JPH06299240A - Manufacture of steel material for bearing having excellent spheroidizing characteristic - Google Patents

Manufacture of steel material for bearing having excellent spheroidizing characteristic

Info

Publication number
JPH06299240A
JPH06299240A JP8440593A JP8440593A JPH06299240A JP H06299240 A JPH06299240 A JP H06299240A JP 8440593 A JP8440593 A JP 8440593A JP 8440593 A JP8440593 A JP 8440593A JP H06299240 A JPH06299240 A JP H06299240A
Authority
JP
Japan
Prior art keywords
rolling
temperature
steel material
less
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8440593A
Other languages
Japanese (ja)
Other versions
JP3291068B2 (en
Inventor
Tatsuro Ochi
達朗 越智
Yoshiro Koyasu
善郎 子安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP08440593A priority Critical patent/JP3291068B2/en
Publication of JPH06299240A publication Critical patent/JPH06299240A/en
Application granted granted Critical
Publication of JP3291068B2 publication Critical patent/JP3291068B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To provide a method for manufacturing a steel material for bearing which can obtain the uniform spheroidal carbide structure without containing coarse flaky carbide by the ordinary spheroidizing and has excellent cold- workability after annealing and rolling fatigue resistant characteristic in the bearing parts executing the quenching and the tempering treatment. CONSTITUTION:At the time of hot-rolling the steel containing 0.8-1.2% C and the other specific composition, the rolling is executed in the specific rolling condition having an intermediate cooling, in which after rolling, immediately the steel material temp. is cooled so as to become once Ms point-700 deg.C, and making the steel material temp. at the outlet side of the finish rolling at 700-880 deg.C. After finish-rolling, this steel material is rapidly cooled at 550-700 deg.C, and thereafter cooled to >=450 deg.C at 0.05-1 deg.C/sec average cooling velocity. By this method, the steel material for bearing having excellent spheroidizing- characteristic composed of substantially proeutectoid cementite and pearlite in the structure can be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は球状化焼鈍特性の優れた
軸受用鋼材の製造方法にかかわり、さらに詳しくは、軸
受用鋼材の製造に際して網状初析セメンタイトを低減
し、その後の球状化焼鈍により、粗大な板状炭化物を含
まず、且つ均一な球状炭化物組織を得ることができ、焼
鈍後の切断、冷間鍛造、切削等の冷間加工性に優れ、焼
入れ焼戻し処理を行った軸受部品において優れた転動疲
労特性を得ることができる軸受用鋼材の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a bearing steel material having excellent spheroidizing annealing characteristics. More specifically, it reduces reticulated proeutectoid cementite in the production of a bearing steel material, In a bearing part that has been hardened and tempered, it is possible to obtain a uniform spherical carbide structure that does not contain coarse plate-shaped carbides, has excellent cold workability such as cutting after annealing, cold forging, and cutting. The present invention relates to a method for manufacturing a bearing steel material capable of obtaining excellent rolling fatigue characteristics.

【0002】[0002]

【従来の技術】軸受部品は、通常棒鋼線材を切断、冷間
鍛造、切削等の冷間加工を行うことによって製造されて
いる。冷間加工に際しては、圧延ままでは硬すぎて冷間
加工が困難であるため、冷間加工性の向上を目的とし
て、冷間加工の前に球状化焼鈍が行われている。しかし
ながら、通常の球状化焼鈍組織は微細な球状炭化物と粗
大な板状炭化物からなり、均一な球状炭化物組織を得る
のは現状では極めて困難である。このような炭化物組織
の不均一さは、冷間加工性を劣化させるとともに、最終
部品において転動疲労寿命の劣化の原因にもなる。
2. Description of the Related Art Bearing parts are usually manufactured by performing cold working such as cutting, cold forging, and cutting of steel bar wire rods. In cold working, as-rolled steel is too hard and cold working is difficult. Therefore, spheroidizing annealing is performed before cold working for the purpose of improving cold workability. However, an ordinary spheroidized annealing structure is composed of fine spherical carbides and coarse plate-shaped carbides, and it is extremely difficult at present to obtain a uniform spherical carbide structure. Such non-uniformity of the carbide structure deteriorates cold workability and also causes deterioration of rolling contact fatigue life in the final part.

【0003】これに対して、特開昭64−55330号
公報には、特定の成分からなる鋼をAc3点またはAccm
点以上に加熱し、オーステナイト未再結晶域で加工率1
0〜80%の熱間圧延を行い、Ms点直上の温度域まで
1.5〜100℃/秒の冷却速度で冷却することを特徴
とする短時間球状化の可能な鋼材の製造方法が示されて
いる。しかしながら、この方法では、圧延材が微細パー
ライトまたはベイナイト組織を有しているため、短時間
で球状化が可能であるが、微細パーライトまたはベイナ
イト組織部から得られる球状炭化物が顕著に微細とな
り、粒界初析セメンタイト部から得られる球状炭化物の
大きさとの差が大きく、十分に均一な球状炭化物組織が
得られるとはいえない。
On the other hand, in Japanese Patent Laid-Open No. 64-55330, a steel consisting of specific components has an Ac 3 point or an Ac cm.
Heating above the point, processing rate 1 in austenite unrecrystallized region
A method for producing a steel material capable of spheroidizing for a short time is shown, which comprises performing hot rolling at 0 to 80% and cooling to a temperature range just above the Ms point at a cooling rate of 1.5 to 100 ° C / sec. Has been done. However, in this method, since the rolled material has a fine pearlite or bainite structure, it is possible to spheroidize in a short time, but the spherical carbide obtained from the fine pearlite or bainite structure part becomes remarkably fine, and grain It can be said that a sufficiently uniform spheroidal carbide structure cannot be obtained because of a large difference from the size of the spheroidal carbide obtained from the field proeutectoid cementite portion.

【0004】また、特開平3−53021号公報には、
特定の成分からなる鋼をAr1+200℃以上の温度に
加熱し、圧下率20〜90%の熱間圧延を行い、さらに
引き続きAr1〜Ar1+200℃で20〜90%の熱間
圧延を行った後にAr1〜Ar1+200℃の温度に5〜
900秒間保持することを特徴とする球状化焼鈍用高炭
素鋼材の製造方法が示されている。この方法を用いれ
ば、球状化焼鈍処理時間短縮に望ましい前組織が得られ
るとされているが、この方法による網状初析セメンタイ
トの低減は必ずしも十分とはいえない。
Further, in Japanese Patent Laid-Open No. 3-53021,
Steel consisting of specific components is heated to a temperature of Ar 1 + 200 ° C. or higher, hot rolling is performed at a reduction rate of 20 to 90%, and then hot rolling of 20 to 90% is performed at Ar 1 to Ar 1 + 200 ° C. 5 to a temperature of Ar 1 ~Ar 1 + 200 ℃ after performing
A method for producing a high carbon steel material for spheroidizing annealing, which is characterized by holding for 900 seconds, is shown. It is said that the use of this method can obtain a desired pre-structure for shortening the spheroidizing annealing time, but the reduction of reticulated pro-eutectoid cementite by this method is not always sufficient.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、通常
の球状化焼鈍により、粗大な板状炭化物を含まず、且つ
均一な球状炭化物組織を得ることができ、焼鈍後の切
断、冷間鍛造、切削等の冷間加工性に優れ、且つ焼入れ
焼戻し処理を行った軸受部品において優れた転動疲労特
性を得ることができる軸受用鋼材の製造方法を提供しよ
うとするものである。
The object of the present invention is to obtain a uniform spheroidal carbide structure which does not contain coarse plate-shaped carbides by ordinary spheroidizing annealing, and is capable of cutting after annealing and cold working. An object of the present invention is to provide a method for manufacturing a bearing steel material which is excellent in cold workability such as forging and cutting, and which can obtain excellent rolling fatigue characteristics in a bearing component subjected to quenching and tempering.

【0006】[0006]

【課題を解決するための手段】本発明者らは、通常の球
状化焼鈍により粗大な板状炭化物を含まず且つ均一な球
状化組織を得るために、鋭意検討を行い次の知見を得
た。 (1)通常の球状化焼鈍により粗大な板状炭化物を含ま
ず且つ均一な球状化組織を得るためには、圧延材につい
て、網状初析セメンタイトの低減、オーステナイト
粒内での粒内初析セメンタイトの生成、パーライトの
ラメラ間隔の粗大化を図ることがポイントである。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to obtain a uniform spheroidized structure that does not contain coarse plate-shaped carbides by ordinary spheroidization annealing and obtained the following findings. . (1) In order to obtain a uniform spheroidized structure that does not contain coarse plate-like carbides by ordinary spheroidizing annealing, the rolled material should have a reduced reticulated pro-eutectoid cementite and an intra-precipitated cementite in the austenite grains. Of the pearlite and the coarsening of the lamellar spacing of pearlite.

【0007】(2)上記を実現するには次の5点が必須
である。 特定量のAl、N等の炭窒化物生成元素を含有する鋼
材を用い、圧延加熱温度を900〜1150℃に限定し
て、圧延加熱時のオーステナイト粒の粗大化を防止する
とともに、一部微細炭化物を残存させて、正味の固溶炭
素量を低減し圧延後の網状初析セメンタイトを生成しに
くくすること。 加熱温度〜880℃以上の温度範囲で総減面率50%
以上の圧延を行い、再結晶によりオーステナイト粒を6
〜7番程度に細粒化すること。
(2) In order to realize the above, the following five points are essential. Using a steel material containing carbonitride-forming elements such as specific amounts of Al and N, the rolling heating temperature is limited to 900 to 1150 ° C. to prevent coarsening of austenite grains at the time of rolling heating, and to partially fine Retaining carbides to reduce the net amount of solid solution carbon and make it difficult to form reticulated pro-eutectoid cementite after rolling. Total area reduction of 50% in the temperature range from heating temperature to 880 ℃ or higher
The above rolling is performed and the austenite grains are recrystallized to 6
Granulate to ~ 7.

【0008】880℃未満〜400℃の温度範囲で、
「減面率10%以上の圧延後、直ちに鋼材温度が一旦M
s点〜700℃となるように冷却し、引き続いて減面率
10%以上の圧延を行う」工程を1回以上有する工程で
圧延を行い、さらに最終圧延出側の鋼材温度を700〜
880℃とすることにより、オーステナイト粒の粒内に
変形帯を導入し、粒内初析セメンタイトを核生成させ
て、網状初析セメンタイトを低減するとともに、オース
テナイト粒の成長粗大化を抑制すること。
In the temperature range of less than 880 ° C to 400 ° C,
"After rolling with a surface reduction rate of 10% or more, the steel temperature immediately increases to M
The temperature of the steel material on the delivery side of the final rolling is 700 to 700 ° C., and the steel sheet is cooled to s point to 700 ° C. and then rolled at a reduction rate of 10% or more.
By setting the temperature to 880 ° C., a deformation zone is introduced into the austenite grains to nucleate intragranular pro-eutectoid cementite to reduce reticulated pro-eutectoid cementite and to suppress growth coarsening of the austenite grains.

【0009】最終圧延後直ちに急冷して、該鋼材の温
度を550〜700℃の最終圧延急冷温度とするか、ま
たは550〜700℃の溶融塩温度に保持された溶融塩
中に焼入れし、粒界での網状初析セメンタイトの生成−
成長を抑制すること。 その後450℃までを冷却速度で0.05〜1.0℃/
秒で冷却し、オーステナイト粒内に生成するパーライト
のラメラ間隔を粗大化させること。
Immediately after the final rolling, the steel is rapidly cooled to a final rolling quenching temperature of 550 to 700 ° C. or quenched into a molten salt maintained at a molten salt temperature of 550 to 700 ° C. Of reticulated pro-eutectoid cementite at the boundary-
Control growth. After that, up to 450 ° C at a cooling rate of 0.05 to 1.0 ° C /
Cooling in seconds to coarsen the lamellar spacing of pearlite formed in austenite grains.

【0010】(3)さらに、熱間圧延の加熱に際して、
650〜750℃の加熱速度を10〜100℃/時間と
することにより、加熱時の微細炭化物の残存量が増加
し、正味の固溶炭素量がより低減され、圧延後の網状初
析セメンタイト量もより低減される。本発明は以上の新
規なる知見にもとずいてなされたものであって、その要
旨とするところは以下の通りである。
(3) Further, when heating in hot rolling,
By setting the heating rate of 650 to 750 ° C. to 10 to 100 ° C./hour, the residual amount of fine carbide during heating is increased, the net amount of dissolved carbon is further reduced, and the amount of reticulated pro-eutectoid cementite after rolling is increased. Is also reduced. The present invention has been made based on the above new findings, and the gist thereof is as follows.

【0011】本発明の請求項1の発明は重量比として、
C :0.80〜1.20%,Si:0.15〜1.50
%,Mn:0.15〜1.50%,Cr:0.50〜1.6
0%,S :0.003〜0.02%,Al:0.015
〜0.05%,N :0.004〜0.015%,を含有
し、P:0.020%以下、Ti:0.0020%以下、
O:0.0015%以下に制限し、残部が鉄および不可
避的不純物からなる鋼を熱間圧延するに際して、 A)900〜1150℃の加熱温度に加熱する工程と、 B)該加熱温度〜880℃以上の温度範囲で総減面率5
0%以上の圧延を行う工程と、 C)その後、880℃未満〜400℃の温度範囲で、
「減面率10%以上の圧延後、直ちに鋼材温度が一旦M
s点〜700℃となるように冷却し、引く続いて減面率
10%以上の圧延を行う」工程を1回以上有する工程で
圧延を行い、最終圧延出側の鋼材温度を700〜880
℃の最終圧延出側温度とする工程と、 D)最終圧延後直ちに急冷して、該鋼材の温度を550
〜700℃の最終圧延急冷温度とする工程と、 E)その後450℃までを0.05〜1.0℃/秒の冷却
速度で冷却する工程を特徴とする、組織が実質的に初析
セメンタイトとパーライトからなる球状化焼鈍特性の優
れた軸受用鋼材の製造方法である。
According to the first aspect of the present invention, the weight ratio is as follows.
C: 0.80 to 1.20%, Si: 0.15 to 1.50
%, Mn: 0.15 to 1.50%, Cr: 0.50 to 1.6
0%, S: 0.003 to 0.02%, Al: 0.015
.About.0.05%, N: 0.004 to 0.015%, P: 0.020% or less, Ti: 0.0020% or less,
O: When the steel having a balance of iron and inevitable impurities is restricted to 0.0015% or less, A) a step of heating to a heating temperature of 900 to 1150 ° C., and B) the heating temperature to 880 Total area reduction of 5 in the temperature range above ℃
0% or more rolling, C) after that, in a temperature range of less than 880 ℃ ~ 400 ℃,
"After rolling with a surface reduction rate of 10% or more, the steel temperature immediately increases to M
The temperature of the steel material on the outgoing side of the final rolling is 700 to 880, and the rolling temperature is 700 to 880 ° C., and the steel sheet temperature on the delivery side of the final rolling is 700 to 880.
A step of setting the final rolling outlet temperature to ℃, and D) quenching immediately after the final rolling to raise the temperature of the steel material to 550
To 700 ° C. for the final rolling quenching temperature, and E) thereafter cooling up to 450 ° C. at a cooling rate of 0.05 to 1.0 ° C./sec. And a pearlite, which are excellent in spheroidizing annealing characteristics.

【0012】本発明の請求項2の発明は、前記のD)と
E)が、 D)最終圧延後直ちに、550〜700℃の溶融塩温度
に保持された溶融塩中に焼入れし、該溶融塩中で0.5
〜30秒保持する工程と、 E)その後450℃までを0.05〜1.0℃/秒の冷却
速度で冷却する工程を特徴とする、請求項1記載の組織
が実質的に初析セメンタイトとパーライトからなる球状
化焼鈍特性の優れた軸受用鋼材の製造方法である。
In the invention of claim 2 of the present invention, the above D) and E) are: D) immediately after the final rolling, quenching into a molten salt maintained at a molten salt temperature of 550 to 700 ° C. 0.5 in salt
2. The structure according to claim 1, wherein the holding is ˜30 seconds, and E) the subsequent cooling up to 450 ° C. at a cooling rate of 0.05 to 1.0 ° C./second. And a pearlite, which are excellent in spheroidizing annealing characteristics.

【0013】本発明の請求項3の発明は、熱間圧延の加
熱に際して、650〜750℃の加熱速度が10〜10
0℃/時間である請求項1または2記載の球状化焼鈍特
性の優れた軸受用鋼材の製造方法である。
In the invention of claim 3 of the present invention, the heating rate at 650 to 750 ° C. is 10 to 10 in heating in hot rolling.
The method for producing a bearing steel material having excellent spheroidizing annealing properties according to claim 1 or 2, wherein the temperature is 0 ° C / hour.

【0014】本発明の請求項4の発明は、成分がさら
に、Ni:0.50〜2.00%,Mo:0.05〜0.5
0%,の1種または2種を含有する請求項1または2ま
たは3記載の球状化焼鈍特性の優れた軸受用鋼材の製造
方法である。
According to a fourth aspect of the present invention, the components are further Ni: 0.50 to 2.00%, Mo: 0.05 to 0.5.
The method for producing a steel material for bearings having excellent spheroidizing annealing characteristics according to claim 1, 2 or 3, containing 0% of 1 type or 2 types.

【0015】本発明の請求項5の発明は、成分がさら
に、Nb:0.01〜0.3%,V :0.03〜0.3
%,の1種または2種を含有する請求項1または2また
は3または4記載の球状化焼鈍特性の優れた軸受用鋼材
の製造方法である。
In the invention of claim 5 of the present invention, the components are further Nb: 0.01 to 0.3%, V: 0.03 to 0.3.
%, 1 type or 2 types, is a manufacturing method of the steel material for bearings excellent in the spheroidizing annealing characteristic of Claim 1 or 2 or 3 or 4.

【0016】[0016]

【作用】以下に、本発明を詳細に説明する。まず、本発
明の鋼の成分含有範囲を上記の如く限定した理由につい
て説明する。 C:0.80〜1.20%,Cは最終製品の軸受部品とし
て必要な転動疲労強度と耐摩耗性を得るために有効な元
素であるが、0.80%未満ではその効果が不十分であ
り、また1.20%を超えると網状の粒界初析セメンタ
イト量が顕著になり球状化焼鈍後の加工性、最終製品の
強度の劣化を招くので、含有量を0.80〜1.20%と
した。
The present invention will be described in detail below. First, the reason why the component content range of the steel of the present invention is limited as described above will be described. C: 0.80 to 1.20%, C is an element effective for obtaining the rolling fatigue strength and wear resistance required as a bearing component of the final product, but if less than 0.80%, the effect is unsatisfactory. When the content exceeds 1.20%, the amount of reticulated grain boundary pro-eutectoid cementite becomes remarkable, resulting in deterioration of workability after spheroidizing annealing and deterioration of strength of the final product. It was set to .20%.

【0017】Si:0.15〜1.50%,Siは脱酸元
素としておよび転動疲労過程での組織変化抑制による最
終製品の強度を増加させることを目的として添加する
が、0.15%未満ではその効果は不十分であり、一
方、1.50%を超えるとこれらの効果は飽和しむしろ
最終製品の靭性の劣化を招くので、その含有量を0.1
5〜1.50%とした。
Si: 0.15 to 1.50%, Si is added as a deoxidizing element and for the purpose of increasing the strength of the final product by suppressing the structural change in the rolling fatigue process, but 0.15%. If the content is less than 0.1%, the effect is insufficient. On the other hand, if it exceeds 1.50%, these effects are saturated and rather the toughness of the final product is deteriorated.
It was set to 5 to 1.50%.

【0018】Mn:0.15〜1.50%,Mnは焼入れ
性の向上を通じて、最終製品の強度を増加させるのに有
効な元素であるが、0.15%未満ではこの効果は不十
分であり、一方、1.5%を超えるとこの効果は飽和し
むしろ最終製品の靭性の劣化を招くので、その含有量を
0.15〜1.5%とした。
Mn: 0.15 to 1.50%, Mn is an element effective in increasing the strength of the final product by improving the hardenability, but if it is less than 0.15%, this effect is insufficient. On the other hand, on the other hand, if it exceeds 1.5%, this effect is saturated and rather the toughness of the final product is deteriorated, so the content was made 0.15 to 1.5%.

【0019】Cr:0.50〜1.60%,Crは焼入れ
性を向上し、強靱化を図るとともに炭化物の形成を助長
することを通じて耐摩耗性を向上させるのに有効であ
る。この効果は0.5%未満では不十分であり、一方1.
6%を超えるとこの効果は飽和しむしろ最終製品の靭性
の劣化を招くので、その含有量を0.50〜1.60%と
した。
Cr: 0.50 to 1.60%, Cr is effective in improving the hardenability, strengthening the toughness, promoting the formation of carbides and improving the wear resistance. This effect is insufficient below 0.5%, while 1.
If it exceeds 6%, this effect is saturated and rather the toughness of the final product is deteriorated, so the content was made 0.50 to 1.60%.

【0020】S:0.003〜0.02%,Sは鋼中でM
nSとして存在し、被削性の向上および組織の微細化に
寄与するが、0.003%未満ではその効果は不十分で
ある。一方、0.02%を超えるとその効果は飽和し、
むしろ靭性の劣化及び異方性の増加を招く。以上の理由
から、Sの含有量を0.003〜0.02%とした。
S: 0.003 to 0.02%, S is M in steel
It exists as nS and contributes to improvement of machinability and refinement of the structure, but if it is less than 0.003%, its effect is insufficient. On the other hand, when it exceeds 0.02%, the effect is saturated,
Rather, it causes deterioration of toughness and increase of anisotropy. For the above reason, the S content is set to 0.003 to 0.02%.

【0021】Al:0.015〜0.05%,Alは脱酸
元素および結晶粒微細化元素として添加するが、0.0
15%未満ではその効果は不十分であり、一方、0.0
5%を超えるとその効果は飽和し、むしろ靭性を劣化さ
せるので、その含有量を0.015〜0.05%とした。
Al: 0.015 to 0.05%, Al is added as a deoxidizing element and a crystal grain refining element, but 0.0
If it is less than 15%, its effect is insufficient, while on the other hand, it is 0.0.
If it exceeds 5%, the effect is saturated and rather the toughness is deteriorated, so the content was made 0.015-0.05%.

【0022】N:0.004〜0.015%,NはAlN
の析出挙動を通じて、オーステナイト粒の微細化に寄与
するが、0.004%未満ではその効果は不十分であ
り、一方、0.015%超では、その効果は飽和しむし
ろ靭性の劣化を招くので、その含有量をN:0.004
〜0.015%とした。
N: 0.004 to 0.015%, N is AlN
Although it contributes to the refinement of austenite grains through the precipitation behavior of, the effect is insufficient if it is less than 0.004%, while on the other hand, if it exceeds 0.015%, the effect saturates and rather deteriorates the toughness. , Its content is N: 0.004
˜0.015%.

【0023】P:0.020%以下、Pは鋼中で粒界偏
析や中心偏析を起こし、最終製品の強度劣化の原因とな
る。特にPが0.020%を超えると強度の劣化が顕著
となるため、0.020%を上限とした。
P: 0.020% or less, P causes grain boundary segregation or center segregation in the steel and causes deterioration of strength of the final product. In particular, when P exceeds 0.020%, the deterioration of strength becomes remarkable, so 0.020% was made the upper limit.

【0024】Ti:0.0020%以下、Tiは硬質析
出物TiNを生成し、これが最終製品での転動疲労破壊
の起点となり、強度劣化の原因となる。特にTiが0.
0020%を超えると強度の劣化が顕著となるため、
0.0020%を上限とした。
Ti: 0.0020% or less, Ti forms a hard precipitate TiN, which becomes a starting point of rolling fatigue fracture in the final product and causes strength deterioration. Especially Ti is 0.
If it exceeds 0020%, the strength will be significantly deteriorated.
The upper limit was 0.0020%.

【0025】O:0.0015%以下 Oは硬質介在物Al23を生成し、これが最終製品での
転動疲労破壊の起点となり、強度劣化の原因となる。特
にOが0.0015%を超えると強度の劣化が顕著とな
るため、0.0015%を上限とした。
O: 0.0015% or less O forms hard inclusions Al 2 O 3 , which becomes a starting point of rolling fatigue fracture in the final product and causes strength deterioration. In particular, when O exceeds 0.0015%, the deterioration of strength becomes remarkable, so 0.0005% was made the upper limit.

【0026】次に、請求項4の発明の鋼では、焼入れ性
向上を目的としてNi,Moの1種または2種を含有さ
せることが出来る。Ni:0.50〜2.00%,Mo:
0.05〜0.50%,Ni、Moは焼入れ性の向上を通
じて、最終製品の強度を増加させるのに有効な元素であ
るが、Ni:0.50%未満、Mo:0.05%未満では
この効果は不十分であり、一方、Ni:2.00%,M
o:0.5%を超えるとこの効果は飽和しむしろ最終製
品の靭性の劣化を招くので、その含有量をNi:0.5
0〜2.00%,Mo:0.05〜0.50%とした。
Next, in the steel of the fourth aspect of the invention, one or two kinds of Ni and Mo can be contained for the purpose of improving hardenability. Ni: 0.50 to 2.00%, Mo:
0.05 to 0.50%, Ni and Mo are effective elements for increasing the strength of the final product by improving the hardenability, but Ni: less than 0.50%, Mo: less than 0.05%. However, this effect is insufficient, while Ni: 2.00%, M
If the content of o: 0.5% is exceeded, this effect is saturated and rather the toughness of the final product is deteriorated. Therefore, the content is Ni: 0.5.
0 to 2.00% and Mo: 0.05 to 0.50%.

【0027】次に、請求項5の発明の鋼では、組織微細
化を目的としてNb,Vの1種または2種を含有させる
ことが出来る。Nb:0.01〜0.3%,V :0.0
3〜0.3%,Nb,Vは結晶粒微細化元素として添加
するが、Nb:0.01%未満、V:0.03%未満では
その効果は不十分であり、一方、Nb:0.3%、V:
0.3%を超えるとその効果は飽和し、むしろ靭性を劣
化させるので、その含有量をNb:0.01〜0.3%,
V:0.03〜0.3%とした。
Next, in the steel according to the fifth aspect of the invention, one or two kinds of Nb and V can be contained for the purpose of refining the structure. Nb: 0.01 to 0.3%, V: 0.0
3 to 0.3%, Nb and V are added as crystal grain refining elements, but if Nb: less than 0.01% and V: less than 0.03%, the effect is insufficient, while Nb: 0%. .3%, V:
If the content exceeds 0.3%, the effect is saturated and rather the toughness is deteriorated, so the content is Nb: 0.01 to 0.3%,
V: 0.03 to 0.3%.

【0028】次に、本発明において、熱間圧延条件を限
定した理由について述べる。まず、加熱温度を900〜
1150℃としたのは、900℃未満の加熱温度では粗
圧延−中間圧延温度が低くなり再結晶域圧延によるオー
ステナイト粒の細粒化が不十分であるためであり、また
1150℃を超える加熱温度では、オーステナイト結晶
粒が顕著に粗大化するとともに、微細炭化物残存による
正味の固溶炭素量低減の効果が期待できなくなるためで
ある。
Next, the reason for limiting the hot rolling conditions in the present invention will be described. First, heating temperature is 900 ~
The reason why 1150 ° C. is set is that at a heating temperature of less than 900 ° C., the coarse rolling-intermediate rolling temperature becomes low, and the austenite grains are not sufficiently refined by the recrystallization zone rolling. Then, since the austenite crystal grains are remarkably coarsened, the effect of reducing the amount of solid dissolved carbon due to the residual fine carbide cannot be expected.

【0029】次に、該加熱温度〜880℃以上の温度範
囲で総減面率50%以上の圧延を行うのは、再結晶によ
りオーステナイト粒を6〜7番程度に細粒化するためで
あり、総減面率50%以上としたのは、これ未満では再
結晶細粒化の効果が小さいためである。
Next, the reason why rolling with a total surface reduction rate of 50% or more is performed within the temperature range of the heating temperature to 880 ° C. or more is to recrystallize the austenite grains into about 6 to 7 grains. The reason why the total area reduction rate is 50% or more is that the effect of recrystallizing and refining is small when the total area reduction rate is less than 50%.

【0030】また、880℃未満〜400℃の温度範囲
で、「減面率10%以上の圧延後、直ちに鋼材温度が一
旦Ms点〜700℃となるように冷却し、引き続いて減
面率を10%以上の圧延を行う」工程を1回以上有する
工程で圧延を行うのは、オーステナイト粒の粒内に変形
帯を導入し、粒内初析セメンタイトを核生成させ、網状
初析セメンタイトを低減するためである。圧延の間に冷
却をはさむのは、回復による加工歪の解放を抑制してパ
ス間の歪を累積させ、粒内初析セメンタイトの核生成が
可能な変形帯を形成させるためである。
Further, in a temperature range of less than 880 ° C to 400 ° C, "after the rolling with a surface reduction rate of 10% or more, immediately, the steel material temperature is once cooled to the Ms point to 700 ° C, and subsequently the surface reduction rate is reduced. Rolling in a process that has one or more steps of "rolling 10% or more" introduces a deformation zone into the austenite grains to nucleate the intragranular pro-eutectoid cementite and reduce the reticulated pro-eutectoid cementite. This is because The reason for interposing cooling during rolling is to suppress the release of processing strain due to recovery and accumulate strain between passes to form a deformation zone capable of nucleating intragranular pro-eutectoid cementite.

【0031】ここで、冷却前後の減面率10%以上とし
たのは、減面率10%未満では累積される歪量が小さい
ためオーステナイト粒の粒内に十分な変形帯が形成され
ないためである。また、冷却後の温度をMs点〜700
℃としたのは、冷却後の温度が700℃を超えると加工
歪の解放による変形帯消滅の防止が不十分であり、一方
Ms点未満であるとマルテンサイト組織が生じるためで
ある。なお、変形帯消滅防止の効果は、600℃未満に
冷却することによって特に顕著になることから、可能な
らば冷却後の温度をMs点以上、600℃未満とするの
が望ましい。
Here, the reason why the area reduction rate before and after cooling is 10% or more is that if the area reduction rate is less than 10%, the accumulated strain amount is small and a sufficient deformation zone is not formed in the austenite grains. is there. Moreover, the temperature after cooling is set to Ms point to 700.
The reason why the temperature is set to 0 ° C is that if the temperature after cooling exceeds 700 ° C, prevention of deformation band disappearance due to release of processing strain is insufficient, while if it is less than the Ms point, a martensite structure occurs. Since the effect of preventing the deformation band disappearance becomes particularly remarkable by cooling to below 600 ° C, it is desirable to set the temperature after cooling to the Ms point or higher and lower than 600 ° C if possible.

【0032】また、本発明では、880℃未満の温度範
囲において、「減面率10%以上の圧延後、直ちに鋼材
温度が一旦Ms点〜700℃となるように冷却し、引き
続いて減面率10%以上の圧延を行う」工程の前後に任
意の圧延を行うことが可能であり、またこの工程を2回
以上繰り返す場合、連続して行っても、任意の圧延をは
さんで行っても良い。
Further, in the present invention, in the temperature range of less than 880 ° C., “after the rolling with a surface reduction rate of 10% or more, immediately cooling the steel material temperature so that the temperature of the steel material once becomes Ms point to 700 ° C., and subsequently the surface reduction rate is reduced. It is possible to perform arbitrary rolling before and after the step of "rolling 10% or more", and when repeating this step twice or more, it can be performed continuously or with any rolling in between. good.

【0033】さらに、最終圧延出側の鋼材温度を700
〜880℃の範囲とするのは、700℃未満の最終圧延
出側温度では、圧延負荷が顕著に増大するためであり、
また最終圧延出側温度が880℃を超えた場合、圧延直
後のオーステナイト粒が成長粗大化する危険性があるた
めである。
Further, the temperature of the steel material on the delivery side of the final rolling is set to 700.
The reason why the temperature is set in the range of ˜880 ° C. is that the rolling load remarkably increases at the final rolling outlet temperature of less than 700 ° C.,
Further, if the final rolling outlet temperature exceeds 880 ° C., there is a risk that the austenite grains immediately after rolling may grow and become coarse.

【0034】次に、請求項1の発明では最終圧延後直ち
に急冷して、該鋼材の温度を550〜700℃の最終圧
延急冷温度とし、また請求項2の発明では最終圧延後直
ちに、550〜700℃の溶融塩温度に保持された溶融
塩中に焼入れし、該溶融塩中で0.5〜30秒保持する
のは、いずれも粒界での網状初析セメンタイトの生成−
成長を抑制するためである。請求項1の発明で急冷温度
範囲を550〜700℃としたのは、700℃超では網
状初析セメンタイトの生成−成長の抑制が不十分であ
り、また550℃未満ではベイナイト組織が生じる危険
性があるためである。なお、最終圧延後550〜700
℃への急冷速度は10℃/s以上が望ましい。
Next, in the invention of claim 1, the steel material is quenched immediately after the final rolling so as to bring the temperature of the steel material to the final quenching temperature of 550 to 700 ° C., and in the invention of claim 2, immediately after the final rolling, 550 to 550. Quenching in a molten salt held at a molten salt temperature of 700 ° C. and holding the molten salt in the molten salt for 0.5 to 30 seconds is the formation of reticulated pro-eutectoid cementite at grain boundaries.
This is to suppress growth. In the invention of claim 1, the quenching temperature range is set to 550 to 700 ° C. The reason is that the generation and growth of reticulated pro-eutectoid cementite is insufficiently controlled at a temperature higher than 700 ° C. and the risk of bainite structure being generated at a temperature lower than 550 ° C. Because there is. 550 to 700 after the final rolling
The rapid cooling rate to 0 ° C is preferably 10 ° C / s or more.

【0035】次に請求項2の発明で焼入れする溶融塩の
温度を550〜700℃としたのは、溶融塩温度:70
0℃超では網状初析セメンタイトの生成−成長の抑制が
不十分であり、また溶融塩温度:550℃未満ではベイ
ナイト組織が生じる危険性があるためである。また、該
溶融塩中での保持時間を0.5〜30秒としたのは、0.
5秒未満では鋼材断面の中心部まで十分に冷却できない
危険性があるためであり、30秒超では生産性が低下す
るためである。
Next, the temperature of the molten salt to be quenched in the invention of claim 2 is set to 550 to 700 ° C. because the molten salt temperature is 70.
This is because if the temperature exceeds 0 ° C, the formation and growth of reticulated pro-eutectoid cementite are not sufficiently suppressed, and if the molten salt temperature is lower than 550 ° C, a bainite structure may be generated. Further, the retention time in the molten salt was set to 0.5 to 30 seconds because
This is because if it is less than 5 seconds, there is a risk that the central portion of the steel material cross section cannot be sufficiently cooled, and if it exceeds 30 seconds, the productivity is reduced.

【0036】次に、「その後450℃までを0.05〜
1.0℃/秒の冷却速度で冷却する」のは、オーステナ
イト粒内に生成するパーライトのラメラ間隔を粗大化さ
せるためである。この温度範囲の冷却速度が1.0℃/
秒を超えるとパーライトのラメラ間隔が顕著に微細にな
り、一方0.05℃/秒未満では徐冷の効果が飽和し、
いたずらに時間を消費するため、冷却速度で0.05〜
1.0℃/秒とした。ここで、球状化焼鈍後により均一
な球状炭化物組織を得るためには、この温度範囲の冷却
速度が0.4℃/秒以下が望ましい。なお、500℃以
下の冷却は任意の冷却速度を選ぶことができる。調整冷
却の方法として、徐冷カバーをかける等の方法が考えら
れる。
Then, "after that, the temperature up to 450 ° C.
The reason why “cooling is performed at a cooling rate of 1.0 ° C./sec” is to coarsen the lamellar spacing of the pearlite formed in the austenite grains. Cooling rate in this temperature range is 1.0 ° C /
If it exceeds 2 seconds, the lamellar spacing of pearlite becomes remarkably fine, while if it is less than 0.05 ° C / second, the effect of slow cooling is saturated,
It takes time for mischief, so the cooling rate is 0.05-
The rate was 1.0 ° C./second. Here, in order to obtain a more uniform spheroidal carbide structure after spheroidizing annealing, the cooling rate in this temperature range is preferably 0.4 ° C./sec or less. Any cooling rate can be selected for cooling at 500 ° C. or lower. As a method for adjusting cooling, a method such as attaching a slow cooling cover can be considered.

【0037】なお、圧延後得られる組織が、実質的に初
析セメンタイトとパーライトからなることとしたのは、
組織がベイナイト、マルテンサイトを含むと、これらの
部分が球状化焼鈍後に微細な球状炭化物組織となり、均
一な球状炭化物組織を得られないためである。
The structure obtained after rolling is essentially composed of proeutectoid cementite and pearlite.
This is because if the structure contains bainite and martensite, these parts become a fine spherical carbide structure after spheroidizing annealing, and a uniform spherical carbide structure cannot be obtained.

【0038】次に、請求項3の発明は、球状化焼鈍後に
より一層均一な球状化焼鈍組織を得るための軸受用鋼材
の製造方法に関する発明である。請求項3の発明で熱間
圧延の加熱に際して、650〜750℃の加熱速度が1
0〜100℃/時間としたのは、昇温過程のA1点直下
の温度域で徐加熱することにより、炭化物をオーステナ
イト中でより安定化させて、圧延加熱時の微細炭化物の
残存量を増加させ、正味の固溶炭素量をより低減するた
めである。但し、650〜750℃の加熱速度が100
℃/時間を超えるとこの効果は小さく、一方10℃/時
間未満では徐加熱の効果が飽和し、いたずらに時間を消
費するため加熱速度を10〜100℃/時間とした。
Next, the invention of claim 3 relates to a method of manufacturing a bearing steel material for obtaining a more uniform spheroidizing annealed structure after spheroidizing annealing. In the hot rolling according to the invention of claim 3, the heating rate of 650 to 750 ° C. is 1
0 to 100 ° C./hour means that the carbide is further stabilized in the austenite by gradually heating in the temperature range immediately below the A 1 point in the temperature rising process, and the residual amount of the fine carbide during rolling heating is increased. This is to increase the amount and reduce the net amount of dissolved carbon. However, the heating rate of 650 to 750 ° C. is 100
This effect is small when the temperature exceeds ℃ / hour, while the effect of gradual heating is saturated when the temperature is lower than 10 ℃ / hour, and time is consumed unnecessarily, so the heating rate was set to 10 to 100 ℃ / hour.

【0039】なお、球状化焼鈍後にさらにより一層均一
な球状炭化物組織を得るためには、本発明の製造方法に
より製造される軸受用鋼材を、圧延後の組織の旧オース
テナイト粒度が9番以上である軸受用鋼材とするのが望
ましい。これは、圧延後の組織の旧オーステナイト粒度
を9番以上とすることにより、球状化焼鈍加熱保定時の
オーステナイト粒径が微細化され、球状化焼鈍後の炭化
物の均一性を一層増大させることができるためであり、
この効果が9番以上で特に顕著なためである。以下に、
本発明の効果を実施例により、さらに具体的に示す。
In order to obtain an even more uniform spheroidal carbide structure after spheroidizing annealing, the steel for bearings manufactured by the manufacturing method of the present invention has a former austenite grain size of 9 or more in the structure after rolling. It is desirable to use a certain bearing steel material. This is because by setting the former austenite grain size of the structure after rolling to No. 9 or more, the austenite grain size during spheroidizing annealing heat retention is refined, and the uniformity of carbides after spheroidizing annealing can be further increased. Because you can
This is because this effect is particularly remarkable when the number is 9 or higher. less than,
The effects of the present invention will be more specifically shown by examples.

【0040】[0040]

【実施例】表1に供試材の化学成分を示す。これらはい
ずれも転炉溶製後連続鋳造で鋳造された。162mm角
鋼片に分塊圧延後、表2に示す圧延条件で丸棒鋼に圧延
した。
EXAMPLES Table 1 shows the chemical composition of the test materials. All of these were cast by continuous casting after melting in a converter. After slab rolling into a 162 mm square steel piece, it was rolled into a round bar steel under the rolling conditions shown in Table 2.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

【0044】[0044]

【表4】 [Table 4]

【0045】本発明法については、圧延後、冷却床に徐
冷カバーをかけることにより調整冷却を行った。また、
一部の鋼種については上記162mm角鋼片から50m
m角の角材を切り出し、表3に示す圧延条件で厚さ15
mmへ圧延した。圧延後、これらの圧延材に球状化焼鈍
を施した。
In the method of the present invention, after rolling, controlled cooling was performed by covering the cooling floor with a slow cooling cover. Also,
50m from the above 162mm square billet for some steel types
Cut out square pieces of m square and have a thickness of 15 under the rolling conditions shown in Table 3.
rolled to mm. After rolling, these rolled materials were subjected to spheroidizing annealing.

【0046】球状化焼鈍材について、球状化率、炭化物
径(円相当直径)の平均値と最大値、硬さ(冷間加工性
の指標)を評価した。球状化率は長径/短径が5.0以
下のセメンタイト数の全セメンタイト数に対する割合で
表した。表4に各鋼材の評価結果を本発明と比較例を対
比して示す。これから明らかなように、本発明法では、
いずれも球状化率100%である。また平均炭化物径が
役1μmで且つ最大炭化物径が2μm未満と、粗大な板
状炭化物がなく且つ均一な球状炭化物組織が得られてい
る。また硬さもHRB90以下と比較例に比べて良好な
軟質化レベルを示している。
With respect to the spheroidized annealed material, the spheroidization rate, average and maximum values of carbide diameter (circle equivalent diameter) and hardness (index of cold workability) were evaluated. The spheroidization ratio was expressed as the ratio of the number of cementites having a major axis / minor axis of 5.0 or less to the total number of cementites. Table 4 shows the evaluation results of each steel material in comparison with the present invention and comparative examples. As is clear from this, in the method of the present invention,
In each case, the spheroidization rate is 100%. Further, when the average carbide diameter is 1 μm and the maximum carbide diameter is less than 2 μm, a uniform spherical carbide structure without coarse plate-like carbide is obtained. Further, the hardness is HRB 90 or less, which is a good softening level as compared with the comparative example.

【0047】一方、比較例5,35は圧延時の加熱温度
が本発明の範囲の上限値を上回った場合であり、比較例
6,36は880℃未満の温度範囲での圧延において、
「減面率10%以上の圧延後、直ちに鋼材温度が一旦M
s点〜700℃となるように冷却し、引き続いて減面率
を10%以上の圧延を行う」工程を行わなかった場合で
あり、比較例7は最終圧延直後の急冷の冷却停止温度が
本発明の範囲の上限値を上回った場合であり、比較例
8,37は、圧延直後急冷の後の450℃までを冷却速
度が本発明の範囲の上限値を上回った場合であり、いず
れも球状化率が70%以下であり、球状化炭化物の大き
さも不均一であり、また軟質化の程度も十分とはいえな
い。
On the other hand, Comparative Examples 5 and 35 are cases in which the heating temperature during rolling exceeds the upper limit value of the range of the present invention, and Comparative Examples 6 and 36 are in the rolling in the temperature range below 880 ° C.
"After rolling with a surface reduction rate of 10% or more, the steel temperature immediately increases to M
It is a case where the step of cooling to s point to 700 ° C. and subsequently rolling at a surface reduction rate of 10% or more is not performed, and in Comparative Example 7, the cooling stop temperature of the rapid cooling immediately after the final rolling is the main value. Comparative Examples 8 and 37 are cases where the upper limit value of the range of the invention was exceeded, and Comparative Examples 8 and 37 were cases where the cooling rate was higher than the upper limit value of the range of the present invention up to 450 ° C. immediately after rolling, and both were spherical. The degree of softening is 70% or less, the sizes of spheroidized carbides are not uniform, and the degree of softening is not sufficient.

【0048】次に、表4の本発明例3,4,34,比較
例5で製造した鋼材について、直径12mmφ、長さ2
2mmの円筒型転動疲労試験片を作成し、調質処理後、
点接触型転動疲労試験機によりヘルツ最大接触応力60
0kgf/mm2で転動疲労試験を行った。疲労寿命の
尺度として、通常、「試験結果をワイブル確率紙にプロ
ットして得られる累積破損確率10%における疲労破壊
までの応力繰返し数」がL10寿命として用いられる。本
発明例のL10寿命は比較例5のL10寿命に比べて、本発
明例3で1.5倍、本発明例4で1.8倍、本発明例34
で1.5倍に各々寿命が向上する。
Next, with respect to the steel materials produced in the invention examples 3, 4, 34 and comparative example 5 in Table 4, the diameter is 12 mmφ and the length is 2 mm.
2mm Cylindrical rolling fatigue test piece was prepared, and after heat treatment,
Hertz maximum contact stress 60 by point contact type rolling contact fatigue tester
A rolling fatigue test was performed at 0 kgf / mm 2 . As a measure of the fatigue life, usually, "stress repetition of the test results to fatigue failure in a cumulative failure probability of 10% obtained by plotting the Weibull probability paper" is used as the L 10 life. As compared with the L 10 life of Comparative Example 5, the L 10 life of Invention Example was 1.5 times in Invention Example 3, 1.8 times in Invention Example 4, and Invention Example 34.
The life is improved by 1.5 times.

【0049】[0049]

【発明の効果】以上述べたごとく、本発明法を用いれ
ば、通常の球状化焼鈍により、粗大な板状炭化物を含ま
ず、且つ均一な球状化組織を得ることができ、焼鈍後の
切断、冷間鍛造、切削等の冷間加工性に優れ、且つ焼入
れ焼戻し処理を行った軸受部品において優れた転動疲労
特性を得ることができる軸受用鋼材の製造が可能とな
り、産業上の効果は極めて顕著なるものがある。
As described above, by using the method of the present invention, it is possible to obtain a uniform spheroidized structure that does not contain coarse plate-shaped carbides by ordinary spheroidizing annealing, and cut after annealing, It is possible to manufacture bearing steels that have excellent cold workability such as cold forging and cutting, and can also obtain excellent rolling fatigue characteristics in bearing parts that have been subjected to quenching and tempering treatment, and the industrial effect is extremely There is something remarkable.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】重量比として、 C :0.80〜1.20%,Si:0.15〜1.50
%,Mn:0.15〜1.50%,Cr:0.50〜1.6
0%,S :0.003〜0.02%.Al:0.015
〜0.05%,N :0.004〜0.015%,を含有
し、P:0.020%以下、Ti:0.0020%以下、
O:0.0015%以下に制限し、残部が鉄および不可
避的不純物からなる鋼を熱間圧延するに際して、 A)900〜1150℃の加熱温度に加熱する工程と、 B)該加熱温度〜880℃以上の温度範囲で総減面率5
0%以上の圧延を行う工程と、 C)その後、880℃未満〜400℃の温度範囲で、
「減面率10%以上の圧延後、直ちに鋼材温度が一旦M
s点〜700℃となるように冷却し、引き続いて減面率
10%以上の圧延を行う」工程を1回以上有する工程で
圧延を行い、最終圧延出側の鋼材温度を700〜880
℃の最終圧延出側温度とする工程と、 D)最終圧延後直ちに急冷して、該鋼材の温度を550
〜700℃の最終圧延急冷温度とする工程と、 E)その後450℃までを0.05〜1.0℃/秒の冷却
速度で冷却する工程を特徴とする、組織が実質的に初析
セメンタイトとパーライトからなる球状化焼鈍特性の優
れた軸受用鋼材の製造方法。
1. A weight ratio of C: 0.80 to 1.20%, Si: 0.15 to 1.50.
%, Mn: 0.15 to 1.50%, Cr: 0.50 to 1.6
0%, S: 0.003 to 0.02%. Al: 0.015
.About.0.05%, N: 0.004 to 0.015%, P: 0.020% or less, Ti: 0.0020% or less,
O: When the steel having a balance of iron and inevitable impurities is restricted to 0.0015% or less, A) a step of heating to a heating temperature of 900 to 1150 ° C., and B) the heating temperature to 880 Total area reduction of 5 in the temperature range above ℃
0% or more rolling, C) after that, in a temperature range of less than 880 ℃ ~ 400 ℃,
"After rolling with a surface reduction rate of 10% or more, the steel temperature immediately increases to M
The temperature of the steel material on the outgoing side of the final rolling is 700 to 880, and the temperature is 700 to 880.
A step of setting the final rolling outlet temperature to ℃, and D) quenching immediately after the final rolling to raise the temperature of the steel material to 550
To 700 ° C. for the final rolling quenching temperature, and E) thereafter cooling up to 450 ° C. at a cooling rate of 0.05 to 1.0 ° C./sec. And a method for producing a bearing steel material having excellent spheroidizing annealing characteristics, which is composed of pearlite.
【請求項2】請求項1のD)とE)が D)最終圧延後直ちに、550〜700℃の溶融塩温度
に保持された溶融塩中に焼入れし、該溶融塩中で0.5
〜30秒保持する工程と、 E)その後450℃までを0.05〜1.0℃/秒の冷却
速度で冷却する工程であることを特徴とする、請求項1
記載の組織が実質的に初析セメンタイトとパーライトか
らなる球状化焼鈍特性の優れた軸受用鋼材の製造方法。
2. D) and E) of claim 1 are: D) Immediately after the final rolling, quenching is performed in a molten salt maintained at a molten salt temperature of 550 to 700 ° C., and 0.5 is applied in the molten salt.
Holding for ~ 30 seconds, and E) thereafter cooling up to 450 ° C at a cooling rate of 0.05-1.0 ° C / sec.
A method for producing a bearing steel material having a spheroidizing annealing property, the structure of which is substantially composed of proeutectoid cementite and pearlite.
【請求項3】熱間圧延の加熱に際して、650〜750
℃の加熱速度が10〜100℃/時間である請求項1ま
たは2記載の球状化焼鈍特性の優れた軸受用鋼材の製造
方法。
3. Heating of hot rolling, 650-750
The method for producing a bearing steel material having excellent spheroidizing annealing properties according to claim 1 or 2, wherein the heating rate at 10 ° C is 10 to 100 ° C / hour.
【請求項4】成分がさらに、 Ni:0.50〜2.00%,Mo:0.05〜0.50
%,の1種または2種を含有する請求項1または2また
は3記載の球状化焼鈍特性の優れた軸受用鋼材の製造方
法。
4. The composition further comprises Ni: 0.50 to 2.00%, Mo: 0.05 to 0.50.
%, 1 type or 2 types are contained, The manufacturing method of the steel material for bearings excellent in the spheroidization annealing characteristic of Claim 1 or 2 or 3.
【請求項5】成分がさらに、 Nb:0.01〜0.3%,V :0.03〜0.3%,の
1種または2種を含有する請求項1または2または3ま
たは4記載の球状化焼鈍特性の優れた軸受用鋼材の製造
方法。
5. The composition according to claim 1, 2 or 3 or 4, further comprising one or two of Nb: 0.01 to 0.3% and V: 0.03 to 0.3%. A method for manufacturing a bearing steel material having excellent spheroidizing annealing characteristics.
JP08440593A 1993-04-12 1993-04-12 Manufacturing method of bearing steel with excellent spheroidizing annealing characteristics Expired - Fee Related JP3291068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08440593A JP3291068B2 (en) 1993-04-12 1993-04-12 Manufacturing method of bearing steel with excellent spheroidizing annealing characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08440593A JP3291068B2 (en) 1993-04-12 1993-04-12 Manufacturing method of bearing steel with excellent spheroidizing annealing characteristics

Publications (2)

Publication Number Publication Date
JPH06299240A true JPH06299240A (en) 1994-10-25
JP3291068B2 JP3291068B2 (en) 2002-06-10

Family

ID=13829686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08440593A Expired - Fee Related JP3291068B2 (en) 1993-04-12 1993-04-12 Manufacturing method of bearing steel with excellent spheroidizing annealing characteristics

Country Status (1)

Country Link
JP (1) JP3291068B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100342673B1 (en) * 1997-12-29 2002-10-11 주식회사 포스코 A method of manufacturing meduium carbon steel wire rods for spheroidization heat treatment
WO2005078297A1 (en) * 2004-02-12 2005-08-25 Ntn Corporation Shell type needle roller bearing, support structure of compressor spindle, and support structure of piston pump drive part
JP2006283175A (en) * 2005-04-05 2006-10-19 Nisshin Steel Co Ltd High carbon steel sheet having excellent machinability
JP2007191796A (en) * 1997-01-20 2007-08-02 Nsk Ltd Method of manufacturing rolling bearing
JP2010030036A (en) * 2008-02-28 2010-02-12 Sintokogio Ltd Material of projecting material for shot-peening, and method of manufacturing projecting material for shot-peening
JP2010138453A (en) * 2008-12-11 2010-06-24 Nisshin Steel Co Ltd Steel for wear resistant quenched-tempered component, and method for producing the same
JP2011236451A (en) * 2010-05-07 2011-11-24 Sumitomo Metal Ind Ltd Hot working high carbon steel for induction hardening parts
JP2014029015A (en) * 2012-06-28 2014-02-13 Jfe Steel Corp Method for producing bearing steel and bearing steel obtained by the method
US9090959B2 (en) 2012-03-30 2015-07-28 Kobe Steel, Ltd. Bearing steel excellent in cold workability and manufacturing method thereof
KR20210080043A (en) * 2019-12-20 2021-06-30 주식회사 포스코 Wire rod for bearing and methods for manufacturing thereof
JP2021188116A (en) * 2020-06-02 2021-12-13 セントラル アイアン アンド スティール リサーチ インスティテュート High-carbon bearing steel and preparation method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191796A (en) * 1997-01-20 2007-08-02 Nsk Ltd Method of manufacturing rolling bearing
KR100342673B1 (en) * 1997-12-29 2002-10-11 주식회사 포스코 A method of manufacturing meduium carbon steel wire rods for spheroidization heat treatment
WO2005078297A1 (en) * 2004-02-12 2005-08-25 Ntn Corporation Shell type needle roller bearing, support structure of compressor spindle, and support structure of piston pump drive part
EP1715204A4 (en) * 2004-02-12 2011-12-21 Ntn Toyo Bearing Co Ltd Shell type needle roller bearing, support structure of compressor spindle, and support structure of piston pump drive part
EP1715204A1 (en) * 2004-02-12 2006-10-25 Ntn Corporation Shell type needle roller bearing, support structure of compressor spindle, and support structure of piston pump drive part
CN100436852C (en) * 2004-02-12 2008-11-26 Ntn株式会社 Shell type needle roller bearing, support structure of compressor spindle, and support structure of piston pump drive part
JP4600988B2 (en) * 2005-04-05 2010-12-22 日新製鋼株式会社 High carbon steel plate with excellent machinability
JP2006283175A (en) * 2005-04-05 2006-10-19 Nisshin Steel Co Ltd High carbon steel sheet having excellent machinability
JP2010030036A (en) * 2008-02-28 2010-02-12 Sintokogio Ltd Material of projecting material for shot-peening, and method of manufacturing projecting material for shot-peening
JP2010138453A (en) * 2008-12-11 2010-06-24 Nisshin Steel Co Ltd Steel for wear resistant quenched-tempered component, and method for producing the same
JP2011236451A (en) * 2010-05-07 2011-11-24 Sumitomo Metal Ind Ltd Hot working high carbon steel for induction hardening parts
US9090959B2 (en) 2012-03-30 2015-07-28 Kobe Steel, Ltd. Bearing steel excellent in cold workability and manufacturing method thereof
JP2014029015A (en) * 2012-06-28 2014-02-13 Jfe Steel Corp Method for producing bearing steel and bearing steel obtained by the method
KR20210080043A (en) * 2019-12-20 2021-06-30 주식회사 포스코 Wire rod for bearing and methods for manufacturing thereof
CN114981464A (en) * 2019-12-20 2022-08-30 株式会社Posco Bearing wire and method for manufacturing same
CN114981464B (en) * 2019-12-20 2024-02-06 株式会社Posco Bearing wire and method for manufacturing same
JP2021188116A (en) * 2020-06-02 2021-12-13 セントラル アイアン アンド スティール リサーチ インスティテュート High-carbon bearing steel and preparation method thereof

Also Published As

Publication number Publication date
JP3291068B2 (en) 2002-06-10

Similar Documents

Publication Publication Date Title
JP4435954B2 (en) Bar wire for cold forging and its manufacturing method
JP4018905B2 (en) Hot rolled wire rod and bar for machine structure and manufacturing method thereof
JP5458649B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP7300451B2 (en) Wire rod for cold heading, processed product using the same, and manufacturing method thereof
US5252153A (en) Process for producing steel bar wire rod for cold working
JP3554505B2 (en) Hot-rolled wire rod / steel bar for machine structure and manufacturing method thereof
JP2001240940A (en) Bar wire rod for cold forging and its production method
CN108315637B (en) High carbon hot-rolled steel sheet and method for producing same
JP3291068B2 (en) Manufacturing method of bearing steel with excellent spheroidizing annealing characteristics
JPH11236644A (en) Steel for induction hardening excellent in high strength characteristic and low heat treating strain characteristic and its production
JP3932995B2 (en) Induction tempering steel and method for producing the same
KR101977499B1 (en) Wire rod without spheroidizing heat treatment, and method for manufacturing thereof
JP6977880B2 (en) High carbon hot-rolled steel sheet and its manufacturing method
JP3554506B2 (en) Manufacturing method of hot-rolled wire and bar for machine structure
JPH1161272A (en) Manufacture of high carbon cold-rolled steel plate excellent in formability
JP2006097109A (en) High-carbon hot-rolled steel sheet and manufacturing method therefor
JP4159009B2 (en) Steel sheet for punched parts with excellent fatigue characteristics
JP4061003B2 (en) Cold forging bar wire with excellent induction hardenability and cold forgeability
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
JP3717745B2 (en) Mandrel bar and its manufacturing method
JPH11269541A (en) Manufacture of high strength steel excellent in fatigue characteristic
JPH09324212A (en) Production of hot rolled high carbon steel strip excellent in hardenability and cold workability
JPH08199309A (en) Stainless steel excellent in workability and its production
JP2004124190A (en) Induction-tempered steel having excellent twisting property
JP2937346B2 (en) Method for producing high carbon steel for spheroidizing annealing

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020305

LAPS Cancellation because of no payment of annual fees