JP4676993B2 - Bush making - Google Patents

Bush making Download PDF

Info

Publication number
JP4676993B2
JP4676993B2 JP2008021813A JP2008021813A JP4676993B2 JP 4676993 B2 JP4676993 B2 JP 4676993B2 JP 2008021813 A JP2008021813 A JP 2008021813A JP 2008021813 A JP2008021813 A JP 2008021813A JP 4676993 B2 JP4676993 B2 JP 4676993B2
Authority
JP
Japan
Prior art keywords
bush
base material
quenching
hardness
tempering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008021813A
Other languages
Japanese (ja)
Other versions
JP2009179869A (en
Inventor
公男 末房
Original Assignee
津田金属熱煉工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 津田金属熱煉工業株式会社 filed Critical 津田金属熱煉工業株式会社
Priority to JP2008021813A priority Critical patent/JP4676993B2/en
Publication of JP2009179869A publication Critical patent/JP2009179869A/en
Application granted granted Critical
Publication of JP4676993B2 publication Critical patent/JP4676993B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

本発明は、たとえばブルドーザなどに用いるブッシュの製法に関する。   The present invention relates to a method of manufacturing a bush used for, for example, a bulldozer.

ブルドーザなどに用いるブッシュは、図1に示すように、その外表面2および内表面3に耐摩耗性が要求されるとともに、ブッシュ1に加わる負荷に耐えるため、強度、靱性が要求されるため、このような要求を満足するため、従来、つぎのようなブッシュの製造方法が提案されている。   As shown in FIG. 1, the bush used for a bulldozer or the like requires wear resistance on its outer surface 2 and inner surface 3, and also requires strength and toughness to withstand the load applied to the bush 1. In order to satisfy such requirements, conventionally, the following bush manufacturing method has been proposed.

特許文献1には、質量%で、C:0.05〜0.40%、Si:0.1〜0.8%、Mn:0.5〜2.0%、Cr:0.1〜2.0%、Ti:0.005〜0.5%、B:0.0005〜0.005%、Al:0.005〜0.10%、N:0.005%以下、残部実質的にFeおよび不可避不純物とからなる耐摩耗鋼が記載されている。そして熱間圧延鋼片を加熱後、熱間圧延を行う(加熱温度は、950℃未満では、鋼の変形抵抗が高くなり、一方、1250℃を超えると、粗大粒となり、強度および靭性の確保が困難となるため、950〜1250℃とするのが好ましい)ことが記載されている。さらに熱間圧延において、900℃以下のオーステナイト未再結晶域において累積圧下率50%以上の圧延を行い、さらに旧オーステナイト粒の展伸度を2以上とし、オーステナイト未再結晶域でかつ900℃以下の低温側、好ましくは850℃〜Ar3で、累積圧下率を50%以上とする圧延を行うとしている。熱処理熱間圧延後、直ちにAr3点以上から焼入れし、その後300℃〜Ac1で焼戻し未再結晶域における累積圧下の効果を失わないように、圧延後、直ちに、焼き入れを行うとしている。焼入れ後、焼戻しを300℃〜Ac1で行い、好ましくは300〜650℃とするとしている。特許文献1の方法では、ブリネル硬さは335〜435(Hrc36〜Hrc46.1)、靭性は−40℃の吸収エネルギーで71〜141Jの値が得られるとしている。しかし、高強度、高靭性を得るために、圧延工程が必要、圧延工程後直ちに焼入れが必要であるなど工程が複雑であるという問題があった。   In Patent Document 1, in mass%, C: 0.05 to 0.40%, Si: 0.1 to 0.8%, Mn: 0.5 to 2.0%, Cr: 0.1 to 2 0.0%, Ti: 0.005-0.5%, B: 0.0005-0.005%, Al: 0.005-0.10%, N: 0.005% or less, the balance being substantially Fe And a wear resistant steel consisting of inevitable impurities. Then, after the hot-rolled steel slab is heated, hot rolling is performed. 950 to 1250 ° C. is preferable). Further, in hot rolling, rolling is performed at a cumulative reduction ratio of 50% or more in an austenite non-recrystallized region of 900 ° C. or lower, and the degree of elongation of the prior austenite grains is set to 2 or more, and the austenite non-recrystallized region is 900 ° C. or lower. Rolling at a low temperature side, preferably 850 ° C. to Ar 3, with a cumulative rolling reduction of 50% or more. After the heat treatment hot rolling, quenching is performed immediately after the rolling so that the effect of the cumulative reduction in the non-recrystallized region tempered at 300 ° C. to Ac1 is not lost. After quenching, tempering is performed at 300 ° C to Ac1, preferably 300 to 650 ° C. According to the method of Patent Document 1, Brinell hardness is 335 to 435 (Hrc 36 to Hrc 46.1), and toughness is 71 to 141 J with an absorption energy of −40 ° C. However, in order to obtain high strength and high toughness, there is a problem that the rolling process is necessary, and that the process is complicated, such as quenching immediately after the rolling process.

特許文献2には、材料に低炭素鋼である肌焼鋼(たとえばJIS:SCM415)を用い、素材の表面に浸炭を施し、その後焼入れをし、焼もどしする方法が提案されている。浸炭工程によって表面に耐摩耗性が得られ、肌焼鋼の焼入れ、焼もどしによって芯部に強度、靱性が得られることが開示されているが、浸炭工程には通常40〜50時間かかるうえ、バッチ処理であり、ブッシュを連続的に必要な量を短時間に製造することができず、製造コストがかかるという問題がある。   Patent Document 2 proposes a method in which case-hardened steel (for example, JIS: SCM415), which is a low carbon steel, is used as a material, carburized on the surface of the material, and then quenched and tempered. It is disclosed that wear resistance is obtained on the surface by the carburizing process, and strength and toughness are obtained in the core by quenching and tempering of the case hardening steel, but the carburizing process usually takes 40 to 50 hours, This is a batch process, and there is a problem that the required amount of the bush cannot be manufactured continuously in a short time, and the manufacturing cost is increased.

一方、特許文献3には、重量%で0.5〜1.0%のCを含む高炭素鋼をベースに、Mn、Cr、Moのうちの少なくとも一元素およびBを添加し、第1の工程で、ブッシュ素材に、外表面から高周波焼入れを施し、第2の工程で外側を液冷しながら、内側の焼入れを行い、第3の工程では上記ブッシュ素材に低温焼もどしを施し、内外表面付近の組織を焼入れマルテンサイトから焼もどしマルテンサイトとするとしている。そして特許文献3の製法によれば、全肉厚が炭素量:0.5%以上であり、全肉厚が浸炭層になっていると考えることができるとしている。特許文献3の製法によれば、HRC52.3までの硬さの層の深さは内側で3.2mm、外側で4.4mmとなっており、外表面の硬さがHRC60程度である。また、特許文献2の製法によれば従来の方法によるものと同等かそれ以上の靱性を有することが期待されるとしているものの、具体的にどの程度の靭性が得られるかは記載されていない。特許文献3の製法では、炭素量0.5〜1.0%の素材を用い、高硬度、高靭性のブッシュを製造しようとしているが、特許文献3の製法では、芯部中間層は、マルテンサイトになりきらない組織を、内径からの高周波焼入時に焼戻しがなされた層であり、マルテンサイト組織と、フェライトとパーライト組織が混在する、またはソルバイト組織と微細パーライト組織が混在し、これらの組織は、芯部中間層がソルバイト組織であるブッシュと比較して強靭性が70〜80%に落ちてしまい、強靭性が充分でなく、操用時に突然ブッシュが割れてしまう可能性が高くなるという問題がある。   On the other hand, in Patent Document 3, based on a high carbon steel containing 0.5 to 1.0% by weight of C, at least one element of Mn, Cr, and Mo and B are added. In the process, the bush material is induction-hardened from the outer surface, and in the second process, the inner material is quenched while liquid-cooling the outer surface. In the third process, the bush material is subjected to low-temperature tempering, and the inner and outer surfaces The nearby structure is tempered from tempered martensite. And according to the manufacturing method of patent document 3, it is supposed that the total thickness is carbon amount: 0.5% or more, and it can be considered that the total thickness is a carburized layer. According to the manufacturing method of Patent Document 3, the depth of the layer having hardness up to HRC 52.3 is 3.2 mm on the inner side and 4.4 mm on the outer side, and the hardness of the outer surface is about HRC60. Further, according to the manufacturing method of Patent Document 2, although it is expected to have toughness equal to or higher than that according to the conventional method, it is not described how much toughness is specifically obtained. In the manufacturing method of Patent Document 3, a material having a carbon content of 0.5 to 1.0% is used to manufacture a bush having high hardness and high toughness. However, in the manufacturing method of Patent Document 3, the core intermediate layer is martensite. It is a layer that has been tempered when it is induction hardened from the inner diameter, and the martensite structure and the ferrite and pearlite structure are mixed, or the sorbite structure and the fine pearlite structure are mixed. The toughness falls to 70 to 80% compared to the bush whose core intermediate layer is a sorbite structure, the toughness is not sufficient, and there is a high possibility that the bush suddenly breaks during operation. There's a problem.

特開2002−20837号公報JP 2002-20837 A 特公昭52−34806号公報Japanese Patent Publication No. 52-34806 特開平5−78745号公報JP-A-5-78745

叙上のとおり、特許文献1は、0.05〜0.40重量%の低い炭素含有量の母材を用いて、圧延工程の後直ちに焼入れをするという複雑で製造コストのかかる工程を必要としている。特許文献3は、0.5〜1.0重量%の高い炭素含有量の母材を用いて、焼入れ工程において外側を液冷しながら、内側の焼入れをするという工程で生じた中間層の強靭性が充分でない。   As described above, Patent Document 1 requires a complicated and costly process of quenching immediately after the rolling process using a base material having a low carbon content of 0.05 to 0.40% by weight. Yes. Patent Document 3 describes the toughness of the intermediate layer generated in the process of quenching the inside while liquid cooling the outside in the quenching process using a base material having a high carbon content of 0.5 to 1.0% by weight. Sex is not enough.

そこで、本発明は、中程度の炭素含有量の母材を用い、従来のブッシュの製造方法と比較して、工程がシンプルで、製造コストが低く、そのうえ、硬度、靭性ともに従来のブッシュに勝るとも劣らないブッシュの提供を目的とする。   Therefore, the present invention uses a base material having a medium carbon content, has a simple process and a low manufacturing cost, and is superior to the conventional bush in both hardness and toughness as compared with the conventional bush manufacturing method. The aim is to provide a bush that is not inferior.

本発明のブッシュの製造方法は、
0.32〜0.60重量%の炭素(C)を含有し、外径65〜130mm、内径43〜80mmの円筒状の鋼材からなるブッシュ母材を熱処理するブッシュの製法であって、
(a)ブッシュ母材を周波数0.5〜3kHzの高周波により、電力0.5〜3kW/cm2、時間20〜200秒の条件下で加熱し、ブッシュ母材の外表面から内表面まで焼入変態点温度である800〜920℃に加熱する工程と、
(b)前記工程(a)により加熱された前記ブッシュ母材を30〜130℃まで焼入冷却する工程と、
(c)前記工程(b)により焼入冷却されたブッシュ母材を、周波数0.5〜3kHzの高周波により、電力0.5〜3kW/cm2、時間20〜200秒の条件下で加熱、または送り速度2〜10mm/秒で移動加熱し、焼戻しをする工程と、
(d)前記ブッシュ母材の外表面、内表面を周波数5〜30kHzの高周波により、電力0.5〜5kW/cm2、送り速度0.5〜10mm/秒の条件下で移動焼入し、中間層を残存させる工程と
(e)炉により低温焼戻しをする工程と
を含んでなることを特徴としている。
The manufacturing method of the bush of the present invention is
A method for producing a bush, comprising 0.32 to 0.60% by weight of carbon (C), heat-treating a bush base material made of a cylindrical steel material having an outer diameter of 65 to 130 mm and an inner diameter of 43 to 80 mm,
(A) The bushing base material is heated with a high frequency of 0.5 to 3 kHz under the conditions of electric power of 0.5 to 3 kW / cm 2 and time of 20 to 200 seconds, and baked from the outer surface to the inner surface of the bushing base material. A step of heating to 800 to 920 ° C. which is an entrance transformation temperature;
(B) quenching and cooling the bush base material heated in the step (a) to 30 to 130 ° C;
(C) The bush base material quenched and cooled in the step (b) is heated with high frequency of 0.5 to 3 kHz under conditions of electric power of 0.5 to 3 kW / cm 2 and time of 20 to 200 seconds. Or the process of moving and heating at a feed rate of 2 to 10 mm / sec and tempering,
(D) The outer surface and the inner surface of the bush base material are subjected to transfer quenching under the conditions of a power of 0.5 to 5 kW / cm 2 and a feed rate of 0.5 to 10 mm / sec with a high frequency of 5 to 30 kHz. It is characterized by comprising a step of leaving the intermediate layer and (e) a step of low-temperature tempering with a furnace.

また、本発明のブッシュの製造方法は、
0.32〜0.60重量%の炭素(C)を含有し、外径65〜130mm、内径43〜80mmの円筒状の鋼材からなるブッシュ母材を熱処理するブッシュの製法であって、
(f)ブッシュ母材を周波数0.5〜3kHzの高周波により、電力0.5〜3kW/cm2、送り速度2〜10mm/秒の条件下で移動加熱し、ブッシュ母材の外表面から内表面まで焼入変態点温度である800〜920℃に加熱する工程と、
(g)前記工程(f)により加熱された前記ブッシュ母材を30〜130℃まで焼入冷却する工程と、
(h)前記工程(g)により焼入冷却されたブッシュ母材を、周波数0.5〜3kHzの高周波により、電力0.5〜3kW/cm2、時間20〜200秒の条件下で加熱、または送り速度2〜10mm/秒で移動加熱し、焼戻しをする工程と、
(i)前記ブッシュ母材の外表面、内表面を周波数5〜30kHzの高周波により、電力0.5〜5kW/cm2、送り速度0.5〜10mm/秒の条件下で移動焼入し、中間層を残存させる工程と
(j)炉で低温焼戻しをする工程と
を含んでなることを特徴としている。
Moreover, the manufacturing method of the bush of this invention is
A method for producing a bush, comprising 0.32 to 0.60% by weight of carbon (C), heat-treating a bush base material made of a cylindrical steel material having an outer diameter of 65 to 130 mm and an inner diameter of 43 to 80 mm,
(F) The bush base material is moved and heated at a power of 0.5 to 3 kW / cm 2 and a feed rate of 2 to 10 mm / second with a high frequency of 0.5 to 3 kHz. Heating to 800-920 ° C., which is the quenching transformation temperature, to the surface;
(G) quenching and cooling the bush base material heated in the step (f) to 30 to 130 ° C .;
(H) The bush base material quenched and cooled in the step (g) is heated with a high frequency of 0.5 to 3 kHz under conditions of electric power of 0.5 to 3 kW / cm 2 and time of 20 to 200 seconds. Or the process of moving and heating at a feed rate of 2 to 10 mm / sec and tempering,
(I) The outer surface and the inner surface of the bush base material are subjected to transfer quenching with a high frequency of 5 to 30 kHz under conditions of electric power of 0.5 to 5 kW / cm 2 and a feed rate of 0.5 to 10 mm / sec. It is characterized by comprising a step of leaving the intermediate layer and (j) a step of low-temperature tempering in a furnace.

また、前記工程(b)または(g)において、内外径全肉厚において最大マルテンサイトになるような冷却濃度を有する液で行なうことが好ましい。   Further, in the step (b) or (g), it is preferable to carry out with a liquid having a cooling concentration such that maximum martensite is obtained in the entire inner and outer diameters.

また、前記工程(c)または(h)が、570〜650℃の高温焼戻しであることが好ましい。   Moreover, it is preferable that the said process (c) or (h) is high temperature tempering of 570-650 degreeC.

また、前記中間層の芯部の硬度が、Hv272〜354であることが好ましい。   Moreover, it is preferable that the hardness of the core part of the said intermediate | middle layer is Hv272-354.

また、前記ブッシュのHrc45以上の硬化層深さが、外表面から肉厚の20〜45%、内表面から15〜35%の範囲にあることが好ましい。   Moreover, it is preferable that the hardened layer depth more than Hrc45 of the said bush exists in the range of 20-45% of thickness from an outer surface, and 15-35% from an inner surface.

また、ブッシュ母材が0.40〜0.50重量%の炭素(C)を含有することが好ましい。   Further, the bush base material preferably contains 0.40 to 0.50% by weight of carbon (C).

本発明の第2の態様は、0.50〜0.60重量%の炭素(C)を含有し、外径65〜130mm、内径43〜80mmの円筒状の鋼材からなるブッシュ母材を熱処理するブッシュを製造する方法であって、
(a)ブッシュ母材を周波数0.5〜3kHzの高周波により、電力0.5〜3kW/cm2、時間20〜200秒の条件下で加熱し、ブッシュ母材の外表面から内表面まで焼入変態点温度である800〜920℃に加熱する工程と、
(b)前記工程(a)により加熱された前記ブッシュ母材を30〜130℃まで焼入冷却する工程と、
(c)前記工程(b)により焼入冷却されたブッシュ母材を、炉で低温焼戻しをする工程と、
(d)ブッシュ母材の内表面を周波数5〜30kHzの高周波により、外表面を冷却しながら送り速度0.5〜10mm/秒の条件下で移動焼入し、中間層を形成する工程と
を含んでなることを特徴としている。
The second aspect of the present invention heat-treats a bush base material made of a cylindrical steel material containing 0.50 to 0.60% by weight of carbon (C) and having an outer diameter of 65 to 130 mm and an inner diameter of 43 to 80 mm. A method of manufacturing a bush, comprising:
(A) The bushing base material is heated with a high frequency of 0.5 to 3 kHz under the conditions of electric power of 0.5 to 3 kW / cm 2 and time of 20 to 200 seconds, and baked from the outer surface to the inner surface of the bushing base material. A step of heating to 800 to 920 ° C. which is an entrance transformation temperature;
(B) quenching and cooling the bush base material heated in the step (a) to 30 to 130 ° C;
(C) a step of low-temperature tempering the bush base material quenched and cooled in the step (b) in a furnace;
(D) A step of moving and quenching the inner surface of the bushing base material with a high frequency of 5 to 30 kHz and cooling the outer surface under a feed rate of 0.5 to 10 mm / second to form an intermediate layer. It is characterized by comprising.

また、本発明の第2の態様は、0.50〜0.60重量%の炭素(C)を含有し、外径65〜130mm、内径43〜80mmの円筒状の鋼材からなるブッシュ母材を熱処理するブッシュを製造する方法であって、
(f)ブッシュ母材を周波数0.5〜3kHzの高周波により、電力0.5〜3kW/cm2、送り速度2〜10mm/秒の条件下で移動加熱し、ブッシュ母材の外表面から内表面まで焼入変態点温度である800〜920℃に加熱する工程と、
(g)前記工程(f)により加熱された前記ブッシュ母材を30〜130℃まで焼入冷却する工程と、
(h)前記工程(g)により焼入冷却されたブッシュ母材を、炉で低温焼戻しをする工程と、
(i)ブッシュ母材の内表面を周波数5〜30kHzの高周波により送り速度0.5〜10mm/秒で外周表面を冷却しながら移動焼入し、中間層を形成する工程と
(j)炉により低温焼戻しをする工程と
を含んでなることを特徴としている。
Moreover, the 2nd aspect of this invention contains the bush base material which consists of cylindrical steel materials containing 0.50-0.60 weight% carbon (C), outer diameter 65-130mm, and inner diameter 43-80mm. A method of manufacturing a bush to be heat treated,
(F) The bush base material is moved and heated at a power of 0.5 to 3 kW / cm 2 and a feed rate of 2 to 10 mm / second with a high frequency of 0.5 to 3 kHz. Heating to 800-920 ° C., which is the quenching transformation temperature, to the surface;
(G) quenching and cooling the bush base material heated in the step (f) to 30 to 130 ° C .;
(H) a step of low-temperature tempering the bush base material quenched and cooled in the step (g) in a furnace;
(I) a step of moving and quenching the inner surface of the bushing base material while cooling the outer peripheral surface at a feed rate of 0.5 to 10 mm / second with a high frequency of 5 to 30 kHz and forming an intermediate layer; and (j) a furnace And a step of low-temperature tempering.

本発明によれば、製造工程が複雑でなく、かつ工程数が少なく、熱処理コストが低く、そのうえ、ブッシュの中間層は強靭性を有し、そのうえ内表面および外表面が高い耐摩耗性を備えたブッシュを提供することができる。   According to the present invention, the manufacturing process is not complicated, the number of processes is small, the heat treatment cost is low, and the intermediate layer of the bush has toughness, and the inner surface and the outer surface have high wear resistance. Bush can be provided.

以下、添付図面を参照して本発明のブッシュの製造方法を説明する。図1は、本発明のブッシュの縦断面図であり、図2は、図1の領域Xの拡大図であり、図3は、硬度とシャルピー衝撃値、硬度と引張強度との関係を示す図、図4は、本発明の方法により製造されたブッシュの断面硬度を示すグラフであり、図5は、本発明の方法の第2の態様により製造されたブッシュの断面硬度を示すグラフである。   Hereinafter, a method for manufacturing a bush according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a longitudinal sectional view of the bush of the present invention, FIG. 2 is an enlarged view of region X in FIG. 1, and FIG. 3 is a diagram showing the relationship between hardness and Charpy impact value, hardness and tensile strength. 4 is a graph showing the cross-sectional hardness of the bush manufactured by the method of the present invention, and FIG. 5 is a graph showing the cross-sectional hardness of the bush manufactured by the second embodiment of the method of the present invention.

本発明におけるブッシュ母材1は、重量%で0.32〜0.60%のCを含む中炭素鋼をベースに、Mn、CrのいずれかおよびBを添加した中炭素低合金鋼である。また、重量%で0.40〜0.50%のCを含むことがさらに好ましい。その理由は、高硬度のブッシュを製造することができるからである。これらの合金元素の添加目的および添加量は下記のとおりである。
(1)Mnの添加は焼入れ性の確保のためであり、添加量は0.55〜0.90%とする。
(2)Crの添加は焼入れ性および耐摩耗性の確保のためであり、添加量は0.45〜1.20%とする。
(3)Bの添加は靱性の確保のためであり、添加量は0.0005〜0.0035%とする。
The bush base material 1 in the present invention is a medium carbon low alloy steel in which any of Mn, Cr and B are added to a medium carbon steel containing 0.32 to 0.60% C by weight. Further, it is more preferable to contain 0.40 to 0.50% C by weight. The reason is that a bush with high hardness can be manufactured. The purpose and amount of addition of these alloy elements are as follows.
(1) The addition of Mn is for ensuring hardenability, and the addition amount is 0.55 to 0.90%.
(2) The addition of Cr is for ensuring hardenability and wear resistance, and the addition amount is 0.45 to 1.20%.
(3) The addition of B is for securing toughness, and the addition amount is 0.0005 to 0.0035%.

以下、本発明のブッシュの製造方法の第1の態様を示す。   Hereinafter, the 1st aspect of the manufacturing method of the bush of this invention is shown.

(A)ブッシュ母材を加熱する工程
本発明におけるブッシュ母材1を加熱する工程は、高周波加熱コイルに周波数0.5〜3kHzの高周波電流を通電し、重量%で0.32〜0.60%の炭素(C)を含有し、外径65〜130mm、内径43〜80mmのブッシュ母材1を高周波加熱コイル中に設置し、電力0.5〜3kW/cm2、時間20〜200秒の条件下で加熱、または送り速度2〜10mm/秒で移動加熱し、ブッシュ母材1の外表面2から内表面3まで焼入変態点温度である800〜920℃に加熱する。特に外表面2を920℃以内にし、内表面3を800℃以上に加熱する。このように加熱することにより、ブッシュ母材1は、オーステナイト化する。外表面2が920℃を超えてしまうと、結晶粒が粗大となり、充分な強度が得られないからである。800℃以下であると、オーステナイト化しないおそれがあるからである。加熱の方法としては、具体的には、処理されるブッシュ母材1を上下加熱均一ダミー材料で固定または移動させ、中心線で回転を与えながら加熱コイルに適正な周波数を有する高周波電流を通電し、製品を加熱コイルに対して固定または移動させ、ブッシュ母材1の内外表面がオーステナイト化温度(外表面850〜920℃、内表面800〜850℃)に達するまで適当な時間通電する。ブッシュ母材1を回転させる理由は外表面2全面にわたって均一な高周波焼入れを施すためである。このとき外表面2の温度は結晶粒が粗大化しないような温度となる周波数を選定する。
(A) Step of heating bush base material In the step of heating the bush base material 1 in the present invention, a high frequency current having a frequency of 0.5 to 3 kHz is applied to the high frequency heating coil, and 0.32 to 0.60 by weight%. % Of carbon (C), bush base material 1 having an outer diameter of 65 to 130 mm and an inner diameter of 43 to 80 mm is placed in a high-frequency heating coil, and has an electric power of 0.5 to 3 kW / cm 2 and a time of 20 to 200 seconds Heating is performed under conditions, or moving heating at a feed rate of 2 to 10 mm / sec, and heating is performed from the outer surface 2 to the inner surface 3 of the bush base material 1 at a quenching transformation point temperature of 800 to 920 ° C. In particular, the outer surface 2 is set to 920 ° C. or lower, and the inner surface 3 is heated to 800 ° C. or higher. By heating in this way, the bush base material 1 is austenitized. This is because if the outer surface 2 exceeds 920 ° C., the crystal grains become coarse and sufficient strength cannot be obtained. It is because there exists a possibility that it may not become austenite in it being 800 degrees C or less. As a heating method, specifically, the bush base material 1 to be processed is fixed or moved by a uniform dummy material that is heated up and down, and a high-frequency current having an appropriate frequency is applied to the heating coil while rotating around the center line. The product is fixed or moved with respect to the heating coil and energized for an appropriate time until the inner and outer surfaces of the bush base material 1 reach the austenitizing temperature (outer surface 850 to 920 ° C., inner surface 800 to 850 ° C.). The reason for rotating the bush base material 1 is to perform uniform induction hardening over the entire outer surface 2. At this time, the frequency of the outer surface 2 is selected so that the crystal grains are not coarsened.

(B)冷却工程
(A)工程の後、加熱された前記ブッシュ母材1を30〜130℃まで焼入冷却する。具体的には、ブッシュ母材1の加熱処理後、割れ発生を防止し、かつ内外表面が最大マルテンサイトになるような冷却濃度の液を冷却ジャケットから噴射し、外表面2からまたは、内外表面から急速に冷却焼入する。冷却液には水またはソリブルクエンチが用いられ、30〜130℃まで冷却する。
(B) Cooling step After the step (A), the heated bush base material 1 is quenched and cooled to 30 to 130 ° C. Specifically, after the heat treatment of the bush base material 1, a liquid having a cooling concentration that prevents cracking and that the inner and outer surfaces become maximum martensite is sprayed from the cooling jacket, and from the outer surface 2 or the inner and outer surfaces. To cool and quench rapidly. Water or a soluble quench is used as the cooling liquid, and it is cooled to 30 to 130 ° C.

上記(A)および(B)の焼入により、外表面2から内表面3までがマルテンサイト化され、ブッシュ母材1は一旦全硬化される。本発明において、全硬化とは、ブッシュの全肉厚を焼入れすることにより、全肉厚をマルテンサイト化することをいう。ブッシュの肉厚全体を全硬化し、全肉厚をマルテンサイト化することにより、高温焼戻し後の引張強度、衝撃値を、全硬化していない不完全焼入れの場合と比較して、15〜30%向上させることができる。そして、この高周波焼入れに当ってはブッシュ母材1の外表面2をHrc58〜65、内表面3をHrc56〜65にすることが必要である。上記のように、高周波焼入れによれば短時間加熱、水溶性冷却剤の組み合わせにより、脱炭層の発生を防止することができ、マルテンサイト化率が、炉による焼入れと比較して増加し、焼入硬度は、炉による焼入れと比較してHrcで2〜5程度高くなる。   By quenching in the above (A) and (B), the outer surface 2 to the inner surface 3 are martensitic, and the bush base material 1 is once fully cured. In the present invention, the total hardening means that the total thickness of the bush is made martensite by quenching the total thickness of the bush. The entire thickness of the bush is fully cured, and the total thickness is martensitic, so that the tensile strength and impact value after high-temperature tempering are 15-30 compared with the case of incomplete quenching that is not fully cured. % Improvement. In this induction hardening, it is necessary to set the outer surface 2 of the bush base material 1 to Hrc 58 to 65 and the inner surface 3 to Hrc 56 to 65. As described above, induction hardening can prevent the occurrence of a decarburized layer by combining heating for a short time and a water-soluble coolant, and the martensite conversion rate is increased as compared with quenching by a furnace. Hardening hardness is about 2 to 5 higher in Hrc than quenching by a furnace.

(C)焼戻し工程
(A)、(B)工程の後、焼入により全硬化したブッシュ母材1を、高周波加熱コイルに周波数0.5〜3kHzの高周波電流を通電し、電力0.5〜3kW/cm2、時間20〜200秒の条件下で加熱、または送り速度2〜10mm/秒で移動加熱し、焼戻しをする。具体的には、ブッシュ母材1を上下加熱均一ダミー材料で固定、または移動させ、中心線で回転を与えながら加熱コイルに周波数0.5〜3kHzの高周波電流を20〜200秒間通電し、または送り速度2〜10mm/秒で移動加熱し、ブッシュ母材1の内外表面が焼戻し温度である570〜650℃に達するまで加熱する。この高温焼戻しにより、全硬化し、マルテンサイト化された全肉厚がソルバイト組織になる。ここでソルバイト組織とは、マルテンサイトを焼戻した場合に得られる組織であり、マルテンサイトほど硬くも脆くもなく、パーライトより硬くて強靭で、衝撃抵抗が大きい組織をいう。高周波焼入れ高周波高温焼戻しをすることにより、同じ硬度であれば、高温で焼戻しをした方が靭性があがり、靭性の高いブッシュを製造することができる。図3を用いて説明すると、炉で焼入れ焼戻しした場合の引張強度と硬度の関係が図3中Aで示され、炉で焼入れ焼戻しした場合のシャルピー衝撃値と硬度の関係がBで示される。高周波で焼入れ焼戻した場合の引張強度と硬度の関係がCで示され、高周波で焼入れ焼戻した場合のシャルピー衝撃値と硬度の関係がDで示される。ブッシュの引張強度とシャルピー衝撃値は、図3中交点になるE点とF点が理想であり、炉で焼入れ焼戻した場合と高周波で焼入れ焼戻した場合、同じ硬度であれば、高周波で焼入れ焼戻した方が引張強度、シャルピー衝撃値とも優れていることがわかる。このとき内外表面の温度差はできるだけ少なくなるように周波数を選定する。温度差を少なくすることにより、均一な強度のブッシュを製造することができる。
(C) Tempering step After the steps (A) and (B), the bush base material 1 that has been completely hardened by quenching is energized with a high-frequency current of a frequency of 0.5 to 3 kHz through a high-frequency heating coil, and a power of 0.5 to Tempering is performed by heating under conditions of 3 kW / cm 2 and a time of 20 to 200 seconds, or moving and heating at a feed rate of 2 to 10 mm / second. Specifically, the bush base material 1 is fixed or moved with a vertically heated uniform dummy material, and a high frequency current with a frequency of 0.5 to 3 kHz is applied to the heating coil for 20 to 200 seconds while rotating around the center line, or Heating is performed at a feed rate of 2 to 10 mm / sec until the inner and outer surfaces of the bush base material 1 reach a tempering temperature of 570 to 650 ° C. By this high-temperature tempering, the entire thickness that is fully cured and martensified becomes a sorbite structure. Here, the sorbite structure is a structure obtained when martensite is tempered, and is a structure that is not as hard or brittle as martensite, is harder and stronger than pearlite, and has a high impact resistance. By induction hardening and induction high temperature tempering, if the hardness is the same, tempering at a high temperature increases toughness, and a bush having high toughness can be manufactured. Referring to FIG. 3, the relationship between tensile strength and hardness when quenched and tempered in a furnace is indicated by A in FIG. 3, and the relationship between Charpy impact value and hardness when quenched and tempered in a furnace is indicated by B. The relationship between tensile strength and hardness when quenched and tempered at high frequency is indicated by C, and the relationship between Charpy impact value and hardness when quenched and tempered at high frequency is indicated by D. As for the tensile strength and Charpy impact value of the bush, the points E and F, which are the intersections in Fig. 3, are ideal. It can be seen that is superior in tensile strength and Charpy impact value. At this time, the frequency is selected so that the temperature difference between the inner and outer surfaces is as small as possible. By reducing the temperature difference, a bush having uniform strength can be manufactured.

また、従来の炉で焼入れ焼戻しをする場合には、エネルギー効率は10%程度であるが、高周波で焼入れ焼戻しすることによりエネルギー効率は、40〜50%に向上する。さらに高周波による焼入れ焼戻しでは炉による焼入れ焼戻しと比較してブッシュの連続生産が可能であり、また必要時に数分で稼動および停止が可能であり、エネルギーおよび人件費が節約できる。   Moreover, when quenching and tempering in a conventional furnace, the energy efficiency is about 10%, but by quenching and tempering at a high frequency, the energy efficiency is improved to 40 to 50%. Furthermore, in the quenching and tempering by high frequency, the bush can be continuously produced as compared with the quenching and tempering by the furnace, and can be operated and stopped in a few minutes when necessary, thereby saving energy and labor costs.

(D)焼入工程
(C)工程の後、ブッシュの外表面2、内表面3を高周波加熱コイルに周波数5〜30kHzの高周波電流を通電し、送り速度0.5〜10mm/秒で移動焼入し、図2に示されるように、外側焼入層4、内側焼入層6および外側焼入層4と内側焼入層6に挟まれた中間層5を残存させる。この焼入工程により、外側焼入層4および内側焼入層6は、マルテンサイト組織となり、中間層5はソルバイト組織になる。ブッシュ母材1を上下センターで固定し、中心線で回転を与えながら周波数5〜30kHzの高周波電流を電力0.5〜5kW/cm2で通電し、時間20〜300秒の条件下で加熱、または送り速度0.5〜10mm/秒で移動焼入し、ブッシュ母材1の外表面2がHrc45を超える硬化層深さが、ブッシュ母材1の肉厚の20〜45%の範囲になるように、焼入をする。また、内表面3がHrc45を超える硬化層深さがブッシュ母材1の肉厚の15〜35%の範囲になるように、焼入をする。このように焼入をすることにより、中間層5が残存され、外側焼入層4、内側焼入層6よりは硬度は低いが、従来のブッシュと同一硬度のまま、強靭性に優れたブッシュを提供することができる。(D)の焼入工程により残存された中間層は、マルテンサイト化率が高い層の焼戻し層であるソルバイト組織となり、高い靭性を有する層が形成される。前記中間層5の硬度は、ビッカース硬さでHv272〜354である。また前記中間層5のシャルピー衝撃値は、90〜140J/cm2になる。また、外周側焼入層4および内周側焼入層6の表面硬度は、Hrc60以上になり、その後の炉焼戻しでHrc52〜61となる。
(D) Quenching step After the step (C), the outer surface 2 and the inner surface 3 of the bush are energized with a high-frequency current having a frequency of 5 to 30 kHz through a high-frequency heating coil, and moved and fired at a feed rate of 0.5 to 10 mm / sec As shown in FIG. 2, the outer hardened layer 4, the inner hardened layer 6, and the intermediate layer 5 sandwiched between the outer hardened layer 4 and the inner hardened layer 6 are left. By this quenching process, the outer quenching layer 4 and the inner quenching layer 6 have a martensite structure, and the intermediate layer 5 has a sorbite structure. The bush base material 1 is fixed at the upper and lower centers, and a high frequency current having a frequency of 5 to 30 kHz is energized at a power of 0.5 to 5 kW / cm 2 while rotating at the center line, and heated under conditions of a time of 20 to 300 seconds. Alternatively, the hardened layer depth at which the outer surface 2 of the bush base material 1 exceeds Hrc45 is 20 to 45% of the thickness of the bush base material 1 by moving quenching at a feed rate of 0.5 to 10 mm / second. Quench. Moreover, it hardens so that the hardened layer depth over which the inner surface 3 exceeds Hrc45 may be 15 to 35% of the thickness of the bush base material 1. By this quenching, the intermediate layer 5 remains and the hardness is lower than that of the outer quenching layer 4 and the inner quenching layer 6, but the same hardness as that of the conventional bushing and excellent in toughness. Can be provided. The intermediate layer left by the quenching step (D) becomes a sorbite structure which is a tempered layer of a layer having a high martensite conversion rate, and a layer having high toughness is formed. The mid layer 5 has a Vickers hardness of Hv 272 to 354. Further, the Charpy impact value of the intermediate layer 5 is 90 to 140 J / cm 2 . Moreover, the surface hardness of the outer periphery side hardening layer 4 and the inner periphery side hardening layer 6 becomes Hrc60 or more, and becomes Hrc52-61 by subsequent furnace tempering.

上記の説明から明らかなように、本発明のブッシュの製造方法は、浸炭工程を省略し、調質工程を高周波に変更したから製造工程が単純化されると共に、結果物たるブッシュも、以下に示すように、従来の特許文献1〜3の方法で製造されたブッシュに勝るとも劣らない耐摩耗性、強度および靱性を有する。   As is clear from the above description, the bushing manufacturing method of the present invention omits the carburizing step and changes the tempering step to high frequency, thereby simplifying the manufacturing step, and the resulting bushing is as follows. As shown, it has wear resistance, strength and toughness not inferior to those of the bushes manufactured by the methods of the conventional patent documents 1 to 3.

本願発明により製造されたブッシュは、表面硬度がHrc52〜61となり浸炭処理をしたブッシュに勝るとも劣らない表面硬度を有しており、そのうえ耐摩耗性に優れ約3000時間程度の連続操用が可能であるのに対し、特許文献1の発明で得られたブッシュは、炭素量が0.32%より小さい場合には、硬度はHb350程度(Hrc37.7程度)であり、本願発明の操用と同一条件下で、半分の約1500時間程度の連続操用しかできない。また特許文献1の発明で得られたブッシュは、炭素量が0.32%以上0.40%以下の場合には、硬度はHb435程度(Hrc46程度)であり、本願発明の操用と同一条件下で、約3分の2の2000時間程度の連続操用しかできない。   The bushes manufactured according to the present invention have a surface hardness of Hrc 52 to 61, which is not inferior to that of carburized bushes. In addition, they have excellent wear resistance and can be continuously operated for about 3000 hours. On the other hand, the bush obtained by the invention of Patent Document 1 has a hardness of about Hb350 (about Hrc37.7) when the carbon content is smaller than 0.32%. Under the same conditions, only half the continuous operation is possible for about 1500 hours. Further, the bush obtained by the invention of Patent Document 1 has a hardness of about Hb435 (about Hrc46) when the carbon content is 0.32% or more and 0.40% or less, and is the same condition as the operation of the present invention. Below, only about 2/3 of 2000 hours of continuous operation is possible.

また、靭性については、本願発明により製造されたブッシュの芯部は、マルテンサイト組織を高温焼戻しをしてソルバイト組織になり、特許文献3のブッシュは、マルテンサイト組織と、フェライトとパーライト組織とが混在しているか、またはソルバイト組織と微細パーライト組織が混在しており、本願発明と比較して高々70〜80%程度の靭性しか得られない。   As for toughness, the core of the bush manufactured according to the present invention is a sorbite structure by high-temperature tempering of the martensite structure. The bush of Patent Document 3 has a martensite structure, a ferrite and a pearlite structure. It is mixed, or a sorbite structure and a fine pearlite structure are mixed, and only toughness of about 70 to 80% is obtained at most as compared with the present invention.

つぎに、本発明のブッシュの製造方法の第2の態様を説明する。   Next, a second aspect of the method for manufacturing a bush according to the present invention will be described.

(E)ブッシュ母材を加熱する工程
母材を加熱する工程は、第1の態様と同様である。
(E) The process of heating a bush base material The process of heating a base material is the same as that of a 1st aspect.

(F)冷却工程
冷却工程も、第1の態様と同様である。
(F) Cooling step The cooling step is the same as in the first embodiment.

(G)焼戻し工程
(E)、(F)工程の後、焼入により全硬化したブッシュ母材1を、炉で低温焼戻しを行なう。炉で150〜200℃で、4〜6時間加熱することにより、焼戻しを行なう。
(G) Tempering Step After the steps (E) and (F), the bush base material 1 that has been completely hardened by quenching is tempered at a low temperature in a furnace. Tempering is performed by heating at 150 to 200 ° C. for 4 to 6 hours in a furnace.

(H)焼入工程
焼戻し工程の後、高周波加熱コイルに周波数5〜30kHzの高周波電流を電力0.5〜5kW/cm2で通電し、外側を冷却しながら、送り速度0.5〜10mm/秒で内側を移動焼入し、外側焼入層4を残存させ、内側焼入層6および外側焼入層4と内側焼入層6に挟まれた中間層5を形成する。この焼入工程により、外側焼入層4および内側焼入層6は、マルテンサイト組織となり、中間層5は、内側からの加熱により焼戻しされ、ソルバイト組織になる。ブッシュ母材1を上下センターで固定し、中心線で回転を与えながら周波数3〜30kHzの高周波電流を電力0.5〜5kW/cm2で通電し、送り速度0.5〜10mm/秒で移動焼入し、ブッシュ母材1の外表面2がHrc45を超える硬化層深さが、ブッシュ母材1の肉厚の20〜45%の範囲が残存するように、内表面3がHrc45を超える硬化層深さがブッシュ母材1の肉厚の15〜35%の範囲になるように、焼入をする。このように焼入をすることにより、中間層5が形成され、外側焼入層4、内側焼入層6より硬度は低いが、従来のブッシュと同一硬度のまま、強靭性に優れたブッシュを提供することができる。(H)の焼入工程により形成された中間層は、マルテンサイト化率が高い層の焼戻し層であるソルバイト組織となり、高い靭性を有した層が形成される。前記中間層5の硬度は、ビッカース硬さでHv300〜450である。また(H)の焼入工程後、外側焼入層4および内側焼入層6の表面硬度は、Hrc56〜61になる。
(H) Quenching step After the tempering step, a high frequency current of 5 to 30 kHz is supplied to the high frequency heating coil with a power of 0.5 to 5 kW / cm 2 and the outside is cooled, while a feed rate of 0.5 to 10 mm / The inner hardened layer 4 is moved and hardened in seconds to leave the outer hardened layer 4, thereby forming the inner hardened layer 6 and the intermediate hardened layer 4 sandwiched between the outer hardened layer 4 and the inner hardened layer 6. By this quenching process, the outer hardened layer 4 and the inner hardened layer 6 have a martensite structure, and the intermediate layer 5 is tempered by heating from the inner side to have a sorbite structure. The bush base material 1 is fixed at the upper and lower centers, and a high frequency current of 3 to 30 kHz is applied at a power of 0.5 to 5 kW / cm 2 while rotating at the center line, and moved at a feed rate of 0.5 to 10 mm / second. Hardened, the inner surface 3 exceeds Hrc45 so that the hardened layer depth of the outer surface 2 of the bushing base material 1 exceeds Hrc45 remains in the range of 20 to 45% of the thickness of the bushing base material 1 Quenching is performed so that the layer depth is in the range of 15 to 35% of the thickness of the bush base material 1. By quenching in this way, the intermediate layer 5 is formed, and the hardness is lower than that of the outer quenching layer 4 and the inner quenching layer 6, but a bush having excellent toughness while maintaining the same hardness as the conventional bushing. Can be provided. The intermediate layer formed by the quenching step (H) has a sorbite structure, which is a tempered layer having a high martensite conversion rate, and a layer having high toughness is formed. The intermediate layer 5 has a Vickers hardness of Hv 300 to 450. Further, after the quenching step (H), the surface hardness of the outer hardened layer 4 and the inner hardened layer 6 becomes Hrc56-61.

上記の説明から明らかなように、本発明のブッシュの製造方法は、浸炭を省略し、調質工程を高周波に変更したから製造工程が単純化されると共に、結果物たるブッシュも、以下に示すように、従来の特許文献1〜3の方法で製造されたブッシュと同等かそれ以上の耐摩耗性、強度および靱性を有する。   As is apparent from the above description, the bush manufacturing method of the present invention omits carburization and changes the tempering process to a high frequency, so that the manufacturing process is simplified and the resulting bush is also shown below. As described above, it has wear resistance, strength and toughness equivalent to or higher than those of the bushes manufactured by the methods of the conventional patent documents 1 to 3.

以下、実施例にもとづいて、本発明をさらに詳細に説明する。ただし、本発明は実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to the examples.

実施例1
ブッシュ材質SCrB440KH、大きさは長さL=225mm、外径D1=98mm、内径D2=60.5mm、炭素(C)含有量が0.41重量%のものをブッシュ母材1として使用した。
Example 1
Bush material SCrB440KH having a length L = 225 mm, an outer diameter D1 = 98 mm, an inner diameter D2 = 60.5 mm, and a carbon (C) content of 0.41 wt% was used as the bush base material 1.

(1)まず、上記ブッシュ母材1を上下加熱均一ダミー材料で固定し、ブッシュ母材1に回転を与える装置により、ブッシュ母材1の軸心の回りに100rpmで回転させながら電気興業(株)製の発振機PTG−350によりブッシュ母材1を、周波数2.4kHz、電力85.8〜141.1kW、加熱時間60秒の条件下で加熱した。その結果、熱電対を貼り付けて表面温度を計測したところ、外表面の温度は、892℃まで上昇し、内表面は、836℃まで上昇した。 (1) First, the bush base material 1 is fixed with a uniform dummy material heated up and down, and rotated by 100 rpm around the axis of the bush base material 1 by means of a device that gives the bush base material 1 rotation. The bush base material 1 was heated by an oscillator PTG-350 manufactured under the conditions of a frequency of 2.4 kHz, a power of 85.8 to 141.1 kW, and a heating time of 60 seconds. As a result, when the surface temperature was measured by attaching a thermocouple, the temperature of the outer surface rose to 892 ° C., and the inner surface rose to 836 ° C.

(2)つぎに、前記(1)の工程で加熱されたブッシュ母材1を外側より焼入冷却した。冷却剤は大同化学工業(株)製のソリブルNT−3を用い、濃度2%、流量250L/分、時間30秒の条件下で焼入冷却を行なった。その結果、外表面の温度は30℃、内表面の温度は30℃まで低下した。 (2) Next, the bush base material 1 heated in the step (1) was quenched and cooled from the outside. As a coolant, Solvable NT-3 manufactured by Daido Chemical Industry Co., Ltd. was used, and quenching cooling was performed under conditions of a concentration of 2%, a flow rate of 250 L / min, and a time of 30 seconds. As a result, the temperature of the outer surface decreased to 30 ° C., and the temperature of the inner surface decreased to 30 ° C.

この焼入れの結果、外表面の硬度は、Hrc60、内表面の硬度は、Hrc56であった。   As a result of this quenching, the hardness of the outer surface was Hrc60, and the hardness of the inner surface was Hrc56.

(3)つぎに、焼入れにより、全硬化したブッシュ母材1を焼戻しした。焼戻しには、(1)と同じ発振機により、周波数2.4kHzで電力77.4kWで時間70秒の条件下で加熱した。その結果熱電対を貼り付けて表面温度を計測したところ、外表面の温度は600℃まで上昇し、内表面は580℃まで上昇した。その結果、外表面の硬度はHrc32.5に、内表面の硬度はHrc30となり、ブッシュ母材はソルバイト組織となった。 (3) Next, the fully cured bush base material 1 was tempered by quenching. For tempering, the same oscillator as in (1) was heated at a frequency of 2.4 kHz and a power of 77.4 kW for 70 seconds. As a result, when the surface temperature was measured by attaching a thermocouple, the temperature of the outer surface rose to 600 ° C., and the inner surface rose to 580 ° C. As a result, the hardness of the outer surface was Hrc 32.5, the hardness of the inner surface was Hrc 30, and the bush base material had a sorbite structure.

(4)つぎに、外表面を周波数5.0kHzの高周波電流を加熱コイルに通電し、送り速度4.0mm/秒の条件下で移動焼入し、その結果、パイロスコープで表面温度を計測したところ、外表面温度は、850℃、内表面温度は、350℃まで上昇した。同時に、移動冷却方法により、冷却焼入し、外表面の硬度がHrc64であった。つぎに、内表面を周波数15.8kHzの高周波電流を加熱コイルに通電し、送り速度2.5mm/秒で外周表面を冷却しながら移動焼入し、内表面の硬度はHrc64であった。その後炉で180℃焼戻し後の断面硬度分布を図4に示す。断面硬度とは、ブッシュをある位置で切断した場合の破断面の硬度をいうものである。図4を参照すると、ブッシュの全厚さ22mmのうち、Hrc45以上の硬化層深さは、外周表面から7.1mmまでとなり、内周表面から5.2mmとなった。そして、Hrc45より小さい層である中間層の硬さは、Hrc28〜32.5を示しており、図4に示すように、中間層がほぼ同じ硬度を示しており、破壊されにくくなっている。 (4) Next, a high frequency current having a frequency of 5.0 kHz was applied to the heating coil on the outer surface, and transfer quenching was performed under the condition of a feed rate of 4.0 mm / second. As a result, the surface temperature was measured with a pyroscope. However, the outer surface temperature increased to 850 ° C., and the inner surface temperature increased to 350 ° C. At the same time, it was cooled and quenched by the moving cooling method, and the hardness of the outer surface was Hrc64. Next, a high frequency current having a frequency of 15.8 kHz was applied to the heating coil on the inner surface, and the outer surface was moved and quenched while cooling at a feed rate of 2.5 mm / sec. The hardness of the inner surface was Hrc64. The cross-sectional hardness distribution after tempering at 180 ° C. in a furnace is shown in FIG. The cross-sectional hardness refers to the hardness of the fracture surface when the bush is cut at a certain position. Referring to FIG. 4, out of the total thickness of the bush of 22 mm, the hardened layer depth of Hrc45 or more was 7.1 mm from the outer peripheral surface and 5.2 mm from the inner peripheral surface. And the hardness of the intermediate | middle layer which is a layer smaller than Hrc45 has shown Hrc28-32.5, and as shown in FIG. 4, the intermediate | middle layer has shown the substantially same hardness and is hard to be destroyed.

比較例1
ブッシュ材質SCrB440KH、大きさは長さL=225mm、外径D1=98mm、内径D2=60.5mm、炭素(C)含有量が0.41重量%のものを比較例として使用した。
Comparative Example 1
A bush material SCrB440KH having a length L = 225 mm, an outer diameter D1 = 98 mm, an inner diameter D2 = 60.5 mm, and a carbon (C) content of 0.41% by weight was used as a comparative example.

(1)まず、上記ブッシュ母材1を無酸化焼入れ炉により、850℃に加熱後、1時間保持した。 (1) First, the bush base material 1 was heated to 850 ° C. in a non-oxidation quenching furnace and held for 1 hour.

(2)つぎに、前記(1)の工程で加熱されたブッシュ母材1を焼入冷却した。焼入れ冷却には焼入油(コールド)60℃にブッシュ母材1を投入し、10分間冷却した。 (2) Next, the bush base material 1 heated in the step (1) was quenched and cooled. For quenching and cooling, the bush base material 1 was added to quenching oil (cold) at 60 ° C. and cooled for 10 minutes.

(3)つぎに、焼戻し炉内大気中で、570℃に加熱し、3.5時間保持後、空冷した。 (3) Next, it was heated to 570 ° C. in the air in the tempering furnace, held for 3.5 hours, and then air cooled.

表1に、実施例および比較例により製造されたブッシュの引張強度およびシャルピー衝撃値の値を示す。シャルピー衝撃値の測定は、JISKU2の規定に基づく2mmUノッチ標準寸法試験片を用い、シャルピー衝撃試験を室温で行なった。引張強度は、JIS14A号の試験片を用いて行なった。表1に示されるように、本実施例で製造したブッシュのシャルピー衝撃値は、高周波焼入れ焼戻し品である実施例1−1では、シャルピー衝撃値は、122J/cm2、129J/cm2、128J/cm2を示した。実施例1−2では、シャルピー衝撃値は、120J/cm2、130J/cm2、122J/cm2を示した。炉焼入れ焼戻し品である比較例−1では、シャルピー衝撃値は、100J/cm2、87J/cm2、104J/cm2を示し、比較例−2では、シャルピー衝撃値は、99J/cm2、101J/cm2、108J/cm2を示した。このデータから、高周波で焼入れ焼戻しを行なう本実施例1で製造されたブッシュは、炉で焼入れ焼戻しを行なったブッシュと比較して、シャルピー衝撃値の平均値は、比較例1の1.25倍となり、高周波で焼入れ焼戻しをすることにより、靭性が高いことがわかった。また、本実施例1−1の引張強度は、980N/m2、実施例1−2の引張強度は、983N/m2であった。比較例の1の引張強度は936N/m2、比較例の2の引張強度は941N/m2となり、引張強度の平均値は、高周波で焼入れ焼戻しを行なった本実施例は、炉で焼入れ焼戻しを行なった比較例の1.046倍となり、引張強度が同程度であることがわかった。 Table 1 shows the values of the tensile strength and Charpy impact value of the bushes manufactured according to the examples and comparative examples. For the measurement of Charpy impact value, a Charpy impact test was performed at room temperature using a 2 mm U notch standard size test piece based on the JISKU2. The tensile strength was measured using a JIS 14A test piece. As shown in Table 1, Charpy impact value of the bushing produced in this example, in Examples 1-1 is a high frequency hardening and tempering articles, Charpy impact value, 122J / cm 2, 129J / cm 2, 128J / Cm 2 . In Example 1-2, the Charpy impact value indicated 120J / cm 2, 130J / cm 2, 122J / cm 2. In Comparative Example 1 a furnace quenching and tempering articles, Charpy impact value indicates 100J / cm 2, 87J / cm 2, 104J / cm 2, in Comparative Example -2 Charpy impact value, 99j / cm 2, 101 J / cm 2 and 108 J / cm 2 were shown. From this data, the bush manufactured in Example 1 that is quenched and tempered at high frequency has an average Charpy impact value that is 1.25 times that of Comparative Example 1 compared to the bush that was quenched and tempered in the furnace. Thus, it was found that toughness is high by quenching and tempering at high frequency. Moreover, the tensile strength of Example 1-1 was 980 N / m 2 , and the tensile strength of Example 1-2 was 983 N / m 2 . The tensile strength of Comparative Example 1 is 936 N / m 2 , the tensile strength of Comparative Example 2 is 941 N / m 2 , and the average tensile strength is high-frequency quenching and tempering in this example. It was found to be 1.046 times that of the comparative example, and the tensile strength was comparable.

Figure 0004676993
Figure 0004676993

実施例2
ブッシュ材質SCrB440KH、大きさは長さL=154mm、外径D1=73mm、内径D2=44.6mm、C含有量が重量%で0.41%のものをブッシュの母材として使用した。
Example 2
Bush material SCrB440KH, size L = 154 mm, outer diameter D1 = 73 mm, inner diameter D2 = 44.6 mm, C content of 0.41% by weight was used as the base material of the bush.

(1)まず、上記母材を上下加熱均一ダミー材料で固定し、母材に回転を与える装置により、母材の軸心の回りに100rpmで回転させながら電気興業(株)製の発振機PTG−350により母材を、周波数2.4kHz、電力95〜136kW、加熱時間25秒間で加熱した。その結果、熱電対を貼り付けて表面温度を計測したところ、外表面の温度は、910℃まで上昇し、内表面は、850℃まで上昇した。 (1) First, an oscillator PTG manufactured by Denki Kogyo Co., Ltd. is rotated while rotating at 100 rpm around the axis of the base material by a device that fixes the base material with a uniform dummy material that is heated up and down and rotates the base material. The base material was heated by −350 at a frequency of 2.4 kHz, a power of 95 to 136 kW, and a heating time of 25 seconds. As a result, when the surface temperature was measured by attaching a thermocouple, the temperature of the outer surface rose to 910 ° C., and the inner surface rose to 850 ° C.

(2)つぎに、前記(1)の工程で加熱された母材を焼入冷却した。冷却剤は大同化学工業(株)製のソリブルNT−3を用い、濃度2%、流量250L/分、時間25秒の条件下で焼入冷却を行なった。その結果、外表面の温度は30℃、内表面の温度は30℃まで低下した。 (2) Next, the base material heated in the step (1) was quenched and cooled. As a coolant, Solvable NT-3 manufactured by Daido Chemical Industry Co., Ltd. was used, and quenching cooling was performed under conditions of a concentration of 2%, a flow rate of 250 L / min, and a time of 25 seconds. As a result, the temperature of the outer surface decreased to 30 ° C., and the temperature of the inner surface decreased to 30 ° C.

この焼入れの結果、外表面の硬度は、Hrc60、内表面の硬度は、Hrc56.7となった。   As a result of this quenching, the hardness of the outer surface was Hrc60, and the hardness of the inner surface was Hrc56.7.

(3)つぎに、焼入れにより、全硬化した母材を焼戻ししブッシュを得た。焼戻しには、炉により160℃で5時間焼戻しをし、その結果、外表面の硬度はHrc57に、内表面の硬度はHrc54であった。 (3) Next, the hardened base material was tempered by quenching to obtain a bush. For tempering, the furnace was tempered in an oven at 160 ° C. for 5 hours. As a result, the hardness of the outer surface was Hrc57 and the hardness of the inner surface was Hrc54.

(4)つぎに、ブッシュの内表面を硬化するために、周波数15.6kHzの高周波電流を加熱コイルに通電し、外表面を冷却しながら送り速度7mm/秒の条件下で移動焼入した。その結果、内表面温度は、810℃まで上昇した。同時に、移動冷却方法により、焼入冷却し、外表面の硬度がHrc57、内表面の硬度がHrc63となった。この焼入工程後、炉で180℃焼戻実施後の硬度分布を図5に示す。図5を参照すると、ブッシュの全厚さ22mmのうち、Hrc45以上の硬化層深さは、外表面から6mmまでとなり、内表面からは2.5mmまでであった。そして、Hrc45より小さい層である中間層の芯部の硬度は、Hv300〜450となった。 (4) Next, in order to harden the inner surface of the bush, a high-frequency current having a frequency of 15.6 kHz was applied to the heating coil, and moving quenching was performed under the condition of a feed rate of 7 mm / sec while cooling the outer surface. As a result, the inner surface temperature rose to 810 ° C. At the same time, quenching and cooling were performed by the moving cooling method, and the hardness of the outer surface became Hrc57 and the hardness of the inner surface became Hrc63. FIG. 5 shows the hardness distribution after tempering at 180 ° C. in the furnace after this quenching step. Referring to FIG. 5, out of the total thickness of 22 mm of the bush, the depth of the hardened layer of Hrc45 or more was 6 mm from the outer surface and 2.5 mm from the inner surface. And the hardness of the core part of the intermediate | middle layer which is a layer smaller than Hrc45 became Hv300-450.

以下に、実施例1および2と、特許文献1および3とを特性、硬さ、組織、割れ破壊の可能性について比較した表を示す。表2および表3は、実施例1と比較例2の比較であり、ブッシュの表面と芯部のそれぞれについての比較である。比較例2は、特許文献1に記載された方法、特に0.29重量%の炭素を含有した母材を用い、焼入温度730℃、焼戻し温度450℃で製造している。表4および表5は、実施例1と比較例3の比較であり、比較例3は、特許文献1に記載された方法、特に0.33重量%の炭素を含有した母材を用い、焼入温度720℃、焼戻し温度700℃で製造している。表6は、実施例1および2と比較例4の比較であり、比較例4は、特許文献3に記載された方法である。   Below, the table | surface which compared Example 1 and 2 and patent document 1 and 3 about the characteristic, hardness, structure | tissue, and the possibility of crack destruction is shown. Tables 2 and 3 are a comparison between Example 1 and Comparative Example 2, and are comparisons for the surface of the bush and the core. Comparative Example 2 is manufactured at a quenching temperature of 730 ° C. and a tempering temperature of 450 ° C. using the method described in Patent Document 1, particularly a base material containing 0.29 wt% carbon. Tables 4 and 5 are a comparison between Example 1 and Comparative Example 3. In Comparative Example 3, the method described in Patent Document 1, in particular, a base material containing 0.33% by weight of carbon was used. It is manufactured at an input temperature of 720 ° C and a tempering temperature of 700 ° C. Table 6 is a comparison between Examples 1 and 2 and Comparative Example 4, and Comparative Example 4 is a method described in Patent Document 3.

Figure 0004676993
Figure 0004676993

Figure 0004676993
Figure 0004676993

表2および表3によると、実施例1の方法により製造されたブッシュは、芯部は比較例2より靭性が高く、表面部は比較例2より硬く、比較例2より耐摩耗性が高く、割れ破壊が起こりにくいブッシュであることがわかる。   According to Table 2 and Table 3, the bush manufactured by the method of Example 1 has a core part with higher toughness than Comparative Example 2, a surface part is harder than Comparative Example 2, and has higher wear resistance than Comparative Example 2. It can be seen that the bushing is less prone to breakage.

Figure 0004676993
Figure 0004676993

Figure 0004676993
Figure 0004676993

表4および表5によると、実施例1の方法により製造されたブッシュは、芯部の靭性は比較例3と同程度だが、表面部が比較例3より硬く、比較例3のブッシュは、実施例1のブッシュと同一の操用条件下で、2000時間程度の連続操用しかできないのに対して、実施例1のブッシュは3000時間程度の連続操用が可能であり、コストパフォーマンスに優れたブッシュを提供することができる。   According to Table 4 and Table 5, the bush manufactured by the method of Example 1 has the same core toughness as Comparative Example 3, but the surface part is harder than Comparative Example 3, and the bush of Comparative Example 3 is Under the same operating conditions as the bushing of Example 1, only continuous operation for about 2000 hours can be performed, whereas the bushing of Example 1 is capable of continuous operation for about 3000 hours and has excellent cost performance. A bush can be provided.

Figure 0004676993
Figure 0004676993

表6によると、比較例4の芯部の靭性は不明であるが、比較例4の芯部の組織は、フェライト組織、パーライト組織、マルテンサイト組織およびソルバイト組織が混在している組織であるため、靭性が低く、割れ破壊が起きやすい。それに対し、実施例1は芯部がソルバイト単相組織であり、靭性が高く割れ破壊も起きにくい。   According to Table 6, although the toughness of the core part of Comparative Example 4 is unknown, the structure of the core part of Comparative Example 4 is a structure in which a ferrite structure, a pearlite structure, a martensite structure, and a sorbite structure are mixed. , Low toughness and easy to break. On the other hand, Example 1 has a sorbite single-phase structure in the core, and has high toughness and is less likely to break.

本発明のブッシュの縦断面図である。It is a longitudinal cross-sectional view of the bush of this invention. 図1におけるXの部分拡大図である。It is the elements on larger scale of X in FIG. 硬度とシャルピー衝撃値、硬度と引張強度との関係を示す図である。It is a figure which shows the relationship between hardness and Charpy impact value, hardness, and tensile strength. 本発明の方法により製造されたブッシュの断面硬度を示すグラフである。It is a graph which shows the cross-sectional hardness of the bush manufactured by the method of this invention. 本発明の方法の第2の態様により製造されたブッシュの断面硬度を示すグラフである。It is a graph which shows the cross-sectional hardness of the bush manufactured by the 2nd aspect of the method of this invention.

符号の説明Explanation of symbols

1 ブッシュ母材
2 外表面
3 内表面
4 外側焼入層
5 中間層
6 内側焼入層
1 Bush Base Material 2 Outer Surface 3 Inner Surface 4 Outer Hardened Layer 5 Intermediate Layer 6 Inner Hardened Layer

Claims (5)

0.40〜0.50質量%の炭素(C)を含有し、外径65〜130mm、内径43〜80mmの円筒状の鋼材からなるブッシュ母材を熱処理するブッシュの製法であって、
(a)ブッシュ母材を周波数0.5〜3kHzの高周波により、電力85.8〜141.1kW、時間20〜200秒の条件下で加熱し、ブッシュ母材の外表面から内表面まで焼入変態点温度である800〜920℃に加熱する工程と、
(b)前記工程(a)により加熱された前記ブッシュ母材を30〜130℃まで内外表面から焼入冷却し、全肉厚をマルテンサイト化する工程と、
(c)前記工程(b)により焼入冷却されたブッシュ母材を、周波数0.5〜3kHzの高周波により、電力0.5〜3kW/cm2、時間20〜200秒の条件下で加熱、または送り速度2〜10mm/秒で移動加熱し、焼戻しをする工程と、
(d)前記ブッシュ母材の外表面、内表面を周波数5〜30kHzの高周波により、電力0.5〜5kW/cm2、送り速度0.5〜10mm/秒の条件下で移動焼入し、中間層を残存させる工程と、
(e)炉により低温焼戻しをする工程と
を含んでなるブッシュの製造方法。
A method for producing a bush, comprising 0.40 to 0.50% by mass of carbon (C), heat-treating a bush base material made of a cylindrical steel material having an outer diameter of 65 to 130 mm and an inner diameter of 43 to 80 mm,
(A) The bushing base material is heated with a high frequency of 0.5 to 3 kHz under conditions of power 85.8 to 141.1 kW and time 20 to 200 seconds, and quenched from the outer surface to the inner surface of the bushing base material. Heating to a transformation point temperature of 800-920 ° C .;
(B) quenching and cooling the bush base material heated in the step (a) from the inner and outer surfaces to 30 to 130 ° C., and converting the total thickness to martensite;
(C) The bush base material quenched and cooled in the step (b) is heated with high frequency of 0.5 to 3 kHz under conditions of electric power of 0.5 to 3 kW / cm 2 and time of 20 to 200 seconds. Or the process of moving and heating at a feed rate of 2 to 10 mm / sec and tempering,
(D) The outer surface and the inner surface of the bush base material are subjected to transfer quenching under the conditions of a power of 0.5 to 5 kW / cm 2 and a feed rate of 0.5 to 10 mm / sec with a high frequency of 5 to 30 kHz. Leaving the intermediate layer,
(E) A method of manufacturing a bush including a step of low-temperature tempering in a furnace.
前記工程(b)において、内外径全肉厚がマルテンサイト化するような水溶性冷却液の濃度を有する液で冷却することを特徴とする請求項1記載のブッシュの製造方法。 2. The method for manufacturing a bush according to claim 1, wherein in the step (b), the bushing is cooled with a liquid having a concentration of a water-soluble cooling liquid such that the total thickness of the inner and outer diameters becomes martensite. 前記工程(c)が、570〜650℃の高温焼戻しであることを特徴とする請求項1または2記載のブッシュの製造方法。 The method for manufacturing a bush according to claim 1 or 2, wherein the step (c) is high-temperature tempering at 570 to 650 ° C. 前記中間層の芯部の硬度が、Hv272〜354であることを特徴とする請求項1〜3のいずれかに記載のブッシュの製造方法。 The method for manufacturing a bush according to any one of claims 1 to 3, wherein a hardness of a core portion of the intermediate layer is Hv 272 to 354. 0.50〜0.60質量%の炭素(C)を含有し、外径65〜130mm、内径43〜80mmの円筒状の鋼材からなるブッシュ母材を熱処理するブッシュを製造する方法であって、
(a)ブッシュ母材を周波数0.5〜3kHzの高周波により、電力95〜136kW、時間20〜200秒の条件下で加熱し、ブッシュ母材の外表面から内表面まで焼入変態点温度である800〜920℃に加熱する工程と、
(b)前記工程(a)により加熱された前記ブッシュ母材を30〜130℃まで内外表面から焼入冷却し、全肉厚をマルテンサイト化する工程と、
(c)前記工程(b)により焼入冷却されたブッシュ母材を、炉で低温焼戻しをする工程と、
(d)ブッシュ母材の内表面を周波数5〜30kHzの高周波により、外表面を冷却しながら送り速度0.5〜10mm/秒の条件下で移動焼入し、中間層を形成する工程と
(e)炉により低温焼戻しをする工程と
を含んでなるブッシュの製造方法。
A method of manufacturing a bushing that includes 0.50 to 0.60% by mass of carbon (C) and heat-treats a bushing base material made of a cylindrical steel material having an outer diameter of 65 to 130 mm and an inner diameter of 43 to 80 mm,
(A) The bushing base material is heated with a high frequency of 0.5 to 3 kHz under the conditions of electric power of 95 to 136 kW and time of 20 to 200 seconds, and the quenching transformation point temperature from the outer surface to the inner surface of the bushing base material. Heating to 800-920 ° C.,
(B) quenching and cooling the bush base material heated in the step (a) from the inner and outer surfaces to 30 to 130 ° C., and converting the total thickness to martensite;
(C) a step of low-temperature tempering the bush base material quenched and cooled in the step (b) in a furnace;
(D) A step of moving and quenching the inner surface of the bush base material with a high frequency of 5 to 30 kHz and cooling the outer surface under a feed rate of 0.5 to 10 mm / second to form an intermediate layer ( e) A method for producing a bush comprising a step of low-temperature tempering in a furnace.
JP2008021813A 2008-01-31 2008-01-31 Bush making Expired - Fee Related JP4676993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008021813A JP4676993B2 (en) 2008-01-31 2008-01-31 Bush making

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008021813A JP4676993B2 (en) 2008-01-31 2008-01-31 Bush making

Publications (2)

Publication Number Publication Date
JP2009179869A JP2009179869A (en) 2009-08-13
JP4676993B2 true JP4676993B2 (en) 2011-04-27

Family

ID=41034065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008021813A Expired - Fee Related JP4676993B2 (en) 2008-01-31 2008-01-31 Bush making

Country Status (1)

Country Link
JP (1) JP4676993B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5640348B2 (en) * 2009-09-28 2014-12-17 株式会社ジェイテクト Manufacturing method of power transmission chain
JP2013057092A (en) * 2011-09-07 2013-03-28 Tsuda Heat Treatment Co Ltd Method for producing bush and heat treatment apparatus for bush
JP5688742B2 (en) * 2011-09-27 2015-03-25 山陽特殊製鋼株式会社 Steel manufacturing method with excellent toughness and wear resistance
WO2014185337A1 (en) * 2013-05-17 2014-11-20 株式会社小松製作所 Steel for crawler-type suspension component and crawler link
CN107350728B (en) * 2016-05-09 2019-01-15 南京晨伟机械设备制造有限公司 A kind of production technology of the high-intensitive bushing for plunger pump
US20220412406A1 (en) * 2021-06-25 2022-12-29 Caterpillar Inc. Hammer bushings with hardened inner region

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239744A (en) * 1998-01-29 2000-09-05 Topy Ind Ltd Heat treatment method for hollow cylindrical work
JP2007026728A (en) * 2005-07-12 2007-02-01 High Frequency Heattreat Co Ltd Induction heating method and hardening method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578746A (en) * 1991-09-25 1993-03-30 Topy Ind Ltd Manufacture of bushing for crawler
JPH0978136A (en) * 1995-09-20 1997-03-25 Topy Ind Ltd Manufacture of link for caterpillar belt
JP3880086B2 (en) * 1995-11-17 2007-02-14 トピー工業株式会社 Heat treatment method for cylindrical workpiece
IT1288690B1 (en) * 1996-11-14 1998-09-23 Bruno Girardello PROCEDURE FOR THE HEAT TREATMENT OF BUSHINGS ESPECIALLY FOR TRACKED AND SIMILAR VEHICLES

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239744A (en) * 1998-01-29 2000-09-05 Topy Ind Ltd Heat treatment method for hollow cylindrical work
JP2007026728A (en) * 2005-07-12 2007-02-01 High Frequency Heattreat Co Ltd Induction heating method and hardening method

Also Published As

Publication number Publication date
JP2009179869A (en) 2009-08-13

Similar Documents

Publication Publication Date Title
CN104981556B (en) Tufftride high-frequency quenching steel part
JP5611828B2 (en) Rotating elements or rotating rings formed from bearing steel
RU2724767C2 (en) Method of manufacturing part sheet of martensitic stainless steel
JP5535922B2 (en) Heat treatment process for steel
KR102047403B1 (en) Steel wire rod for cold forging, processed good using the same, and methods for manufacturing thereof
JP5135558B2 (en) Induction hardened steel, induction hardened rough shape, method for producing the same, and induction hardened steel parts
JP4676993B2 (en) Bush making
JP2007177317A (en) Steel for machine structure having excellent strength, ductility, toughness and abrasion resistance, its production method and metal belt using the same
JP6461478B2 (en) Induction hardening gear and induction hardening method of gear
WO2019198539A1 (en) Machine component and method for producing same
KR101719560B1 (en) Heat treatment method for surface hardened alloy steel
EP2006398B1 (en) Process for producing steel material
JP5582855B2 (en) Manufacturing method of machine structural parts
CN105714190A (en) Steel for impact-resistant load bearing and heat treatment method of steel
JP2007119825A (en) Surface-quenched steel and method for quenching surface of steel
JP2006037205A (en) Method for producing hollow drive shaft having excellent fatigue resistance
KR102209555B1 (en) Hot rolled and annealed steel sheet having low strength-deviation, formed member, and manufacturing method of therefor
JP7270343B2 (en) Method for manufacturing mechanical parts
JP2006342368A (en) Heat treatment method for steel member
EP3155134A1 (en) Method of heat treatment of bearing steel
KR101889172B1 (en) High strength steel wire rod having excellent corrosion resistance for spring, and method for manufacturing the same
JP4757831B2 (en) Induction hardening part and manufacturing method thereof
JP6447064B2 (en) Steel parts
JP4175933B2 (en) Nitride steel parts capable of obtaining high surface hardness and deep hardening depth by nitriding for a short time and method for producing the same
JP2021088751A (en) Rolling component and production method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100415

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees