JPH10296396A - Production of bar steel for hot-forging - Google Patents

Production of bar steel for hot-forging

Info

Publication number
JPH10296396A
JPH10296396A JP9117484A JP11748497A JPH10296396A JP H10296396 A JPH10296396 A JP H10296396A JP 9117484 A JP9117484 A JP 9117484A JP 11748497 A JP11748497 A JP 11748497A JP H10296396 A JPH10296396 A JP H10296396A
Authority
JP
Japan
Prior art keywords
slab
steel
rolling
bar
mns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9117484A
Other languages
Japanese (ja)
Other versions
JP3399780B2 (en
Inventor
Takeshi Sugawara
健 菅原
Yasuhiro Hashimoto
康裕 橋本
Yuji Kawachi
雄二 河内
Takashi Yoshioka
隆史 吉岡
Koichi Isobe
浩一 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14712860&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH10296396(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11748497A priority Critical patent/JP3399780B2/en
Publication of JPH10296396A publication Critical patent/JPH10296396A/en
Application granted granted Critical
Publication of JP3399780B2 publication Critical patent/JP3399780B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a bar steel without causing hot-forging crack by heating a slab or a billet containing each specific mass % of C, Si, Mn, P, S, T.Al, T.O, Ni, Cr, Ca and rolling it into bar-steel so that rolling ratio is specific value or lower. SOLUTION: Molten steel having the components containing, by mass, 0.08-0.61% C, 0.15-0.35% Si, 0.30-1.65% Mn, <=0.030% P, 0.005-0.030% S, 0.005-0.040% T.Al, 5-30 ppm T.O, <=0.25% Ni, 0-0.70% Cr as base component and further, containing 5-30 ppm Ca is cast into bloom for hot-forging by using a mold 3. Then, the bloom 7 after cutting is heated, and thereafter, the bloom is formed into a slab 10 by using a blooming mill 9 at 2-4 passes, or the molten steel is continuously cast to the billet and cut into a prescribed length. The bloomed and rolled slab 10 or the billet cut into the prescribed length is heated and the bar steel 13 is rolled so that the rolling ratio of the cast billet is <=9.5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、中断面ブルームに
よる熱間鍛造用棒鋼の製造方法に関し、熱間鍛造や焼入
および研削工程においてMnSに起因した表面割れが発
生しない棒鋼の製造方法を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a steel bar for hot forging by using a medium-section bloom, and provides a method for manufacturing a steel bar in which surface cracking due to MnS does not occur in a hot forging, quenching and grinding process. Is what you do.

【0002】[0002]

【従来の技術】S10C〜S58C、SMn420〜S
Mn443およびSMnC等の機械構造用鋼材は、自動
車や産業機械部品等に多量に使用され主に熱間鍛造によ
り加工される。熱間鍛造においては、鋼材の熱間変形抵
抗や変形能が重要であり、これらはCや合金元素の含有
量、鍛造時の結晶粒度、部品の大きさや形状等の影響を
受けるため、鍛造に際しては鋼種や部品に見合った加熱
温度や鍛造条件の適正化が行われる。
2. Description of the Related Art S10C-S58C, SMn420-S
Steel materials for machine structures such as Mn443 and SMnC are used in large quantities in automobiles and industrial machine parts, and are mainly processed by hot forging. In hot forging, the hot deformation resistance and deformability of steel are important and are affected by the content of C and alloying elements, the crystal grain size during forging, the size and shape of parts, etc. For the steel, the heating temperature and forging conditions are optimized according to the steel type and parts.

【0003】熱間鍛造部品は、通常鍛造後に焼入・焼戻
しを行った後研削(または切削)されて各種部品となる
ため、鋼材には所要量のSが添加される。しかし、Sは
赤熱脆性の原因となって割れを発生させるため、所定量
のMnを添加しSをMnSに変えて熱間鍛造割れを防止
する方法が一般に採用されている。しかしながら、Mn
Sは酸化物系介在物とは異なって比較的低温でも可塑性
があり、分塊や棒鋼圧延時に延伸して鋼材の加工性に悪
影響を及ぼす。また、鍛造後の焼入や研削時の熱歪によ
り、MnSが起点となって割れが発生し伝播する場合が
ある。従って、鍛造〜研削一貫工程を通して表面割れの
発生を防止するためには、MnS量の低減やMnSの延
伸度L/W(長さ/厚み比)の低下が有効と言われてい
る。
[0003] Hot forged parts are usually subjected to quenching and tempering after forging and then ground (or cut) into various parts, so that a required amount of S is added to steel. However, since S causes cracking as a cause of red heat embrittlement, a method of adding a predetermined amount of Mn and changing S to MnS to prevent hot forging cracking is generally adopted. However, Mn
S, unlike oxide-based inclusions, has plasticity even at a relatively low temperature, and is stretched during lumping or bar rolling, which adversely affects the workability of the steel material. Further, due to quenching after forging or thermal strain during grinding, cracks may be generated and propagated with MnS as a starting point. Therefore, it is said that a reduction in the amount of MnS and a reduction in the MnS elongation L / W (length / thickness ratio) are effective in preventing the occurrence of surface cracks through the forging-grinding integrated process.

【0004】その対策として、従来鋼中Sの適正化や連
続鋳造における中心偏析改善によるMnSの小型化が一
般的に行われている。また、鉄と鋼、64(1978)
1.145には、熱間圧延時のMnSの延伸を抑制する
方法としてMnSの形態制御が有効であり、MnSを
(Mn,Me)SとなるようにREMやCa等の元素
(Me)を添加し固溶せしめることにより、MnSの延
伸を抑制する方法が述べられている。また、MnSには
固溶しないがMnSを延伸し難くする方法として、鉄と
鋼、52(1966)4.741並びに電気製鋼、53
(1982)3.195には、鋼中にTeを添加してM
nSのL/Wを低下し機械的性質を改善する方法が述べ
られている。
[0004] As a countermeasure, MnS has conventionally been reduced in size by optimizing S in steel and improving center segregation in continuous casting. Also, iron and steel, 64 (1978)
According to 1.145, morphological control of MnS is effective as a method for suppressing the stretching of MnS during hot rolling, and elements (Me) such as REM and Ca are converted so that MnS becomes (Mn, Me) S. It describes a method of suppressing the stretching of MnS by adding and making it form a solid solution. As a method of making MnS difficult to be stretched, although it does not form a solid solution in MnS, iron and steel, 52 (1966) 4.741, and electric steel making, 53
(1982) 3.195 describes the addition of Te to steel to add M
Methods are described to reduce the nS L / W and improve mechanical properties.

【0005】[0005]

【発明が解決しようとする課題】MnSは、溶鋼中のM
nとSが凝固過程でデンドライト樹間に濃化し、約15
00〜1400℃の温度範囲で生成し、数μm〜10数
μmの粒状晶出物として粒界に分布する。晶出するMn
Sの粒径は、低炭快削鋼のように鋼中O濃度が高い場
合、また前記温度範囲での鋳片の冷却速度が遅いほど大
きくなる。機械構造用鋼は、脱酸により鋼中O濃度は低
いので冷却速度の適正化が最も重要となる。一方、鋳片
の冷却速度は鋳片断面サイズや二次冷却の影響を受け
る。さらに、鋳片サイズが大きいとMnSが分塊圧延や
棒鋼圧延により紡錘状または線状に伸びて棒鋼でのMn
SのL/Wが増大する。
SUMMARY OF THE INVENTION MnS is an element of Mn in molten steel.
n and S are concentrated between dendrite trees during the solidification process,
It is formed in the temperature range of 00 to 1400 ° C., and is distributed at the grain boundaries as granular precipitates of several μm to several tens μm. Mn to crystallize
The grain size of S increases when the O concentration in steel is high, such as low-carbon free-cutting steel, or when the cooling rate of the slab in the above temperature range is lower. Since the steel for machine structural use has a low O concentration in the steel due to deoxidation, it is most important to optimize the cooling rate. On the other hand, the cooling rate of the slab is affected by the slab cross-sectional size and secondary cooling. Further, when the slab size is large, MnS is elongated in a spindle shape or a linear shape by slab rolling or bar rolling, and MnS in the bar is increased.
L / W of S increases.

【0006】本発明者らは、棒鋼を熱間鍛造した後バリ
部を表面研削してクランクシャフトを製造する場合のク
ランクシャフトの表面割れについて調査した。それによ
ると、表面割れは研削時に発生し易いこと、発生箇所は
素材棒鋼の内部がメタルフローによりクランクシャフト
の表面となった部位が多いこと、深さ約0.1mmの粒
界割れでありMnSの延伸の程度が大きい場合にMnS
が割れの起点や伝播路となるために割れが発生し易いこ
と等が判った。
The present inventors have investigated the surface cracks of a crankshaft in the case of manufacturing a crankshaft by hot-forging a steel bar and then grinding the burrs on the surface. According to the results, surface cracks are likely to occur during grinding, and the occurrence locations are many where the inside of the material steel bar has become the surface of the crankshaft due to metal flow. When the degree of stretching of MnS is large,
It has been found that cracks are likely to occur because they serve as crack initiation points and propagation paths.

【0007】以上述べたように、熱間鍛造部品の表面割
れを防止するには、素材となる棒鋼でのMnSのL/W
を適正値以下に調整することが必須であり、そのための
製造方法の確立が課題であった。
As described above, in order to prevent surface cracking of a hot forged part, L / W of MnS in a steel bar as a material is used.
Has to be adjusted to an appropriate value or less, and the establishment of a manufacturing method therefor has been an issue.

【0008】[0008]

【課題を解決するための手段】本発明は、前記課題を解
決するためになされたもので、その手段とするところは
下記の通りである。 (1)質量で、C:0.08〜0.61%、Si:0.
15〜0.35%、Mn:0.30〜1.65%、P≦
0.030%、S:0.005〜0.030%、T.A
l:0.005〜0.040%、T.O:5〜30pp
m、Ni≦0.25%、Cr:0〜0.70%を基本成
分とし、さらにCa:5〜30ppmを含有した熱間鍛
造用棒鋼の製造方法であって、前記成分の溶鋼をブルー
ム鋳片に連続鋳造し所定の長さに切断後、該鋳片を加熱
し2〜4パスの分塊圧延により鋼片に成形し、または前
記成分の溶鋼をビレット鋳片に連続鋳造し所定の長さに
切断し、前記分塊圧延された鋼片または所定の長さに切
断されたビレット鋳片を加熱し、鋳片からの圧延比が
9.5以下となるように棒鋼圧延するものである。
Means for Solving the Problems The present invention has been made to solve the above problems, and the means thereof are as follows. (1) By mass, C: 0.08 to 0.61%, Si: 0.
15 to 0.35%, Mn: 0.30 to 1.65%, P ≦
0.030%, S: 0.005 to 0.030%, T.P. A
l: 0.005 to 0.040%; O: 5 to 30 pp
A method for producing a steel bar for hot forging comprising m, Ni ≦ 0.25%, Cr: 0 to 0.70% as basic components and further containing Ca: 5 to 30 ppm, wherein the molten steel of the above components is bloom cast. After continuous casting into slabs and cutting to a predetermined length, the slabs are heated and formed into steel slabs by slab-rolling in 2 to 4 passes, or molten steel of the above-described components is continuously cast into billet slabs, and a predetermined length is formed. The slab that has been cut into pieces and the slab or the billet slab that has been cut to a predetermined length are heated, and the bar is rolled so that the rolling ratio from the slab is 9.5 or less. .

【0009】(2)質量で、C:0.08〜0.61
%、Si:0.15〜0.35%、Mn:0.30〜
1.65%、P≦0.030%、S:0.005〜0.
030%、T.Al:0.005〜0.040%、T.
O:5〜30ppm、Ni≦0.25%、Cr:0〜
0.70%を基本成分とし、さらにCa:5〜30pp
mおよびTe:5〜30ppmを含有した熱間鍛造用棒
鋼の製造方法であって、前記成分の溶鋼をブルーム鋳片
に連続鋳造し所定の長さに切断後、該鋳片を加熱し2〜
4パスの分塊圧延により鋼片に成形し、または前記成分
の溶鋼をビレット鋳片に連続鋳造し所定の長さに切断
し、前記分塊圧延された鋼片または所定の長さに切断さ
れたビレット鋳片を加熱し、鋳片からの圧延比が63以
下となるように棒鋼圧延するものである。
(2) C: 0.08 to 0.61 by mass
%, Si: 0.15 to 0.35%, Mn: 0.30
1.65%, P ≦ 0.030%, S: 0.005 to 0.5%
030%, T.P. Al: 0.005 to 0.040%;
O: 5 to 30 ppm, Ni ≦ 0.25%, Cr: 0 to 0
0.70% as a basic component, and Ca: 5 to 30 pp
A method for producing a steel bar for hot forging containing m and Te: 5 to 30 ppm, wherein molten steel of the above-described component is continuously cast into a bloom slab, cut into a predetermined length, and then heated to 2 to
It is formed into a slab by 4 pass slab rolling, or the molten steel of the above component is continuously cast into a billet slab and cut to a predetermined length. The billet slab is heated, and the bar is rolled so that the rolling ratio from the slab is 63 or less.

【0010】[0010]

【発明の実施の形態】機械構造用鋼材は、その化学成分
が日本工業規格(JIS)で規定されている。すなわ
ち、機械構造用炭素鋼はJIS G 4051で、機械
構造用マンガン鋼と機械構造用マンガンクロム鋼はJI
S G 4160で夫々規定されている。本発明で対象
としている鋼材の基本的化学成分は、JISで規定され
ている範囲を上下限とするものである。
BEST MODE FOR CARRYING OUT THE INVENTION The chemical composition of a steel material for machine structural use is specified by Japanese Industrial Standards (JIS). That is, the carbon steel for machine structure is JIS G4051, and the manganese steel for machine structure and the manganese chrome steel for machine structure are JIS G4051.
SG 4160 respectively. The basic chemical composition of the steel material targeted in the present invention has a range defined by JIS as the upper and lower limits.

【0011】ただし、Sは被削性を付与するために0.
005%を下限とする。Alは、結晶粒度調整用に0.
005%を下限とし、0.040%を超えて添加しても
結晶粒度調整作用が飽和するので0.040%を上限と
する。T.Oは、前記各種成分値から経験的に5〜30
ppmでありこの範囲に規定する。
However, S is set to 0.1 in order to impart machinability.
005% is the lower limit. Al is used for adjusting the crystal grain size.
The lower limit is 005%, and the addition of more than 0.040% saturates the crystal grain size adjusting action, so the upper limit is 0.040%. T. O is empirically 5 to 30 based on the values of the various components.
ppm and is defined in this range.

【0012】さらに、添加するCaは溶鋼中に添加する
とカルシウム・アルミネート(12CaO・7Al2
3 等)として消費され、残ったCaがMnSの形態制御
に有効に使われる。T.Oが5〜30ppmなので、C
aは化学量論比よりも多めに5〜30ppmに規定す
る。Teについては、Te/S比が0.05〜0.1は
必要であり、Sが0.005〜0.030%なので5〜
30ppmと規定するものである。
Further, when Ca to be added is added to molten steel, calcium aluminate (12CaO · 7Al 2 O) is added.
3 ), and the remaining Ca is effectively used for controlling the form of MnS. T. Since O is 5 to 30 ppm, C
a is set to 5 to 30 ppm, which is more than the stoichiometric ratio. As for Te, a Te / S ratio of 0.05 to 0.1 is required, and since S is 0.005 to 0.030%,
It is specified as 30 ppm.

【0013】次に、本発明で鋳片から棒鋼までの圧延比
(断面積比)を規定する理由について説明する。先ず、
本発明者らは、クランクシャフトを研削する際の表面割
れ発生率と棒鋼でのMnSのL/Wとの関係について調
査した。その結果を図1に示すが、表面割れの発生率は
L/Wが5を超えるとL/Wの増加と共に増加してい
る。この理由は、前述の如く熱間鍛造のメタルフローに
より素材棒鋼の内部がクランクシャフトの表面に露出し
た部位において、焼入や研削時の熱歪に対して延伸した
MnSが切り欠きとして作用し、割れの発生起点とな
り、かつ伝播を助長するためである。以上より、割れを
防止するためには棒鋼でのMnSのL/Wを5以下にす
る必要がある。
Next, the reason for defining the rolling ratio (cross-sectional area ratio) from the slab to the steel bar in the present invention will be described. First,
The present inventors investigated the relationship between the rate of occurrence of surface cracks when grinding a crankshaft and L / W of MnS in a steel bar. The results are shown in FIG. 1, and the incidence of surface cracking increases with L / W when L / W exceeds 5. The reason for this is that, at the site where the inside of the raw steel bar is exposed to the surface of the crankshaft due to the metal flow of hot forging as described above, MnS that has been stretched against thermal strain during quenching or grinding acts as a notch, This is because it is a starting point of crack generation and promotes propagation. As described above, in order to prevent cracking, it is necessary to make L / W of MnS in a steel bar 5 or less.

【0014】MnSは、分塊圧延や棒鋼圧延が行われる
約1200〜900℃の温度範囲では、軟質で可塑性が
あるため鋼の塑性変形と共に延伸する。例えば、本発明
者らはSMn443について調査し、鋳片から棒鋼まで
の圧延比λと棒鋼でのMnSのL/Wとの関係について
図2に示す結果を得た。図より、λの増加と共にL/W
が増加しているのが明らかである。ただし、CaやTe
を添加した場合には、λの増加に対するL/Wの増加率
が添加しない場合に比べて低減している。
MnS is soft and plastic in a temperature range of about 1200 to 900 ° C. where slab rolling and bar rolling are performed, so that MnS is stretched together with plastic deformation of steel. For example, the present inventors investigated SMn443 and obtained the results shown in FIG. 2 regarding the relationship between the rolling ratio λ from the slab to the bar and the L / W of MnS in the bar. As shown in the figure, L / W increases with increasing λ.
Is clearly increasing. However, Ca and Te
When L is added, the rate of increase in L / W with respect to the increase in λ is smaller than when L is not added.

【0015】今、鋳片内部のMnSを直径Dの球、棒鋼
でのMnSを直径Wおよび長さLの円柱に近似し、鋳片
から棒鋼までの圧延比をλとすれば下記各式が成り立
つ。 L=Dλ ・・・(1) W=D(1/λ)1/2 ・・・(2) (1)および(2)式より、 L/W=λ3/2 ・・・(3)
Now, when MnS in the slab is approximated to a sphere having a diameter D and MnS in a steel bar is approximated to a cylinder having a diameter W and a length L, and the rolling ratio from the slab to the steel bar is λ, the following equations are obtained. Holds. L = Dλ (1) W = D (1 / λ) 1/2 (2) From formulas (1) and (2), L / W = λ 3/2 (3)

【0016】(3)式より、 {2/3}・{(log(L/W)/logλ)}=1 ・・・(4) (4)式の左辺(以下νと略記)は、MnSの変形歪と
鋼の変形歪の比に対応し、鋼の塑性変形に対するMnS
の相対的な塑性変形度を示すものである。
From equation (3), {2/3}} {(log (L / W) / logλ)} = 1 (4) The left side (hereinafter abbreviated as ν) of equation (4) is MnS MnS for plastic deformation of steel, corresponding to the ratio of the deformation strain of steel to the deformation strain of steel.
Shows the relative degree of plastic deformation.

【0017】そこで、図2の横軸および縦軸の対数をと
り、再プロットすると図3が得られる。図3における勾
配は、MnSの塑性変形度νを示すものであり、Caを
添加しない場合には圧延比が小さい領域でほぼν=1に
近い変形をしているが、圧延比の増加と共にνは小さく
なる傾向がある。この理由は、圧延比が大きい領域では
MnSが延伸して分断されL/Wが見掛け上小さく測定
されるものと推定される。一方、CaまたはCaとTe
を添加した場合にはνは小さくなり、MnSの塑性変形
が明らかに抑制されている。
Then, the logarithm of the horizontal axis and the vertical axis of FIG. 2 is obtained and plotted again to obtain FIG. The gradient in FIG. 3 shows the degree of plastic deformation ν of MnS. When Ca is not added, the deformation is almost ν = 1 in the region where the rolling ratio is small, but ν increases as the rolling ratio increases. Tends to be smaller. The reason is presumed that in a region where the rolling ratio is large, MnS is stretched and divided, and L / W is measured to be apparently small. On the other hand, Ca or Ca and Te
When is added, ν becomes small, and the plastic deformation of MnS is clearly suppressed.

【0018】そこで、L/Wとlogλの関係をプロッ
トすると、図4に示すように直線関係が成立するのでL
/Wが5以下となるλを図より求めると表1が得られ
る。
When plotting the relationship between L / W and logλ, a linear relationship is established as shown in FIG.
Table 1 is obtained by obtaining λ at which / W is 5 or less from the figure.

【0019】[0019]

【表1】 [Table 1]

【0020】以上より、本発明では圧延比の上限を、C
aを添加する場合には9.5、CaとTeを添加する場
合には63と規定するものである。
As described above, in the present invention, the upper limit of the rolling ratio is set to C
It is stipulated that 9.5 is added when a is added, and 63 when Ca and Te are added.

【0021】圧延比の下限については、一般に圧延比が
4.0以上で棒鋼のオーステナイト結晶粒度番号が7以
上となり、アズロールおよび焼入・焼戻等の熱処理後の
機械的性質(TS、RA、 uRT等)がJIS目標値を
満足することから4.0とすることが望ましい。
[0021] Regarding the lower limit of the rolling ratio, generally, when the rolling ratio is 4.0 or more, the austenitic grain size number of the steel bar becomes 7 or more, and the mechanical properties (TS, RA, It is desirable to set it to 4.0 because u ERT satisfies the JIS target value.

【0022】以上より、本発明では鋳片から棒鋼までの
圧延比を、Caを5〜30ppm添加する場合には9.
5以下、Ca5〜30ppmとTe5〜30ppmを添
加する場合には63以下に規定するものである。なお、
本発明では圧延比が9.5以下のときにCaのみを添加
しても良い。また、圧延比が9.5〜63の時にのみC
aとTeを添加しても良い。
As described above, according to the present invention, the rolling ratio from the slab to the steel bar is 9.5 when Ca is added in an amount of 5 to 30 ppm.
When 5 or less, 5 to 30 ppm of Ca and 5 to 30 ppm of Te are added, the content is specified as 63 or less. In addition,
In the present invention, when the rolling ratio is 9.5 or less, only Ca may be added. Only when the rolling ratio is 9.5 to 63, C
a and Te may be added.

【0023】次に、鋳片を2〜4パスの分塊圧延により
鋼片に成形する理由を説明する。分塊圧延が行われる1
200〜900℃の温度範囲ではMnSは軟質で延伸し
易いため、1パス当たりの圧下量が小さい多パス圧延を
行うと、圧下の浸透性が低下して鋳片の表層〜中間部の
塑性変形がより進行し、その部分のMnSが延伸し過ぎ
る問題がある。
Next, the reason why the slab is formed into a steel slab by two- to four-pass slab rolling will be described. Bulking and rolling 1
In the temperature range of 200 to 900 ° C., MnS is soft and easily stretched. Therefore, when multi-pass rolling with a small reduction per pass is performed, the permeability of the reduction is reduced and the plastic deformation of the surface layer to the intermediate portion of the slab is reduced. And MnS in that portion is excessively stretched.

【0024】通常、熱間鍛造用棒鋼に供される鋼片サイ
ズは115mm角〜180mm角、棒鋼サイズは40m
mφ〜130mmφであることから、鋼片から棒鋼まで
の圧延比は約4.0(115mm角→65mmφ)〜2
5.8(180mm角→40mmφ)である。従って、
鋳片から棒鋼までの圧延比を4.0〜63とすると、鋳
片から鋼片までの圧延比は約1〜2.4の範囲内とな
る。鋳片から鋼片までの圧延比が1の場合は分塊圧延を
省略し、一方圧延比が1を超え2.4以下の場合は鋳片
を2〜4パス圧延により鋼片に成形可能である。
Usually, the size of a billet used for a hot forging bar is 115 mm square to 180 mm square, and the bar size is 40 m.
Since the diameter is from mφ to 130 mmφ, the rolling ratio from the slab to the bar is about 4.0 (115 mm square → 65 mmφ) to 2
5.8 (180 mm square → 40 mm φ). Therefore,
Assuming that the rolling ratio from the slab to the steel bar is 4.0 to 63, the rolling ratio from the slab to the steel slab is in the range of about 1 to 2.4. If the rolling ratio from the slab to the slab is 1, the slab rolling is omitted, while if the rolling ratio is more than 1 and less than 2.4, the slab can be formed into a slab by 2-4 pass rolling. is there.

【0025】また、5パス以上の分塊圧延で鋼片に成形
しようとすると、前述のように鋼片表層〜中間部のMn
Sが延伸し過ぎ、また鋳片サイズが大きくなり冷却速度
が小さくなるため、凝固過程で晶出するMnSのサイズ
が大きくなる。その結果、MnSが延伸し易くなりL/
Wが増加する問題がある。従って、本発明ではMnSの
延伸を極小化する目的から2〜4パスの分塊圧延に規定
する。一方、鋳片サイズが小さく鋳造ままで棒鋼圧延が
可能の場合には、分塊圧延を省略するものである。
[0025] When forming into a slab by slab rolling of 5 passes or more, as described above, the Mn in the surface layer to the middle portion of the slab is increased.
Since S is excessively stretched and the slab size becomes large and the cooling rate becomes low, the size of MnS crystallized in the solidification process becomes large. As a result, MnS is easily stretched and L /
There is a problem that W increases. Therefore, in the present invention, for the purpose of minimizing the elongation of MnS, the slab rolling is defined as 2 to 4 passes. On the other hand, when the bar size is small and the steel bar can be rolled as it is, the slab rolling is omitted.

【0026】本発明の実施態様の一例を図5に示す。1
は取鍋、2はタンディッシュ、3は鋳型、4は二次冷却
帯、5はガイドロール、6は切断機、7は鋳片、8は鋳
片加熱炉、9は分塊圧延機、10は鋼片、11は鋼片加
熱炉、12は棒鋼圧延機、13は棒鋼である。
FIG. 5 shows an example of the embodiment of the present invention. 1
Is a ladle, 2 is a tundish, 3 is a mold, 4 is a secondary cooling zone, 5 is a guide roll, 6 is a cutting machine, 7 is a slab, 8 is a slab heating furnace, 9 is a slab rolling mill, 10 Is a billet, 11 is a billet heating furnace, 12 is a bar rolling mill, and 13 is a bar.

【0027】本発明の請求項1記載の実施形態では取鍋
1内の溶鋼中にCaを5〜30ppm、また請求項2記
載の方法ではCa5〜30ppmとTe5〜30ppm
を含有せしめ、鋳型3を用いて例えば鋳片サイズ220
mm角の熱間鍛造用鋼のブルームを鋳造し、切断後の鋳
片7を加熱した後、分塊圧延機9を用いて2〜4パスで
162mm角の鋼片10に成形し、しかる後該鋼片から
120mmφ〜40mmφの棒鋼13に圧延した。この
場合の鋳片から棒鋼までの圧延比は4.28〜38.6
である。得られた棒鋼を調査した結果、いずれの方法に
おいてもMnSのL/Wは5以下を確保し機械的性質に
ついても良好なレベルが確保された。そして、該棒鋼を
熱間鍛造し焼入・焼戻を行い研削してクランクシャフト
に加工したが、表面割れの発生は皆無であった。
In the first embodiment of the present invention, 5 to 30 ppm of Ca is contained in the molten steel in the ladle 1, and in the method of the second embodiment, 5 to 30 ppm of Ca and 5 to 30 ppm of Te.
And, using the mold 3, for example, a slab size 220
After casting a bloom of hot-forging steel of mm square and heating the cut slab 7, it is formed into a 162 mm square steel slab 10 with 2 to 4 passes using a slab rolling machine 9. The steel slab was rolled into a bar 13 having a diameter of 120 mm to 40 mm. In this case, the rolling ratio from the slab to the bar is 4.28 to 38.6.
It is. As a result of investigating the obtained steel bars, the L / W of MnS was maintained at 5 or less in any of the methods, and a good level of mechanical properties was ensured. Then, the steel bar was hot forged, quenched and tempered, ground and processed into a crankshaft, but no surface crack was generated.

【0028】[0028]

【実施例】本発明の実施例について、以下に詳細に説明
する。270トン転炉およびRH脱ガス装置にて熱間鍛
造用鋼SMn443を溶製し、化学成分を0.42%C
−0.24%Si−1.50%Mn−0.014%P−
0.014%S−0.025%T.Al−12ppm
T.O−0.02%Ni−0.22%Crに調整した
後、鋳片から棒鋼までの圧延比に応じてCaを5〜30
ppm、またはCa5〜30ppmとTe5〜30pp
m添加含有せしめた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described in detail below. In a 270 ton converter and RH degassing apparatus, hot forging steel SMn443 was melted and the chemical composition was 0.42% C
-0.24% Si-1.50% Mn-0.014% P-
0.014% S-0.025% T. Al-12 ppm
T. After adjusting to O-0.02% Ni-0.22% Cr, Ca is adjusted to 5 to 30 depending on the rolling ratio from the slab to the bar.
ppm, or 5-30 ppm of Ca and 5-30 pp of Te
m added.

【0029】その概要を図5に示したブルーム連鋳機
で、162mm角および220mm角の中断面ブルーム
をタンディッシュ内溶鋼過熱度20〜40℃、二次冷却
比水量0.4l/kg、鋳造速度2.5〜1.8m/m
inとして鋳造した後、該鋳片を所定の長さに切断し、
162mm角の鋳片は分塊圧延を行わずにそのまま冷却
し、220mm角の鋳片は加熱炉に装入して断面平均温
度が1100℃となるように約1時間加熱した後、ロー
ル径が900mmφのHV式分塊圧延機で2〜4パス圧
延により162mm角の鋼片に成形した。
FIG. 5 shows an outline of a blooming continuous caster, in which a 162 mm square and 220 mm square medium section bloom is cast in a tundish at a superheat degree of molten steel of 20 to 40 ° C., a secondary cooling specific water amount of 0.4 l / kg, and casting. Speed 2.5-1.8m / m
After casting as in, the slab is cut to a predetermined length,
The slab of 162 mm square was cooled as it was without slab rolling, and the slab of 220 mm square was charged into a heating furnace and heated for about 1 hour so that the average cross-sectional temperature was 1100 ° C. It was formed into a 162 mm square steel slab by 2 to 4 pass rolling using a 900 mmφ HV type bulking mill.

【0030】なお、鋳造前の取鍋内溶鋼中にCaを5〜
30ppmの範囲で添加した場合は、鋳片から棒鋼まで
の圧延比を6.6〜9.5の範囲とした。また、Ca5
〜30ppmに加えてTeを5〜30ppmの範囲で添
加した場合は、圧延比を9.6〜63の範囲とした。
It should be noted that Ca in the molten steel in the ladle before casting is 5 to 5%.
When added in the range of 30 ppm, the rolling ratio from the slab to the steel bar was set in the range of 6.6 to 9.5. In addition, Ca5
When Te was added in the range of 5 to 30 ppm in addition to -30 ppm, the rolling ratio was in the range of 9.6 to 63.

【0031】表2に、本発明の実施例を比較例と共に示
す。なお、機械的性質は棒鋼中心部から試験片を採取
し、引張試験および衝撃試験を行い評価した。MnSの
L/Wは、棒鋼の1/2r部からサンプルを採取し研磨
した後、顕微鏡にて数μmから数10μmのMnSを無
作為に抽出し、厚みおよび長さを測定し評価した。
Table 2 shows examples of the present invention together with comparative examples. The mechanical properties were evaluated by taking a test piece from the center of the bar and performing a tensile test and an impact test. The L / W of MnS was evaluated by measuring a thickness and a length by randomly extracting a few μm to several tens μm of MnS with a microscope after collecting and polishing a sample from a 1 / 2r portion of the steel bar.

【0032】[0032]

【表2】 [Table 2]

【0033】本発明の実施例においては、機械的性質も
MnSのL/Wも良好であり、クランクシャフトに加工
したときの割れ発生は皆無であった。これに対し比較例
においては、MnSのL/Wが5を超えクランクシャフ
トに加工後表面に割れの発生が認められた。
In the examples of the present invention, both the mechanical properties and the L / W of MnS were good, and no cracking occurred when the crankshaft was processed. On the other hand, in the comparative example, the L / W of MnS exceeded 5, and cracks were observed on the surface after working on the crankshaft.

【0034】[0034]

【発明の効果】本発明は、中断面ブルームから2〜4パ
スの分塊圧延により鋼片を成形し、または分塊圧延を省
略するので分塊コストの削減を図ると共に、CaやTe
の含有率により鋳片から棒鋼までの圧延比を制限するの
で、熱間鍛造割れの発生しない棒鋼の製造を可能とする
ものであり、その工業的な適用効果は大きい。
According to the present invention, the slab is formed from the middle section bloom by two to four passes of slab rolling, or the slab rolling is omitted.
Since the rolling ratio from the slab to the bar is limited by the content of the steel, it is possible to produce a bar without hot forging cracks, and its industrial application effect is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】MnSのL/Wとクランクシャフト割れ発生率
の関係を示す図
FIG. 1 is a diagram showing the relationship between L / W of MnS and the incidence of crankshaft cracking.

【図2】鋳片から棒鋼までの圧延比とMnSのL/Wの
関係を示す図
FIG. 2 is a view showing a relationship between a rolling ratio from a slab to a steel bar and L / W of MnS.

【図3】logλと2/3log(L/W)の関係を示
す図
FIG. 3 is a diagram showing a relationship between logλ and 2/3 log (L / W).

【図4】logλとL/Wの関係を示す図FIG. 4 is a diagram showing a relationship between logλ and L / W.

【図5】実施態様の一例を示す図FIG. 5 shows an example of the embodiment.

【符号の説明】[Explanation of symbols]

1 取鍋 2 タンディッシュ 3 鋳型 4 二次冷却帯 5 ガイドロール 6 切断機 7 鋳片 8 鋳片加熱炉 9 分塊圧延機 10 鋼片 11 鋼片加熱炉 12 棒鋼圧延機 13 棒鋼 Reference Signs List 1 ladle 2 tundish 3 mold 4 secondary cooling zone 5 guide roll 6 cutting machine 7 slab 8 slab heating furnace 9 slab rolling mill 10 steel slab 11 steel slab heating furnace 12 bar rolling mill 13 steel bar

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B22D 11/12 B22D 11/12 A C22C 38/00 301 C22C 38/00 301Y 38/58 38/58 (72)発明者 吉岡 隆史 北海道室蘭市仲町12番地 新日本製鐵株式 会社室蘭製鐵所内 (72)発明者 磯部 浩一 北海道室蘭市仲町12番地 新日本製鐵株式 会社室蘭製鐵所内────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification symbol FI B22D 11/12 B22D 11/12 A C22C 38/00 301 C22C 38/00 301Y 38/58 38/58 (72) Inventor Takashi Yoshioka No. 12, Nakamachi, Muroran City, Hokkaido Nippon Steel Corporation Muroran Steel Corporation (72) Inventor Koichi Isobe 12, Nakamachi, Muroran City, Hokkaido Nippon Steel Corporation Muroran Steel Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 質量で、C:0.08〜0.61%、S
i:0.15〜0.35%、Mn:0.30〜1.65
%、P≦0.030%、S:0.005〜0.030
%、T.Al:0.005〜0.040%、T.O:5
〜30ppm、Ni≦0.25%、Cr:0〜0.70
%を基本成分とし、さらにCa:5〜30ppmを含有
した熱間鍛造用棒鋼の製造方法であって、前記成分の溶
鋼をブルーム鋳片に連続鋳造し所定の長さに切断後、該
鋳片を加熱し2〜4パスの分塊圧延により鋼片に成形
し、または前記成分の溶鋼をビレット鋳片に連続鋳造し
所定の長さに切断し、前記分塊圧延された鋼片または所
定の長さに切断されたビレット鋳片を加熱し、鋳片から
の圧延比が9.5以下となるように棒鋼圧延することを
特徴とする熱間鍛造用棒鋼の製造方法。
1. A mass, C: 0.08 to 0.61%, S
i: 0.15 to 0.35%, Mn: 0.30 to 1.65
%, P ≦ 0.030%, S: 0.005 to 0.030
%, T. Al: 0.005 to 0.040%; O: 5
3030 ppm, Ni ≦ 0.25%, Cr: 00〜0.70
% Is a basic component and a method for producing a steel bar for hot forging further containing 5 to 30 ppm of Ca, wherein the molten steel of the component is continuously cast into a bloom cast piece, cut into a predetermined length, and then cut into a predetermined length. Is heated and formed into a steel slab by slab rolling of 2 to 4 passes, or the molten steel of the above-described component is continuously cast into a billet slab and cut into a predetermined length, and the slab or the specified slab or A method for producing a steel bar for hot forging, comprising heating a billet slab cut to a length, and rolling the steel bar so that a rolling ratio from the slab is 9.5 or less.
【請求項2】 質量で、C:0.08〜0.61%、S
i:0.15〜0.35%、Mn:0.30〜1.65
%、P≦0.030%、S:0.005〜0.030
%、T.Al:0.005〜0.040%、T.O:5
〜30ppm、Ni≦0.25%、Cr:0〜0.70
%を基本成分とし、さらにCa:5〜30ppmおよび
Te:5〜30ppmを含有した熱間鍛造用棒鋼の製造
方法であって、前記成分の溶鋼をブルーム鋳片に連続鋳
造し所定の長さに切断後、該鋳片を加熱し2〜4パスの
分塊圧延により鋼片に成形し、または前記成分の溶鋼を
ビレット鋳片に連続鋳造し所定の長さに切断し、前記分
塊圧延された鋼片または所定の長さに切断されたビレッ
ト鋳片を加熱し、鋳片からの圧延比が63以下となるよ
うに棒鋼圧延することを特徴とする熱間鍛造用棒鋼の製
造方法。
2. C: 0.08 to 0.61% by mass, S
i: 0.15 to 0.35%, Mn: 0.30 to 1.65
%, P ≦ 0.030%, S: 0.005 to 0.030
%, T. Al: 0.005 to 0.040%; O: 5
3030 ppm, Ni ≦ 0.25%, Cr: 00〜0.70
% Is a basic component, and further comprises a steel bar for hot forging further containing 5 to 30 ppm of Ca and 5 to 30 ppm of Te. After cutting, the slab is heated and formed into a steel slab by slab rolling of 2 to 4 passes, or the molten steel of the component is continuously cast into a billet slab and cut to a predetermined length, and the slab is slab-rolled. A method for producing a steel bar for hot forging, comprising: heating a steel slab or a billet slab cut to a predetermined length and rolling the steel bar so that a rolling ratio from the slab is 63 or less.
JP11748497A 1997-04-22 1997-04-22 Manufacturing method of steel bars for hot forging Expired - Fee Related JP3399780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11748497A JP3399780B2 (en) 1997-04-22 1997-04-22 Manufacturing method of steel bars for hot forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11748497A JP3399780B2 (en) 1997-04-22 1997-04-22 Manufacturing method of steel bars for hot forging

Publications (2)

Publication Number Publication Date
JPH10296396A true JPH10296396A (en) 1998-11-10
JP3399780B2 JP3399780B2 (en) 2003-04-21

Family

ID=14712860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11748497A Expired - Fee Related JP3399780B2 (en) 1997-04-22 1997-04-22 Manufacturing method of steel bars for hot forging

Country Status (1)

Country Link
JP (1) JP3399780B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010240710A (en) * 2009-04-08 2010-10-28 Sumitomo Metal Ind Ltd Stamp forged crank shaft, method for manufacturing the same, and stamp forging die used for manufacture thereof
CN104438327A (en) * 2014-11-14 2015-03-25 江苏省镔鑫钢铁集团有限公司 Continuous-casting-billet on-line direct fine-grain steel rolling process technology
WO2017069064A1 (en) * 2015-10-19 2017-04-27 新日鐵住金株式会社 Steel for mechanical structures and induction hardened steel parts
JPWO2017068935A1 (en) * 2015-10-19 2018-08-09 新日鐵住金株式会社 Hot forging steel and hot forging
US11111568B2 (en) 2016-09-30 2021-09-07 Nippon Steel Corporation Steel for cold forging and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01299742A (en) * 1988-05-30 1989-12-04 Nippon Steel Corp Method for continuously casting bloom or billet by calcium treatment
JPH10277705A (en) * 1997-04-02 1998-10-20 Nippon Steel Corp Production of non-heat-treated bar steel for high toughness hot-forging

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01299742A (en) * 1988-05-30 1989-12-04 Nippon Steel Corp Method for continuously casting bloom or billet by calcium treatment
JPH10277705A (en) * 1997-04-02 1998-10-20 Nippon Steel Corp Production of non-heat-treated bar steel for high toughness hot-forging

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010240710A (en) * 2009-04-08 2010-10-28 Sumitomo Metal Ind Ltd Stamp forged crank shaft, method for manufacturing the same, and stamp forging die used for manufacture thereof
CN104438327A (en) * 2014-11-14 2015-03-25 江苏省镔鑫钢铁集团有限公司 Continuous-casting-billet on-line direct fine-grain steel rolling process technology
WO2017069064A1 (en) * 2015-10-19 2017-04-27 新日鐵住金株式会社 Steel for mechanical structures and induction hardened steel parts
CN108138287A (en) * 2015-10-19 2018-06-08 新日铁住金株式会社 Steel for mechanical structure and high-frequency quenching steel part
JPWO2017068935A1 (en) * 2015-10-19 2018-08-09 新日鐵住金株式会社 Hot forging steel and hot forging
JPWO2017069064A1 (en) * 2015-10-19 2018-09-13 新日鐵住金株式会社 Steel for machine structure and induction hardened steel parts
US10844466B2 (en) 2015-10-19 2020-11-24 Nippon Steel Corporation Hot forging steel and hot forged product
US11111568B2 (en) 2016-09-30 2021-09-07 Nippon Steel Corporation Steel for cold forging and manufacturing method thereof

Also Published As

Publication number Publication date
JP3399780B2 (en) 2003-04-21

Similar Documents

Publication Publication Date Title
JP5340290B2 (en) High-strength non-tempered steel for fracture splitting and steel parts for fracture splitting
CN105008570A (en) Thick, tough, high tensile strength steel plate and production method therefor
EP0637636B1 (en) Graphite structural steel having good free-cutting and good cold-forging properties and process of making this steel
JP6819198B2 (en) Rolled bar for cold forged tempered products
TWI424069B (en) A high-strength hot rolled steel sheet having stretch-flangeability and fatigue resistance
JP6614393B2 (en) Non-tempered steel bar
JP5353578B2 (en) High-strength hot-rolled steel sheet excellent in hole expansibility and method for producing the same
KR20190028757A (en) High frequency quenching steel
JPS62256950A (en) High-strength steel wire rod excellent in wiredrawability
JP3399780B2 (en) Manufacturing method of steel bars for hot forging
JP4605695B2 (en) Pre-hardened steel for die casting molds
CN115044827A (en) Production method of isothermal annealing-free low-carbon gear steel
JP6673535B1 (en) Steel subjected to induction hardening
JP4223442B2 (en) Steel for plastic molds with excellent texture and machinability
JP7226083B2 (en) wire and steel wire
JP3598771B2 (en) Martensitic stainless steel excellent in hot workability and sulfide stress cracking resistance, method of bulk rolling thereof, seamless steel pipe using these, and method of manufacturing the same
JP3091795B2 (en) Manufacturing method of steel bars with excellent drawability
JPS6320412A (en) Hot working method for austenitic stainless steel containing mo and n
JP3243987B2 (en) Manufacturing method of high strength and high corrosion resistance martensitic stainless steel
JP3091794B2 (en) Method of manufacturing automotive shaft parts excellent in extrudability and forgeability
JPS62253725A (en) Production of high-toughness non-heattreated bar steel for hot forging
JP4705751B2 (en) Wire drawing material with excellent cold forgeability and machinability
JP4564189B2 (en) High toughness non-tempered steel for hot forging
JPS6410565B2 (en)
JP4203982B2 (en) Manufacturing method for rolled compacted products

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140221

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees