JP5328331B2 - Steel materials for wear-resistant quenched and tempered parts and manufacturing method - Google Patents

Steel materials for wear-resistant quenched and tempered parts and manufacturing method Download PDF

Info

Publication number
JP5328331B2
JP5328331B2 JP2008316006A JP2008316006A JP5328331B2 JP 5328331 B2 JP5328331 B2 JP 5328331B2 JP 2008316006 A JP2008316006 A JP 2008316006A JP 2008316006 A JP2008316006 A JP 2008316006A JP 5328331 B2 JP5328331 B2 JP 5328331B2
Authority
JP
Japan
Prior art keywords
less
steel
wear
content
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008316006A
Other languages
Japanese (ja)
Other versions
JP2010138453A (en
Inventor
寛典 久保
勝 藤原
恒年 洲▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2008316006A priority Critical patent/JP5328331B2/en
Publication of JP2010138453A publication Critical patent/JP2010138453A/en
Application granted granted Critical
Publication of JP5328331B2 publication Critical patent/JP5328331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel which has compatibility between wear resistance and toughness at high levels, and is suitable for a saw blade or the like. <P>SOLUTION: The steel for a quenched-tempered component (such as a saw blade) having excellent wear resistance has a chemical composition containing, by mass, 0.6 to 1.0% C, &le;0.5% Si, 0.1 to 1.5% Mn, &le;0.02% P, &le;0.02% S, 0.1 to 1.5% Cr and 0.1 to 0.5% Nb, and, if required, further one or more selected from &le;0.5% Mo, &le;0.5% V, &le;2% Ni, &le;0.25% Ti and &le;0.005% B, and the balance Fe with inevitable impurities, wherein ideal critical diameter D<SB>1</SB>as the index of hardenability is &ge;50, and carbides with a grain size of &ge;2 &mu;m and containing one or more selected from Nb and Ti are present in the matrix, having the density of 300 to 1,000 pieces/mm<SP>2</SP>. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、耐摩耗性に優れた焼入れ焼戻し部品用の鋼材、およびその製造方法に関する。   The present invention relates to a steel material for quenched and tempered parts having excellent wear resistance, and a method for producing the same.

木材の切断、草刈等に使用する丸鋸や帯鋸には、長寿命化を目的とした「耐摩耗性」の向上が要求される。このような刃物に使用される従来の鋼板では通常、焼入後に、低めの温度で焼戻しを行って硬さレベルを高く維持することにより、耐摩耗性を確保している。より高硬度が得られるように、炭素含有量を高めた鋼を使用することもある。鋼材の硬さと耐摩耗性は密接な関係にあり、マトリクスの硬さを高めることは耐摩耗性の向上に繋がることから、従来、鋼材に耐摩耗性を付与する手法としては硬さを増大させる手法を採用することが一般的である。   Circular saws and band saws used for cutting wood, mowing, etc. are required to have improved “abrasion resistance” for the purpose of extending the life. Conventional steel plates used for such blades usually ensure wear resistance by tempering at a lower temperature after quenching to maintain a high hardness level. In order to obtain higher hardness, steel with an increased carbon content may be used. Hardness and wear resistance of steel materials are closely related, and increasing the hardness of the matrix leads to improvement of wear resistance, so conventionally increasing the hardness as a method of imparting wear resistance to steel materials It is common to adopt a technique.

一方、刃物は安全上、使用中に折損しないことが重要である。刃物の折損を防止するためには刃物に用いる鋼材の「靱性」を十分に確保する必要がある。一般に鋼材の靱性を向上させるには、調質硬さを低く抑えることが有効であるとされる。しかしながら、調質硬さを抑制すると、同時に耐摩耗性も低下してしまうのが通常である。すなわち、鋼材において「耐摩耗性」と「靱性」はトレードオフの関係にある。
これまで、靱性をできるだけ阻害せずに耐摩耗性を改善する試みが種々なされてきた(特許文献1〜6)。
On the other hand, for safety reasons, it is important that the blade does not break during use. In order to prevent breakage of the blade, it is necessary to sufficiently ensure the “toughness” of the steel material used for the blade. Generally, to improve the toughness of steel materials, it is considered effective to keep the tempering hardness low. However, when the tempering hardness is suppressed, the wear resistance is usually lowered at the same time. That is, “wear resistance” and “toughness” have a trade-off relationship in steel.
Until now, various attempts have been made to improve wear resistance without impairing toughness as much as possible (Patent Documents 1 to 6).

特許第3962143号公報Japanese Patent No. 3962143 特公平5−37202号公報Japanese Patent Publication No. 5-37202 特開2003−27181号公報JP 2003-27181 A 特開2003−328078号公報JP 2003-328078 A 特開2005−146321号公報JP 2005-146321 A 特許第3946369号公報Japanese Patent No. 3946369

従来検討されてきた鋼材の耐摩耗性改善手法は、「硬さ」を増大させる手段を用いて「耐摩耗性」を付与し、結晶粒の微細化などによって「靱性」の低下を抑制するという思想に基づくものが主流であった。そのような中で、本出願人はTi、Nb、Zr、V、W等の硬質な炭化物をマトリクス中に分散させることによりステンレス鋼の耐摩耗性を向上させる技術を開示した(特許文献6)。   The methods for improving the wear resistance of steel materials that have been studied in the past are to impart “wear resistance” by means of increasing the “hardness” and to suppress the decrease in “toughness” by refining crystal grains. Those based on thought were mainstream. Under such circumstances, the present applicant has disclosed a technique for improving the wear resistance of stainless steel by dispersing hard carbides such as Ti, Nb, Zr, V, and W in a matrix (Patent Document 6). .

相手摩擦面の表面粗さや摩擦面に介在する異物によって材料表面が削り取られる摩耗形態をアブレシブ摩耗という。アブレシブ摩耗は、摩耗相手材の表面粗さが大きくかつ硬質である場合や、部材よりも硬い異物が摩擦面に介在する場合に生じる。丸鋸や帯鋸等の刃物部材の摩耗ではこの種の摩耗形態が主体となる。摩耗相手材の種類や使用環境によっては、摩擦面にアルミナや炭化ケイ素のような部材硬さに比べて遥かに硬質の異物が介在することがある。アブレシブ摩耗に対する抵抗力を付与するためには、刃物部材を構成する鋼材のマトリクス中に粒子径数μmのNbやTiの炭化物を一定量以上分散させることが有効である。NbやTiの炭化物の硬さは2000HV以上に相当し、これはアルミナや炭化ケイ素とほぼ同等レベルの硬度である。鋼材マトリクス中に分散させた硬質粒子が摩耗に対する抵抗力として働くことで、アブレシブ摩耗による鋼材の摩耗量が大幅に低減される。硬質炭化物を利用すれば、マトリクスを耐摩耗性向上のために必要以上に硬質化させなくてもよいので、靱性向上にも有利となる。特許文献6ではこの手法を利用してステンレス鋼の耐摩耗性を改善している。   Abrasion mode in which the material surface is scraped off by the surface roughness of the mating friction surface and foreign matter present on the friction surface is called abrasive wear. Abrasive wear occurs when the wear counterpart material has a large surface roughness and is hard, or when a foreign object harder than the member is present on the friction surface. This type of wear is mainly used for wear of blade members such as circular saws and band saws. Depending on the type of wear partner material and the usage environment, foreign matter that is much harder than the hardness of a member such as alumina or silicon carbide may be present on the friction surface. In order to impart resistance to abrasive wear, it is effective to disperse a certain amount or more of Nb or Ti carbide having a particle diameter of several μm in the steel matrix constituting the blade member. The hardness of Nb or Ti carbide is equivalent to 2000 HV or more, which is almost the same level as that of alumina or silicon carbide. The hard particles dispersed in the steel matrix work as a resistance to wear, so that the amount of wear of the steel due to abrasive wear is greatly reduced. If a hard carbide is used, it is not necessary to harden the matrix more than necessary to improve wear resistance, which is advantageous for improving toughness. In Patent Document 6, this technique is used to improve the wear resistance of stainless steel.

しかしながら、通常、丸鋸や帯鋸等の刃物用途において高価なステンレス鋼を採用することは難しい。一般的な中・高炭素鋼の場合は、単に硬質な炭化物を分散させるだけでは、耐摩耗性と靱性を高いレベルで両立させることは困難であり、現にそのような技術は未だ確立されていない。   However, it is usually difficult to employ expensive stainless steel for cutting blade applications such as circular saws and band saws. In the case of general medium and high carbon steels, it is difficult to achieve a high level of wear resistance and toughness by simply dispersing hard carbide, and such a technology has not yet been established. .

今後、鋸刃等の刃物において、刃の運動速度向上や被切断材の高硬度化に対応していくためには、耐摩耗性と靱性を高レベルで両立させた安価な鋼材の出現が望まれる。本発明はそのような鋼材を提供しようというものである。   In the future, in order to support the improvement of the blade movement speed and the increased hardness of the material to be cut in blades such as saw blades, the appearance of inexpensive steel materials that combine high levels of wear resistance and toughness is desired. It is. The present invention intends to provide such a steel material.

発明者らはこれまでに、使用中に破損した刃物部材および耐久試験後の鋼材を多数取り寄せ、破損部についてミクロ的な観点から詳細に調査してきた。その結果、中・高炭素鋼からなる刃物部材を破損に導く主な因子は、「炭化物」と「不完全焼入れ部」であることを突き止めた。炭化物は密度が高くなると破壊の起点および亀裂伝播の経路となるため靭性を低下させる。また不完全焼入れ部も同様に靭性を低下させ、加えて耐摩耗性を低下させる。すなわち、ステンレス鋼ではない中・高炭素鋼の靱性を高く維持するためには、炭化物の存在形態について注意を払うとともに、不完全焼入れ部をできるだけ形成させないことが極めて重要であることが明らかになった。   The inventors have so far obtained a large number of blade members damaged during use and steel materials after a durability test, and have investigated in detail the damaged portion from a microscopic viewpoint. As a result, we found that the main factors that lead to breakage of blade members made of medium- and high-carbon steel are “carbide” and “incompletely quenched portion”. When the density of carbide increases, it becomes a starting point of fracture and a path of crack propagation, so that the toughness is lowered. An incompletely hardened portion similarly reduces toughness and, in addition, reduces wear resistance. In other words, in order to maintain the high toughness of medium and high carbon steels that are not stainless steel, it has become clear that it is extremely important to pay attention to the form of carbides and not to form incompletely quenched parts as much as possible. It was.

一方で、硬質な炭化物は上述のように耐摩耗性を向上させる作用を呈する。発明者らは詳細な検討の結果、成分組成と、硬質な炭化物の分布形態を厳密にコントロールすることにより、中・炭素鋼において「耐摩耗性」と「靱性」を高いレベルで安定して改善することが可能であることを見出し、本発明を完成するに至った。   On the other hand, hard carbide exhibits the effect of improving wear resistance as described above. As a result of detailed studies, the inventors have steadily improved the "wear resistance" and "toughness" at a high level in medium and carbon steels by strictly controlling the composition of components and the distribution form of hard carbides. As a result, the present invention has been completed.

すなわち本発明では、質量%で、C:0.6〜1.0%、Si:0.5%以下、Mn:0.1〜1.5%、P:0.02%以下、S:0.02%以下、Cr:0.1〜1.5%、Nb:0.1〜0.5%であり、必要に応じてさらにMo:0.5%以下、V:0.5%以下、Ni:2%以下、Ti:0.25%以下、B:0.005%以下の1種以上を含有し、残部Feおよび不可避的不純物からなり、B含有量に応じて下記(1)式または(2)式で定義される理想臨界直径DIが50以上である化学組成を有し、Nb、Tiの1種以上を含有する粒子径2μm以上の炭化物が鋼材断面観察において300〜1000個/mm2の密度でマトリクス中に存在する耐摩耗性に優れた焼入れ焼戻し部品(例えば鋸刃)用鋼材が提供される。
B含有量0.0005%未満(0%を含む)の場合: DI=6.0(C)1/2×(1+0.64Si)×(1+4.1Mn)×(1+2.83P)×(1−0.62S)×(1+2.33Cr)×(1+1.52Ni)×(1+3.14Mo) …(1)
B含有量0.0005%以上の場合: DI=6.0(C)1/2×(1+0.64Si)×(1+4.1Mn)×(1+2.83P)×(1−0.62S)×(1+2.33Cr)×(1+1.52Ni)×(1+3.14Mo)×{1+1.5×(0.9−C)} …(2)
ただし、(1)式または(2)式右辺の元素記号の箇所には質量%で表された当該元素の含有量値が代入され、含有しない元素については0(ゼロ)が代入される。
That is, in the present invention, by mass, C: 0.6 to 1.0%, Si: 0.5% or less, Mn: 0.1 to 1.5%, P: 0.02% or less, S: 0 0.02% or less, Cr: 0.1-1.5%, Nb: 0.1-0.5%, and Mo: 0.5% or less, V: 0.5% or less, if necessary. Ni: not more than 2%, Ti: not more than 0.25%, B: not more than 0.005%, the balance consisting of Fe and inevitable impurities, depending on the B content, the following formula (1) or (2) 300-1000 carbides having a chemical composition having an ideal critical diameter D I defined by the formula of 50 or more and containing one or more of Nb and Ti and having a particle diameter of 2 μm or more in cross section observation of the steel material There is provided a steel material for a quenched and tempered part (for example, a saw blade) having a density of mm 2 and having excellent wear resistance existing in a matrix.
When B content is less than 0.0005% (including 0%): D I = 6.0 (C) 1/2 × (1 + 0.64Si) × (1 + 4.1Mn) × (1 + 2.83P) × (1 −0.62S) × (1 + 2.33Cr) × (1 + 1.52Ni) × (1 + 3.14Mo) (1)
When B content is 0.0005% or more: D I = 6.0 (C) 1/2 × (1 + 0.64Si) × (1 + 4.1Mn) × (1 + 2.83P) × (1−0.62S) × (1 + 2.33Cr) × (1 + 1.52Ni) × (1 + 3.14Mo) × {1 + 1.5 × (0.9−C)} (2)
However, the content value of the element expressed in mass% is substituted for the element symbol on the right side of the formula (1) or (2), and 0 (zero) is substituted for elements not contained.

また、このような焼入れ焼戻し部品用鋼材の製造方法として、上記の化学組成に成分調整された鋼を鋳造したのち放冷することによりNb、Tiの1種以上を含有する粗大炭化物を析出させる工程、
前記粗大炭化物が存在する鋼を1200〜1350℃に加熱保持することによりNb、Tiの1種以上を含有する粒子径2μm以上の炭化物の密度を300〜1000個/mm2に調整する工程、
を有する製造方法が提供される。
In addition, as a method for producing such a steel for quenching and tempering parts, a step of precipitating coarse carbide containing one or more of Nb and Ti by casting the steel whose component is adjusted to the above chemical composition and then allowing to cool. ,
A step of adjusting the density of carbides having a particle diameter of 2 μm or more containing one or more of Nb and Ti to 300 to 1000 pieces / mm 2 by heating and holding the steel containing the coarse carbides at 1200 to 1350 ° C .;
A manufacturing method is provided.

前記炭化物の密度を300〜1000個/mm2に調整する工程を経た後、加熱抽出温度1100〜1300℃、仕上圧延温度800〜900℃、巻取温度750℃以下の条件で熱間圧延し、600℃以上Ac1点未満の温度域に加熱保持する工程に供することができる。さらに必要に応じて、冷間圧延し、600℃以上Ac1点未満の温度域に加熱保持する工程に供することができる。 After passing through the step of adjusting the density of the carbides to 300 to 1000 pieces / mm 2 , hot rolling is performed under conditions of a heating extraction temperature of 1100 to 1300 ° C, a finish rolling temperature of 800 to 900 ° C, and a winding temperature of 750 ° C or less, It can be subjected to a heating and holding step in a temperature range of 600 ° C. or higher and less than Ac 1 point. Further, if necessary, it can be cold-rolled and subjected to a step of heating and holding in a temperature range of 600 ° C. or higher and less than Ac 1 point.

本発明によれば、「耐摩耗性」と「靱性」を高いレベルで両立させた鋼材を、特段のコスト増を伴うことなく提供することが可能となった。この鋼材はアブレシブ摩耗に対する耐久性が高く、焼入れ性も良好であることから鋸刃等の刃物に好適である。油焼入れの他、ガス焼入れにも対応可能であり、部品メーカーでの製造条件の選択自由度も広い。本発明材料を刃物用途に適用すれば、安全性が向上するとともに、鋸刃の高速度化、被切断材の高硬度化にも対応しうる。   According to the present invention, it is possible to provide a steel material in which “abrasion resistance” and “toughness” are compatible at a high level without any particular increase in cost. This steel material is suitable for blades such as saw blades because of its high durability against abrasive wear and good hardenability. In addition to oil quenching, it can also be used for gas quenching, and there is a wide selection of manufacturing conditions at parts manufacturers. If the material of the present invention is applied to a blade application, safety can be improved, and the speed of the saw blade and the hardness of the material to be cut can be increased.

〔化学組成〕
本発明の鋼材の化学組成について説明する。以下、鋼の成分元素に関する「%」は特に断らない限り「質量%」を意味する。
Cは、調質硬さや強度、耐摩耗性を確保するために重要な元素であり、本発明では0.6%以上、好ましくは0.6%を超える含有量が必要となる。ただしC含有量が多くなると焼入れ焼戻し後に粗大な未溶解炭化物が多くなり、それが破壊の起点および亀裂伝播経路となって靱性・延性を阻害する。種々検討の結果、良好な靱性を安定して得るためにC含有量は1.0%以下に制限される。
[Chemical composition]
The chemical composition of the steel material of the present invention will be described. Hereinafter, “%” regarding the constituent elements of steel means “% by mass” unless otherwise specified.
C is an important element for securing tempered hardness, strength, and wear resistance, and in the present invention, a content of 0.6% or more, preferably more than 0.6% is required. However, when the C content is increased, coarse undissolved carbides increase after quenching and tempering, which becomes a starting point of fracture and a crack propagation path and inhibits toughness and ductility. As a result of various studies, the C content is limited to 1.0% or less in order to stably obtain good toughness.

Siは、溶鋼の脱酸に有効であり、また焼戻し軟化抵抗を高める作用がある。それらの作用を十分に得るためには0.1%以上のSi含有量を確保することがより効果的である。ただし過剰のSi含有は熱延板、冷延板を硬質にし、製造性を阻害する要因となる。このためSi含有量は0.5%以下の範囲とする。   Si is effective in deoxidizing molten steel and has the effect of increasing temper softening resistance. In order to sufficiently obtain these functions, it is more effective to secure a Si content of 0.1% or more. However, excessive Si content makes the hot-rolled sheet and cold-rolled sheet hard, and becomes a factor that hinders manufacturability. For this reason, Si content shall be 0.5% or less of range.

Mnは、焼入れ性を向上させる元素であり、その作用を得るために0.1%以上の含有量を確保する。ただし過剰のMn含有は靱性を著しく低下させる場合があるので、Mn含有量は1.5%以下に制限される。   Mn is an element that improves hardenability, and a content of 0.1% or more is ensured in order to obtain its effect. However, since excessive Mn content may significantly reduce toughness, the Mn content is limited to 1.5% or less.

Pは、焼入れ時にオーステナイト粒界に偏析して粒界強度を低下させ、疲労特性や靱性を低下させる要因となる。検討の結果、P含有量は0.02%まで許容できる。   P segregates at the austenite grain boundaries during quenching, lowers the grain boundary strength, and causes fatigue characteristics and toughness. As a result of the study, the P content is acceptable up to 0.02%.

Sは、鋼中で衝撃破壊や疲労破壊の起点となるMnSを形成し、疲労特性や靱性を低下させる要因となる。検討の結果、S含有量は0.02%まで許容できる。   S forms MnS which is the starting point of impact fracture and fatigue fracture in steel, and becomes a factor of reducing fatigue characteristics and toughness. As a result of the study, the S content is acceptable up to 0.02%.

Crは、Mnと同様に焼入れ性の向上に有効であり、0.1%以上の含有量を確保する。ただし多量のCrを添加すると未溶解炭化物の生成量が増大し、靱性が著しく低下することがあるので、Cr含有量は1.5%以下に制限される。   Cr is effective for improving the hardenability like Mn, and ensures a content of 0.1% or more. However, if a large amount of Cr is added, the amount of undissolved carbide generated increases and the toughness may be significantly reduced, so the Cr content is limited to 1.5% or less.

Nbは、鋳造後の鋼中に非常に硬質なNb含有炭化物を形成し、耐摩耗性の向上に寄与する。また、鋳造後に再固溶させたNbは焼入れ時の結晶粒を微細化させ、靱性の向上に寄与する。これらの作用を十分に引き出すためには、0.1%以上のNb含有量を確保する必要があり、0.15%以上とすることがより好ましい。一方、多量のNb添加は、Nb含有炭化物を過剰に生成させ、それらが破壊の起点および亀裂伝播経路となり、靱性低下を招く。また、発明者らの検討によれば、Nb添加によるアブレシブ摩耗に対する耐久性向上効果はNb含有量0.5%程度で飽和する傾向にある。したがってNbは0.5%以下の範囲で含有させる。   Nb forms a very hard Nb-containing carbide in the steel after casting, and contributes to improvement in wear resistance. Further, Nb re-dissolved after casting refines the crystal grains during quenching and contributes to improvement of toughness. In order to sufficiently bring out these effects, it is necessary to secure an Nb content of 0.1% or more, and more preferably 0.15% or more. On the other hand, when a large amount of Nb is added, Nb-containing carbides are excessively generated, which become a starting point of fracture and a crack propagation path, leading to a decrease in toughness. Further, according to the study by the inventors, the effect of improving durability against abrasive wear due to the addition of Nb tends to saturate when the Nb content is about 0.5%. Therefore, Nb is contained in the range of 0.5% or less.

MoおよびVは、いずれも靱性の向上に有効な元素であり、必要に応じて添加することができる。Moの場合は0.1%以上の含有量を確保することがより効果的である。Vの場合も0.1%以上の含有量を確保することがより効果的である。ただしMo、Vは高価な元素であり過剰添加はコスト増を招く。Mo、Vの1種または2種を添加する場合は、Mo、Vとも0.5%以下の含有量範囲とする。   Mo and V are both effective elements for improving toughness, and can be added as necessary. In the case of Mo, it is more effective to secure a content of 0.1% or more. In the case of V, it is more effective to secure a content of 0.1% or more. However, Mo and V are expensive elements, and excessive addition causes an increase in cost. When adding 1 type or 2 types of Mo and V, let Mo and V be 0.5% or less of content range.

Niは、焼入れ性の向上に有効であり、必要に応じて添加することができる。その場合、0.1%以上のNi含有量を確保することがより効果的である。ただしNiの過剰添加は経済性を損ねる要因となるので、Niを添加する場合は2%以下の範囲で行う。   Ni is effective for improving hardenability and can be added as necessary. In that case, it is more effective to secure a Ni content of 0.1% or more. However, excessive addition of Ni is a factor that impairs economic efficiency. Therefore, when Ni is added, it is performed within a range of 2% or less.

Tiは、Nbと同様、鋳造後の鋼中に非常に硬質なTi含有炭化物を形成し、耐摩耗性の向上に寄与するとともに、鋳造後に再固溶させたTiは焼入れ時の結晶粒を微細化させ、靱性の向上に寄与する。またTiはNとの結合力が強いため、Bを添加した場合にBNの生成を防止し、Bの焼入れ性向上作用を引き出す上で有利となる。これらの効果を十分に得るためには0.01%以上のTi含有量を確保することがより効果的である。ただし過剰のTi含有は靱性を低下させる要因となる。Tiを添加する場合は0.25%以下の範囲で行う。   Ti, like Nb, forms a very hard Ti-containing carbide in the steel after casting, contributing to the improvement of wear resistance, and Ti that has been re-dissolved after casting has fine grains during quenching. To contribute to improved toughness. Further, Ti has a strong bonding force with N. Therefore, when B is added, formation of BN is prevented, and it is advantageous in extracting the effect of improving the hardenability of B. In order to sufficiently obtain these effects, it is more effective to secure a Ti content of 0.01% or more. However, excessive Ti content causes a decrease in toughness. When adding Ti, it is performed within a range of 0.25% or less.

Bは、焼入れ性の向上に有効な元素であり、必要に応じて添加することができる。焼入れ性向上作用を十分に発揮させるためには0.0005%以上のB含有量を確保することがより効果的である。ただし、その作用は概ね0.005%で飽和するので、Bを添加する場合は0.005%以下の範囲で行う。   B is an element effective for improving the hardenability, and can be added as necessary. In order to sufficiently exhibit the hardenability improving effect, it is more effective to secure a B content of 0.0005% or more. However, since the action is saturated at about 0.005%, when B is added, it is performed within the range of 0.005% or less.

理想臨界直径DIは、無限大の冷却速度で焼入れを行ったと仮定したときに完全に焼きが入る棒の直径(mm)を示す指標であり、合金成分含有量の関数として、前記(1)式または(2)式で表すことができる。焼入れ性はB含有の有無によって大きく左右されるので、B含有量に応じて(1)式、(2)式のいずれかを使い分ける。DI値が大きいほど焼入れ性が良好であることを意味する。発明者らは検討の結果、(1)式または(2)式で表されるDI値が50より小さくなると、鋸刃等の刃物部材を製造する工場で行われている焼入れ工程において、比較的冷却速度の小さい焼入れ処理(例えばガス焼入れなど)を適用した場合には、不完全焼入れ組織が生じやすいことを見出した。そして、不完全焼入れ組織は、炭化物が過剰に存在する場合と同様、割れ発生の起点および亀裂伝播経路として機能することを突き止めた。また、不完全焼入れ部は耐摩耗性にも劣る。したがって、耐摩耗性と靱性を安定して顕著に改善するには、不完全焼入れ部が生じないよう、十分な焼入れ性が確保できる成分組成に調整することが重要である。このため、本発明では(1)式または(2)式で定義されるDI値が50以上となるように成分組成を厳しく規定している。DI値は55以上であることがより好ましい。 The ideal critical diameter D I is an index indicating the diameter (mm) of a bar that is completely quenched when it is assumed that quenching is performed at an infinite cooling rate. As a function of the alloy component content, (1) It can represent with Formula or (2) Formula. Since hardenability is greatly influenced by the presence or absence of B, either (1) or (2) is properly used depending on the B content. D more hardenability I value is larger means that it is good. We study results (1) or (2) becomes smaller than D I value 50 of the formula, in a quenching step being performed in the factory to produce a tool member such as a saw blade, compared It has been found that an incompletely quenched structure is likely to occur when a quenching process (for example, gas quenching) with a low static cooling rate is applied. The incompletely quenched structure was found to function as a starting point of crack generation and a crack propagation path, as in the case where carbides exist excessively. Incompletely quenched parts are also inferior in wear resistance. Therefore, in order to stably and significantly improve the wear resistance and toughness, it is important to adjust the component composition so that sufficient hardenability can be ensured so that an incompletely hardened portion does not occur. Therefore, the present invention defines strict component composition such that D I value more than 50, which is defined by equation (1) or (2) below. D I value is more preferably 55 or more.

〔金属組織〕
上述のように、本発明ではアブレシブな摩耗に対する耐摩耗性を顕著に向上させるためにNb、Tiの1種以上を含有する硬質炭化物を利用する。ただし、靱性を確保するために、その分散形態に配慮する必要がある。詳細な検討の結果、焼入れ前の鋼材において、Nb、Tiの1種以上を含有する粒子径2μm以上の炭化物が300〜1000個/mm2の密度でマトリクス中に存在する金属組織としたときに、焼入れ後において、耐摩耗性が顕著に向上し、かつ靱性を損なう弊害も回避されることがわかった。なお、上記の化学組成に調整された鋼であれば、通常の焼入れ焼戻し処理後においてもNb、Tiの1種以上を含有する粒子径2μm以上の炭化物の分布状態は、焼入れ前の状態がほぼ維持される。
[Metal structure]
As described above, in the present invention, a hard carbide containing one or more of Nb and Ti is used to remarkably improve the wear resistance against abrasive wear. However, in order to ensure toughness, it is necessary to consider the dispersion form. As a result of detailed studies, when the steel structure before quenching has a metal structure in which a carbide having a particle diameter of 2 μm or more containing one or more of Nb and Ti is present in the matrix at a density of 300 to 1000 pieces / mm 2. It has been found that after quenching, the wear resistance is remarkably improved and the adverse effect of impairing toughness is avoided. If the steel is adjusted to the above chemical composition, the distribution state of carbides having a particle diameter of 2 μm or more containing one or more of Nb and Ti after the normal quenching and tempering treatment is almost the same as that before quenching. Maintained.

ここで、Nb、Tiの1種以上を含有する炭化物は、NbC、TiC、(Nb,Ti)Cなどを主成分とするものであり、鋼中に含有される析出粒子が「Nb、Tiの1種以上を含有する炭化物」に該当するかどうかは、EDX等による微視的分析によって確かめることができる。個々の粒子の粒子径は、鋼材断面に観察される粒子の円相当径が採用される。すなわち、粒子の面積から、同じ面積を有する真円の直径を算出し、この直径を当該粒子の粒子径とする。鋼材中に観察される炭化物の最大粒子径は30μm以下に調整されていることが望ましい。粒子径2μm以上の炭化物が300個/mm2未満であると耐摩耗性向上効果が不十分となりやすい。400個/mm2以上であることがより好ましい。ただし、1000個/mm2を超えると靱性低下が生じやすい。 Here, the carbide containing one or more of Nb and Ti is mainly composed of NbC, TiC, (Nb, Ti) C, and the precipitated particles contained in the steel are “Nb and Ti. It can be confirmed by microscopic analysis by EDX etc. whether it corresponds to the carbide | carbonized_material containing 1 or more types. As the particle diameter of each particle, the equivalent circle diameter of the particle observed on the steel cross section is adopted. That is, the diameter of a perfect circle having the same area is calculated from the area of the particle, and this diameter is taken as the particle diameter of the particle. It is desirable that the maximum particle size of carbides observed in the steel material is adjusted to 30 μm or less. If the number of carbides having a particle diameter of 2 μm or more is less than 300 / mm 2 , the effect of improving wear resistance tends to be insufficient. More preferably, it is 400 pieces / mm 2 or more. However, if it exceeds 1000 pieces / mm 2 , the toughness tends to decrease.

図1に、炭化物のSEM写真およびEDX分析例を示す。図1(a)はNb含有量が約0.05質量%と少ない鋼板(後述表2の比較例No.1に相当する材料)、図1(b)はNb含有量が約0.2質量%、Ti含有量が約0.02質量%の鋼板(後述表2の本発明例No.17に相当する材料)である。Nb含有量が多い(b)の材料では(a)の材料より析出粒子の密度が増大している。図1(c)は(b)の材料を高倍率で観察したものである。図1(c)の矢印部分をEDXにより分析したところ、析出粒子はNbおよびTiを含有する炭化物であることがわかる(図1(d))。   FIG. 1 shows an SEM photograph of carbide and an EDX analysis example. FIG. 1A shows a steel plate having a low Nb content of about 0.05% by mass (a material corresponding to Comparative Example No. 1 in Table 2 described later), and FIG. 1B shows an Nb content of about 0.2% by mass. %, And a Ti content of about 0.02 mass% (a material corresponding to Invention Example No. 17 in Table 2 described later). In the material (b) having a high Nb content, the density of the precipitated particles is increased as compared with the material (a). FIG.1 (c) observes the material of (b) at high magnification. When the arrow part of FIG.1 (c) is analyzed by EDX, it turns out that precipitation particle | grains are the carbide | carbonized_material containing Nb and Ti (FIG.1 (d)).

〔製造方法〕
上記のような金属組織を有する鋼材を得るために、まず、鋳造後の冷却過程を利用してNb、Tiの1種以上を含有する粗大炭化物を析出させる。具体的には、Nb、Tiの1種以上を含有する炭化物が成長しやすい900〜1500℃の温度領域の滞在時間が概ね30min以上となるような冷却パターンとすることが効果的である。後述実施例のものはいずれもこの冷却パターンを満たしている。このような冷却パターンは、鋳造後に鋳塊または鋳片を放冷する手法によって実現できる。放冷とは鋳塊または鋳片を強制的に冷却することなく、自然冷却することをいう。「粗大炭化物」は、粒子径が概ね2μm以上の炭化物をいう。
〔Production method〕
In order to obtain a steel material having the metal structure as described above, first, coarse carbides containing at least one of Nb and Ti are precipitated using a cooling process after casting. Specifically, it is effective to adopt a cooling pattern in which the residence time in the temperature range of 900 to 1500 ° C. at which carbide containing one or more of Nb and Ti is likely to grow is approximately 30 min or more. All of the examples described later satisfy this cooling pattern. Such a cooling pattern can be realized by a method of cooling the ingot or slab after casting. Cooling means natural cooling without forcibly cooling the ingot or slab. “Coarse carbide” refers to a carbide having a particle size of approximately 2 μm or more.

次いで、前記粗大炭化物が存在する鋼を1200〜1350℃に加熱保持することによりNb、Tiの1種以上を含有する粒子径2μm以上の炭化物の密度を300〜1000個/mm2に調整する。この温度域に加熱すると、Nb、Tiの1種以上を含有する粗大炭化物の再固溶が進行し、粒子径2μm以上の炭化物の密度を300〜1000個/mm2に調整することが可能である。その加熱保持時間は、保持温度や加熱に供する鋼材のサイズにもよるが、通常0.5〜12hの範囲で最適保持時間を見出すことができる。実際には、使用する生産設備に対応した予備実験によって保持温度、保持時間を設定すればよい。ステンレス鋼ではない中・高炭素鋼において、1200〜1350℃という高温の熱処理を製品最終段階で施すことには無理がある。したがって、本発明では鋳造を含めた初期の製造段階においてNb、Tiの1種以上を含有する粒子径2μm以上の炭化物の分布密度を調整する。この炭化物の分布密度は、通常の熱間圧延、熱延板焼鈍、冷間圧延、仕上げ焼鈍、焼入れ焼戻しの各工程を経てもほぼ維持される。 Next, the density of carbides having a particle diameter of 2 μm or more containing one or more of Nb and Ti is adjusted to 300 to 1000 pieces / mm 2 by heating and holding the steel containing the coarse carbides at 1200 to 1350 ° C. When heated to this temperature range, re-dissolution of coarse carbides containing one or more of Nb and Ti proceeds, and the density of carbides with a particle diameter of 2 μm or more can be adjusted to 300 to 1000 / mm 2. is there. Although the heating and holding time depends on the holding temperature and the size of the steel material used for heating, the optimum holding time can usually be found in the range of 0.5 to 12 h. Actually, the holding temperature and holding time may be set by a preliminary experiment corresponding to the production equipment to be used. In medium- and high-carbon steels that are not stainless steel, it is impossible to perform heat treatment at a high temperature of 1200 to 1350 ° C. at the final stage of the product. Therefore, in the present invention, the distribution density of carbides having a particle diameter of 2 μm or more containing one or more of Nb and Ti is adjusted in an initial manufacturing stage including casting. The distribution density of the carbide is substantially maintained even after each process of normal hot rolling, hot-rolled sheet annealing, cold rolling, finish annealing, and quenching and tempering.

熱間圧延以降の工程については、従来一般的な製造方法が適用できる。例えば、熱間圧延は、加熱抽出温度1100〜1300℃、仕上圧延温度800〜900℃、巻取温度750℃以下の条件が採用できる。熱延板焼鈍は、600℃以上Ac1点未満の温度域に例えば10〜50h加熱保持する条件が採用できる。さらに必要に応じて、冷間圧延し、600℃以上Ac1点未満の温度域に例えば10〜50h加熱保持する仕上げ焼鈍に供すればよい。このようにして焼入れ焼戻し処理に供するための素材鋼材を得ることができる。 Conventionally general production methods can be applied to the processes after hot rolling. For example, the hot rolling can employ conditions of a heating extraction temperature of 1100 to 1300 ° C, a finish rolling temperature of 800 to 900 ° C, and a winding temperature of 750 ° C or less. For hot-rolled sheet annealing, for example, a condition of heating and holding in a temperature range of 600 ° C. or higher and less than Ac 1 point can be employed. Further, if necessary, it may be cold-rolled and subjected to finish annealing that is heated and held in a temperature range of 600 ° C. or higher and less than Ac 1 point, for example, for 10 to 50 hours. In this way, it is possible to obtain a raw steel material for use in quenching and tempering.

表1に示す化学組成の鋼を溶製し、鋳造後の冷却過程を放冷として鋳片を製造し、得られた鋳片を1250℃×1hの加熱に供した。その後、仕上圧延温度850℃、巻取温度550℃の条件で熱間圧延を行い、板厚3.5mmの熱延鋼板を得た。次いで690℃×15hの焼鈍を行い、冷間圧延にて板厚1.5mmとし、670℃×15hの仕上げ焼鈍を施すことにより、焼入れ焼戻し処理に供するための素材鋼板(板厚1.5mm)を得た。   Steel having the chemical composition shown in Table 1 was melted, and a slab was produced by allowing the cooling process after casting to cool, and the obtained slab was subjected to heating at 1250 ° C. × 1 h. Thereafter, hot rolling was performed under conditions of a finish rolling temperature of 850 ° C. and a winding temperature of 550 ° C. to obtain a hot rolled steel plate having a thickness of 3.5 mm. Next, annealing is performed at 690 ° C. for 15 hours, the steel sheet is 1.5 mm thick by cold rolling, and finish annealing is performed at 670 ° C. for 15 hours to provide a material steel plate for quenching and tempering (sheet thickness of 1.5 mm). Got.

焼入れ焼戻し処理は以下のいずれかの方法を選択して行った。焼戻し温度を調整することにより、調質硬さが42HRC、46HRC、50HRCに相当する各調質材を得た。鋼種ごとの焼戻し温度T(℃)は表1中に記載してある。
〔焼入れ焼戻し処理a〕
820℃×15min→60℃油焼入れ→T℃×30min焼戻し
この処理により調質硬さ42HRC、46HRC、50HRCの各調質材を作製
〔焼入れ焼戻し処理b〕
820℃×15min→ガス焼入れ→T℃×30min焼戻し
この処理により調質硬さ50HRCの調質材を作製
The quenching and tempering treatment was performed by selecting one of the following methods. By adjusting the tempering temperature, tempered materials having tempered hardness corresponding to 42 HRC, 46 HRC, and 50 HRC were obtained. The tempering temperature T (° C.) for each steel type is shown in Table 1.
[Quenching and tempering treatment a]
820 ° C. × 15 min → 60 ° C. oil quenching → T ° C. × 30 min tempering By this treatment, tempered materials with tempered hardness of 42HRC, 46HRC, and 50HRC are produced (quenching and tempering treatment b).
820 ° C. × 15 min → gas quenching → T ° C. × 30 min tempering This process produces a tempered material with a tempered hardness of 50 HRC.

〔炭化物分布状態の調査〕
焼入れ処理に供する前の素材鋼板について、圧延方向および板厚方向に平行な断面(L断面)を分析走査型電子顕微鏡により観察し、観察面積61×61μm2×20視野中に存在する「Nb、Tiの1種以上を含有する粒子径2μm以上の炭化物」の数をカウントし、その存在密度を算出した。粒子径は前述の円相当径であり、粒子径2μm以上の粒子を画像処理によってピックアップした。
[Investigation of carbide distribution state]
About the raw steel plate before being subjected to quenching treatment, a cross section (L cross section) parallel to the rolling direction and the plate thickness direction is observed with an analytical scanning electron microscope, and “Nb, which exists in the observation area 61 × 61 μm 2 × 20 field of view” The number of “carbonized particles having a particle diameter of 2 μm or more containing one or more of Ti” was counted, and the existence density was calculated. The particle diameter was the aforementioned equivalent circle diameter, and particles having a particle diameter of 2 μm or more were picked up by image processing.

〔耐摩耗性試験〕
焼入れ焼戻し後の試料から切り出した直径5mmの円板(酸化スケールを研磨除去したもの)を試験片とし、ピンオンディスク型摩耗試験機を用いて試験を行った。試験片の円板を試料ホルダに固定して、回転する#400エメリー研磨紙(炭化ケイ素粉末を塗布した研磨紙)に試験片表面を試験荷重F=30Nで押し付けながら、摩擦速度0.66m/sec、摩擦距離L=200mの条件で摩耗試験を行った。試験前後の試料板厚差から摩耗により消失した材料の体積を算出し、これを摩耗減量W(mm3)とした。そして、下記(3)式により比摩耗量C(mm3/N・m)を求めた。
比摩耗量C=摩耗減量W/(試験荷重F×摩擦距離L) …(3)
調質硬さ50HRCの材料において、この比摩耗量Cが1.5×10-4mm3/N・m以下であれば、刃物に使用されている現用鋼と比べ非常に優れた耐摩耗性を有すると判断される。
[Abrasion resistance test]
A test was performed using a pin-on-disk type wear tester using a 5 mm-diameter disk (obtained by polishing and removing the oxide scale) cut out from the sample after quenching and tempering. While the test piece disk is fixed to the sample holder, the friction surface speed is 0.66 m / min while pressing the test piece surface against a rotating # 400 emery polishing paper (abrasive paper coated with silicon carbide powder) with a test load F = 30 N. The wear test was conducted under the conditions of sec and the friction distance L = 200 m. The volume of the material that disappeared due to wear was calculated from the difference in thickness of the sample plate before and after the test, and this was defined as wear loss W (mm 3 ). Then, the specific wear amount C (mm 3 / N · m) was determined by the following equation (3).
Specific wear amount C = wear loss W / (test load F × friction distance L) (3)
If the specific wear amount C is 1.5 × 10 −4 mm 3 / N · m or less in a material with a tempered hardness of 50 HRC, the wear resistance is much superior to the current steel used for cutting tools. It is judged that it has.

〔衝撃試験〕
焼入れ焼戻し後の試料表面を研磨した板厚1.35mmの板材から、圧延方向を長手方向とする2mmVノッチ衝撃試験片(ノッチ先端半径は0.25mm)を作製した。この試験片を用いて室温(25℃±2℃)でのシャルピー衝撃試験を行った。
調質硬さ50HRCの材料において、この試験における衝撃値が10J/cm2以上であれば、安全性の観点から十分な靱性を有すると判断される。
[Impact test]
A 2 mm V notch impact test piece (notch tip radius is 0.25 mm) having a rolling direction as a longitudinal direction was prepared from a plate material having a thickness of 1.35 mm obtained by polishing the sample surface after quenching and tempering. A Charpy impact test at room temperature (25 ° C. ± 2 ° C.) was performed using this test piece.
If the impact value in this test is 10 J / cm 2 or more in a material having a tempered hardness of 50 HRC, it is judged that the material has sufficient toughness from the viewpoint of safety.

〔焼入れ焼戻し組織の観察〕
焼入れ焼戻し処理を終えた試料について組織観察を行い、不完全焼入れ部(マトリクスがマルテンサイト相以外の相である部分)の面積率を測定した。
[Observation of quenched and tempered structure]
The structure of the sample that had been quenched and tempered was observed, and the area ratio of the incompletely quenched portion (the portion where the matrix was a phase other than the martensite phase) was measured.

これらの結果を表2に示す。調質硬さ50HRCの材料において、上記の比摩耗量Cが1.5×10-4mm3/N・m以下、かつ上記の衝撃値が10J/cm2以上である材料を、「耐摩耗性」と「靱性」が高レベル両立できた材料と判定し、評価○(合格)と表示した。それ以外の材料を評価×(不合格)と表示した。 These results are shown in Table 2. A material having a tempered hardness of 50 HRC and having a specific wear amount C of 1.5 × 10 −4 mm 3 / N · m or less and an impact value of 10 J / cm 2 or more is referred to as “wear resistance. The material was judged to have a high level of both “strength” and “toughness”, and evaluated as “good” (pass). The other materials were indicated as evaluation x (failed).

表2からわかるように、本発明例のものは非常に硬質なNb、Tiの1種以上を含有する粒子径2μm以上の炭化物が適正な密度で分布していることにより、「耐摩耗性」と「靱性」が高レベルで両立できた。   As can be seen from Table 2, the examples of the present invention have a very hard distribution of carbides having a particle diameter of 2 μm or more containing one or more of Nb and Ti which are very hard, thereby providing “abrasion resistance”. And “toughness” were compatible at a high level.

これに対し、比較例であるNo.1および2はNb含有量が不足する鋼を用いたものであり、耐摩耗性および靱性がともに劣った。No.3はNb含有量が多すぎる鋼を用いたものであり、耐摩耗性は良好であるが、硬質炭化物の析出量が多いため靱性に劣った。No.4はC含有量が多すぎる鋼を用いたものであり、焼入れ焼戻し処理後に未溶解炭化物が多く存在したことにより、それらが破壊の起点および亀裂伝播経路となって靱性が低下した。No.5はC含有量が不足する鋼を用いたものであり、靱性は良好であるが、耐摩耗性に劣った。No.6および7はそれぞれMnおよびCr含有量が多すぎる鋼を用いたものであり、いずれも焼入れ焼戻し処理後に未溶解炭化物が多く存在したことにより靱性が低下した。No.8および9はDI値が本発明規定範囲を外れて低い鋼を使用したものであり、これらは同じ素材鋼板に対して条件の異なる焼入れ焼戻し処理を施したものである。No.8では油焼入れにより耐摩耗性と靱性の両立が可能であったが、No.9ではガス焼入れにより耐摩耗性、靱性とも劣る結果となった。したがって、DI値が本発明規定範囲を下回る鋼では「耐摩耗性」と「靱性」を安定して高レベルで両立させることが難しい。No.10はTi含有量が多すぎる鋼を用いたものであり、Ti含有炭化物が多く存在したことにより、それらが破壊の起点および亀裂伝播経路となって靱性を低下させた。 On the other hand, Nos. 1 and 2 as comparative examples were made using steel with insufficient Nb content, and both wear resistance and toughness were inferior. No. 3 uses steel with too much Nb content, and wear resistance is good, but the toughness is inferior due to a large amount of precipitation of hard carbides. No. 4 uses steel with too much C content, and because there were a lot of undissolved carbides after quenching and tempering, they became the starting point of fracture and crack propagation path, and the toughness decreased. No. 5 uses steel with insufficient C content and has good toughness but poor wear resistance. Nos. 6 and 7 used steels having too much Mn and Cr contents, respectively, and the toughness was lowered due to the presence of many undissolved carbides after quenching and tempering treatment. No.8 and 9 is obtained by using a lower steel D I value out of the present invention defined range, it was subjected to different quenching and tempering treatment of conditions for the same steel sheet. In No. 8, it was possible to achieve both wear resistance and toughness by oil quenching, but in No. 9, the results were inferior in both wear resistance and toughness by gas quenching. Therefore, it is difficult to achieve both a stable and high level "tenacity" and "abrasion resistance" is a steel D I value is below the present invention defined range. No. 10 uses steel with too much Ti content. Due to the presence of a large amount of Ti-containing carbides, they became the starting point of fracture and crack propagation paths, and reduced toughness.

表1に示す鋼C、J、Lを用いて、鋳片の加熱処理(固溶化処理)の温度および保持時間を種々変動させたこと以外、実施例1と同様の方法で素材鋼板を作製し、実施例1と同様の特性調査を行った。ただし焼入れ焼戻しは、前述の「焼入れ焼戻し処理a」によって行い、調質硬さ50HCRの材料のみを作製した。結果を表3に示す。   Using the steels C, J, and L shown in Table 1, a raw steel plate was prepared in the same manner as in Example 1 except that the temperature and holding time of the slab heat treatment (solution treatment) were varied. The same characteristic investigation as in Example 1 was conducted. However, quenching and tempering were performed by the above-described “quenching and tempering treatment a”, and only a material having a tempered hardness of 50 HCR was produced. The results are shown in Table 3.

表3からわかるように、本発明例のものは「耐摩耗性」と「靱性」が高レベル両立できた。これに対しNo.3、21、22はNb含有量が多すぎる鋼を用いたものであり、耐摩耗性は良好であるが、鋳片の加熱処理(固溶化処理)の条件を変動させても靱性を向上させることができなかった。なおNo.3は表2記載のデータを再掲したものである。No.23は鋳片の加熱処理(固溶化処理)の温度が低すぎたため硬質な炭化物の存在量が多くなりすぎ、靱性に劣った。No.27は鋳片の加熱処理(固溶化処理)の温度が高すぎたものであり、硬質な炭化物の存在量が少なくなったことにより耐摩耗性に劣った。   As can be seen from Table 3, the examples of the present invention achieved both high levels of “wear resistance” and “toughness”. On the other hand, Nos. 3, 21, and 22 use steel with too much Nb content, and wear resistance is good, but the conditions of the heat treatment (solution treatment) of the slab are changed. Even toughness could not be improved. No. 3 is a reprint of the data listed in Table 2. In No. 23, the temperature of the heat treatment (solution treatment) of the slab was too low, so the abundance of hard carbides was too large and the toughness was poor. In No. 27, the temperature of the heat treatment (solution treatment) of the slab was too high, and the wear resistance was inferior due to the decrease in the amount of hard carbides.

図2に、上記各例で得られた材料(No.8を除く)について、衝撃値と比摩耗量の関係をプロットしたグラフを示す。本発明例のものは衝撃値が高くなっても比摩耗量の増大が抑制されていること、すなわち「耐摩耗性」と「靱性」が高レベル両立できていることがわかる。   FIG. 2 shows a graph in which the relationship between the impact value and the specific wear amount is plotted for the materials (except No. 8) obtained in the above examples. It can be seen that the examples of the present invention suppress the increase of the specific wear amount even when the impact value is high, that is, the “wear resistance” and the “toughness” are compatible at a high level.

炭化物のSEM写真およびEDX分析例を示した図。The figure which showed the SEM photograph and EDX analysis example of the carbide | carbonized_material. 上記各例で得られた材料(No.8を除く)について、衝撃値と比摩耗量の関係をプロットしたグラフ。The graph which plotted the relationship between an impact value and specific wear amount about the material (except No. 8) obtained by said each example.

Claims (8)

質量%で、C:0.6〜1.0%、Si:0.5%以下、Mn:0.1〜1.5%、P:0.02%以下、S:0.02%以下、Cr:0.1〜1.5%、Nb:0.1〜0.5%、残部Feおよび不可避的不純物からなり、下記(1)式で定義される理想臨界直径DIが50以上である化学組成を有し、Nbを含有する粒子径2μm以上の炭化物が300〜1000個/mm2の密度でマトリクス中に存在する耐摩耗性焼入れ焼戻し部品用鋼材。
I=6.0(C)1/2×(1+0.64Si)×(1+4.1Mn)×(1+2.83P)×(1−0.62S)×(1+2.33Cr)×(1+1.52Ni)×(1+3.14Mo) …(1)
ただし、(1)式右辺の元素記号の箇所には質量%で表された当該元素の含有量値が代入され、含有しない元素については0(ゼロ)が代入される。
In mass%, C: 0.6-1.0%, Si: 0.5% or less, Mn: 0.1-1.5%, P: 0.02% or less, S: 0.02% or less, cr: 0.1~1.5%, Nb: 0.1~0.5 %, and a balance of Fe and unavoidable impurities, are the following (1) the ideal critical diameter D I, which is defined by the formula 50 or A steel material for wear-resistant quenched and tempered parts having a chemical composition and containing Nb and having a particle diameter of 2 μm or more in a matrix at a density of 300 to 1000 pieces / mm 2 .
D I = 6.0 (C) 1/2 × (1 + 0.64Si) × (1 + 4.1Mn) × (1 + 2.83P) × (1−0.62S) × (1 + 2.33Cr) × (1 + 1.52Ni) × (1 + 3.14Mo) (1)
However, the content value of the element expressed in mass% is substituted for the element symbol on the right side of the formula (1), and 0 (zero) is substituted for elements not contained.
質量%で、C:0.6〜1.0%、Si:0.5%以下、Mn:0.1〜1.5%、P:0.02%以下、S:0.02%以下、Cr:0.1〜1.5%、Nb:0.1〜0.5%であり、さらにMo:0.5%以下、V:0.5%以下、Ni:2%以下、Ti:0.25%以下、B:0.005%以下の1種以上を含有し、残部Feおよび不可避的不純物からなり、B含有量に応じて下記(1)式または(2)式で定義される理想臨界直径DIが50以上である化学組成を有し、Nb、Tiの1種以上を含有する粒子径2μm以上の炭化物が300〜1000個/mm2の密度でマトリクス中に存在する耐摩耗性焼入れ焼戻し部品用鋼材。
B含有量0.0005%未満(0%を含む)の場合: DI=6.0(C)1/2×(1+0.64Si)×(1+4.1Mn)×(1+2.83P)×(1−0.62S)×(1+2.33Cr)×(1+1.52Ni)×(1+3.14Mo) …(1)
B含有量0.0005%以上の場合: DI=6.0(C)1/2×(1+0.64Si)×(1+4.1Mn)×(1+2.83P)×(1−0.62S)×(1+2.33Cr)×(1+1.52Ni)×(1+3.14Mo)×{1+1.5×(0.9−C)} …(2)
ただし、(1)式または(2)式右辺の元素記号の箇所には質量%で表された当該元素の含有量値が代入され、含有しない元素については0(ゼロ)が代入される。
In mass%, C: 0.6-1.0%, Si: 0.5% or less, Mn: 0.1-1.5%, P: 0.02% or less, S: 0.02% or less, Cr: 0.1 to 1.5%, Nb: 0.1 to 0.5%, Mo: 0.5% or less, V: 0.5% or less, Ni: 2% or less, Ti: 0 Ideally defined by the following formula (1) or (2) depending on the B content, containing at least one kind of 0.25% or less and B: 0.005% or less, the balance being Fe and inevitable impurities Abrasion resistance having a chemical composition with a critical diameter D I of 50 or more and a carbide having a particle diameter of 2 μm or more containing one or more of Nb and Ti in the matrix at a density of 300 to 1000 / mm 2 Steel for quenching and tempering parts.
When B content is less than 0.0005% (including 0%): D I = 6.0 (C) 1/2 × (1 + 0.64Si) × (1 + 4.1Mn) × (1 + 2.83P) × (1 −0.62S) × (1 + 2.33Cr) × (1 + 1.52Ni) × (1 + 3.14Mo) (1)
When B content is 0.0005% or more: D I = 6.0 (C) 1/2 × (1 + 0.64Si) × (1 + 4.1Mn) × (1 + 2.83P) × (1−0.62S) × (1 + 2.33Cr) × (1 + 1.52Ni) × (1 + 3.14Mo) × {1 + 1.5 × (0.9−C)} (2)
However, the content value of the element expressed in mass% is substituted for the element symbol on the right side of the formula (1) or (2), and 0 (zero) is substituted for elements not contained.
前記耐摩耗性焼入れ焼戻し部品が鋸刃である請求項1または2に記載の鋼材。   The steel material according to claim 1 or 2, wherein the wear-resistant quenching and tempering part is a saw blade. 質量%で、C:0.6〜1.0%、Si:0.5%以下、Mn:0.1〜1.5%、P:0.02%以下、S:0.02%以下、Cr:0.1〜1.5%、Nb:0.1〜0.5%、残部Feおよび不可避的不純物からなり、下記(1)式で定義される理想臨界直径DIが50以上である組成に成分調整された鋼を鋳造したのち放冷することによりNbを含有する粗大炭化物を析出させる工程、
前記粗大炭化物が存在する鋼を1200〜1350℃に加熱保持することによりNbを含有する粒子径2μm以上の炭化物の密度を300〜1000個/mm2に調整する工程、
を有する耐摩耗性焼入れ焼戻し部品用鋼材の製造方法。
I=6.0(C)1/2×(1+0.64Si)×(1+4.1Mn)×(1+2.83P)×(1−0.62S)×(1+2.33Cr)×(1+1.52Ni)×(1+3.14Mo) …(1)
ただし、(1)式右辺の元素記号の箇所には質量%で表された当該元素の含有量値が代入され、含有しない元素については0(ゼロ)が代入される。
In mass%, C: 0.6-1.0%, Si: 0.5% or less, Mn: 0.1-1.5%, P: 0.02% or less, S: 0.02% or less, cr: 0.1~1.5%, Nb: 0.1~0.5 %, and a balance of Fe and unavoidable impurities, are the following (1) the ideal critical diameter D I, which is defined by the formula 50 or A step of precipitating coarse carbides containing Nb by casting steel whose composition is adjusted to the composition and then allowing to cool;
A step of adjusting the density of carbides having a particle diameter of 2 μm or more containing Nb to 300 to 1000 pieces / mm 2 by heating and holding the steel containing the coarse carbides at 1200 to 1350 ° C .;
A method for producing a steel material for wear-resistant quenched and tempered parts.
D I = 6.0 (C) 1/2 × (1 + 0.64Si) × (1 + 4.1Mn) × (1 + 2.83P) × (1−0.62S) × (1 + 2.33Cr) × (1 + 1.52Ni) × (1 + 3.14Mo) (1)
However, the content value of the element expressed in mass% is substituted for the element symbol on the right side of the formula (1), and 0 (zero) is substituted for elements not contained.
質量%で、C:0.6〜1.0%、Si:0.5%以下、Mn:0.1〜1.5%、P:0.02%以下、S:0.02%以下、Cr:0.1〜1.5%、Nb:0.1〜0.5%であり、さらにMo:0.5%以下、V:0.5%以下、Ni:2%以下、Ti:0.25%以下、B:0.005%以下の1種以上を含有し、残部Feおよび不可避的不純物からなり、B含有量に応じて下記(1)式または(2)式で定義される理想臨界直径DIが50以上である組成に成分調整された鋼を鋳造したのち放冷することによりNb、Tiの1種以上を含有する粗大炭化物を析出させる工程、
前記粗大炭化物が存在する鋼を1200〜1350℃に加熱保持することによりNb、Tiの1種以上を含有する粒子径2μm以上の炭化物の密度を300〜1000個/mm2に調整する工程、
を有する耐摩耗性焼入れ焼戻し部品用鋼材の製造方法。
B含有量0.0005%未満(0%を含む)の場合: DI=6.0(C)1/2×(1+0.64Si)×(1+4.1Mn)×(1+2.83P)×(1−0.62S)×(1+2.33Cr)×(1+1.52Ni)×(1+3.14Mo) …(1)
B含有量0.0005%以上の場合: DI=6.0(C)1/2×(1+0.64Si)×(1+4.1Mn)×(1+2.83P)×(1−0.62S)×(1+2.33Cr)×(1+1.52Ni)×(1+3.14Mo)×{1+1.5×(0.9−C)} …(2)
ただし、(1)式または(2)式右辺の元素記号の箇所には質量%で表された当該元素の含有量値が代入され、含有しない元素については0(ゼロ)が代入される。
In mass%, C: 0.6-1.0%, Si: 0.5% or less, Mn: 0.1-1.5%, P: 0.02% or less, S: 0.02% or less, Cr: 0.1 to 1.5%, Nb: 0.1 to 0.5%, Mo: 0.5% or less, V: 0.5% or less, Ni: 2% or less, Ti: 0 Ideally defined by the following formula (1) or (2) depending on the B content, containing at least one kind of 0.25% or less and B: 0.005% or less, the balance being Fe and inevitable impurities step of precipitating coarse carbides containing Nb, one or more Ti by critical diameter D I is allowed to cool After casting the component adjustment steel the composition is 50 or more,
A step of adjusting the density of carbides having a particle diameter of 2 μm or more containing one or more of Nb and Ti to 300 to 1000 pieces / mm 2 by heating and holding the steel containing the coarse carbides at 1200 to 1350 ° C .;
A method for producing a steel material for wear-resistant quenched and tempered parts.
When B content is less than 0.0005% (including 0%): D I = 6.0 (C) 1/2 × (1 + 0.64Si) × (1 + 4.1Mn) × (1 + 2.83P) × (1 −0.62S) × (1 + 2.33Cr) × (1 + 1.52Ni) × (1 + 3.14Mo) (1)
When B content is 0.0005% or more: D I = 6.0 (C) 1/2 × (1 + 0.64Si) × (1 + 4.1Mn) × (1 + 2.83P) × (1−0.62S) × (1 + 2.33Cr) × (1 + 1.52Ni) × (1 + 3.14Mo) × {1 + 1.5 × (0.9−C)} (2)
However, the content value of the element expressed in mass% is substituted for the element symbol on the right side of the formula (1) or (2), and 0 (zero) is substituted for elements not contained.
前記炭化物の密度を300〜1000個/mm2に調整する工程を経た後、加熱抽出温度1100〜1300℃、仕上圧延温度800〜900℃、巻取温度750℃以下の条件で熱間圧延し、600℃以上Ac1点未満の温度域に加熱保持する工程に供する請求項4または5に記載の耐摩耗性焼入れ焼戻し部品用鋼材の製造方法。 After passing through the step of adjusting the density of the carbides to 300 to 1000 pieces / mm 2 , hot rolling is performed under conditions of a heating extraction temperature of 1100 to 1300 ° C, a finish rolling temperature of 800 to 900 ° C, and a winding temperature of 750 ° C or less, The method for producing a steel material for wear-resistant quenched and tempered parts according to claim 4 or 5, which is subjected to a step of heating and holding in a temperature range of 600 ° C or higher and less than Ac 1 point. さらに冷間圧延し、600℃以上Ac1点未満の温度域に加熱保持する工程に供する請求項6に記載の耐摩耗性焼入れ焼戻し部品用鋼材の製造方法。 The method for producing a steel material for wear-resistant quenched and tempered parts according to claim 6, which is further cold-rolled and subjected to a step of heating and holding in a temperature range of 600 ° C or higher and less than Ac 1 point. 前記耐摩耗性焼入れ焼戻し部品が鋸刃である請求項4〜7のいずれかに記載の鋼材の製造方法。   The method for manufacturing a steel material according to any one of claims 4 to 7, wherein the wear-resistant quenched and tempered part is a saw blade.
JP2008316006A 2008-12-11 2008-12-11 Steel materials for wear-resistant quenched and tempered parts and manufacturing method Active JP5328331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008316006A JP5328331B2 (en) 2008-12-11 2008-12-11 Steel materials for wear-resistant quenched and tempered parts and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008316006A JP5328331B2 (en) 2008-12-11 2008-12-11 Steel materials for wear-resistant quenched and tempered parts and manufacturing method

Publications (2)

Publication Number Publication Date
JP2010138453A JP2010138453A (en) 2010-06-24
JP5328331B2 true JP5328331B2 (en) 2013-10-30

Family

ID=42348826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008316006A Active JP5328331B2 (en) 2008-12-11 2008-12-11 Steel materials for wear-resistant quenched and tempered parts and manufacturing method

Country Status (1)

Country Link
JP (1) JP5328331B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5484103B2 (en) * 2009-02-17 2014-05-07 日新製鋼株式会社 Steel plate for high-strength machine parts, method for producing the same, and method for producing high-strength machine parts
KR101925275B1 (en) * 2011-03-25 2018-12-06 닛신 세이코 가부시키가이샤 Steel plate with excellent durability for band-shaped die-cutting blade, and band-shaped die-cutting blade
US8879483B2 (en) 2011-10-17 2014-11-04 International Business Machines Corporation Multi-device monitoring and control using intelligent device channel sharing
JP5854831B2 (en) * 2011-12-28 2016-02-09 日新製鋼株式会社 Abrasion resistant steel material having excellent fatigue characteristics and method for producing the same
WO2014207879A1 (en) * 2013-06-27 2014-12-31 日新製鋼株式会社 Abrasion-resistant steel material excellent in fatigue characteristics and method for manufacturing same
CN104313483B (en) * 2014-10-31 2016-09-07 武汉钢铁(集团)公司 A kind of high-carbon cold rolled automobile diaphragm spring steel and production method thereof
US20200199702A1 (en) 2017-08-25 2020-06-25 Nippon Steel Nisshin Co., Ltd. Wear-resistant steel sheet having excellent toughness and production method
PL236222B1 (en) * 2018-04-11 2020-12-28 Klepuszewska Grazyna Qsgs Tech Steel intended for monolithic and bimetallic wood cutting band saws
CN110284061B (en) * 2019-06-28 2021-03-09 邯郸钢铁集团有限责任公司 High-temperature deformation resistant 75Cr1 saw blade steel and production process thereof
WO2022264948A1 (en) * 2021-06-18 2022-12-22 Jfeスチール株式会社 Steel part and manufacturing method of steel part
JP7329780B2 (en) 2021-06-18 2023-08-21 Jfeスチール株式会社 Cold-rolled steel and steel parts
CN113684421B (en) * 2021-08-30 2022-06-28 湖南华菱湘潭钢铁有限公司 Production method of steel for ultra-wide disk saw blade of mine
CN114058951B (en) * 2021-10-19 2023-04-07 首钢集团有限公司 65Mn saw blade steel and preparation method thereof
CN114622134A (en) * 2022-02-09 2022-06-14 包头钢铁(集团)有限责任公司 High-carbon manganese-chromium saw blade steel and production method thereof
CN115961215A (en) * 2022-12-09 2023-04-14 铜陵有色金神耐磨材料有限责任公司 High-wear-resistance Cr-Mo steel lining plate for light semi-autogenous mill and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3291068B2 (en) * 1993-04-12 2002-06-10 新日本製鐵株式会社 Manufacturing method of bearing steel with excellent spheroidizing annealing characteristics
JP3591236B2 (en) * 1997-09-04 2004-11-17 日本精工株式会社 Rolling bearing
JP3962143B2 (en) * 1998-02-13 2007-08-22 日新製鋼株式会社 Mowing blade substrate
JP2005336560A (en) * 2004-05-27 2005-12-08 Nisshin Steel Co Ltd High-carbon steel sheet for precision-blanked parts, and precision-blanked parts
JP5207743B2 (en) * 2008-01-07 2013-06-12 日新製鋼株式会社 Steel for blades with excellent wear resistance and toughness

Also Published As

Publication number Publication date
JP2010138453A (en) 2010-06-24

Similar Documents

Publication Publication Date Title
JP5328331B2 (en) Steel materials for wear-resistant quenched and tempered parts and manufacturing method
JP5484103B2 (en) Steel plate for high-strength machine parts, method for producing the same, and method for producing high-strength machine parts
WO2008130054A1 (en) Hot-worked steel material having excellent machinability and impact value
JP6880245B1 (en) High carbon cold rolled steel sheet and its manufacturing method and high carbon steel machine parts
TWI591187B (en) High-carbon cold-rolled steel sheet and its manufacturing method
JP4964063B2 (en) Case-hardened steel with excellent cold forgeability and grain coarsening prevention properties and machine parts obtained therefrom
JP6615039B2 (en) Wear-resistant steel plate with excellent toughness
JP5400590B2 (en) Steel material with excellent rolling fatigue life
JP2015190037A (en) Raw material steel sheet for chain saw component and chain saw component
JP6620490B2 (en) Age-hardening steel
JP5207743B2 (en) Steel for blades with excellent wear resistance and toughness
JP6710484B2 (en) Powder high speed tool steel
JP2006028568A (en) Steel for high temperature carburizing and its production method
JP4600988B2 (en) High carbon steel plate with excellent machinability
JP3587719B2 (en) Stainless steel for cutting tools with excellent corrosion resistance, sharpness persistence and workability
WO2021095831A1 (en) Hot-work tool steel having exceptional high-temperature strength and toughness
JP3901582B2 (en) Free cutting steel for mold
JPH05171373A (en) Powder high speed tool steel
JP6359241B2 (en) Corrosion-resistant plastic molding steel with excellent specularity
JP6345945B2 (en) Powdered high-speed tool steel with excellent wear resistance and method for producing the same
WO2019038923A1 (en) Wear-resistant steel sheet having excellent toughness
JP4718315B2 (en) Abrasion resistant high Cr cast iron and wear resistant members
JP2002361503A (en) Cutting tool
JP6299321B2 (en) Reduced V-type hot forged non-heat treated parts with excellent machinability and fatigue strength and small hardness variation and manufacturing method thereof
JP2017155310A (en) Handsaw

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130723

R150 Certificate of patent or registration of utility model

Ref document number: 5328331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350