JP5034583B2 - Heat treatment method for duplex stainless steel pieces - Google Patents

Heat treatment method for duplex stainless steel pieces Download PDF

Info

Publication number
JP5034583B2
JP5034583B2 JP2007068955A JP2007068955A JP5034583B2 JP 5034583 B2 JP5034583 B2 JP 5034583B2 JP 2007068955 A JP2007068955 A JP 2007068955A JP 2007068955 A JP2007068955 A JP 2007068955A JP 5034583 B2 JP5034583 B2 JP 5034583B2
Authority
JP
Japan
Prior art keywords
cooling
heat treatment
temperature
stainless steel
duplex stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007068955A
Other languages
Japanese (ja)
Other versions
JP2008231464A (en
Inventor
貴行 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2007068955A priority Critical patent/JP5034583B2/en
Publication of JP2008231464A publication Critical patent/JP2008231464A/en
Application granted granted Critical
Publication of JP5034583B2 publication Critical patent/JP5034583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、熱間鍛造や熱間圧延により製造された、または鋳造ままの二相ステンレス鋼片の軟化熱処理を実施する際に、機械加工が十分に実施できる程度に軟化し、かつ内部割れを防止することができる熱処理方法に関する。   In the present invention, when softening heat treatment of a duplex stainless steel piece produced by hot forging or hot rolling or as cast, it is softened to such an extent that machining can be carried out sufficiently, and internal cracks are prevented. The present invention relates to a heat treatment method that can be prevented.

二相ステンレス鋼のビレットやブルーム等の鋼片は、例えば、鋼塊から熱間鍛造または熱間圧延によって製造された長尺の鋼片を素材とし、この素材に軟化熱処理、並びに切断および切削等の機械加工が施されて製造される。軟化熱処理を施すのは、予めシグマ相を消去し、機械加工が可能な硬度とするためである。   Billets and blooms such as billet and bloom of duplex stainless steel are made of, for example, long steel pieces produced from a steel ingot by hot forging or hot rolling, softening heat treatment, cutting and cutting, etc. It is manufactured by machining. The reason why the softening heat treatment is performed is to erase the sigma phase in advance and obtain a hardness that can be machined.

従来、軟化熱処理では、固溶化温度(1050〜1150℃)で均熱した後、シグマ(σ)相の生成を防止するため、水冷等の急速冷却をしている。しかし、冷却過程で、鋼片の表層部と内部の温度差により熱応力が発生し、特に断面積が大きい鋼片では残留応力が大きくなり、鋼片中心部にほぼ全長にわたって内部割れが発生する場合がある。   Conventionally, in softening heat treatment, after soaking at a solution temperature (1050 to 1150 ° C.), rapid cooling such as water cooling is performed in order to prevent formation of a sigma (σ) phase. However, during the cooling process, thermal stress is generated due to the temperature difference between the surface layer part and the inside of the slab, especially in the slab having a large cross-sectional area, the residual stress increases, and an internal crack occurs almost over the entire length of the slab. There is a case.

この残留応力による割れを抑制する方法として、特許文献1には、1000℃以上に加熱した後、5〜12.5℃/minの冷却速度で500℃まで冷却し、その後少なくとも300℃までを10℃/min以上の速度で冷却することにより、熱処理後の急速冷却により発生する残留応力を抑制し、さらに475脆性を回避して、耐食性、靭性に優れた二相ステンレス鋼の大型鋳造品、鍛造品を製造する方法が開示されている。さらに、その中で、500℃までは原則として徐冷(5〜12.5℃/min)してもよいが、好ましくはシグマ相析出温度である980〜700℃の範囲についてだけは、10℃/min以上で急冷すると記載されている。   As a method for suppressing cracking due to this residual stress, Patent Document 1 discloses that after heating to 1000 ° C. or higher, it is cooled to 500 ° C. at a cooling rate of 5 to 12.5 ° C./min, and then at least 300 ° C. to 10 ° C. By cooling at a rate of at least ° C./min, residual stress generated by rapid cooling after heat treatment is suppressed, and further, 475 brittleness is avoided, and a large casting of duplex stainless steel with excellent corrosion resistance and toughness, forging A method of manufacturing an article is disclosed. Further, among them, slow cooling (5 to 12.5 ° C./min) may be performed up to 500 ° C. in principle, but preferably only about 980 to 700 ° C. which is the sigma phase precipitation temperature. It is described that it is rapidly cooled at / min or more.

しかし、本発明者の検討では、5〜12.5℃/minの冷却速度では残留応力の抑制が不十分であり、確実な割れ防止には至らない。また、シグマ相析出温度域では10℃/min以上で急冷するとしているが、10〜20℃/min程度の冷却速度ではシグマ相が析出し、十分な軟化ができないという問題がある。   However, according to the study by the present inventors, the residual stress is not sufficiently suppressed at a cooling rate of 5 to 12.5 ° C./min, and it is not possible to reliably prevent cracking. In addition, although the quenching is performed at 10 ° C./min or more in the sigma phase precipitation temperature region, there is a problem that the sigma phase is precipitated at a cooling rate of about 10 to 20 ° C./min and cannot be sufficiently softened.

また、特許文献2には、ステンレス鋼中空鋳造材を、固溶化温度に加熱保持した後、800〜900℃までは徐冷(冷却速度10℃/分以下、例えば5〜8℃/分)し、それ以降は急冷(水冷またはミスト冷却;冷却速度20℃/分以上、例えば30〜40℃/分)することにより、溶体化熱処理後の冷却過程での熱応力による残留応力を低減させる厚肉大径のステンレス鋼鋳造材の溶体化熱処理方法が開示されている。ここでは、950℃まで炉冷した後、急冷した場合は残留応力の低減効果が少ないため、それよりも低い800〜900℃まで炉冷する必要があるとしている。   Patent Document 2 discloses that a stainless steel hollow cast material is heated and held at a solid solution temperature and then gradually cooled to 800 to 900 ° C. (cooling rate: 10 ° C./min or less, for example, 5 to 8 ° C./min). After that, by rapid cooling (water cooling or mist cooling; cooling rate of 20 ° C./min or more, for example, 30 to 40 ° C./min), the thick wall thickness reduces the residual stress due to thermal stress in the cooling process after solution heat treatment A solution heat treatment method for large diameter stainless steel castings is disclosed. Here, since the effect of reducing residual stress is small when the furnace is cooled to 950 ° C. and then rapidly cooled, it is necessary to cool the furnace to 800 to 900 ° C., which is lower than that.

しかし、この熱処理方法で扱っている材料は中空鋳造材であり、中実鋼片に比べると、発生する残留応力は小さいと考えられる。さらに、この方法では、固溶化温度に加熱保持した後、800〜900℃まで徐冷するとしているが、本発明者の検討によると、900℃以下まで徐冷した場合は、シグマ相の析出を完全に防止することはできず、機械加工性が低下する。また、冷却速度5〜8℃/分の徐冷では、残留応力の抑制が不十分であり、確実な割れ防止には至らない。   However, the material handled by this heat treatment method is a hollow cast material, and the generated residual stress is considered to be small compared to a solid steel slab. Furthermore, in this method, after heating and holding at the solid solution temperature, it is said that the glass is gradually cooled to 800 to 900 ° C. However, according to the study of the present inventor, when it is gradually cooled to 900 ° C. or lower, precipitation of the sigma phase occurs. It cannot be completely prevented and the machinability deteriorates. In addition, when the cooling rate is 5 to 8 ° C./min, the residual stress is not sufficiently suppressed, and the cracks cannot be reliably prevented.

特開平9−217149号公報Japanese Patent Laid-Open No. 9-217149 特開平2−236220号公報JP-A-2-236220

本発明は、熱間鍛造または熱間圧延により製造された、または鋳造ままの中実の二相ステンレス鋼片の軟化熱処理を実施するに際し、切断および切削等の機械加工が十分に実施できる程度に残留応力の発生を抑制し、かつ内部割れを防止できる熱処理方法を提供することを目的としている。   In the present invention, when performing softening heat treatment of a solid duplex stainless steel piece produced by hot forging or hot rolling or as cast, machining such as cutting and cutting can be performed sufficiently. It aims at providing the heat processing method which can suppress generation | occurrence | production of a residual stress and can prevent an internal crack.

上記の課題を解決するにあたり、本発明者は、まず、内部割れ発生の原因を明確にするため、二相ステンレス鋼のビレットに熱処理を施した場合のビレット中心部応力の変化について検討した。   In order to solve the above problems, the present inventor first examined changes in billet center stress when a heat treatment was performed on a billet of a duplex stainless steel in order to clarify the cause of internal cracking.

図1は、クロムモリブデン鋼のビレット(JIS SCM440H相当材、270mmφ)を加熱し、急速冷却した場合の熱応力解析結果の一例を示す図である。冷却過程(水冷時および放冷時)におけるビレット半径方向の応力分布を模式的に示す図も併記している。この図から、従来の軟化熱処理時におけるビレット中心部応力の変化を推測することができる。   FIG. 1 is a diagram showing an example of a thermal stress analysis result when a billet of chrome molybdenum steel (JIS SCM440H equivalent material, 270 mmφ) is heated and rapidly cooled. A diagram schematically showing the stress distribution in the billet radial direction in the cooling process (during water cooling and cooling) is also shown. From this figure, it is possible to infer changes in billet center stress during conventional softening heat treatment.

すなわち、加熱後、急速冷却した時に、ビレットの外表部が急冷され収縮しようとするが、中心部は高温のままのため収縮できず、ビレット1の中心部に圧縮応力が発生する(図1に併記した応力分布図(a)参照)。一方、急速冷却後、放冷した時点で中心部が冷却されて収縮しようとするが、既に200℃以下に冷却され、かなりの強度を有する外表部に拘束されるため、ビレット1の中心部に大きな引張応力が生じる(同(b)参照)。このビレット中心部の引張応力は、加熱過程におけるよりも冷却過程において大きいことが判明した(図1において、Fc[冷却時における引張応力の最高値]>Fh[加熱時における引張応力の最高値])。したがって、内部割れは冷却過程で材料の中心部に大きな引張応力が作用することにより発生すると考えられる。   That is, when rapidly cooled after heating, the outer surface portion of the billet is rapidly cooled and tends to shrink, but the center portion remains at a high temperature and cannot be shrunk, and compressive stress is generated in the center portion of the billet 1 (see FIG. 1). (See also the stress distribution diagram (a)). On the other hand, after the rapid cooling, the central part is cooled and is about to shrink when it is allowed to cool, but since it has already been cooled to 200 ° C. or less and is restrained by the outer surface part having a considerable strength, A large tensile stress is generated (see (b)). The billet center stress was found to be greater in the cooling process than in the heating process (in FIG. 1, Fc [maximum tensile stress during cooling]> Fh [maximum tensile stress during heating]. ). Therefore, it is considered that the internal crack occurs due to a large tensile stress acting on the center of the material during the cooling process.

図2は、内部割れの発生状態を模式的に示す図である。鋳片2の中心部近傍のシグマ相析出域3が素材鋼片(丸鋼4)においても残存し、軟化熱処理時に、シグマ相析出域3に対し最も破断しやすい垂直方向に内部割れ5が発生すると推測される。   FIG. 2 is a diagram schematically showing the state of occurrence of internal cracks. The sigma phase precipitation zone 3 near the center of the slab 2 remains in the raw steel slab (round steel 4), and an internal crack 5 is generated in the vertical direction that is most likely to break with respect to the sigma phase precipitation zone 3 during softening heat treatment. I guess that.

この応力解析結果から、本発明者は、二相ステンレス鋼の長尺の素材鋼片(以下、単に「鋼片」という)中心部の成分偏析や、均熱時の固溶化が十分でないことによるシグマ相の残存等で、中心部に脆いシグマ相が残っている場合は、鋼片の中心部に大きな引張応力が生じたとき、内部割れが発生すると推定した。   From this stress analysis result, the present inventor is due to the fact that the component segregation at the center of the long material steel slab (hereinafter simply referred to as “steel slab”) of duplex stainless steel and the solid solution during soaking are not sufficient. When the sigma phase remained and the brittle sigma phase remained in the center, it was estimated that an internal crack would occur when a large tensile stress occurred in the center of the steel slab.

そこで、鋼片のサイズ、均熱温度、均熱後の冷却条件等を変更して試験、検討を重ねた結果、二相ステンレス鋼片の軟化熱処理を実施するに際し、鋼片の内部割れや切削加工時の機械加工性の劣化を防止するために必要な条件に関して下記の知見を得た。   Therefore, as a result of repeated testing and examination by changing the size of the slab, soaking temperature, cooling conditions after soaking, etc., when carrying out softening heat treatment of the duplex stainless steel slab, The following knowledge was obtained regarding conditions necessary to prevent deterioration of machinability during processing.

(a)固溶化温度に加熱保持した後、急冷(水冷)した場合、断面積が大きい二相ステンレス鋼片では内部割れが発生するが、断面積が小さい場合は熱応力が小さく、割れは発生しない。   (A) When heated to the solution temperature and then rapidly cooled (water cooled), internal cracks occur in duplex stainless steel pieces with a large cross-sectional area, but thermal stress is small and cracks occur when the cross-sectional area is small. do not do.

(b)鋼片中心部に発生する内部割れを防止するには、冷却過程での鋼片内部と外表部の温度差に起因して発生する残留応力をできるだけ小さくする必要がある。そのためには、特に、加熱完了後の冷却初期(すなわち、高温域)での鋼片の内外部の温度差による熱応力をできるだけ小さくすることが必要であり、高温域での冷却をできるだけ低い冷却速度で行う(緩冷却する)ことが有効である。   (B) In order to prevent internal cracks occurring at the center part of the steel slab, it is necessary to minimize the residual stress generated due to the temperature difference between the steel slab interior and the outer surface part during the cooling process. For that purpose, it is necessary to minimize the thermal stress caused by the temperature difference between the inside and outside of the steel slab at the initial stage of cooling after completion of heating (that is, in the high temperature range). Cooling in the high temperature range is as low as possible. It is effective to perform at a speed (slow cooling).

(c)水冷開始時の鋼片温度を低下させれば、熱応力が低減し、鋼片中心部の引張応力が軽減するが、シグマ相を消去するためには水冷開始時温度の低下は困難である。したがって、シグマ相析出開始温度(900℃)に達する前まで低い冷却速度で緩冷却するのがよい。   (C) If the steel slab temperature at the start of water cooling is lowered, the thermal stress is reduced and the tensile stress at the center of the slab is reduced, but it is difficult to reduce the temperature at the start of water cooling in order to eliminate the sigma phase. It is. Therefore, it is preferable to perform slow cooling at a low cooling rate before reaching the sigma phase precipitation start temperature (900 ° C.).

(d)さらに、二相ステンレス鋼は切削等の機械加工性を劣化させる硬いシグマ相が生成し易く、また、400〜550℃の範囲に加熱することにより脆化する(475℃脆性)。したがって、シグマ相の生成や475℃脆性が問題となる温度域ではできるだけ速く冷却(急速冷却)する必要がある。   (D) Further, the duplex stainless steel easily forms a hard sigma phase that deteriorates the machinability such as cutting, and becomes brittle when heated to a range of 400 to 550 ° C. (brittle at 475 ° C.). Therefore, it is necessary to cool (rapid cooling) as fast as possible in a temperature range where generation of sigma phase and brittleness at 475 ° C. are problems.

本発明は、上記の検討結果に基づいて完成されたものであり、下記の二相ステンレス鋼片の熱処理方法を要旨としている。   The present invention has been completed on the basis of the above-described examination results, and has the gist of the following heat treatment method for duplex stainless steel pieces.

すなわち、直径が300〜500mmまたは相対する面までの長さが300〜500mmで中実の二相ステンレス鋼片を、1050℃以上の温度で均熱した後、鋼片の外表面温度で920〜1000℃までを150℃/hr(2.5℃/min)以下の冷却速度で冷却し、さらにその温度から少なくとも300℃までを30〜40℃/minの冷却速度で冷却することを特徴とする熱処理方法である。   That is, a solid duplex stainless steel piece having a diameter of 300 to 500 mm or a length of 300 to 500 mm to the opposite surface is soaked at a temperature of 1050 ° C. or higher, and then the outer surface temperature of the steel piece is 920 to 920 ° C. Cooling to 1000 ° C. at a cooling rate of 150 ° C./hr (2.5 ° C./min) or less, and further cooling from that temperature to at least 300 ° C. at a cooling rate of 30 to 40 ° C./min This is a heat treatment method.

この熱処理方法において、前記150℃/hr(2.5℃/min)以下の冷却速度での920〜1000℃までの冷却は、熱処理炉内で、または断熱材等で保温することによって行うことができる。   In this heat treatment method, the cooling to 920 to 1000 ° C. at a cooling rate of 150 ° C./hr (2.5 ° C./min) or less is performed in a heat treatment furnace or by keeping the temperature in a heat insulating material or the like. it can.

本発明の二相ステンレス鋼片の熱処理方法によれば、熱間鍛造または圧延により製造された、または鋳造ままの中実の二相ステンレス鋼片の軟化熱処理を実施するに際し、切断および切削等の機械加工が十分に実施できる程度に残留応力の発生を抑制し、かつ内部割れを防止することができる。   According to the heat treatment method of a duplex stainless steel piece of the present invention, when performing softening heat treatment of a solid duplex stainless steel piece manufactured by hot forging or rolling or as cast, cutting, cutting, etc. Generation of residual stress can be suppressed to the extent that machining can be sufficiently performed, and internal cracks can be prevented.

本発明が対象とする二相ステンレス鋼片は、例えば、鋼塊から熱間鍛造または熱間圧延によって製造された長尺の鋼片、または鋳造ままの鋼片で、直径が300〜500mmのビレット等の丸材、または相対する面までの長さが300〜500mm、言い換えれば、短辺が300mm以上で長辺が500mm以下のブルーム等の角材である。いずれも中実材とするのは、中空材であれば、熱処理時に生じる熱応力が小さく、本発明の熱処理方法の適用を要しないからである。   The duplex stainless steel slab targeted by the present invention is, for example, a long steel slab manufactured from a steel ingot by hot forging or hot rolling, or an as-cast steel slab, and a billet having a diameter of 300 to 500 mm Or a square member such as a bloom having a short side of 300 mm or more and a long side of 500 mm or less. The reason why both are solid materials is that if they are hollow materials, the thermal stress generated during the heat treatment is small, and it is not necessary to apply the heat treatment method of the present invention.

また、鋼片の大きさを前記のように限定するのは、直径または相対する面までの長さが500mmを超えると、熱処理時に生じる熱応力が大きく、本発明の熱処理方法を適用しても残留応力の発生を抑制し、かつ内部割れを防止するのが困難であり、一方、300mmに満たない場合は、熱応力が小さく、本発明の熱処理方法を用いなくても割れは発生しないからである。   In addition, the size of the steel slab is limited as described above because if the diameter or length to the opposite surface exceeds 500 mm, the thermal stress generated during the heat treatment is large, and the heat treatment method of the present invention is applied. It is difficult to suppress the occurrence of residual stress and prevent internal cracks. On the other hand, if it is less than 300 mm, the thermal stress is small, and cracks do not occur even if the heat treatment method of the present invention is not used. is there.

二相ステンレス鋼としては、JIS SUS329J1で代表されるオーステナイト−フェライトの二相組織からなる二相ステンレス鋼、またはこの二相ステンレス鋼の化学組成を基本とする二相ステンレス鋼が挙げられる。なお、この二相ステンレス鋼の鋼片は、前記の形状を満たすものであればよく、鍛造または圧延された鋼片、鋳造ままの鋼片を含むものである。   Examples of the duplex stainless steel include duplex stainless steel having a duplex structure of austenite-ferrite represented by JIS SUS329J1, or duplex stainless steel based on the chemical composition of the duplex stainless steel. In addition, the steel slab of this duplex stainless steel should just satisfy | fill the said shape, and includes the forged or rolled steel slab and the as-cast steel slab.

本発明の二相ステンレス鋼の熱処理方法において、均熱温度を1050℃以上とするのは、1050℃未満では鋼片が十分に固溶化(オーステナイト化)されず、シグマ相が残存し、軟化熱処理後の機械加工性が劣るからである。均熱温度の上限は特に限定しないが、過度に高めると、加熱に要するコストが上昇し、設備上の制約もあるので、1250℃程度以下とするのが望ましい。   In the heat treatment method for duplex stainless steel according to the present invention, the soaking temperature is set to 1050 ° C. or more. If the temperature is less than 1050 ° C., the steel slab is not sufficiently solidified (austenitic) and the sigma phase remains, and the softening heat treatment is performed. This is because the later machinability is inferior. The upper limit of the soaking temperature is not particularly limited, but if it is excessively increased, the cost required for heating rises and there are restrictions on equipment, so it is desirable that the temperature be about 1250 ° C. or lower.

本発明の熱処理方法においては、このように均熱処理を施した後、鋼片の外表面温度で920〜1000℃までを150℃/hr(2.5℃/min)以下の冷却速度で緩冷却し(ここでは、この冷却を「一次冷却」という)、さらにその温度から少なくとも300℃までを30〜40℃/minの冷却速度で急速冷却する(これを「二次冷却」という)。   In the heat treatment method of the present invention, after the soaking is performed in this manner, the outer surface temperature of the steel slab is slowly cooled to 920 to 1000 ° C. at a cooling rate of 150 ° C./hr (2.5 ° C./min) or less. (Here, this cooling is referred to as “primary cooling”), and further, rapid cooling is performed from that temperature to at least 300 ° C. at a cooling rate of 30 to 40 ° C./min (this is referred to as “secondary cooling”).

図3は、本発明の熱処理方法における熱処理パターンを模式的に示す図である。図示するように、前記の形状を満たす鋼片を、均熱温度T0で均熱した後、一次冷却速度V1で一次冷却停止温度T1まで緩冷却し、その後二次冷却速度V2で二次冷却停止温度T2まで急速冷却する。 FIG. 3 is a diagram schematically showing a heat treatment pattern in the heat treatment method of the present invention. As shown in the figure, a steel piece satisfying the above shape is soaked at a soaking temperature T 0 , then slowly cooled to a primary cooling stop temperature T 1 at a primary cooling rate V 1 , and then at a secondary cooling rate V 2 . rapidly cooling to a secondary cooling stop temperature T 2.

このように、対象とする鋼片の寸法を規定し、前記所定の冷却速度での緩冷却と急速冷却を組み合わせた熱処理を行う点に本発明の特徴があり、これによって、鋼片中心部に発生する残留応力をできるだけ小さくするとともに、シグマ相の残存や生成、475℃脆性を抑えて、機械加工性の劣化および内部割れの発生を防止することができる。   Thus, there is a feature of the present invention in that the size of the target steel slab is defined, and heat treatment that combines the slow cooling and the rapid cooling at the predetermined cooling rate is performed. While reducing the generated residual stress as much as possible and suppressing the sigma phase remaining and generation at 475 ° C., it is possible to prevent deterioration of machinability and occurrence of internal cracks.

均熱後の一次冷却速度V1を、150℃/hr(2.5℃/min)以下とするのは、冷却速度がこれより速いと、鋼片の内外部の温度差が大きくなり、熱応力で割れが発生するからである。下限は特に規定しないが、余り遅いと冷却に時間がかかり過ぎ、生産性が阻害されるので、50℃/hr(0.83℃/min)以上とするのが望ましい。 The primary cooling rate V 1 after soaking is set to 150 ° C./hr (2.5 ° C./min) or less because if the cooling rate is faster than this, the temperature difference between the inside and outside of the steel slab increases. This is because cracks occur due to stress. The lower limit is not particularly defined, but if it is too slow, it takes too much time for cooling, and the productivity is hindered. Therefore, it is desirable to set it to 50 ° C./hr (0.83 ° C./min) or more.

一次冷却停止温度T1の上限を1000℃とするのは、緩冷却(一次冷却)後の急速冷却(二次冷却)を1000℃を超える高い温度から行うと、急速冷却に伴う鋼片の内外部の温度差による熱応力が大きくなり内部割れが発生しやすいだけでなく、鋼片外部には圧縮、内部には引張の大きな残留応力が存在することとなり、切削時に鋼片に刃が噛み込み、加工できなくなる等、機械加工性が低下するからである。一方、下限を920℃とするのは、この温度より低いとシグマ相析出温度領域となり、その後いくら急冷してもシグマ相の析出を完全には防止することができず、機械加工性が低下するからである。 The upper limit of the primary cooling stop temperature T 1 is set to 1000 ° C., when rapid cooling (secondary cooling) after slow cooling (primary cooling) is performed from a high temperature exceeding 1000 ° C. Not only does thermal stress increase due to external temperature differences and internal cracks are likely to occur, but there is also a large residual stress inside the steel slab that is compressed and tensile inside, and the blade bites into the steel slab during cutting. This is because the machinability deteriorates, such as the inability to process. On the other hand, if the lower limit is set to 920 ° C., if it is lower than this temperature, it becomes a sigma phase precipitation temperature region, and no matter how much rapid cooling thereafter, sigma phase precipitation cannot be completely prevented, and machinability deteriorates. Because.

二次冷却速度V2の下限を30℃/minとするのは、冷却速度が30℃/minより遅いと、シグマ相が生成し、鋼片の外表面の硬度が高くなり、切削加工等の機械加工性が低下することによる。一方、上限を40℃/minとするのは、冷却速度がこれより速いと、鋼片の内外部の温度差による熱応力が大きく、内部割れ発生までは至らないが、鋼片外部には圧縮、内部には引張の大きな残留応力が存在することとなり、切削時に鋼片に刃が噛み込み、加工できなくなる等、機械加工性が低下するからである。 The lower limit of the secondary cooling rate V 2 is set to 30 ° C./min. If the cooling rate is slower than 30 ° C./min, a sigma phase is generated, the hardness of the outer surface of the steel slab is increased, and cutting work is performed. This is due to a decrease in machinability. On the other hand, the upper limit is 40 ° C./min. If the cooling rate is faster than this, the thermal stress due to the temperature difference between the inside and outside of the steel slab is large and internal cracking does not occur, but compression is not applied to the outside of the steel slab. This is because there is a large residual stress in the interior, and the machinability deteriorates, for example, the blade bites into the steel piece during cutting and the machining becomes impossible.

また、二次冷却停止温度T2を少なくとも300℃まで、すなわち鋼片の外表面温度が300℃以下になるまで急冷するのは、シグマ相の析出、並びに475℃脆性を回避するためである。下限については特に限定はない。 The reason why the secondary cooling stop temperature T 2 is rapidly cooled to at least 300 ° C., that is, until the outer surface temperature of the steel slab is 300 ° C. or less is to avoid precipitation of sigma phase and brittleness at 475 ° C. There is no particular limitation on the lower limit.

本発明の熱処理方法において、前記150℃/hr(2.5℃/min)以下の冷却速度での920〜1000℃までの冷却(つまり、一次冷却)のための手段について何ら限定はない。例えば、鋼片を一旦熱処理炉から排出した後、炉内温度を適宜調整した別の熱処理炉内に装入して冷却してもよい。   In the heat treatment method of the present invention, there is no limitation on the means for cooling to 920 to 1000 ° C. (that is, primary cooling) at a cooling rate of 150 ° C./hr (2.5 ° C./min) or less. For example, the steel piece may be once discharged from the heat treatment furnace, and then charged in another heat treatment furnace in which the furnace temperature is appropriately adjusted and cooled.

また、鋼片を一旦熱処理炉から排出した後、断熱材等を用いて保熱する方法を採用することもできる。断熱材等としては、イソウール(イソライト工業(株)製)などが使用できる。   Moreover, after discharging a steel piece from a heat processing furnace once, the method of heat-retaining using a heat insulating material etc. is also employable. As a heat insulating material or the like, Isowool (made by Isolite Industry Co., Ltd.) or the like can be used.

(実施例1)
390mm×700mm角に連続鋳造したSUS321J1相当の二相ステンレス鋼ブルームを、熱間鍛造して、直径が250mm、300mmおよび350mmの3種の鋼片(ビレット)を製造した。これらのビレットを、均熱温度T0を1050℃として均熱した後、一次冷却停止温度T1は1000℃、二次冷却速度V2は30℃/min、二次冷却停止温度T2は300℃でそれぞれ一定とし、一次冷却速度V1のみを変更して軟化熱処理を行い、中心部における割れ発生の有無を調査した。
Example 1
A duplex stainless steel bloom corresponding to SUS321J1 continuously cast to 390 mm × 700 mm square was hot forged to produce three types of billets having diameters of 250 mm, 300 mm, and 350 mm. After these billets were soaked at a soaking temperature T 0 of 1050 ° C., the primary cooling stop temperature T 1 was 1000 ° C., the secondary cooling rate V 2 was 30 ° C./min, and the secondary cooling stop temperature T 2 was 300 ° C. The temperature was kept constant at 0 ° C., only the primary cooling rate V 1 was changed, and softening heat treatment was performed, and the presence or absence of cracks in the center was examined.

調査結果を表1に示す。なお、試験に供したビレット本数は各条件とも10本である。   The survey results are shown in Table 1. The number of billets subjected to the test is 10 for each condition.

Figure 0005034583
Figure 0005034583

表1の結果から明らかなように、直径Dが250mmのビレットでは一次冷却速度を100℃/hr(1.67℃/min)〜200℃/hr(3.33℃/min)の範囲内で変更しても内部割れは発生しなかった。しかし、直径Dが300mmまたは350mmの場合は、一次冷却速度V1が100℃/hr(1.67℃/min)、150℃/hr(2.5℃/min)では割れがなかったが、200℃/hr(3.33℃/min)では、10本中1本に内部割れが発生した。 As is apparent from the results in Table 1, the billet with a diameter D of 250 mm has a primary cooling rate within a range of 100 ° C./hr (1.67 ° C./min) to 200 ° C./hr (3.33 ° C./min). Internal cracking did not occur even when changed. However, when the diameter D is 300 mm or 350 mm, the primary cooling rate V 1 was 100 ° C./hr (1.67 ° C./min), 150 ° C./hr (2.5 ° C./min), but there was no cracking. At 200 ° C./hr (3.33 ° C./min), an internal crack occurred in one of the ten pieces.

(実施例2)
実施例1で用いた二相ステンレス鋼ビレットのうち、同様に製造した直径Dが300mmの鋼片(ビレット)を用い、一次冷却速度V1を実施例1で割れが発生しなかった150℃/hr(2.5℃/min)で一定とし、均熱温度T0、一次冷却停止温度T1、二次冷却速度V2および二次冷却停止温度T2を適宜変更して軟化熱処理を行った後の機械加工性または割れ発生率を調査した。
(Example 2)
Among the duplex stainless steel billets used in Example 1, a steel piece (billet) having a diameter D of 300 mm produced in the same manner was used, and the primary cooling rate V 1 was 150 ° C. / softening heat treatment was performed by changing the soaking temperature T 0 , the primary cooling stop temperature T 1 , the secondary cooling rate V 2, and the secondary cooling stop temperature T 2 as appropriate at a constant hr (2.5 ° C / min) Later machinability or cracking rate was investigated.

調査結果を表2に示す。表2における「機械加工性」の欄の「良好」は、支障なく加工できた場合であり、「不芳」は、ビレット外表面の硬度が上昇し、あるいは切削時に鋼片に刃が噛み込み、加工できなかった場合を表す。   The survey results are shown in Table 2. “Good” in the column of “Machinability” in Table 2 is the case where processing was possible without any trouble. “Fair” means that the hardness of the outer surface of the billet is increased, or the blade bites into the steel piece during cutting. This represents the case where processing could not be performed.

Figure 0005034583
Figure 0005034583

表2に示した結果から、本発明で規定する範囲内の条件で軟化熱処理を行った場合(No.1〜16)、内部割れの発生もなく、外表面の切削加工を支障なく実施できた。しかし、均熱温度T0が低い場合(No.17)、一次冷却停止温度T1が低すぎる場合(No.18)、二次冷却速度V2が遅すぎる場合(No.20)、または二次冷却停止温度T2が高すぎる場合(No.22)は、ビレット外表面の硬度が上昇しており、切削加工が行えなかった。また、一次冷却停止温度T1が高すぎる場合(No.19)、または二次冷却速度V2が速すぎる場合(No.21)は、内部割れは発生しなかったが、残留応力により切削時に鋼片に切削刃が噛み込み、加工できなかった。 From the results shown in Table 2, when the softening heat treatment was performed under the conditions specified in the present invention (Nos. 1 to 16), there was no occurrence of internal cracks and the outer surface could be cut without any trouble. . However, when the soaking temperature T 0 is low (No. 17), the primary cooling stop temperature T 1 is too low (No. 18), the secondary cooling rate V 2 is too slow (No. 20), or two If the next cooling stop temperature T 2 is too high (No.22), the hardness of the billet outer surface has increased, could not be performed is cutting. Further, when the primary cooling stop temperature T 1 is too high (No. 19) or when the secondary cooling rate V 2 is too fast (No. 21), internal cracks did not occur, but during the cutting due to residual stress. The cutting blade was caught in the steel piece and could not be processed.

本発明の二相ステンレス鋼片の熱処理方法は、所定の寸法範囲の鋼片を均熱した後、鋼片の外表面温度で920〜1000℃までを150℃/hr以下の冷却速度で冷却し、さらにその温度から少なくとも300℃までを30〜40℃/minの冷却速度で冷却する方法で、切断および切削等の機械加工が十分に実施できる程度に残留応力の発生を抑制し、かつ内部割れを防止することができる。   In the heat treatment method for duplex stainless steel pieces of the present invention, the steel pieces in a predetermined size range are soaked, and then cooled to a temperature of 920 to 1000 ° C. at a cooling rate of 150 ° C./hr or less at the outer surface temperature of the steel pieces. Furthermore, by the method of cooling from that temperature to at least 300 ° C. at a cooling rate of 30-40 ° C./min, the occurrence of residual stress is suppressed to the extent that machining such as cutting and cutting can be sufficiently performed, and internal cracks Can be prevented.

したがって、本発明の熱処理方法は、鍛造または圧延された長尺の鋼片や、鋳造ままの鋼片を素材として二相ステンレス鋼のビレットやブルーム等を製造する際に好適に利用することができる。   Therefore, the heat treatment method of the present invention can be suitably used when manufacturing a billet or a bloom of a duplex stainless steel using a long steel piece forged or rolled or a steel piece as cast as a raw material. .

クロムモリブデン鋼のビレット(SCM440H相当材、270mmφ)を加熱し、急速冷却した場合の熱応力解析結果の一例を示す図である。It is a figure which shows an example of the thermal-stress analysis result at the time of heating the billet (SCM440H equivalent material, 270 mmphi) of chromium molybdenum steel, and carrying out rapid cooling. 内部割れの発生状態を模式的に示す図である。It is a figure which shows typically the generation | occurrence | production state of an internal crack. 本発明の熱処理方法における熱処理パターンを模式的に示す図である。It is a figure which shows typically the heat processing pattern in the heat processing method of this invention.

符号の説明Explanation of symbols

1:ビレット
2:鋳片
3:シグマ相析出域
4:丸鋼
5:内部割れ
1: billet 2: slab 3: sigma phase precipitation zone 4: round steel 5: internal crack

Claims (3)

直径が300〜500mmまたは相対する面までの長さが300〜500mmで中実の二相ステンレス鋼片を、1050℃以上の温度で均熱した後、鋼片の外表面温度で920〜1000℃までを150℃/hr以下の冷却速度で冷却し、さらにその温度から少なくとも300℃までを30〜40℃/minの冷却速度で冷却することを特徴とする二相ステンレス鋼片の熱処理方法。   A solid duplex stainless steel piece having a diameter of 300 to 500 mm or a length up to the opposite surface of 300 to 500 mm is soaked at a temperature of 1050 ° C. or higher, and then the outer surface temperature of the steel piece is 920 to 1000 ° C. Is cooled at a cooling rate of 150 ° C./hr or less, and further is cooled from that temperature to at least 300 ° C. at a cooling rate of 30 to 40 ° C./min. 前記150℃/hr以下の冷却速度での920〜1000℃までの冷却を熱処理炉内で行うことを特徴とする請求項1に記載の二相ステンレス鋼片の熱処理方法。   The method for heat treatment of duplex stainless steel pieces according to claim 1, wherein cooling to 920 to 1000 ° C at a cooling rate of 150 ° C / hr or less is performed in a heat treatment furnace. 前記150℃/hr以下の冷却速度での920〜1000℃までの冷却を断熱材等による保温で行うことを特徴とする請求項1に記載の二相ステンレス鋼片の熱処理方法。   The method for heat-treating a duplex stainless steel piece according to claim 1, wherein the cooling to 920 to 1000 ° C at a cooling rate of 150 ° C / hr or less is performed by heat insulation with a heat insulating material or the like.
JP2007068955A 2007-03-16 2007-03-16 Heat treatment method for duplex stainless steel pieces Active JP5034583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007068955A JP5034583B2 (en) 2007-03-16 2007-03-16 Heat treatment method for duplex stainless steel pieces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007068955A JP5034583B2 (en) 2007-03-16 2007-03-16 Heat treatment method for duplex stainless steel pieces

Publications (2)

Publication Number Publication Date
JP2008231464A JP2008231464A (en) 2008-10-02
JP5034583B2 true JP5034583B2 (en) 2012-09-26

Family

ID=39904632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007068955A Active JP5034583B2 (en) 2007-03-16 2007-03-16 Heat treatment method for duplex stainless steel pieces

Country Status (1)

Country Link
JP (1) JP5034583B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104480261A (en) * 2015-01-05 2015-04-01 云南昆钢新型复合材料开发有限公司 Spheroidizing annealing technology for wear-resistant double-metal lamination composite material

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130167979A1 (en) * 2011-12-29 2013-07-04 General Electric Company Method of predicting quench cracking in components formed by high deformation processes
JP6686320B2 (en) * 2015-08-05 2020-04-22 日本製鉄株式会社 Manufacturing method of stainless steel pipe
JP6805639B2 (en) * 2016-08-29 2020-12-23 日本製鉄株式会社 Manufacturing method of stainless steel pipe
CN111074044A (en) * 2020-01-06 2020-04-28 江苏贯森新材料科技有限公司 Method for modulating mechanical property of superhard stainless steel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236220A (en) * 1989-03-07 1990-09-19 Kubota Ltd Solid solution heat treatment method for stainless steel casting material
JP3729885B2 (en) * 1995-01-18 2005-12-21 日新製鋼株式会社 Cooling method for ferritic stainless steel slabs preventing cold cracking
JP4004706B2 (en) * 2000-03-23 2007-11-07 株式会社クボタ Solution heat treatment method for stainless steel pipes
JP4165058B2 (en) * 2001-07-25 2008-10-15 Jfeスチール株式会社 Drilling and rolling tool and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104480261A (en) * 2015-01-05 2015-04-01 云南昆钢新型复合材料开发有限公司 Spheroidizing annealing technology for wear-resistant double-metal lamination composite material
CN104480261B (en) * 2015-01-05 2016-11-23 云南昆钢新型复合材料开发有限公司 A kind of annealing process of wear-resistant bimetallic laminar composite

Also Published As

Publication number Publication date
JP2008231464A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
TWI535856B (en) High strength spring roller and high strength spring
EP2982777B1 (en) Titanium slab for hot rolling and method for manufacturing same
RU2674176C2 (en) Thick-walled steel pipe for oil wells and method for manufacture thereof
CN104357690A (en) Preparation process of medium-strength anti-corrosion high-magnesium aluminum alloy plate
JP6432807B2 (en) Method for producing high-speed tool steel material, method for producing high-speed tool steel product, and high-speed tool steel product
JP5034583B2 (en) Heat treatment method for duplex stainless steel pieces
CN114096692A (en) Seamless steel pipe having excellent sulfuric acid dew point corrosion resistance and method for producing same
KR101953042B1 (en) Cast titanium slab for use in hot rolling and exhibiting excellent surface properties after hot rolling, even when omitting blooming and purifying steps, and method for producing same
TWI612150B (en) Steel wire for mechanical structural parts
JP5155739B2 (en) Steel bar manufacturing method
JP2006342377A (en) Method for quenching large-sized die
JP5929556B2 (en) Method for producing continuous cast slab and method for producing high-strength cold-rolled steel sheet
JP4715156B2 (en) Manufacturing method of extra-thick high-tensile steel sheet with excellent uniformity in the thickness direction
JP5629598B2 (en) Manufacturing method for seamless steel pipe for high strength hollow spring
JP6324549B2 (en) Titanium slab for surface melting treatment
JP3765277B2 (en) Method for producing martensitic stainless steel piece and steel pipe
JPH07251265A (en) Method for scarfing cast steel slab
JP2009280869A (en) Method for producing steel product
JP2016108628A (en) Production method of two-phase stainless steel material
JP2004269981A (en) Production method of steel bar
JPH10296396A (en) Production of bar steel for hot-forging
JP2001059137A (en) High carbon slab for seamless steel pipe and its production
JP2015131311A (en) Method of hot-working steel material excellent in surface quality
JPS6125769B2 (en)
JP2023180123A (en) Production method of steel material for hot die

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5034583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350