JP3468048B2 - Manufacturing method of high carbon cold rolled steel sheet with excellent formability - Google Patents

Manufacturing method of high carbon cold rolled steel sheet with excellent formability

Info

Publication number
JP3468048B2
JP3468048B2 JP22900697A JP22900697A JP3468048B2 JP 3468048 B2 JP3468048 B2 JP 3468048B2 JP 22900697 A JP22900697 A JP 22900697A JP 22900697 A JP22900697 A JP 22900697A JP 3468048 B2 JP3468048 B2 JP 3468048B2
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
steel
rolled
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22900697A
Other languages
Japanese (ja)
Other versions
JPH1161272A (en
Inventor
浩行 中川
清 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP22900697A priority Critical patent/JP3468048B2/en
Publication of JPH1161272A publication Critical patent/JPH1161272A/en
Application granted granted Critical
Publication of JP3468048B2 publication Critical patent/JP3468048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、成形性に優れた高
炭素冷延鋼板の製造方法に関する。 【0002】 【従来の技術】高炭素薄鋼板は、打ち抜き、曲げ、絞り
などのプレス成形により所定の形状に加工された後、焼
入れ焼戻しなどの熱処理が施されて強度や硬度を高めて
製品とされる。その用途拡大に伴い、最近では、深絞り
成形で得られるような複雑な形状の製品への高炭素鋼板
の適用要望が増している。 【0003】深絞り成形性に優れる低炭素薄鋼板を用い
て複雑な形状の製品に加工し、浸炭焼入れ等の硬化処理
法によって加工後に硬度を高める方法がある。しかし浸
炭焼入れ等の硬化処理法は通常の焼入れ焼戻し処理に較
べて費用が高く、経済性に欠ける。高炭素薄鋼板を用い
れば従来の熱処理法で容易に製品の硬度を高められる
が、炭素含有量が高い鋼は、引張試験で測定される伸び
値で代表される延性やr値で代表される深絞り性が劣る
ので、複雑な形状の製品への加工ができない。 【0004】JIS−G−3311に規定される炭素鋼
(S30CM〜S75CM)や炭素工具鋼(SK2M〜
SK7M)の熱延鋼板にセメンタイトの球状化焼鈍を施
し、鋼板中のパーライト組織を球状のセメンタイトと軟
質なフェライトとの組織にして延性を向上させたり、熱
延鋼板に冷間圧延と焼鈍を施して成形性を向上させたり
する方法がある。しかし、これらの方法では、成形性、
特に深絞り性を十分には改善できない。 【0005】このため、素材段階では軟質で成形性に優
れ、加工後には、簡便な熱処理などにより、容易に強度
や硬度が得られる焼入性に優れた鋼が望まれている。 【0006】特公平4−56088号公報には、絞り性
の良好な高炭素冷延鋼板の製造法が開示されている。こ
れは化学成分を特定範囲に規制した鋼に冷間圧延と焼鈍
を施して鋼中のセメンタイトを黒鉛化し、その後2回目
の冷間圧延と再結晶焼鈍を施す製造方法である。深絞り
性を表す指標であるr値で言えば、高炭素冷延鋼板のr
値は、通常、1.0程度以下のレベルまでしか得られな
い。この方法によれば、セメンタイトを黒鉛化した鋼板
に冷間圧延と焼鈍を施すことにより、従来得られていな
かった高いr値を持ち軟鋼板並の深絞り性を有する高炭
素冷延鋼板が得られるとされている。しかしこの方法は
製造工程が長くコストがかかる。また、黒鉛化鋼板は通
常の高炭素鋼板に較べて焼入性が低いため、熱処理後に
得られる硬さが十分ではない。 【0007】特開平8−246051号公報には、特定
組成の熱延鋼板を焼鈍して鋼中の炭素の50%以上を黒
鉛化させ、これに冷間圧延と焼鈍を施して成形性を改善
する中炭素鋼板の製造方法が開示されている。この方法
は、特公平4−56088号公報で開示されている方法
に比べれば製造工程は簡略化されているが、深絞り性の
改善は十分ではないうえ、黒鉛化鋼板であるために熱処
理後に得られる硬さが十分ではない。 【0008】 【発明が解決しようとする課題】本発明が解決しようと
する課題は、高い延性とr値とを有し、かつ、通常の熱
処理方法で良好な硬さが得られる成形性に優れた高炭素
冷延鋼板の製造方法を提供することである。 【0009】 【課題を解決するための手段】本発明の要旨は、下記
の、成形性に優れた高炭素冷延鋼板の製造方法にある。 【0010】重量%で、C:0.1〜0.65%、S
i:0.01〜0.3%、Mn:0.4〜2%、so
l.Al:0.01〜0.1%、N:0.002〜0.
008%、B:0.0005〜0.005%、Cr:0
〜0.5%、Mo:0〜0.1%、残部:Feおよび不
可避的不純物からなる高炭素鋼を熱間圧延し、300〜
520℃でコイル状に巻取り、650〜(Ac1―10)
℃で10〜30時間焼鈍した後、40〜80%の圧下率
で冷間圧延し、650〜(Ac1―10)℃で焼鈍するこ
とを特徴とする成形性に優れた高炭素冷延鋼板の製造方
法。 【0011】本発明者等は、熱処理後の硬度が得やすい
フェライト−セメンタイトを主体とする結晶組織からな
る高炭素鋼のr値を向上させる方法を種々研究した。そ
の結果、特定範囲のBを含有するベイナイト組織を持つ
高炭素鋼熱延鋼板を焼鈍してその結晶組織を球状化セメ
ンタイトと針状のフェライト結晶粒からなる組織とし、
この熱延鋼板に冷間圧延と再結晶焼鈍を施すことで高い
r値を持った高炭素冷延鋼板が得られることを知見し
た。 【0012】上記の方法で良好なr値を持つ高炭素冷延
鋼板が得られる理由は定かではないが、以下のように推
測される。 【0013】鋼板の深絞り性を現す指標として用いられ
るr値を高めるには、(111)方位への集積度が高い
再結晶集合組織を持つ鋼板にする必要がある。(11
1)方位を持つ再結晶粒は、焼鈍前の母材のフェライト
結晶粒界から優先的に生成するとされている。従って、
r値を高めるには、冷間圧延前の母材の鋼の結晶組織を
このようなフェライト粒界が多い組織にするのが効果的
である。 【0014】ベイナイトは、針状にのびたフェライト中
にセメンタイトが分散した結晶組織であり、通常のフェ
ライトとパーライトからなる結晶組織よりも結晶粒界の
面積が大きい。熱間圧延後の鋼板の結晶組織がベイナイ
ト組織である鋼を球状化焼鈍すると、通常は、ポリゴナ
ルなフェライトと球状化したセメンタイトからなる一般
的な球状化焼鈍組織となる。しかし、高炭素鋼にBを適
量に含有させ、熱間圧延条件を調整してベイナイト組織
とした鋼を球状化焼鈍すれば、焼鈍後もベイナイト組織
の影響が強く残存し、上述の針状のフェライト組織を持
つ鋼板が得られる。 【0015】この針状のフェライト組織を持つ鋼では、
通常のポリゴナルなフェライト組織の鋼に較べてフェラ
イト結晶粒界が多い。このため、これを冷間圧延して焼
鈍すると、(111)再結晶粒が増し、(111)方位
への集積度が高まって高いr値が得られるものと考えら
れる。 【0016】本発明は、これらの新たに得られた知見を
基にして完成されたものである。 【0017】 【発明の実施の形態】以下に本発明の実施の形態を詳細
に説明する。なお、以下に述べる鋼の化学組成の%表示
は重量%で表す。 【0018】鋼の化学組成 C:鋼の強度を高め、焼入性を向上させるために含有さ
せる。その含有量が0.1%に満たない場合には熱処理
後の鋼の強度や硬度が不足する。C含有量が0.65%
を超えると本発明の製造方法を適用してもr値の向上が
不十分となり、成形性が改善されない。このため、C含
有量は0.1〜0.65%とする。鋼の焼入れ後の硬さ
を高める観点からC含有量は0.2%以上とするのが好
ましい。 Si:焼入性を向上させるために0.01%以上含有さ
せる。Si含有量が過剰になると鋼板が過度に硬くな
り、成形性が損なわれる。このため、Si含有量の上限
は0.3%とする。 【0019】Mn:不可避的不純物として含有されるS
による熱間脆化を防止するとともに、鋼の焼入性を高め
るために0.4%以上含有させる。Mn含有量が増すに
つれて、鋼板の成形性が損なわれるので、Mn含有量の
上限は2%とする。 【0020】sol.Al:溶鋼の脱酸剤として用いら
れる。また、Alは鋼中のNと結合して微細析出物(A
lN)となり、オーステナイト結晶粒の粗大化を抑止
し、靭性の劣化を抑止する効果がある。これらの効果を
有するために、sol.Alとして0.01%以上含有
させる。Alは過度に含有させてもこれらの効果が飽和
するうえ、成形性を害する。このため、sol.Al含
有量の上限を0.1%とする。 【0021】N:焼鈍時および焼入れ加熱時に生じる可
能性があるオーステナイト結晶粒の異常粒成長を抑止
し、靭性の劣化を抑制するために0.002%以上含有
させる。しかし、Nを過剰に含有させると鋼板の延性が
損なわれるので、その上限は0.008%とする。 【0022】B:Bは、熱間圧延後のフェライト結晶粒
界に偏析し、その後の焼鈍時に、結晶粒界の移動を抑制
してベイナイト組織の特徴を引き継いだ針状フェライト
組織を残存させる効果がある。この効果を確保し、冷間
圧延および焼鈍後の鋼板のr値を高めるために0.00
05%以上のBを含有させる。B含有量が0.005%
を超えると上記の抑制効果が飽和するうえ、鋼を脆化さ
せるおそれがある。このため、B含有量の上限は0.0
05%とする。 【0023】本発明の製造方法に用いられる鋼は、上述
の化学組成を満たすものであればよいが、場合によって
は以下に述べる元素を含有させても構わない。 【0024】Cr、Mo:これらは必須ではないが、鋼
の焼入性をさらに高める必要がある場合には、0.01
〜0.5%のCrおよび/または0.01〜0.1%の
Moを含有させるのがよい。これらの元素の含有量が上
記の下限の量に満たない場合にはこれらの元素による焼
入性向上効果が不十分である。また、上記の上限を超え
て含有させると鋼板の延性および深絞り性が損なわれ
る。焼入性を向上させる効果は1種類の元素を多量に含
有量させるよりも、複数の元素を複合して含有させる方
が効果的であるので、上記の範囲内でCrとMoを複合
して添加するのがより効果的である。 【0025】上記以外の化学組成は、Feおよび不可避
的不純物である。 【0026】処理条件 上記の範囲の化学組成からなる鋼は、常法により転炉や
電気炉で精錬された後、連続鋳造法や、鋼塊にされ後分
塊圧延される等の方法でスラブとされる。その後、スラ
ブ加熱炉で加熱され、またはスラブ加熱炉での加熱を省
略されて、熱間圧延機で圧延されて熱間圧延鋼板とされ
る。熱間圧延条件は特定するものではないが、表面性状
を確保したり圧延をしやすくするために、仕上圧延は8
00〜950℃で開始し、750〜900℃で終了する
のが好ましい。仕上圧延後、300〜520℃の範囲に
冷却されてコイル状に巻取られる。この温度範囲で巻取
ることでベイナイト組織を持った鋼板が得られる。 【0027】巻取温度が300℃に満たない場合には、
得られる熱延鋼板の結晶組織はマルテンサイトとなり、
巻取温度が500℃を超える場合にはフェライト−パー
ライト組織となり、いずれの場合とも、ベイナイト組織
が得られない。 【0028】巻取られた鋼板には、その後、650〜
(Ac1−10)℃の温度範囲で10〜30時間均熱され
る熱延板焼鈍が施される。この熱延板焼鈍の目的はセメ
ンタイトを球状化して鋼を軟化することである。焼鈍温
度が650℃に満たない場合にはセメンタイトの球状化
が不十分である。焼鈍温度がAc1を超えるとオーステナ
イトが形成され、それに伴って、針状のフェライト組織
が消失するので好ましくない。安定してAc1未満の温度
で焼鈍するためには、焼鈍温度の上限を(Ac1−10)
℃とするのがよい。均熱時間は、球状化を十分におこな
わせるためには10時間以上必要であり、30時間を超
えると球状化が飽和するのでそれ以上の焼鈍は経済性を
損なう。このため、均熱時間の範囲は10〜30時間と
する。 【0029】なお、本発明では、鋼のAc1点は、その化
学組成によって下記式で計算して求める。式の元素
記号は各元素の含有率(重量%)を表す。 【0030】 Ac1(℃)=723―11Mn+29Si+17Cr・・・ 熱延板焼鈍が施された鋼板は、30〜80%の範囲内の
圧下率で冷間圧延される。冷間圧下率が30%に満たな
い場合には、圧延集合組織の形成が不十分なために再結
晶焼鈍を施してもr値は改善されない。冷間圧下率が8
0%を超えると圧延が困難となり、圧延時に破断が発生
しやすくなる。好ましい圧下率範囲は、r値を安定して
確保するためと、製造の安定性を得るために40〜65
%である。 【0031】冷間圧延された鋼板には、650〜(Ac1
―10)℃の温度範囲で再結晶焼鈍が施される。この再
結晶焼鈍によって深絞り性を向上させるのに好ましい再
結晶集合組織が形成される。焼鈍温度が650℃に満た
ない場合には、結晶粒の成長が不十分なためにr値が向
上せず、鋼の軟化も不十分で成形性に劣る。焼鈍温度が
c1を超えると、オーステナイト変態が生じて再結晶集
合組織が消失するので好ましくない。安定してAc1未満
の温度で焼鈍するためには、焼鈍温度の上限を(Ac1
10)℃とするのがよい。焼鈍時間は、再結晶と結晶粒
成長を完了させるために20秒以上とするのが望まし
い。焼鈍方法は、箱焼鈍、連続焼鈍いずれの焼鈍方法も
適用可能である。 【0032】上記以外の処理条件は特に限定するもので
はなく、例えば、熱延鋼板の脱スケール処理や、再結晶
焼鈍後の調質圧延など、通常、鋼板を製造する際に施さ
れる処理を通常の条件で施すことができる。 【0033】 【実施例】各種の化学組成のスラブを1200℃で30
分間加熱し、850℃で熱間圧延を終了して厚さ4mm
の鋼板とし、圧延終了後、種々の条件で冷却して400
〜650℃でコイル状に巻取った。 【0034】表1にこれらの鋼の化学組成を示す。 【0035】 【表1】 【0036】これらの熱延鋼板を酸洗した後、それぞれ
のコイルから幅:300mm、長さ:300mmの鋼板
を切り出し、実験用の箱型焼鈍炉を用いて700℃で焼
鈍した。焼鈍温度までの加熱速度および焼鈍後の冷却速
度は、いずれも50℃/hrとした。ただし1例(試番
17)のみ、焼鈍条件の影響を確認するために、フェラ
イトとオーステナイト共存域である750℃で焼鈍し、
セメンタイトを球状化させるために10℃/hrの冷却
速度で650℃まで徐冷し、650℃以下の温度領域は
50℃/hrの冷却速度で常温まで冷却した。 【0037】熱延板焼鈍を施した鋼板は、実験用の冷間
圧延機を用いて、圧下率60%で圧延して厚さ1.6m
mの冷延鋼板とした。冷間圧下率の影響を検証するため
の比較材として、鋼Bについては圧下率30%および9
0%での冷間圧延もおこない、厚さ2.8mmおよび
0.4mmの冷延鋼板も得た。これらの冷延鋼板は、鋼
板表面を脱脂した後、700℃で15時間均熱する再結
晶焼鈍を施した。比較のために、鋼Bについては、60
0℃で15時間均熱する焼鈍もおこなった。再結晶焼鈍
を施した鋼板の圧延方向から、JIS−Z−2201に
規定される13B号試験片を採取し、引張試験をおこな
った。また、これらの再結晶焼鈍済みの鋼板から幅50
mm、長さ50mmの試験片を採取し、これらを870
℃に保持した熱処理炉中で30分加熱し、加熱終了後た
だちに40℃の油中へ焼入れ、その後これらの試験片の
焼入れ後の硬さを測定した。 【0038】表2に、各鋼毎の処理条件と、それぞれの
特性評価結果を示した。 【0039】 【表2】【0040】表2に示されているように、本発明で規定
する範囲内の化学組成を有し、本発明で規定する範囲内
の製造条件で製造した鋼板は、いずれも1.4以上の良
好なr値を示しており、伸び値が良好で、十分な焼入硬
さを有した。 【0041】これに対し、試番11〜16は熱間圧延後
の巻取温度が高すぎたために良好なr値が得られなかっ
た。鋼Bで、熱延板焼鈍温度が高すぎた試番17では、
フェライトとオーステナイト共存域で焼鈍したために熱
延鋼板のベイナイト組織の影響が消滅し、冷間圧下率が
低すぎた試番18では再結晶が不十分になり、いずれも
r値が好ましくなかった。冷間圧延圧下率が高すぎた試
番19では冷間圧延が困難であったのでその後の評価を
中止した。試番20では再結晶焼鈍温度が低すぎたため
に、伸びとr値が好ましくなかった。試番24〜28で
は、いずれの鋼ともB含有量が本発明が規定する範囲か
ら外れているためにr値や伸び値が改善されなかった。
C、SiまたはMn含有量が高すぎた試番21〜23で
は伸び値やr値の改善が不十分であった。 【0042】 【発明の効果】本発明の製造方法で製造される高炭素冷
延鋼板は、延性とr値が良好で成形性が優れており、従
来困難であった複雑な形状をした製品の加工が可能であ
る。しかも、鋼板の焼入れ性に優れるので、通常おこな
われている条件での焼入れ熱処理により容易に高強度ま
たは高硬度とすることができる。したがって、従来困難
であった高強度または高硬度の複雑形状部品が容易に得
られる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-carbon cold-rolled steel sheet having excellent formability. 2. Description of the Related Art A high carbon thin steel sheet is formed into a predetermined shape by press forming such as punching, bending, drawing, and the like, and then subjected to heat treatment such as quenching and tempering to increase the strength and hardness, thereby improving product quality. Is done. With the expansion of applications, there has recently been an increasing demand for application of high carbon steel sheets to products having complicated shapes such as those obtained by deep drawing. [0003] There is a method in which a low carbon thin steel sheet excellent in deep drawing formability is processed into a product having a complicated shape, and the hardness is increased after processing by a hardening treatment method such as carburizing and quenching. However, hardening methods such as carburizing and quenching are more expensive than ordinary quenching and tempering processes and are not economical. The use of high-carbon steel sheets can easily increase the hardness of products by conventional heat treatment methods, but steels with a high carbon content are represented by ductility and r-value represented by elongation values measured by tensile tests. Due to poor deep drawability, it cannot be processed into a product having a complicated shape. [0004] Carbon steel (S30CM-S75CM) and carbon tool steel (SK2M-
SK7M) hot-rolled steel sheet is subjected to cementite spheroidizing annealing to improve the ductility by changing the pearlite structure in the steel sheet to a structure of spherical cementite and soft ferrite, or to cold-rolling and annealing the hot-rolled steel sheet. To improve the moldability. However, in these methods, moldability,
In particular, the deep drawability cannot be sufficiently improved. [0005] For this reason, there is a demand for a steel that is soft and excellent in formability at the material stage, and excellent in hardenability in which strength and hardness can be easily obtained by simple heat treatment after processing. Japanese Patent Publication No. 4-56088 discloses a method for producing a high-carbon cold-rolled steel sheet having good drawability. This is a production method in which cold rolling and annealing are performed on steel whose chemical components are regulated to a specific range to graphitize cementite in the steel, and then the second cold rolling and recrystallization annealing are performed. Speaking of r value which is an index indicating deep drawability, r
Values are usually only obtained up to levels of about 1.0 or less. According to this method, a cold-rolled steel sheet having a high r-value and a deep drawability comparable to that of a mild steel sheet, which has not been obtained conventionally, can be obtained by cold rolling and annealing a steel sheet obtained by graphitizing cementite. It is supposed to be. However, this method requires a long manufacturing process and is costly. Further, the graphitized steel sheet has low hardenability as compared with a normal high carbon steel sheet, and thus the hardness obtained after the heat treatment is not sufficient. JP-A-8-246051 discloses that a hot-rolled steel sheet having a specific composition is annealed to graphitize at least 50% of the carbon in the steel, and this is subjected to cold rolling and annealing to improve formability. A method for manufacturing a medium carbon steel sheet is disclosed. In this method, although the manufacturing process is simplified as compared with the method disclosed in Japanese Patent Publication No. 4-56088, the improvement of the deep drawability is not sufficient, and the heat treatment after the heat treatment is performed because the steel sheet is a graphitized steel sheet. The hardness obtained is not sufficient. The problem to be solved by the present invention is to have high ductility and r-value and excellent moldability to obtain good hardness by a usual heat treatment method. And a method for producing a high-carbon cold-rolled steel sheet. The gist of the present invention resides in the following method for producing a high-carbon cold-rolled steel sheet having excellent formability. C: 0.1 to 0.65% by weight, S
i: 0.01 to 0.3%, Mn: 0.4 to 2%, so
l. Al: 0.01 to 0.1%, N: 0.002 to 0.
008%, B: 0.0005 to 0.005%, Cr: 0
-0.5%, Mo: 0-0.1%, balance: high-carbon steel consisting of Fe and unavoidable impurities is hot-rolled to 300-
Wound at 520 ° C into a coil, 650 to (A c1 -10)
High-carbon cold-rolled steel sheet excellent in formability, characterized in that it is annealed at a rolling reduction of 40 to 80% after annealing at 10 to 30 hours at a temperature of 40 to 80% and annealed at 650 to (A c1 -10) ° C. Manufacturing method. The present inventors have studied various methods for improving the r-value of a high carbon steel having a crystal structure mainly composed of ferrite-cementite, which is easy to obtain hardness after heat treatment. As a result, a high-carbon steel hot-rolled steel sheet having a bainite structure containing a specific range of B is annealed to change its crystal structure to a structure composed of spheroidized cementite and acicular ferrite crystal grains,
It has been found that a high-carbon cold-rolled steel sheet having a high r value can be obtained by subjecting this hot-rolled steel sheet to cold rolling and recrystallization annealing. The reason why a high carbon cold rolled steel sheet having a good r value can be obtained by the above method is not clear, but is presumed as follows. In order to increase the r value used as an index indicating the deep drawability of a steel sheet, the steel sheet must have a recrystallization texture with a high degree of integration in the (111) orientation. (11
1) It is said that recrystallized grains having an orientation are preferentially generated from ferrite crystal grain boundaries of a base material before annealing. Therefore,
In order to increase the r value, it is effective to change the crystal structure of the base steel before cold rolling to such a structure having many ferrite grain boundaries. Bainite has a crystal structure in which cementite is dispersed in acicular ferrite, and has a larger grain boundary area than a normal crystal structure composed of ferrite and pearlite. When a steel sheet having a bainite crystal structure after hot rolling is subjected to spheroidizing annealing, the steel sheet generally has a general spheroidized annealing structure including polygonal ferrite and spheroidized cementite. However, if a high-carbon steel is made to contain B in an appropriate amount, the hot rolling conditions are adjusted, and the steel having a bainite structure is spheroidized and annealed, the effect of the bainite structure remains strongly even after annealing, and the above-described needle-like structure is obtained. A steel sheet having a ferrite structure is obtained. In the steel having the acicular ferrite structure,
There are more ferrite grain boundaries than in a normal polygonal ferrite-structured steel. Therefore, when this is cold-rolled and annealed, it is considered that (111) recrystallized grains increase, the degree of integration in the (111) orientation increases, and a high r value can be obtained. The present invention has been completed based on these newly obtained findings. Embodiments of the present invention will be described below in detail. The chemical composition of steel described below is expressed in% by weight. Chemical composition C of steel: Included to increase the strength of steel and improve hardenability. If the content is less than 0.1%, the strength and hardness of the steel after heat treatment will be insufficient. C content 0.65%
If it exceeds 50, the improvement of the r value becomes insufficient even when the production method of the present invention is applied, and the moldability is not improved. For this reason, the C content is set to 0.1 to 0.65%. From the viewpoint of increasing the hardness of the steel after quenching, the C content is preferably set to 0.2% or more. Si: 0.01% or more is contained in order to improve hardenability. If the Si content is excessive, the steel sheet becomes excessively hard, and the formability is impaired. Therefore, the upper limit of the Si content is set to 0.3%. Mn: S contained as an unavoidable impurity
In order to prevent hot embrittlement due to steel and to increase the hardenability of steel, the content is made 0.4% or more. Since the formability of the steel sheet is impaired as the Mn content increases, the upper limit of the Mn content is set to 2%. Sol. Al: Used as a deoxidizer for molten steel. Al combines with N in the steel to form fine precipitates (A
1N), which has the effect of suppressing coarsening of austenite crystal grains and suppressing deterioration of toughness. To have these effects, sol. 0.01% or more is contained as Al. Even if Al is excessively contained, these effects are saturated and formability is impaired. Therefore, sol. The upper limit of the Al content is set to 0.1%. N: 0.002% or more in order to suppress abnormal grain growth of austenite crystal grains which may occur during annealing and quenching heating, and to suppress deterioration of toughness. However, if N is excessively contained, the ductility of the steel sheet is impaired, so the upper limit is made 0.008%. B: B segregates at the ferrite crystal grain boundaries after hot rolling, and at the time of subsequent annealing, suppresses the movement of the crystal grain boundaries and leaves an acicular ferrite structure that inherits the characteristics of the bainite structure. There is. In order to secure this effect and increase the r-value of the steel sheet after cold rolling and annealing, 0.00
B is contained in an amount of 05% or more. 0.005% B content
If it exceeds 300, the above-mentioned suppressing effect is saturated and the steel may be embrittled. Therefore, the upper limit of the B content is 0.0
05%. The steel used in the manufacturing method of the present invention may be any steel as long as it satisfies the above-mentioned chemical composition. In some cases, the steel may contain the following elements. Cr, Mo: These are not essential, but if it is necessary to further improve the hardenability of steel, 0.01
It is preferable to contain 0.5% of Cr and / or 0.01% to 0.1% of Mo. If the content of these elements is less than the above lower limits, the effect of improving the hardenability by these elements is insufficient. If the content exceeds the above upper limit, the ductility and deep drawability of the steel sheet are impaired. The effect of improving the hardenability is more effective if a plurality of elements are combined and contained than a large amount of one element is contained. Therefore, a combination of Cr and Mo within the above range is effective. It is more effective to add. The other chemical compositions are Fe and inevitable impurities. Processing Conditions A steel having a chemical composition within the above range is smelted by a conventional method in a converter or an electric furnace, and then slab-cast by a continuous casting method or a method of forming into a steel ingot and subsequently performing ingot rolling. It is said. Thereafter, the steel sheet is heated in a slab heating furnace or the heating in the slab heating furnace is omitted, and is rolled by a hot rolling mill to obtain a hot-rolled steel sheet. The hot rolling conditions are not specified, but in order to secure the surface properties and facilitate the rolling, finish rolling is carried out in 8 hours.
Preferably it starts at 00-950 ° C and ends at 750-900 ° C. After finish rolling, it is cooled to a range of 300 to 520 ° C. and wound into a coil. By winding in this temperature range, a steel sheet having a bainite structure can be obtained. When the winding temperature is less than 300 ° C.,
The crystal structure of the resulting hot-rolled steel sheet becomes martensite,
When the winding temperature exceeds 500 ° C., a ferrite-pearlite structure is formed, and in any case, a bainite structure cannot be obtained. After the rolled steel sheet,
The hot rolled sheet is annealed in a temperature range of (A c1 -10) ° C. for 10 to 30 hours. The purpose of this hot rolled sheet annealing is to soften steel by spheroidizing cementite. If the annealing temperature is lower than 650 ° C., spheroidization of cementite is insufficient. If the annealing temperature exceeds A c1 , austenite is formed, and the acicular ferrite structure disappears with it, which is not preferable. In order to stably perform annealing at a temperature lower than A c1 , the upper limit of the annealing temperature is set to (A c1 -10).
℃ is good. The soaking time requires at least 10 hours in order to sufficiently perform spheroidization, and if it exceeds 30 hours, spheroidization is saturated, and further annealing impairs economic efficiency. For this reason, the range of the soaking time is set to 10 to 30 hours. In the present invention, the A c1 point of steel is determined by the following formula based on its chemical composition. The element symbols in the formula represent the content (% by weight) of each element. A c1 (° C.) = 723-11Mn + 29Si + 17Cr ... The steel sheet subjected to hot-rolled sheet annealing is cold-rolled at a rolling reduction within a range of 30 to 80%. When the cold reduction is less than 30%, the r-value is not improved even if recrystallization annealing is performed due to insufficient formation of the rolling texture. 8 cold reduction
If it exceeds 0%, rolling becomes difficult, and breakage tends to occur during rolling. A preferred rolling reduction range is 40 to 65 to ensure a stable r value and to obtain the stability of production.
%. The cold-rolled steel sheets include 650- (A c1
-10) Recrystallization annealing is performed in a temperature range of ° C. By this recrystallization annealing, a recrystallization texture preferable for improving deep drawability is formed. When the annealing temperature is lower than 650 ° C., the r-value is not improved due to insufficient growth of crystal grains, and the steel is insufficiently softened, resulting in poor formability. If the annealing temperature exceeds A c1 , austenite transformation occurs and the recrystallization texture disappears, which is not preferable. In order to stably perform annealing at a temperature lower than A c1 , the upper limit of the annealing temperature is set to (A c1
10) The temperature is preferably set to ° C. The annealing time is desirably 20 seconds or more to complete recrystallization and crystal grain growth. As the annealing method, any of box annealing and continuous annealing can be applied. The processing conditions other than those described above are not particularly limited. For example, treatments usually performed when manufacturing a steel sheet, such as descaling of a hot-rolled steel sheet and temper rolling after recrystallization annealing, are performed. It can be applied under normal conditions. EXAMPLES Slabs of various chemical compositions were prepared at 1200 ° C. for 30 minutes.
Heated at 850 ° C for 4 minutes
After rolling, it was cooled under various conditions to 400
It was wound into a coil at 6650 ° C. Table 1 shows the chemical compositions of these steels. [Table 1] After pickling these hot-rolled steel sheets, a steel sheet having a width of 300 mm and a length of 300 mm was cut out from each coil and annealed at 700 ° C. using a box annealing furnace for experiments. The heating rate up to the annealing temperature and the cooling rate after the annealing were both 50 ° C./hr. However, only in one example (test number 17), in order to confirm the influence of annealing conditions, annealing was performed at 750 ° C., which is a coexistence region of ferrite and austenite.
In order to spheroidize the cementite, it was gradually cooled to 650 ° C. at a cooling rate of 10 ° C./hr, and the temperature range of 650 ° C. or less was cooled to room temperature at a cooling rate of 50 ° C./hr. The steel sheet subjected to the hot-rolled sheet annealing was rolled at a rolling reduction of 60% using an experimental cold rolling mill to a thickness of 1.6 m.
m of cold-rolled steel sheet. As a comparative material for verifying the effect of the cold rolling reduction, for steel B, the rolling reduction was 30% and 9%.
Cold rolling at 0% was also performed to obtain cold-rolled steel sheets of 2.8 mm and 0.4 mm in thickness. These cold-rolled steel sheets were subjected to recrystallization annealing in which the surfaces of the steel sheets were degreased and then soaked at 700 ° C. for 15 hours. For comparison, 60% for steel B
Annealing by soaking at 0 ° C. for 15 hours was also performed. A No. 13B test piece specified in JIS-Z-2201 was sampled from the rolling direction of the steel sheet subjected to the recrystallization annealing, and a tensile test was performed. In addition, the width of the recrystallized and annealed steel sheet is 50
mm, a test piece having a length of 50 mm was collected, and
The sample was heated in a heat treatment furnace maintained at 30 ° C. for 30 minutes, quenched into oil at 40 ° C. immediately after completion of the heating, and then the hardness of the test pieces after quenching was measured. Table 2 shows the processing conditions for each steel and the results of the respective characteristic evaluations. [Table 2] As shown in Table 2, steel sheets having a chemical composition within the range specified by the present invention and manufactured under the manufacturing conditions within the range specified by the present invention were all 1.4 or more. It showed a good r-value, a good elongation value and a sufficient quench hardness. On the other hand, in Test Nos. 11 to 16, a good r value could not be obtained because the winding temperature after hot rolling was too high. In test No. 17, in which the hot-rolled sheet annealing temperature was too high in steel B,
The effect of the bainite structure of the hot-rolled steel sheet disappeared due to annealing in the coexisting region of ferrite and austenite, and in Test No. 18 in which the cold rolling reduction was too low, recrystallization was insufficient, and the r value was not preferable in any case. In Test No. 19, in which the cold rolling reduction was too high, the subsequent evaluation was stopped because the cold rolling was difficult. In Test No. 20, the recrystallization annealing temperature was too low, and thus the elongation and the r value were not preferable. In Test Nos. 24 to 28, the r value and elongation value were not improved because the B content was out of the range specified by the present invention for all steels.
In Test Nos. 21 to 23 in which the content of C, Si or Mn was too high, the improvement of the elongation value and the r value was insufficient. The high-carbon cold-rolled steel sheet produced by the production method of the present invention has good ductility and r-value and excellent formability, and is a product of a complicated shape which has been difficult in the past. Processing is possible. Moreover, since the steel sheet is excellent in quenching properties, it can be easily made to have high strength or high hardness by quenching heat treatment under ordinary conditions. Therefore, it is possible to easily obtain a high-strength or high-hardness complex-shaped part which has been difficult in the past.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21D 9/46 - 9/48 C21D 8/00 - 8/04 C22C 38/00 - 38/60 Continuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) C21D 9/46-9/48 C21D 8/00-8/04 C22C 38/00-38/60

Claims (1)

(57)【特許請求の範囲】 【請求項1】重量%で、C:0.1〜0.65%、S
i:0.01〜0.3%、Mn:0.4〜2%、so
l.Al:0.01〜0.1%、N:0.002〜0.
008%、B:0.0005〜0.005%、Cr:0
〜0.5%、Mo:0〜0.1%、残部:Feおよび不
可避的不純物からなる高炭素鋼を熱間圧延し、300〜
520℃でコイル状に巻取り、650〜(Ac1―10)
℃で10〜30時間焼鈍した後、40〜80%の圧下率
で冷間圧延し、650〜(Ac1―10)℃で焼鈍するこ
とを特徴とする成形性に優れた高炭素冷延鋼板の製造方
法。
(57) [Claims 1] C: 0.1 to 0.65% by weight, S:
i: 0.01 to 0.3%, Mn: 0.4 to 2%, so
l. Al: 0.01 to 0.1%, N: 0.002 to 0.
008%, B: 0.0005 to 0.005%, Cr: 0
-0.5%, Mo: 0-0.1%, balance: Fe and high-carbon steel consisting of unavoidable impurities are hot-rolled,
Wound at 520 ° C into a coil, 650 to (A c1 -10)
After being annealed at 10 ° C. for 10 to 30 hours, cold-rolled at a rolling reduction of 40 to 80% and annealed at 650 to (A c1 -10) ° C. Manufacturing method.
JP22900697A 1997-08-26 1997-08-26 Manufacturing method of high carbon cold rolled steel sheet with excellent formability Expired - Fee Related JP3468048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22900697A JP3468048B2 (en) 1997-08-26 1997-08-26 Manufacturing method of high carbon cold rolled steel sheet with excellent formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22900697A JP3468048B2 (en) 1997-08-26 1997-08-26 Manufacturing method of high carbon cold rolled steel sheet with excellent formability

Publications (2)

Publication Number Publication Date
JPH1161272A JPH1161272A (en) 1999-03-05
JP3468048B2 true JP3468048B2 (en) 2003-11-17

Family

ID=16885291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22900697A Expired - Fee Related JP3468048B2 (en) 1997-08-26 1997-08-26 Manufacturing method of high carbon cold rolled steel sheet with excellent formability

Country Status (1)

Country Link
JP (1) JP3468048B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6688148B1 (en) * 2001-01-26 2004-02-10 Defiance Precision Products, Inc. Manufacturing process for making engine components of high carbon content steel using cold forming techniques
EP1359235A4 (en) 2001-02-07 2005-01-12 Jfe Steel Corp Thin steel sheet and method for production thereof
KR101284506B1 (en) * 2011-06-03 2013-07-16 현대하이스코 주식회사 HOT DIP PLATED STEEL SHEET CONTAINING Al PLATING LAYER AND METHOD FOR MANUFACTURING THE SAME
KR101284420B1 (en) * 2011-06-03 2013-07-09 현대하이스코 주식회사 HOT DIP PLATED STEEL SHEET CONTAINING Al PLATING LAYER AND METHOD FOR MANUFACTURING THE SAME
EP3115475B1 (en) 2014-03-07 2019-08-28 Nippon Steel Corporation Medium-/high-carbon steel sheet and method for manufacturing same
TWI605133B (en) 2015-05-26 2017-11-11 Nippon Steel & Sumitomo Metal Corp Steel plate and its manufacturing method
US20180171445A1 (en) * 2015-06-17 2018-06-21 Nippon Steel & Sumitomo Metal Corporation Steel plate and method of production of same
JP6610067B2 (en) * 2015-08-05 2019-11-27 日本製鉄株式会社 Cold rolled steel sheet manufacturing method and cold rolled steel sheet
KR101917447B1 (en) 2016-12-20 2018-11-09 주식회사 포스코 High strength steel sheet and warm presse formed parts having excellent high temperature elongation property, and method for manufacturing the same
CN111349856B (en) * 2020-03-26 2021-09-03 邢台钢铁有限责任公司 Cold heading steel wire rod for ultrahigh-strength lock rivet and preparation method thereof
CN115198072A (en) * 2022-06-13 2022-10-18 首钢集团有限公司 High-carbon cold-rolled sheet with good formability and preparation method thereof

Also Published As

Publication number Publication date
JPH1161272A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
JP5292698B2 (en) Extremely soft high carbon hot-rolled steel sheet and method for producing the same
JP4018905B2 (en) Hot rolled wire rod and bar for machine structure and manufacturing method thereof
JPH10219394A (en) Cold rolled steel sheet excellent in deep drawability and aging resistance, and hot rolled steel strip for cold rolled steel sheet
JP2017179596A (en) High carbon steel sheet and manufacturing method therefor
JP3460659B2 (en) Soft high carbon steel strip with small heat treatment distortion and method for producing the same
JP3468048B2 (en) Manufacturing method of high carbon cold rolled steel sheet with excellent formability
JP3125978B2 (en) Method for producing high carbon steel strip with excellent workability
JP2003073742A (en) Method for manufacturing high-carbon hot rolled steel sheet with high hardenability
JP4696753B2 (en) Method for producing high carbon cold-rolled steel sheet excellent in punching workability and high-carbon cold-rolled steel sheet
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
JPH09324212A (en) Production of hot rolled high carbon steel strip excellent in hardenability and cold workability
JP3266902B2 (en) Manufacturing method of high carbon cold rolled steel strip
JP2001181791A (en) Bar stock and wire rod for cold forging, excellent in induction hardenability and cold forgeability
JPH07310122A (en) Production of ferritic stainless steel strip having excellent bulging formability
JP3454869B2 (en) Spheroidizing annealing method of continuous annealing of high carbon steel sheet
JP3371952B2 (en) Manufacturing method of soft high carbon steel sheet for processing that can omit pickling process
JPS6137333B2 (en)
JPH08246051A (en) Production of medium carbon steel sheet excellent in workability
JPH02101122A (en) Manufacture of high-carbon sheet metal having superior formability
JP2919642B2 (en) Manufacturing method of high carbon steel for tempering with excellent toughness and fatigue resistance
JP3347210B2 (en) Manufacturing method of high strength steel sheet for precision punching
JP2003073740A (en) Method for manufacturing high-carbon cold rolled steel sheet with high hardenability
JPH05171288A (en) Production of high carbon steel sheet having superior formability
JPH07258743A (en) Production of medium carbon steel sheet excellent in workability

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees