JP3291068B2 - Manufacturing method of bearing steel with excellent spheroidizing annealing characteristics - Google Patents

Manufacturing method of bearing steel with excellent spheroidizing annealing characteristics

Info

Publication number
JP3291068B2
JP3291068B2 JP08440593A JP8440593A JP3291068B2 JP 3291068 B2 JP3291068 B2 JP 3291068B2 JP 08440593 A JP08440593 A JP 08440593A JP 8440593 A JP8440593 A JP 8440593A JP 3291068 B2 JP3291068 B2 JP 3291068B2
Authority
JP
Japan
Prior art keywords
temperature
rolling
less
spheroidizing annealing
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08440593A
Other languages
Japanese (ja)
Other versions
JPH06299240A (en
Inventor
達朗 越智
善郎 子安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP08440593A priority Critical patent/JP3291068B2/en
Publication of JPH06299240A publication Critical patent/JPH06299240A/en
Application granted granted Critical
Publication of JP3291068B2 publication Critical patent/JP3291068B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は球状化焼鈍特性の優れた
軸受用鋼材の製造方法にかかわり、さらに詳しくは、軸
受用鋼材の製造に際して網状初析セメンタイトを低減
し、その後の球状化焼鈍により、粗大な板状炭化物を含
まず、且つ均一な球状炭化物組織を得ることができ、焼
鈍後の切断、冷間鍛造、切削等の冷間加工性に優れ、焼
入れ焼戻し処理を行った軸受部品において優れた転動疲
労特性を得ることができる軸受用鋼材の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a steel material for bearings having excellent spheroidizing annealing properties, and more particularly, to reducing net pro-eutectoid cementite in the production of steel for bearings, and then performing spheroidizing annealing. It is possible to obtain a uniform spherical carbide structure that does not contain coarse plate-like carbides, and is excellent in cold workability such as cutting, cold forging, and cutting after annealing, and in quenching and tempering bearing parts. The present invention relates to a method for producing a bearing steel material capable of obtaining excellent rolling fatigue characteristics.

【0002】[0002]

【従来の技術】軸受部品は、通常棒鋼線材を切断、冷間
鍛造、切削等の冷間加工を行うことによって製造されて
いる。冷間加工に際しては、圧延ままでは硬すぎて冷間
加工が困難であるため、冷間加工性の向上を目的とし
て、冷間加工の前に球状化焼鈍が行われている。しかし
ながら、通常の球状化焼鈍組織は微細な球状炭化物と粗
大な板状炭化物からなり、均一な球状炭化物組織を得る
のは現状では極めて困難である。このような炭化物組織
の不均一さは、冷間加工性を劣化させるとともに、最終
部品において転動疲労寿命の劣化の原因にもなる。
2. Description of the Related Art Bearing parts are usually manufactured by cutting a bar steel wire rod and performing cold working such as cold forging and cutting. In cold working, since cold working is too hard as it is rolled, spheroidizing annealing is performed before cold working for the purpose of improving cold workability. However, the normal spheroidized annealed structure is composed of fine spherical carbides and coarse plate-like carbides, and it is extremely difficult at present to obtain a uniform spherical carbide structure. Such non-uniformity of the carbide structure deteriorates cold workability and causes deterioration of rolling fatigue life in the final part.

【0003】これに対して、特開昭64−55330号
公報には、特定の成分からなる鋼をAc3点またはAccm
点以上に加熱し、オーステナイト未再結晶域で加工率1
0〜80%の熱間圧延を行い、Ms点直上の温度域まで
1.5〜100℃/秒の冷却速度で冷却することを特徴
とする短時間球状化の可能な鋼材の製造方法が示されて
いる。しかしながら、この方法では、圧延材が微細パー
ライトまたはベイナイト組織を有しているため、短時間
で球状化が可能であるが、微細パーライトまたはベイナ
イト組織部から得られる球状炭化物が顕著に微細とな
り、粒界初析セメンタイト部から得られる球状炭化物の
大きさとの差が大きく、十分に均一な球状炭化物組織が
得られるとはいえない。
On the other hand, Japanese Unexamined Patent Publication (Kokai) No. 64-55330 discloses that a steel composed of a specific component is made of three points of Ac or Accm.
Heating above the point, processing rate 1 in austenite unrecrystallized area
A method for producing a steel material capable of spheroidization in a short time, characterized in that hot rolling of 0 to 80% is performed and cooling is performed at a cooling rate of 1.5 to 100 ° C / sec to a temperature range just above the Ms point. Have been. However, in this method, since the rolled material has a fine pearlite or bainite structure, spheroidization can be performed in a short time. However, the spherical carbide obtained from the fine pearlite or bainite structure portion is remarkably fine, and The difference from the size of the spherical carbide obtained from the boundary pro-eutectoid cementite portion is large, and it cannot be said that a sufficiently uniform spherical carbide structure can be obtained.

【0004】また、特開平3−53021号公報には、
特定の成分からなる鋼をAr1+200℃以上の温度に
加熱し、圧下率20〜90%の熱間圧延を行い、さらに
引き続きAr1〜Ar1+200℃で20〜90%の熱間
圧延を行った後にAr1〜Ar1+200℃の温度に5〜
900秒間保持することを特徴とする球状化焼鈍用高炭
素鋼材の製造方法が示されている。この方法を用いれ
ば、球状化焼鈍処理時間短縮に望ましい前組織が得られ
るとされているが、この方法による網状初析セメンタイ
トの低減は必ずしも十分とはいえない。
[0004] Also, Japanese Patent Application Laid-Open No. 3-53021 discloses that
A steel composed of a specific component is heated to a temperature of Ar 1 + 200 ° C. or higher, hot-rolled at a reduction rate of 20 to 90%, and further hot-rolled at Ar 1 to Ar 1 + 200 ° C. at a temperature of 20 to 90%. 5 to a temperature of Ar 1 ~Ar 1 + 200 ℃ after performing
A method for producing a high carbon steel material for spheroidizing annealing characterized by holding for 900 seconds is shown. It is said that the use of this method can provide a prestructure desirable for shortening the spheroidizing annealing time, but the reduction of reticulated primary cementite by this method is not always sufficient.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、通常
の球状化焼鈍により、粗大な板状炭化物を含まず、且つ
均一な球状炭化物組織を得ることができ、焼鈍後の切
断、冷間鍛造、切削等の冷間加工性に優れ、且つ焼入れ
焼戻し処理を行った軸受部品において優れた転動疲労特
性を得ることができる軸受用鋼材の製造方法を提供しよ
うとするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a uniform spheroidal carbide structure which does not contain coarse plate-like carbides by ordinary spheroidizing annealing. An object of the present invention is to provide a method for producing a bearing steel material which is excellent in cold workability such as forging and cutting, and which can obtain excellent rolling fatigue characteristics in a quenched and tempered bearing component.

【0006】[0006]

【課題を解決するための手段】本発明者らは、通常の球
状化焼鈍により粗大な板状炭化物を含まず且つ均一な球
状化組織を得るために、鋭意検討を行い次の知見を得
た。 (1)通常の球状化焼鈍により粗大な板状炭化物を含ま
ず且つ均一な球状化組織を得るためには、圧延材につい
て、網状初析セメンタイトの低減、オーステナイト
粒内での粒内初析セメンタイトの生成、パーライトの
ラメラ間隔の粗大化を図ることがポイントである。
Means for Solving the Problems The present inventors have conducted intensive studies and obtained the following knowledge in order to obtain a uniform spheroidized structure that does not contain coarse plate-like carbides by ordinary spheroidizing annealing. . (1) In order to obtain a uniform spheroidized structure that does not contain coarse plate-like carbides by ordinary spheroidizing annealing, it is necessary to reduce the reticulated pro-eutectoid cementite in the rolled material, and intragranular pro-eutectoid cementite in austenite grains. The point is to increase the generation of pearls and increase the lamella spacing of pearlite.

【0007】(2)上記を実現するには次の5点が必須
である。特定量のAl、N等の炭窒化物生成元素を含
有する鋼材を用い、圧延前の加熱温度を900〜115
0℃に限定して、圧延加熱時のオーステナイト粒の粗大
化を防止するとともに、一部微細炭化物を残存させて、
正味の固溶炭素量を低減し圧延後の網状初析セメンタイ
トを生成しにくくすること。加熱温度〜880℃以上
の温度範囲で総減面率50%以上の圧延を行い、再結晶
によりオーステナイト粒を6〜7番程度に細粒化するこ
と。
(2) To realize the above, the following five points are essential. A steel material containing a specific amount of a carbonitride forming element such as Al or N is used, and the heating temperature before rolling is 900 to 115.
Limited to 0 ° C., while preventing the coarsening of austenite grains during rolling heating, leaving some fine carbides,
To reduce the net amount of solute carbon to make it difficult to form reticulated primary cementite after rolling. Rolling with a total area reduction of 50% or more in a temperature range of a heating temperature to 880 ° C. or more, and reducing the austenite grains to about 6 to 7 by recrystallization.

【0008】880℃未満〜400℃の温度範囲で、
「減面率10%以上の圧延後、直ちに鋼材温度が一旦M
s点〜700℃となるように冷却し、引き続いて減面率
10%以上の圧延を行う」工程を1回以上有する工程で
圧延を行い、さらに最終圧延出側の鋼材温度を700〜
880℃とすることにより、オーステナイト粒の粒内に
変形帯を導入し、粒内初析セメンタイトを核生成させ
て、網状初析セメンタイトを低減するとともに、オース
テナイト粒の成長粗大化を抑制すること。
In a temperature range of less than 880 ° C. to 400 ° C.,
"After rolling with a reduction of area of 10% or more, the steel temperature
Cooling to s point to 700 ° C., and subsequently rolling at a reduction of area of 10% or more ”is performed in a step having at least one step, and the steel material temperature at the final rolling exit side is set to 700 to
By setting the temperature to 880 ° C., a deformation zone is introduced into the grains of the austenite grains to generate intragranular pro-eutectoid cementite, thereby reducing reticulated pro-eutectoid cementite and suppressing the growth and coarsening of austenite grains.

【0009】最終圧延後直ちに急冷して、該鋼材の温
度を550〜700℃未満の最終圧延急冷温度とする
か、または550〜700℃未満の溶融塩温度に保持さ
れた溶融塩中に焼入れし、粒界での網状初析セメンタイ
トの生成−成長を抑制すること。その後450℃まで
を冷却速度で0.05〜1.0℃/秒で冷却し、オーステ
ナイト粒内に生成するパーライトのラメラ間隔を粗大化
させること。
[0009] Immediately after the final rolling, the steel is quenched to a final rolling quenching temperature of less than 550 to 700 ° C or quenched in a molten salt maintained at a molten salt temperature of less than 550 to 700 ° C. And to suppress the formation and growth of reticulated cementite at grain boundaries. Thereafter, the temperature is reduced to 450 ° C. at a cooling rate of 0.05 to 1.0 ° C./sec to coarsen the lamella spacing of pearlite generated in the austenite grains.

【0010】(3)さらに、熱間圧延の加熱に際し
て、650〜750℃の加熱速度を10〜100℃/時
間とすることにより、加熱時の微細炭化物の残存量が増
加し、正味の固溶炭素量がより低減され、圧延後の網状
初析セメンタイト量もより低減される。本発明は以上の
新規なる知見にもとずいてなされたものであって、その
要旨とするところは以下の通りである。
(3) Further, at the time of heating before hot rolling, by setting the heating rate at 650 to 750 ° C. to 10 to 100 ° C./hour, the residual amount of fine carbides at the time of heating increases, and The amount of dissolved carbon is further reduced, and the amount of reticulated cementite after rolling is also reduced. The present invention has been made based on the above-described novel findings, and the gist thereof is as follows.

【0011】本発明の請求項1の発明は重量比として、 C :0.80〜1.20%, Si:0.15〜1.50%, Mn:0.15〜1.50%, Cr:0.50〜1.60%, S :0.003〜0.02%, Al:0.015〜0.05%, N :0.004〜0.015%, を含有し、 P:0.020%以下、Ti:0.0020%以下、O:
0.0015%以下に制限し、残部が鉄および不可避的
不純物からなる鋼を熱間圧延するに際して、 A)900〜1150℃の加熱温度に加熱する工程と、 B)該加熱温度〜880℃以上の温度範囲で総減面率5
0%以上の圧延を行う工程と、 C)その後、880℃未満〜400℃の温度範囲で、
「減面率10%以上の圧延後、直ちに鋼材温度が一旦M
s点〜700℃となるように冷却し、引く続いて減面率
10%以上の圧延を行う」工程を1回以上有する工程で
圧延を行い、最終圧延出側の鋼材温度を700〜880
℃の最終圧延出側温度とする工程と、 D)最終圧延後直ちに急冷して、該鋼材の温度を550
〜700℃未満の最終圧延急冷温度とする工程と、 E)その後450℃までを0.05〜1.0℃/秒の冷却
速度で冷却する工程を特徴とする、組織が実質的に初析
セメンタイトとパーライトからなる球状化焼鈍特性の優
れた軸受用鋼材の製造方法である。
According to the first aspect of the present invention, as a weight ratio, C: 0.80 to 1.20%, Si: 0.15 to 1.50%, Mn: 0.15 to 1.50%, Cr : 0.50 to 1.60%, S: 0.003 to 0.02%, Al: 0.015 to 0.05%, N: 0.004 to 0.015%, P: 0 0.020% or less, Ti: 0.0020% or less, O:
When hot-rolling a steel consisting of iron and unavoidable impurities with the balance being not more than 0.0015%, A) heating to a heating temperature of 900 to 1150 ° C, and B) heating temperature to 880 ° C or more. Total area reduction rate 5 in the temperature range
0% or more rolling; and C) after that, in a temperature range of less than 880 ° C to 400 ° C,
"After rolling with a reduction of area of 10% or more, the steel temperature
s point to 700 ° C., and then rolling to a rolling rate of 10% or more ”.
And D) quenching immediately after the final rolling to raise the temperature of the steel material to 550 ° C.
E) elongation of the microstructure substantially, characterized by a step of setting the final rolling quenching temperature to a temperature of less than ~ 700 ° C, and a step of thereafter cooling to 450 ° C at a cooling rate of 0.05 to 1.0 ° C / sec. This is a method for producing a bearing steel material comprising cementite and pearlite and having excellent spheroidizing annealing characteristics.

【0012】本発明の請求項2の発明は、前記のD)と
E)が、 D)最終圧延後直ちに、550〜700℃未満の溶融塩
温度に保持された溶融塩中に焼入れし、該溶融塩中で
0.5〜30秒保持する工程と、 E)その後450℃までを0.05〜1.0℃/秒の冷却
速度で冷却する工程を特徴とする、請求項1記載の組織
が実質的に初析セメンタイトとパーライトからなる球状
化焼鈍特性の優れた軸受用鋼材の製造方法である。
The invention of claim 2 of the present invention is characterized in that D) and E) are: D) immediately after the final rolling, quenching in a molten salt maintained at a molten salt temperature of less than 550 to 700 ° C; 2. The structure according to claim 1, characterized in that it comprises: a step of holding for 0.5 to 30 seconds in a molten salt; and E) a step of cooling to 450 ° C. at a cooling rate of 0.05 to 1.0 ° C./second thereafter. Is a method for producing a bearing steel material comprising substantially proeutectoid cementite and pearlite and having excellent spheroidizing annealing characteristics.

【0013】本発明の請求項3の発明は、請求項1の
A)工程の加熱に際して、650〜750℃の加熱速度
が10〜100℃/時間である請求項1または2記載の
球状化焼鈍特性の優れた軸受用鋼材の製造方法である。
[0013] The invention of claim 3 of the present invention is directed to claim 1 of the present invention .
The method for producing a bearing steel material having excellent spheroidized annealing characteristics according to claim 1 or 2, wherein a heating rate at 650 to 750 ° C is 10 to 100 ° C / hour upon heating in the step A) .

【0014】本発明の請求項4の発明は、成分がさら
に、Ni:0.50〜2.00%,Mo:0.05〜0.5
0%,の1種または2種を含有する請求項1または2ま
たは3記載の球状化焼鈍特性の優れた軸受用鋼材の製造
方法である。
According to a fourth aspect of the present invention, the composition further comprises Ni: 0.50 to 2.00%, Mo: 0.05 to 0.5.
The method for producing a bearing steel material having excellent spheroidizing annealing characteristics according to claim 1 or 2 or 3, which contains 0% or 1 or 2 types.

【0015】本発明の請求項5の発明は、成分がさら
に、Nb:0.01〜0.3%,V :0.03〜0.3
%,の1種または2種を含有する請求項1または2また
は3または4記載の球状化焼鈍特性の優れた軸受用鋼材
の製造方法である。
According to a fifth aspect of the present invention, the composition further comprises Nb: 0.01 to 0.3%, V: 0.03 to 0.3.
5. The method for producing a bearing steel material having excellent spheroidized annealing characteristics according to claim 1, wherein the steel material comprises one or two of the following.

【0016】[0016]

【作用】以下に、本発明を詳細に説明する。まず、本発
明の鋼の成分含有範囲を上記の如く限定した理由につい
て説明する。 C:0.80〜1.20%,Cは最終製品の軸受部品とし
て必要な転動疲労強度と耐摩耗性を得るために有効な元
素であるが、0.80%未満ではその効果が不十分であ
り、また1.20%を超えると網状の粒界初析セメンタ
イト量が顕著になり球状化焼鈍後の加工性、最終製品の
強度の劣化を招くので、含有量を0.80〜1.20%と
した。
Hereinafter, the present invention will be described in detail. First, the reason for limiting the component content range of the steel of the present invention as described above will be described. C: 0.80 to 1.20%, C is an effective element for obtaining the rolling fatigue strength and wear resistance required for bearing components of the final product. If it exceeds 1.20%, the amount of reticulated grain boundary pro-eutectoid cementite becomes remarkable, leading to deterioration in the workability after spheroidizing annealing and the strength of the final product. .20%.

【0017】Si:0.15〜1.50%,Siは脱酸元
素としておよび転動疲労過程での組織変化抑制による最
終製品の強度を増加させることを目的として添加する
が、0.15%未満ではその効果は不十分であり、一
方、1.50%を超えるとこれらの効果は飽和しむしろ
最終製品の靭性の劣化を招くので、その含有量を0.1
5〜1.50%とした。
Si: 0.15 to 1.50%, Si is added as a deoxidizing element and for the purpose of increasing the strength of the final product by suppressing the structural change in the rolling fatigue process, but 0.15% If it is less than 1.5%, the effect is not sufficient. On the other hand, if it exceeds 1.50%, these effects are saturated and rather deteriorate the toughness of the final product.
It was set to 5 to 1.50%.

【0018】Mn:0.15〜1.50%,Mnは焼入れ
性の向上を通じて、最終製品の強度を増加させるのに有
効な元素であるが、0.15%未満ではこの効果は不十
分であり、一方、1.5%を超えるとこの効果は飽和し
むしろ最終製品の靭性の劣化を招くので、その含有量を
0.15〜1.5%とした。
Mn: 0.15-1.50%, Mn is an effective element for increasing the strength of the final product through improvement of hardenability, but if less than 0.15%, this effect is insufficient. On the other hand, if it exceeds 1.5%, this effect is not saturated but rather deteriorates the toughness of the final product, so its content was made 0.15-1.5%.

【0019】Cr:0.50〜1.60%,Crは焼入れ
性を向上し、強靱化を図るとともに炭化物の形成を助長
することを通じて耐摩耗性を向上させるのに有効であ
る。この効果は0.5%未満では不十分であり、一方1.
6%を超えるとこの効果は飽和しむしろ最終製品の靭性
の劣化を招くので、その含有量を0.50〜1.60%と
した。
Cr: 0.50 to 1.60%, Cr is effective in improving hardenability, increasing toughness, and improving wear resistance by promoting the formation of carbides. This effect is not sufficient at less than 0.5%, while 1.
If the content exceeds 6%, the effect is not saturated but rather deteriorates the toughness of the final product. Therefore, the content is set to 0.50 to 1.60%.

【0020】S:0.003〜0.02%,Sは鋼中でM
nSとして存在し、被削性の向上および組織の微細化に
寄与するが、0.003%未満ではその効果は不十分で
ある。一方、0.02%を超えるとその効果は飽和し、
むしろ靭性の劣化及び異方性の増加を招く。以上の理由
から、Sの含有量を0.003〜0.02%とした。
S: 0.003-0.02%, S is M in steel
Although present as nS, it contributes to improvement of machinability and miniaturization of the structure, but if it is less than 0.003%, its effect is insufficient. On the other hand, if it exceeds 0.02%, the effect is saturated,
Rather, the toughness is degraded and the anisotropy is increased. For the above reasons, the content of S is set to 0.003 to 0.02%.

【0021】Al:0.015〜0.05%,Alは脱酸
元素および結晶粒微細化元素として添加するが、0.0
15%未満ではその効果は不十分であり、一方、0.0
5%を超えるとその効果は飽和し、むしろ靭性を劣化さ
せるので、その含有量を0.015〜0.05%とした。
Al: 0.015 to 0.05%, Al is added as a deoxidizing element and a crystal grain refining element.
If it is less than 15%, the effect is insufficient, while 0.0
If the content exceeds 5%, the effect is saturated and the toughness is rather deteriorated. Therefore, the content is set to 0.015 to 0.05%.

【0022】N:0.004〜0.015%,NはAlN
の析出挙動を通じて、オーステナイト粒の微細化に寄与
するが、0.004%未満ではその効果は不十分であ
り、一方、0.015%超では、その効果は飽和しむし
ろ靭性の劣化を招くので、その含有量をN:0.004
〜0.015%とした。
N: 0.004 to 0.015%, N is AlN
Contributes to the refinement of austenite grains through the precipitation behavior of, but if its content is less than 0.004%, its effect is insufficient, while if it exceeds 0.015%, its effect saturates and rather leads to deterioration of toughness. , The content of which is N: 0.004
-0.015%.

【0023】P:0.020%以下、Pは鋼中で粒界偏
析や中心偏析を起こし、最終製品の強度劣化の原因とな
る。特にPが0.020%を超えると強度の劣化が顕著
となるため、0.020%を上限とした。
P: 0.020% or less, P causes grain boundary segregation and central segregation in steel, and causes deterioration in the strength of the final product. In particular, if P exceeds 0.020%, the deterioration of strength becomes remarkable, so 0.020% was made the upper limit.

【0024】Ti:0.0020%以下、Tiは硬質析
出物TiNを生成し、これが最終製品での転動疲労破壊
の起点となり、強度劣化の原因となる。特にTiが0.
0020%を超えると強度の劣化が顕著となるため、
0.0020%を上限とした。
Ti: 0.0020% or less Ti forms hard precipitate TiN, which becomes a starting point of rolling fatigue fracture in the final product, and causes deterioration of strength. In particular, Ti is 0.
If it exceeds 0020%, the deterioration of strength becomes remarkable,
The upper limit is 0.0020%.

【0025】O:0.0015%以下 Oは硬質介在物Al23を生成し、これが最終製品での
転動疲労破壊の起点となり、強度劣化の原因となる。特
にOが0.0015%を超えると強度の劣化が顕著とな
るため、0.0015%を上限とした。
O: 0.0015% or less O generates hard inclusions Al 2 O 3 , which become the starting point of rolling fatigue fracture in the final product and cause deterioration of strength. In particular, when O exceeds 0.0015%, the strength is significantly deteriorated, so the upper limit is 0.0015%.

【0026】次に、請求項4の発明の鋼では、焼入れ性
向上を目的としてNi,Moの1種または2種を含有さ
せることが出来る。Ni:0.50〜2.00%,Mo:
0.05〜0.50%,Ni、Moは焼入れ性の向上を通
じて、最終製品の強度を増加させるのに有効な元素であ
るが、Ni:0.50%未満、Mo:0.05%未満では
この効果は不十分であり、一方、Ni:2.00%,M
o:0.5%を超えるとこの効果は飽和しむしろ最終製
品の靭性の劣化を招くので、その含有量をNi:0.5
0〜2.00%,Mo:0.05〜0.50%とした。
Next, in the steel according to the fourth aspect of the invention, one or two of Ni and Mo can be contained for the purpose of improving hardenability. Ni: 0.50 to 2.00%, Mo:
0.05 to 0.50%, Ni and Mo are effective elements for increasing the strength of the final product through improvement of hardenability, but Ni: less than 0.50%, Mo: less than 0.05% In this case, the effect is insufficient. On the other hand, Ni: 2.00%, M
If o: more than 0.5%, this effect saturates and rather causes deterioration of the toughness of the final product.
0 to 2.00%, Mo: 0.05 to 0.50%.

【0027】次に、請求項5の発明の鋼では、組織微細
化を目的としてNb,Vの1種または2種を含有させる
ことが出来る。Nb:0.01〜0.3%,V :0.0
3〜0.3%,Nb,Vは結晶粒微細化元素として添加
するが、Nb:0.01%未満、V:0.03%未満では
その効果は不十分であり、一方、Nb:0.3%、V:
0.3%を超えるとその効果は飽和し、むしろ靭性を劣
化させるので、その含有量をNb:0.01〜0.3%,
V:0.03〜0.3%とした。
Next, in the steel according to the fifth aspect of the present invention, one or two types of Nb and V can be contained for the purpose of refining the structure. Nb: 0.01 to 0.3%, V: 0.0
3 to 0.3%, Nb and V are added as crystal grain refining elements, but if the Nb is less than 0.01% and the V is less than 0.03%, the effect is insufficient. 0.3%, V:
When the content exceeds 0.3%, the effect is saturated, and the toughness is rather deteriorated. Therefore, the content is set to Nb: 0.01 to 0.3%,
V: 0.03 to 0.3%.

【0028】次に、本発明において、熱間圧延条件を限
定した理由について述べる。まず、加熱温度を900〜
1150℃としたのは、900℃未満の加熱温度では粗
圧延−中間圧延温度が低くなり再結晶域圧延によるオー
ステナイト粒の細粒化が不十分であるためであり、また
1150℃を超える加熱温度では、オーステナイト結晶
粒が顕著に粗大化するとともに、微細炭化物残存による
正味の固溶炭素量低減の効果が期待できなくなるためで
ある。
Next, the reason for limiting the hot rolling conditions in the present invention will be described. First, set the heating temperature to 900-
The reason why the heating temperature is set to 1150 ° C. is that if the heating temperature is lower than 900 ° C., the rough rolling-intermediate rolling temperature becomes low and the austenite grains are insufficiently refined by recrystallization zone rolling. In this case, austenite crystal grains are remarkably coarsened, and the effect of reducing the net amount of solute carbon due to the remaining fine carbides cannot be expected.

【0029】次に、該加熱温度〜880℃以上の温度範
囲で総減面率50%以上の圧延を行うのは、再結晶によ
りオーステナイト粒を6〜7番程度に細粒化するためで
あり、総減面率50%以上としたのは、これ未満では再
結晶細粒化の効果が小さいためである。
Next, rolling at a total area reduction of 50% or more in the temperature range of the heating temperature to 880 ° C. or more is for reducing the austenite grains to about 6 to 7 by recrystallization. The reason why the total area reduction rate is 50% or more is that if the total area reduction rate is less than 50%, the effect of recrystallization refinement is small.

【0030】また、880℃未満〜400℃の温度範囲
で、「減面率10%以上の圧延後、直ちに鋼材温度が一
旦Ms点〜700℃となるように冷却し、引き続いて減
面率を10%以上の圧延を行う」工程を1回以上有する
工程で圧延を行うのは、オーステナイト粒の粒内に変形
帯を導入し、粒内初析セメンタイトを核生成させ、網状
初析セメンタイトを低減するためである。該鋼材を88
0℃未満〜400℃の温度範囲で圧延すると、加工発熱
により温度が上昇するため、回復により加工歪は解放さ
れ、変形帯の導入は困難になる。つまり、圧延の間に冷
却をはさむのは、回復による加工歪の解放を抑制してパ
ス間の歪を累積させ、粒内初析セメンタイトの核生成が
可能な変形帯を形成させるためである。
Further, in a temperature range of less than 880 ° C. to 400 ° C., immediately after the rolling at a reduction rate of 10% or more, the steel material is cooled once to the Ms point to 700 ° C., and then the reduction rate is reduced. Rolling in a step having at least one step of “rolling at least 10%” is performed by introducing a deformation zone in the austenite grains, nucleating intra-granular pro-eutectoid cementite, and reducing reticulated pro-eutectoid cementite. To do that. 88
Rolling in a temperature range of less than 0 ° C to 400 ° C causes processing heat
Temperature rises, the processing strain is released by recovery.
This makes it difficult to introduce deformation zones. That is, the reason why cooling is interposed during rolling is to suppress the release of processing strain due to recovery, accumulate strain between passes, and form a deformation zone in which nucleation of intragranular proeutectoid cementite can be generated.

【0031】ここで、冷却前後の減面率10%以上とし
たのは、減面率10%未満では累積される歪量が小さい
ためオーステナイト粒の粒内に十分な変形帯が形成され
ないためである。また、冷却後の温度をMs点〜700
℃としたのは、冷却後の温度が700℃を超えると加工
歪の解放による変形帯消滅の防止が不十分であり、一方
Ms点未満であるとマルテンサイト組織が生じるためで
ある。なお、変形帯消滅防止の効果は、600℃未満に
冷却することによって特に顕著になることから、可能な
らば冷却後の温度をMs点以上、600℃未満とするの
が望ましい。
Here, the reason why the area reduction ratio before and after cooling is set to 10% or more is that if the area reduction ratio is less than 10%, a sufficient deformation zone is not formed in the austenite grains because the accumulated strain is small. is there. Further, the temperature after cooling is set to the Ms point to 700
The reason why the temperature was set to ° C. is that when the temperature after cooling exceeds 700 ° C., it is not enough to prevent deformation band disappearance due to release of processing strain, and when it is lower than the Ms point, a martensite structure is generated. Since the effect of preventing deformation band disappearance becomes particularly significant when the temperature is cooled to less than 600 ° C., it is desirable to set the temperature after cooling to the Ms point or more and less than 600 ° C. if possible.

【0032】また、本発明では、880℃未満の温度範
囲において、「減面率10%以上の圧延後、直ちに鋼材
温度が一旦Ms点〜700℃となるように冷却し、引き
続いて減面率10%以上の圧延を行う」工程の前後に任
意の圧延を行うことが可能であり、またこの工程を2回
以上繰り返す場合、連続して行っても、任意の圧延をは
さんで行っても良い。
Further, in the present invention, in a temperature range of less than 880 ° C., the steel is cooled immediately after the rolling at a reduction of area of 10% or more so that the temperature of the steel material once becomes Ms point to 700 ° C. Any rolling can be performed before and after the “rolling of 10% or more” step. When this step is repeated two or more times, it can be performed continuously or with any rolling performed. good.

【0033】さらに、最終圧延出側の鋼材温度を700
〜880℃の範囲とするのは、700℃未満の最終圧延
出側温度では、圧延負荷が顕著に増大するためであり、
また最終圧延出側温度が880℃を超えた場合、圧延直
後のオーステナイト粒が成長粗大化する危険性があるた
めである。
Further, the temperature of the steel material on the final rolling exit side is set to 700.
The reason for setting the range to 8880 ° C. is that at a final rolling exit temperature of less than 700 ° C., the rolling load is significantly increased,
Also, if the final rolling exit side temperature exceeds 880 ° C., there is a risk that austenite grains immediately after rolling may grow and coarsen.

【0034】次に、請求項1の発明では最終圧延後直ち
に急冷して、該鋼材の温度を550〜700℃未満の最
終圧延急冷温度とし、また請求項2の発明では最終圧延
後直ちに、550〜700℃未満の溶融塩温度に保持さ
れた溶融塩中に焼入れし、該溶融塩中で0.5〜30秒
保持するのは、いずれも粒界での網状初析セメンタイト
の生成−成長を抑制するためである。請求項1の発明で
急冷温度範囲を550〜700℃未満としたのは、70
0℃以上では網状初析セメンタイトの生成−成長の抑制
が不十分であり、また550℃未満ではベイナイト組織
が生じる危険性があるためである。なお、最終圧延後5
50〜700℃未満への急冷速度は10℃/s以上が望
ましい。
Next, in the first aspect of the present invention, the steel is quenched immediately after the final rolling to set the temperature of the steel material to the final rolling quenching temperature of less than 550 to 700 ° C. Quenching in a molten salt maintained at a molten salt temperature of less than 700700 ° C., and holding in the molten salt for 0.5 to 30 seconds, causes formation and growth of reticulated primary cementite at grain boundaries. This is for suppressing. The reason why the quenching temperature range is set to less than 550 to 700 ° C.
If the temperature is 0 ° C. or higher , the formation and growth of reticulated cementite are not sufficiently suppressed, and if the temperature is lower than 550 ° C., there is a risk that a bainite structure may be generated. After the final rolling, 5
The rapid cooling rate to 50 to less than 700 ° C. is desirably 10 ° C./s or more.

【0035】次に請求項2の発明で焼入れする溶融塩の
温度を550〜700℃未満としたのは、溶融塩温度:
700℃以上では網状初析セメンタイトの生成−成長の
抑制が不十分であり、また溶融塩温度:550℃未満で
はベイナイト組織が生じる危険性があるためである。ま
た、該溶融塩中での保持時間を0.5〜30秒としたの
は、0.5秒未満では鋼材断面の中心部まで十分に冷却
できない危険性があるためであり、30秒超では生産性
が低下するためである。
Next, the temperature of the molten salt to be quenched according to the second aspect of the invention is set to be less than 550 to 700 ° C.
If the temperature is higher than 700 ° C., the formation-growth of network-precipitated cementite is not sufficiently suppressed, and if the molten salt temperature is lower than 550 ° C., there is a risk that a bainite structure may be formed. The reason for setting the holding time in the molten salt to 0.5 to 30 seconds is that if the holding time is less than 0.5 seconds, there is a risk that the center of the steel material cross section cannot be sufficiently cooled. This is because productivity decreases.

【0036】次に、「その後450℃までを0.05〜
1.0℃/秒の冷却速度で冷却する」のは、オーステナ
イト粒内に生成するパーライトのラメラ間隔を粗大化さ
せるためである。この温度範囲の冷却速度が1.0℃/
秒を超えるとパーライトのラメラ間隔が顕著に微細にな
り、一方0.05℃/秒未満では徐冷の効果が飽和し、
いたずらに時間を消費するため、冷却速度で0.05〜
1.0℃/秒とした。ここで、球状化焼鈍後により均一
な球状炭化物組織を得るためには、この温度範囲の冷却
速度が0.4℃/秒以下が望ましい。なお、500℃以
下の冷却は任意の冷却速度を選ぶことができる。調整冷
却の方法として、徐冷カバーをかける等の方法が考えら
れる。
Next, "From 450 to 0.05 ° C.
"Cooling at a cooling rate of 1.0 ° C./sec" is for increasing the lamella spacing of pearlite generated in austenite grains. The cooling rate in this temperature range is 1.0 ° C /
If it exceeds 2 seconds, the lamella spacing of pearlite becomes remarkably fine, while if it is less than 0.05 ° C./second, the effect of slow cooling is saturated,
In order to waste time unnecessarily, the cooling rate is 0.05
1.0 ° C./sec. Here, in order to obtain a more uniform spherical carbide structure after the spheroidizing annealing, the cooling rate in this temperature range is desirably 0.4 ° C./sec or less. An arbitrary cooling rate can be selected for cooling at 500 ° C. or lower. As a method of the adjustment cooling, a method of attaching a slow cooling cover or the like can be considered.

【0037】なお、圧延後得られる組織が、実質的に初
析セメンタイトとパーライトからなることとしたのは、
組織がベイナイト、マルテンサイトを含むと、これらの
部分が球状化焼鈍後に微細な球状炭化物組織となり、均
一な球状炭化物組織を得られないためである。
The reason why the structure obtained after rolling is substantially composed of proeutectoid cementite and pearlite is as follows.
If the structure contains bainite or martensite, these parts become fine spherical carbide structures after spheroidizing annealing, and a uniform spherical carbide structure cannot be obtained.

【0038】次に、請求項3の発明は、球状化焼鈍後に
より一層均一な球状化焼鈍組織を得るための軸受用鋼材
の製造方法に関する発明である。請求項3の発明で熱間
圧延の加熱に際して、650〜750℃の加熱速度が
10〜100℃/時間としたのは、昇温過程のA1点直
下の温度域で徐加熱することにより、炭化物をオーステ
ナイト中でより安定化させて、圧延加熱時の微細炭化物
の残存量を増加させ、正味の固溶炭素量をより低減する
ためである。但し、650〜750℃の加熱速度が10
0℃/時間を超えるとこの効果は小さく、一方10℃/
時間未満では徐加熱の効果が飽和し、いたずらに時間を
消費するため加熱速度を10〜100℃/時間とした。
Next, a third aspect of the present invention relates to a method for producing a bearing steel material for obtaining a more uniform spheroidized annealed structure after spheroidizing annealing. In the invention before the hot rolling in the invention of claim 3, the heating rate of 650 to 750 ° C. is set to 10 to 100 ° C./hour by gradually heating in a temperature range just below the A 1 point in the temperature increasing process. The purpose is to further stabilize the carbide in austenite, increase the amount of fine carbide remaining during rolling heating, and further reduce the net amount of solute carbon. However, if the heating rate at 650 to 750 ° C. is 10
When the temperature exceeds 0 ° C./hour, the effect is small.
If the time is less than the time, the effect of the slow heating is saturated and the time is unnecessarily consumed, so that the heating rate is set to 10 to 100 ° C./hour.

【0039】なお、球状化焼鈍後にさらにより一層均一
な球状炭化物組織を得るためには、本発明の製造方法に
より製造される軸受用鋼材を、圧延後の組織の旧オース
テナイト粒度が9番以上である軸受用鋼材とするのが望
ましい。これは、圧延後の組織の旧オーステナイト粒度
を9番以上とすることにより、球状化焼鈍加熱保定時の
オーステナイト粒径が微細化され、球状化焼鈍後の炭化
物の均一性を一層増大させることができるためであり、
この効果が9番以上で特に顕著なためである。以下に、
本発明の効果を実施例により、さらに具体的に示す。
In order to obtain an even more uniform spherical carbide structure after the spheroidizing annealing, the steel material for bearings manufactured by the manufacturing method of the present invention must be prepared by rolling the steel structure after rolling with a prior austenite grain size of 9 or more. It is desirable to use a certain bearing steel material. This is because by setting the prior austenite grain size of the structure after rolling to No. 9 or more, the austenite grain size during spheroidizing annealing heating retention is refined, and the uniformity of carbide after spheroidizing annealing is further increased. Because we can
This is because the effect is particularly remarkable at the ninth or higher. less than,
The effects of the present invention will be more specifically shown by examples.

【0040】[0040]

【実施例】表1に供試材の化学成分を示す。これらはい
ずれも転炉溶製後連続鋳造で鋳造された。162mm角
鋼片に分塊圧延後、表2に示す圧延条件で丸棒鋼に圧延
した。
EXAMPLES Table 1 shows the chemical components of the test materials. These were all cast by continuous casting after converter melting. After slab rolling to a 162 mm square steel slab, it was rolled into a round bar under the rolling conditions shown in Table 2.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

【0044】[0044]

【表4】 [Table 4]

【0045】本発明法については、圧延後、冷却床に徐
冷カバーをかけることにより調整冷却を行った。また、
一部の鋼種については上記162mm角鋼片から50m
m角の角材を切り出し、表3に示す圧延条件で厚さ15
mmへ圧延した。圧延後、これらの圧延材に球状化焼鈍
を施した。
In the method of the present invention, after rolling, the cooling was adjusted by applying a slow cooling cover to the cooling floor. Also,
For some steel types, 50 m from the above 162 mm square slab
A square piece of m-square was cut out and had a thickness of 15 mm under the rolling conditions shown in Table 3.
mm. After rolling, these rolled materials were subjected to spheroidizing annealing.

【0046】球状化焼鈍材について、球状化率、炭化物
径(円相当直径)の平均値と最大値、硬さ(冷間加工性
の指標)を評価した。球状化率は長径/短径が5.0以
下のセメンタイト数の全セメンタイト数に対する割合で
表した。表4に各鋼材の評価結果を本発明と比較例を対
比して示す。これから明らかなように、本発明法では、
いずれも球状化率100%である。また平均炭化物径が
役1μmで且つ最大炭化物径が2μm未満と、粗大な板
状炭化物がなく且つ均一な球状炭化物組織が得られてい
る。また硬さもHRB90以下と比較例に比べて良好な
軟質化レベルを示している。
With respect to the spheroidized annealed material, the spheroidization rate, average and maximum values of carbide diameter (equivalent circle diameter), and hardness (index of cold workability) were evaluated. The spheroidization ratio was represented by the ratio of the number of cementite having a major axis / minor axis of 5.0 or less to the total number of cementite. Table 4 shows the evaluation results of each steel material in comparison with the present invention and comparative examples. As is clear from the above, according to the method of the present invention,
In each case, the spheroidization rate was 100%. When the average carbide diameter is 1 μm and the maximum carbide diameter is less than 2 μm, a uniform spherical carbide structure without coarse plate-like carbide is obtained. Also, the hardness is 90 or less HRB, which indicates a favorable softening level as compared with the comparative example.

【0047】一方、比較例5,35は圧延時の加熱温度
が本発明の範囲の上限値を上回った場合であり、比較例
6,36は880℃未満の温度範囲での圧延において、
「減面率10%以上の圧延後、直ちに鋼材温度が一旦M
s点〜700℃となるように冷却し、引き続いて減面率
を10%以上の圧延を行う」工程を行わなかった場合で
あり、比較例7は最終圧延直後の急冷の冷却停止温度が
本発明の範囲の上限値を上回った場合であり、比較例
8,37は、圧延直後急冷の後の450℃までを冷却速
度が本発明の範囲の上限値を上回った場合であり、いず
れも球状化率が70%以下であり、球状化炭化物の大き
さも不均一であり、また軟質化の程度も十分とはいえな
い。
On the other hand, in Comparative Examples 5 and 35, the heating temperature during rolling exceeded the upper limit of the range of the present invention, and in Comparative Examples 6 and 36, the rolling temperature in the temperature range of less than 880 ° C.
"After rolling with a reduction of area of 10% or more, the steel temperature
Comparative Example 7 is a case where the step of “cooling to s point to 700 ° C. and subsequently performing rolling with a reduction of area of 10% or more” was not performed. Comparative Examples 8 and 37 show cases where the cooling rate exceeded the upper limit of the range of the present invention up to 450 ° C. after quenching immediately after rolling. The carbonization ratio is 70% or less, the size of the spheroidized carbide is not uniform, and the degree of softening is not sufficient.

【0048】次に、表4の本発明例3,4,34,比較
例5で製造した鋼材について、直径12mmφ、長さ2
2mmの円筒型転動疲労試験片を作成し、調質処理後、
点接触型転動疲労試験機によりヘルツ最大接触応力60
0kgf/mm2で転動疲労試験を行った。疲労寿命の
尺度として、通常、「試験結果をワイブル確率紙にプロ
ットして得られる累積破損確率10%における疲労破壊
までの応力繰返し数」がL10寿命として用いられる。本
発明例のL10寿命は比較例5のL10寿命に比べて、本発
明例3で1.5倍、本発明例4で1.8倍、本発明例34
で1.5倍に各々寿命が向上する。
Next, the steel materials manufactured in Examples 3, 4, and 34 of the present invention and Comparative Example 5 shown in Table 4 were 12 mm in diameter and 2 mm in length.
A 2mm cylindrical rolling fatigue test piece was prepared, and after tempering treatment,
Hertz maximum contact stress 60 by point contact type rolling fatigue tester
A rolling fatigue test was performed at 0 kgf / mm 2 . As a measure of the fatigue life, usually, "stress repetition of the test results to fatigue failure in a cumulative failure probability of 10% obtained by plotting the Weibull probability paper" is used as the L 10 life. L 10 life of the present invention example, compared to the L 10 life of Comparative Example 5, 1.5-fold in the present invention example 3, 1.8 times in Invention Example 4, Inventive Example 34
, The life is improved 1.5 times.

【0049】[0049]

【発明の効果】以上述べたごとく、本発明法を用いれ
ば、通常の球状化焼鈍により、粗大な板状炭化物を含ま
ず、且つ均一な球状化組織を得ることができ、焼鈍後の
切断、冷間鍛造、切削等の冷間加工性に優れ、且つ焼入
れ焼戻し処理を行った軸受部品において優れた転動疲労
特性を得ることができる軸受用鋼材の製造が可能とな
り、産業上の効果は極めて顕著なるものがある。
As described above, when the method of the present invention is used, a uniform spheroidized structure containing no coarse plate-like carbide can be obtained by ordinary spheroidizing annealing. It is possible to manufacture bearing steel materials that are excellent in cold workability such as cold forging and cutting, and that can obtain excellent rolling fatigue characteristics in quenched and tempered bearing parts. Some are remarkable.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量比として、 C :0.80〜1.20%, Si:0.15〜1.50%, Mn:0.15〜1.50%, Cr:0.50〜1.60%, S :0.003〜0.02%. Al:0.015〜0.05%, N :0.004〜0.015%, を含有し、 P:0.020%以下、Ti:0.0020%以下、O:
0.0015%以下に制限し、残部が鉄および不可避的
不純物からなる鋼を熱間圧延するに際して、 A)900〜1150℃の加熱温度に加熱する工程と、 B)該加熱温度〜880℃以上の温度範囲で総減面率5
0%以上の圧延を行う工程と、 C)その後、880℃未満〜400℃の温度範囲で、
「減面率10%以上の圧延後、直ちに鋼材温度が一旦M
s点〜700℃となるように冷却し、引き続いて減面率
10%以上の圧延を行う」工程を1回以上有する工程で
圧延を行い、最終圧延出側の鋼材温度を700〜880
℃の最終圧延出側温度とする工程と、 D)最終圧延後直ちに急冷して、該鋼材の温度を550
〜700℃未満の最終圧延急冷温度とする工程と、 E)その後450℃までを0.05〜1.0℃/秒の冷却
速度で冷却する工程を特徴とする、組織が実質的に初析
セメンタイトとパーライトからなる球状化焼鈍特性の優
れた軸受用鋼材の製造方法。
1. Weight ratios of C: 0.80 to 1.20%, Si: 0.15 to 1.50%, Mn: 0.15 to 1.50%, Cr: 0.50 to 1.50%. 60%, S: 0.003 to 0.02%. Al: 0.015 to 0.05%, N: 0.004 to 0.015%, P: 0.020% or less, Ti: 0.0020% or less, O:
When hot-rolling a steel consisting of iron and unavoidable impurities with the balance being not more than 0.0015%, A) heating to a heating temperature of 900 to 1150 ° C, and B) heating temperature to 880 ° C or more. Total area reduction rate 5 in the temperature range
0% or more rolling; and C) after that, in a temperature range of less than 880 ° C to 400 ° C,
"After rolling with a reduction of area of 10% or more, the steel temperature
is cooled to s point to 700 ° C., and subsequently rolled at a reduction of 10% or more ”.
And D) quenching immediately after the final rolling to raise the temperature of the steel material to 550 ° C.
E) elongation of the microstructure substantially, characterized by a step of setting the final rolling quenching temperature to a temperature of less than ~ 700 ° C, and a step of thereafter cooling to 450 ° C at a cooling rate of 0.05 to 1.0 ° C / sec. A method for producing a bearing steel material having excellent spheroidizing annealing properties comprising cementite and pearlite.
【請求項2】請求項1のD)とE)が D)最終圧延後直ちに、550〜700℃未満の溶融塩
温度に保持された溶融塩中に焼入れし、該溶融塩中で
0.5〜30秒保持する工程と、 E)その後450℃までを0.05〜1.0℃/秒の冷却
速度で冷却する工程であることを特徴とする、請求項1
記載の組織が実質的に初析セメンタイトとパーライトか
らなる球状化焼鈍特性の優れた軸受用鋼材の製造方法。
2. The method according to claim 1, wherein D) and E) are quenched immediately after the final rolling in a molten salt maintained at a molten salt temperature of less than 550 to 700 ° C. The method according to claim 1, further comprising: a step of holding for about 30 seconds; and E) a step of cooling at a cooling rate of 0.05 to 1.0 ° C./sec to 450 ° C. thereafter.
A method for producing a bearing steel material having excellent spheroidizing annealing properties, the structure of which is substantially composed of proeutectoid cementite and pearlite.
【請求項3】請求項1のA)工程の加熱に際して、65
0〜750℃の加熱速度が10〜100℃/時間である
請求項1または2記載の球状化焼鈍特性の優れた軸受用
鋼材の製造方法。
3. The method according to claim 1, wherein the heating in the step A) comprises the step of:
The method according to claim 1 or 2, wherein the heating rate at 0 to 750 ° C is 10 to 100 ° C / hour.
【請求項4】成分がさらに、 Ni:0.50〜2.00%,Mo:0.05〜0.50
%,の1種または2種を含有する請求項1または2また
は3記載の球状化焼鈍特性の優れた軸受用鋼材の製造方
法。
4. The composition further comprises: Ni: 0.50-2.00%, Mo: 0.05-0.50
The method for producing a bearing steel material having excellent spheroidizing annealing characteristics according to claim 1 or 2 or 3, which comprises one or two of the following.
【請求項5】成分がさらに、 Nb:0.01〜0.3%,V :0.03〜0.3%,の
1種または2種を含有する請求項1または2または3ま
たは4記載の球状化焼鈍特性の優れた軸受用鋼材の製造
方法。
5. The composition according to claim 1, wherein the component further comprises one or two of Nb: 0.01 to 0.3% and V: 0.03 to 0.3%. Method for producing steel for bearings having excellent spheroidizing annealing characteristics.
JP08440593A 1993-04-12 1993-04-12 Manufacturing method of bearing steel with excellent spheroidizing annealing characteristics Expired - Fee Related JP3291068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08440593A JP3291068B2 (en) 1993-04-12 1993-04-12 Manufacturing method of bearing steel with excellent spheroidizing annealing characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08440593A JP3291068B2 (en) 1993-04-12 1993-04-12 Manufacturing method of bearing steel with excellent spheroidizing annealing characteristics

Publications (2)

Publication Number Publication Date
JPH06299240A JPH06299240A (en) 1994-10-25
JP3291068B2 true JP3291068B2 (en) 2002-06-10

Family

ID=13829686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08440593A Expired - Fee Related JP3291068B2 (en) 1993-04-12 1993-04-12 Manufacturing method of bearing steel with excellent spheroidizing annealing characteristics

Country Status (1)

Country Link
JP (1) JP3291068B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191796A (en) * 1997-01-20 2007-08-02 Nsk Ltd Method of manufacturing rolling bearing
KR100342673B1 (en) * 1997-12-29 2002-10-11 주식회사 포스코 A method of manufacturing meduium carbon steel wire rods for spheroidization heat treatment
EP1715204A4 (en) * 2004-02-12 2011-12-21 Ntn Toyo Bearing Co Ltd Shell type needle roller bearing, support structure of compressor spindle, and support structure of piston pump drive part
JP4600988B2 (en) * 2005-04-05 2010-12-22 日新製鋼株式会社 High carbon steel plate with excellent machinability
JP4386152B2 (en) * 2008-02-28 2009-12-16 新東工業株式会社 Shot peening projection material, finish line, manufacturing method, and shot peening projection material
JP5328331B2 (en) * 2008-12-11 2013-10-30 日新製鋼株式会社 Steel materials for wear-resistant quenched and tempered parts and manufacturing method
JP5423571B2 (en) * 2010-05-07 2014-02-19 新日鐵住金株式会社 Hot-worked high carbon steel for induction-hardened parts
JP5820325B2 (en) 2012-03-30 2015-11-24 株式会社神戸製鋼所 Steel material for bearings excellent in cold workability and manufacturing method thereof
JP6056647B2 (en) * 2012-06-28 2017-01-11 Jfeスチール株式会社 Bearing steel manufacturing method and bearing steel obtained by the manufacturing method
KR102421642B1 (en) * 2019-12-20 2022-07-18 주식회사 포스코 Wire rod for bearing and methods for manufacturing thereof
CN111763889A (en) * 2020-06-02 2020-10-13 钢铁研究总院 High-carbon bearing steel and preparation method thereof

Also Published As

Publication number Publication date
JPH06299240A (en) 1994-10-25

Similar Documents

Publication Publication Date Title
JP4018905B2 (en) Hot rolled wire rod and bar for machine structure and manufacturing method thereof
JP4435953B2 (en) Bar wire for cold forging and its manufacturing method
US5252153A (en) Process for producing steel bar wire rod for cold working
JP3554505B2 (en) Hot-rolled wire rod / steel bar for machine structure and manufacturing method thereof
WO2001048258A1 (en) Bar or wire product for use in cold forging and method for producing the same
JP2000336457A (en) Wire rod for cold forging and its manufacture
EP0637636B1 (en) Graphite structural steel having good free-cutting and good cold-forging properties and process of making this steel
CN108315637B (en) High carbon hot-rolled steel sheet and method for producing same
JP3291068B2 (en) Manufacturing method of bearing steel with excellent spheroidizing annealing characteristics
JP3809004B2 (en) Induction quenching steel with excellent high strength and low heat treatment strain characteristics and its manufacturing method
JP2017179596A (en) High carbon steel sheet and manufacturing method therefor
JPH06116635A (en) Production of high strength low alloy steel for oil well use, excellent in sulfide stress corrosion cracking resistance
JP2003147485A (en) High toughness high carbon steel sheet having excellent workability, and production method therefor
JP3932995B2 (en) Induction tempering steel and method for producing the same
JPH05214484A (en) High strength spring steel and its production
KR101977499B1 (en) Wire rod without spheroidizing heat treatment, and method for manufacturing thereof
CN113366136B (en) High-carbon hot-rolled steel sheet and method for producing same
JP2004204263A (en) Steel material for case hardening superior in cold workability and coarse-particle-preventing property in carburization, and manufacturing method therefor
JP2938101B2 (en) Manufacturing method of steel for cold forging
JP3842888B2 (en) Method of manufacturing steel for induction hardening that combines cold workability and high strength properties
JP3554506B2 (en) Manufacturing method of hot-rolled wire and bar for machine structure
JPH1161272A (en) Manufacture of high carbon cold-rolled steel plate excellent in formability
JPH09324212A (en) Production of hot rolled high carbon steel strip excellent in hardenability and cold workability
JPH11131187A (en) Rapidly graphitizable steel and its production
JP2001181791A (en) Bar stock and wire rod for cold forging, excellent in induction hardenability and cold forgeability

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020305

LAPS Cancellation because of no payment of annual fees