) Method for producing high carbon cold-rolled steel sheet with excellent stretch flangeability
JP3291068B2 (en) Manufacturing method of bearing steel with excellent spheroidizing annealing characteristics
JPH09324212A (en) Production of hot rolled high carbon steel strip excellent in hardenability and cold workability
JP4061003B2 (en) Cold forging bar wire with excellent induction hardenability and cold forgeability
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
JP3644216B2 (en) Manufacturing method of high carbon hot rolled steel sheet
JP4765388B2 (en) Manufacturing method for cold rolled steel sheet with excellent flatness after punching
JP2000336460A (en) Hot rolled wire rod and steel bar for machine structure and manufacture of the same
JPS6345441B2 (en)