JPH10277705A - Production of non-heat-treated bar steel for high toughness hot-forging - Google Patents

Production of non-heat-treated bar steel for high toughness hot-forging

Info

Publication number
JPH10277705A
JPH10277705A JP8374897A JP8374897A JPH10277705A JP H10277705 A JPH10277705 A JP H10277705A JP 8374897 A JP8374897 A JP 8374897A JP 8374897 A JP8374897 A JP 8374897A JP H10277705 A JPH10277705 A JP H10277705A
Authority
JP
Japan
Prior art keywords
slab
heating
steel
temperature
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8374897A
Other languages
Japanese (ja)
Other versions
JP3357264B2 (en
Inventor
Koichi Isobe
浩一 磯部
Takeshi Sugawara
健 菅原
Hirotada Takada
啓督 高田
Tsutomu Tanaka
田中  勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP08374897A priority Critical patent/JP3357264B2/en
Publication of JPH10277705A publication Critical patent/JPH10277705A/en
Application granted granted Critical
Publication of JP3357264B2 publication Critical patent/JP3357264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably obtain high toughness even if the heat treatment after hot-forging is omitted in the production process of machine parts by heating and pressing under condition of specific temp. and reduction of area, forming into a steel billet and further, rolling this steel billet into a bar steel. SOLUTION: The steel containing 0.70-1.30 in the range of Ceq shown in the equation I, and 0.20-0.60% C, 0.10-1.5% Si, 0.60-2.00% Mn, 0.10-1.0% Cr, 0.03-0.35% V, 0.01-0.07% Ti, 0.0030-0.0200% N and 0.005-0.050% Al, is produced and continuously cast. At this time, the casting and the cooling is executed so that the temp. range of the solidus temp.-1000 deg.C becomes >=15 deg.C/min cooling speed. Thereafter, the surface temp. of a cast bloom is cooled to <=900 deg.C and charged into a heating furnace as hot slab state without cooling at <=500 deg.C for >=20 min. At this time, after heating the steel slab so that the heating time T1 and the staying time in a heating furnace satisfy the inequality II, blooming is applied at 10-35% reduction of area per one pass and the rolling reduction is executed at 2-6 passes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高い靭性を有する
熱間鍛造用非調質棒鋼の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-heat treated steel bar for hot forging having high toughness.

【0002】自動車や産業機械用の機械部品は、機械構
造用炭素鋼等を所定の形状に熱間鍛造した後、焼入れ、
焼戻し処理(調質熱処理)と切削加工により製造される
ことが多い。この製造工程において熱間鍛造後に実施さ
れる調質熱処理に多くのエネルギーとコストを要してお
り、それらを省略することの工業的意義は大きい。本発
明は、この熱間鍛造後の熱処理を省略しても高い靭性を
有する熱間鍛造用非調質鋼の製造方法を提供するもので
ある。
[0002] Machine parts for automobiles and industrial machines are formed by hot forging carbon steel for machine structure into a predetermined shape, then quenching.
Often manufactured by tempering (tempering heat treatment) and cutting. In this manufacturing process, a large amount of energy and cost are required for the refining heat treatment performed after the hot forging, and omitting them has great industrial significance. The present invention provides a method for producing a non-heat treated steel for hot forging having high toughness even if the heat treatment after the hot forging is omitted.

【0003】[0003]

【従来の技術】上述の熱間鍛造後の熱処理を省略するた
めに、機械構造用鋼にV、Nb等の元素を少量添加し
た、いわゆるマイクロアロイ型の非調質鋼が良く知られ
ている。しかし、この種の非調質鋼の熱間鍛造後の金属
組織は、著しく粗大化したフェライト、パーライト組織
を呈しており、それを機械部品に加工してもその靭性は
極めて低く、このため、その適用は高い靭性を必要とし
ない分野に限定され、高い靭性が要求される足回り部品
等の重要部品へは適用できないのが実状であった。この
欠点を解消するために、少量のTiを添加して結晶粒の
粗大化を防止し、靭性の改善を図ることが提案されてい
るが(例えば特開昭56−38448)、その効果は必
ずしも安定したものではなく、万全の対策となっていな
いのが実状である。
2. Description of the Related Art In order to omit the above-mentioned heat treatment after hot forging, a so-called microalloy type non-heat treated steel in which a small amount of elements such as V and Nb are added to steel for machine structural use is well known. . However, the metallographic structure of this type of non-heat treated steel after hot forging shows a ferrite and pearlite structure that has been significantly coarsened, and even if it is machined into mechanical parts, its toughness is extremely low. Its application is limited to fields that do not require high toughness, and in fact it cannot be applied to important parts such as underbody parts that require high toughness. In order to solve this drawback, it has been proposed to add a small amount of Ti to prevent coarsening of crystal grains and improve toughness (for example, JP-A-56-38448). It is not stable, and it is not a perfect measure.

【0004】非調質材の靭性を安定して確保する方法の
一つとして鋳造サイズを縮小して、鋳片の冷却速度のア
ップを図り、また、分塊圧延を省略して棒鋼に圧延する
ことが提案されているが(例えば特開昭62−2537
25)、その場合、鋳片サイズが小さいために、圧下比
制約から大型部品への適用は制限される。
[0004] As one of methods for stably securing the toughness of the non-heat treated material, the casting size is reduced to increase the cooling speed of the slab, and the slab is rolled into a steel bar by omitting slab rolling. (For example, Japanese Patent Application Laid-Open No. 62-2537).
25) In this case, the application to large parts is limited due to the reduction ratio due to the small slab size.

【0005】この種の非調質鋼を製造する際に、靭性を
確保するために何等かの手段を講じることで、分塊工程
を経ても安定した靭性が達成されることが可能となった
場合、大型部品へ本非調質鋼の適用拡大が図れ、そのメ
リットは極めて大きい。一方で、そのような分塊工程を
経由して非調質鋼を製造する場合には、成分系にも依存
するものの、AlN,TiN,V(C,N)等の炭、窒
化物や(Mn,Fe)S等の硫化物の析出が多く、それ
らに起因する熱間延性の低下により鋳片の加熱工程や分
塊工程で表面疵が発生し易い。その程度によっては、分
塊圧延での歩留りが大幅に低下したり、疵手入れのため
の費用が掛かり、製造コストの大幅アップにつながる。
[0005] In producing this type of non-heat treated steel, by taking some measures to ensure toughness, it has become possible to achieve stable toughness even after the sizing process. In this case, the application of the non-heat treated steel to large parts can be expanded, and the merit is extremely large. On the other hand, when non-heat-treated steel is manufactured through such a lumping process, it depends on the component system, but is not limited to carbon such as AlN, TiN, V (C, N), nitride or ( Precipitation of sulfides such as Mn, Fe) S, etc. is large, and surface defects are likely to occur in a slab heating step or a lumping step due to a decrease in hot ductility caused by the sulfides. Depending on the degree, the yield in slab rolling is greatly reduced, and costs for repairing the flaws are required, leading to a significant increase in manufacturing costs.

【0006】[0006]

【発明が解決しようとする課題】前述したように、Ti
は熱間鍛造非調質の決勝粒を微細化するのに適した添加
元素であり、鍛造に供される、鋼の製造方法を適正化す
ることで、Tiの結晶粒微細化効果を最大限に利用する
ことができる。
As described above, as described above, Ti
Is an additive element suitable for refining the final grains of hot-forged non-refined steel. By optimizing the steel production method used for forging, the effect of refining Ti crystal grains is maximized. Can be used for

【0007】そのため、Tiの効果を最大限に発揮させ
るような成分や製法は相変わらず探索されており、特に
工業的に所定の機械的特性を満足しつつ、大幅なコスト
ダウンを可能とする製造方法に対する要求は益々強くな
ってきている。
[0007] Therefore, components and production methods that maximize the effect of Ti are still being sought, and in particular, a production method that enables a significant cost reduction while satisfying predetermined mechanical properties industrially. Are increasingly demanding.

【0008】本発明は上述の機械部品の製造工程におい
て、熱間鍛造後の熱処理を省略しても常に安定して高い
靭性が得られ、特に、分塊工程を経ても安定して高い靭
性の達成を可能とすることで、従来適用が見送られてき
た大型部品への適用も可能とする熱間鍛造用非調質鋼の
製造方法を提供しようとするものである。併せて、本非
調質鋼において分塊圧延する際に発生し易い表面疵の発
生を抑制し、歩留り低下や疵手入れ等による製造コスト
のアップを防止する方法を提供するものである。
According to the present invention, high toughness can always be obtained stably even if the heat treatment after hot forging is omitted in the above-mentioned process of manufacturing mechanical parts. It is an object of the present invention to provide a method for producing a non-heat-treated steel for hot forging, which can be applied to a large-sized component whose application has been postponed. In addition, another object of the present invention is to provide a method for suppressing the occurrence of surface flaws, which are likely to occur during slab rolling in the present non-heat-treated steel, and preventing an increase in production cost due to a decrease in yield or flaw care.

【0009】[0009]

【課題を解決するための手段】本発明者らは上記の問題
点を解決するために種々の研究を重ね、本発明を完成し
た。即ち本発明の一つ目は、 (I) (1)式で示されるCeq.が0.70から
1.30の範囲で C:0.20〜0.60%、 Si:0.10〜1.5% Mn:0.60〜2.00% Cr:0.10〜1.0% V:0.03〜0.35% Ti:0.01〜0.07% N:0.0030〜0.0200% Al:0.005〜0.050% を含み、残りは実質的に不可避の不純物とFeよりなる
鋼を転炉あるいは電気炉を用いて溶製し、さらに連続鋳
造法で鋳造するに際し、固相線温度〜1000℃の温度
範囲を15℃/min以上の冷却速度となるよう鋳造、
冷却し、その後、鋳片表面温度を900℃以下に冷却
し、且つ、500℃以下の温度に20min以上冷却す
ることなく、熱片のまま加熱炉へ装入し、その際、該鋳
片を加熱温度(T1)および加熱炉在炉時間(t1)が
(2)式を満足するよう加熱した後、分塊圧延にて1パ
ス当たり10〜35%の減面率で、2〜6パスの圧下を
加えて、鋼片に成形し、さらに該鋼片を棒鋼圧延するこ
とを特徴とする高靭性熱間鍛造用非調質棒鋼の製造方法
である。
Means for Solving the Problems The present inventors have conducted various studies in order to solve the above problems and completed the present invention. That is, the first aspect of the present invention is as follows: (I) Ceq. Is in the range of 0.70 to 1.30, C: 0.20 to 0.60%, Si: 0.10 to 1.5% Mn: 0.60 to 2.00% Cr: 0.10 to 1.30%. 0% V: 0.03 to 0.35% Ti: 0.01 to 0.07% N: 0.0030 to 0.0200% Al: 0.005 to 0.050%, with the balance substantially being When a steel consisting of unavoidable impurities and Fe is melted using a converter or an electric furnace and further cast by a continuous casting method, the temperature range from the solidus temperature to 1000 ° C. is set at a cooling rate of 15 ° C./min or more. Casting,
After cooling, the slab surface temperature is cooled to 900 ° C. or less, and without being cooled to a temperature of 500 ° C. or less for 20 minutes or more, the slab is charged into a heating furnace as a hot slab. After heating so that the heating temperature (T1) and the heating furnace residence time (t1) satisfy the expression (2), two to six passes are performed by slab rolling at a reduction rate of 10 to 35% per pass. This is a method for producing a non-heat treated steel bar for high toughness hot forging, characterized by forming a steel slab by applying a reduction, and further rolling the steel slab.

【0010】 Ceq.(%)=C%+1/7×Si%+1/5×Mn%+1/9×Cr% +1.54×V% (1) 加熱炉在炉時間:t1(min)≦(1181−T1)/0.77 (2) ここで T1:加熱温度(℃) 但し、900≦T1≦
1181(℃) また、本発明の二つ目は、 (II) 連鋳鋳片の冷却過程において少なくとも鋳片表
層から10mm以上の範囲を、一旦Ar1点温度以下に
冷却してから加熱炉へ装入し、鋳片を加熱することを特
徴とする(I)項に記載の高靭性熱間鍛造用非調質棒鋼
の製造方法である。
[0010] Ceq. (%) = C% + / × Si% + / × Mn% + 1/9 × Cr% + 1.54 × V% (1) Furnace heating time: t1 (min) ≦ (1181-T1) / 0.77 (2) where T1: heating temperature (° C.) where 900 ≦ T1 ≦
1181 (° C.) The second aspect of the present invention is as follows: (II) In the process of cooling the continuous cast slab, at least a range of 10 mm or more from the surface layer of the cast slab is once cooled to the Ar 1 point temperature or lower, and then loaded into the heating furnace And heating the cast slab. The method for producing a non-heat treated steel bar for high toughness hot forging as described in (I) above, wherein the slab is heated.

【0011】さらに、本発明の三つめは、 (III) 鋼片を棒鋼圧延前に加熱する際に、加熱温度
(T2)および加熱炉在炉時間 加熱炉在炉時間:t2(min)≦(1240−T2)/1.33 (3) ここで T2:加熱温度(℃) 但し、900≦T2≦
1240(℃) (t2)が(3)式を満足するよう加熱した後、該鋼片
を棒鋼に圧延することを特徴とする前記(I)項または
(II)項に記載の高靭性熱間鍛造用非調質棒鋼の製造方
法である。
Further, the third aspect of the present invention is that (III) the heating temperature (T2) and the heating furnace time in the heating furnace: t2 (min) ≦ ( 1240-T2) /1.33 (3) where T2: heating temperature (° C.), provided that 900 ≦ T2 ≦
1240 (° C.) After heating so that (t2) satisfies the expression (3), the steel slab is rolled into a steel bar, and the high toughness hot work according to the above (I) or (II), This is a method for producing a non-heat treated steel bar for forging.

【0012】一つ目の発明のポイントは、化学成分を特
定の範囲内に制限し、その成分を有する溶鋼を鋳造する
際に、凝固後の冷却速度を大きく取ると共に、鋳片を加
熱炉へ装入する際の鋳片の温度条件および鋳片を加熱す
る際の加熱条件を特定の範囲に制御し、その後分塊圧延
で所定の加工を加えて、棒鋼圧延用の鋼片を成形するこ
とで、熱間構造の加熱時に生じる結晶粒の粗大化を防止
し、熱鍛ままで使用する非調鋼鍛造部品において、高い
靭性が安定して得られることを見出したことである。
The first aspect of the invention is that the chemical composition is restricted to a specific range, and when casting molten steel having that composition, the cooling rate after solidification is increased and the slab is transferred to a heating furnace. To control the temperature condition of the slab at the time of charging and the heating condition at the time of heating the slab to a specific range, and then apply predetermined processing by slab rolling to form a slab for bar rolling. Thus, the present inventors have found that it is possible to prevent coarsening of crystal grains generated during heating of a hot structure and to stably obtain high toughness in a non-steel-forged steel part used as hot forged.

【0013】また、二つ目の発明のポイントは、一つ目
の発明のポイントに加え、加熱炉へ装入する前に鋳片表
層部を一旦Ar1点温度以下に冷却してから、加熱炉へ
装入することで、非調質鋼鍛造部品において、熱間鍛造
ままで高い靭性を達成しつつ、特に高窒素鋼の鋳片を加
熱、分塊圧延する時に問題となる表面疵の改善方法を見
出したことである。
A second aspect of the present invention is the same as the first aspect, except that the surface layer of the slab is once cooled to a temperature not higher than the Ar1 point before being charged into the heating furnace. In order to achieve high toughness while hot forging in non-heat treated steel forged parts, a method for improving surface flaws, which is a problem especially when heating and slab rolling high nitrogen steel slabs It was found.

【0014】更に、三つ目の発明ポイントは、一つ目や
二つ目の発明に、鋼片を加熱する際の加熱条件を特定の
範囲に制御することを組合わせることで、熱間鍛造の加
熱時に生じる結晶粒の粗大化をより効果的に防止し、非
調質鋼鍛造部品において、熱間鍛造ままで高い靭性をよ
り安定して達成する方法を見出したことである。
A third invention point is that hot forging is performed by combining the first and second inventions with controlling a heating condition for heating a steel slab to a specific range. The present invention has found a method for more effectively preventing the coarsening of the crystal grains generated during the heating of a non-heat-treated steel, and more stably achieving high toughness in hot-forged non-heat treated steel parts.

【0015】[0015]

【発明の実施の形態】以下に本発明の実施形態について
説明する。
Embodiments of the present invention will be described below.

【0016】本発明で化学成分を制限する理由は以下の
通りである。
The reasons for limiting the chemical components in the present invention are as follows.

【0017】Cは非調質鍛造品のフェライト、パーライ
ト組織をコントロールすると共にVと結びついて析出硬
化して部品の強度を高めるために必要な元素で、その量
は0.20%未満では必要な強度を得るための合金元素
が多くなり不経済であり、0.6%を越えた場合、強度
が高くなり過ぎて靭性が損なわれてしまう。
C is an element necessary for controlling the ferrite and pearlite structures of the non-heat-treated forged product and for increasing the strength of the part by precipitation hardening in combination with V. If the amount is less than 0.20%, it is necessary. The amount of alloying elements for obtaining strength increases, which is uneconomical. If it exceeds 0.6%, the strength becomes too high and the toughness is impaired.

【0018】Siは脱酸剤として0.10%以上であ
り、一方1.5%を越えると必要以上に硬くなるため、
1.5%を上限とした。
Since Si is 0.10% or more as a deoxidizing agent, and if it exceeds 1.5%, it becomes harder than necessary.
The upper limit was 1.5%.

【0019】MnはC,Si,Crと共に非調質鋼製品
の強度を支配する重要な元素であり、そのため0.6%
以上必要であり、一方、2.0%を越すと製造上の困難
さが増大し、且つ、却って、被削性が低下するため避け
なければならない。
Mn, together with C, Si, and Cr, is an important element that controls the strength of a non-heat treated steel product.
On the other hand, if it exceeds 2.0%, the difficulty in production increases and, on the contrary, the machinability decreases, so it must be avoided.

【0020】Crは上述のMn同様に被調質鋼製品の強
度を向上する重要な元素であり、0.1%未満ではその
効果が十分でなく、1.0%を越えて添加しても材料改
善効果が小さく経済的でないため、請求の範囲から除外
した。
Cr is an important element for improving the strength of the tempered steel product like Mn described above. If it is less than 0.1%, its effect is not sufficient. Since the material improvement effect was small and not economical, it was excluded from the claims.

【0021】Vは熱間鍛造後の冷却中に鋼中のCやNと
結びついて強度を高める元素であり、0.03%未満で
はその効果は得られず、一方、0.35%を越して添加
しても徒に硬く成り過ぎるだけなので0.35%を上限
とした。
V is an element that enhances the strength by being combined with C and N in the steel during cooling after hot forging, and its effect cannot be obtained if it is less than 0.03%, while it exceeds 0.35%. Even if it is added, it is only too hard, so 0.35% was made the upper limit.

【0022】C,Si,Mn,Cr,Vは何れも鍛造ま
まの非調質鋼部品の強度を上げる元素であり、その添加
量は(1)式で計算したCeq.の値で0.70以上、
1.30以下でなければならない。これは自動車あるい
は産業用機会で使用される機械部品の硬さが、ビッカー
ス硬さで200から360の範囲であるため、そのよう
な高度になるよう定めたものであり、従ってCeq.が
0.70以下では必要な硬度が得られず、また一方、
1.30を越えると硬くなり過ぎるため避けなければな
らない。
C, Si, Mn, Cr and V are all elements that increase the strength of the as-forged as-heat-treated non-heat treated steel part, and the amount of Ceq. Is 0.70 or more,
Must be 1.30 or less. It is specified that the hardness of machine parts used in automobiles or industrial occasions is such an altitude since the hardness is in the range of 200 to 360 in Vickers hardness, and therefore Ceq. Is less than 0.70, the required hardness cannot be obtained.
If it exceeds 1.30, it becomes too hard and must be avoided.

【0023】TiとNは鋼中に窒化物を生成せしめ熱間
鍛造の加熱時に、結晶粒の粗大化を防止するのに必要な
元素である。このためのTi量は0.1%未満では効果
は得られず、また、0.07%を越えて添加すると却っ
て靭性が劣化するため0.07%を上限とした。
Ti and N are elements necessary to form nitrides in the steel and to prevent the crystal grains from becoming coarse during heating in hot forging. If the Ti content is less than 0.1%, no effect can be obtained, and if it exceeds 0.07%, the toughness is rather deteriorated. Therefore, the upper limit is set to 0.07%.

【0024】一方、Nは0.0030%未満では結晶粒
の粗大化防止効果が得られず、0.0200%を越える
と靭性が低下するためそのような添加は避けなければな
らない。
On the other hand, if N is less than 0.0030%, the effect of preventing the crystal grains from being coarsened cannot be obtained, and if N exceeds 0.0200%, the toughness is reduced, so that such addition must be avoided.

【0025】A1は鋼の脱酸に必要な元素であり、0.
005%未満では効果が得られず、また、0.050%
越えて添加してもそれ以上の効果が得られないため請求
の範囲から除いた。
A1 is an element necessary for deoxidizing steel.
If less than 005%, no effect is obtained, and 0.050%
Even if it is added in excess, no further effect can be obtained, so that it is excluded from the claims.

【0026】尚、被削性を向上せしめる元素であるS,
Pb,Bi,Te,Ca等を添加しても何等本効果は損
われない。
Incidentally, S, which is an element for improving machinability,
Even if Pb, Bi, Te, Ca, etc. are added, this effect is not impaired at all.

【0027】次に溶鋼を鋳造する際に凝固完了後の速度
をコントロールする必要性について説明する。鋳片内の
ある部位が凝固後、即ち、固相線温度をきった後100
0℃までの温度範囲における平均冷却速度を15℃/m
in以上の冷却速度で冷却しないと、その後の製品に圧
延されるまでの熱、加工履歴を如何に工夫しようが、熱
間鍛造時にTiの炭、窒化物を微細に分散させることが
出来ず、結果として結晶粒が粗大化して靭性がなくなる
ため避けなければならない。
Next, the necessity of controlling the speed after completion of solidification when casting molten steel will be described. After a certain part in the slab is solidified, that is, 100% after the solidus temperature is reduced.
The average cooling rate in the temperature range up to 0 ° C is 15 ° C / m
If it is not cooled at a cooling rate of more than in, the heat until rolling to the subsequent product, how to devise the processing history, but it is not possible to finely disperse Ti's charcoal, nitride during hot forging, As a result, the crystal grains become coarse and the toughness is lost.

【0028】上述したように、熱間鍛造ままで高い靭性
を得るには、熱間鍛造の加熱時にTiの炭、窒化物を微
細に分散させ、結晶粒の粗大化を防止する必要があり、
その為には連鋳工程での冷却速度を大きくすることが必
要条件となる。
As described above, in order to obtain high toughness as it is during hot forging, it is necessary to disperse Ti charcoal and nitride finely during hot forging to prevent coarsening of crystal grains.
For that purpose, it is a necessary condition to increase the cooling rate in the continuous casting process.

【0029】例えば特開昭62−253725で提案さ
れているように、鋳造サイズを縮小して、鋳片の冷却速
度を大きくし、また、分塊圧延を省略して棒鋼に圧延す
る場合は、分塊工程での再加熱を受けず、再加熱時のT
i炭、窒化物の成長が防止できるため、炭、窒化物の微
細化は達成し易い。
For example, as proposed in Japanese Patent Application Laid-Open No. 62-253725, when the casting size is reduced, the cooling rate of the slab is increased, and when the slab rolling is omitted, the steel is rolled into a steel bar. Not subjected to reheating in the lumping process,
i Since the growth of charcoal and nitride can be prevented, it is easy to achieve finer charcoal and nitride.

【0030】しかしながら、本願発明の条件で冷却され
た鋳片を分塊圧延して一旦鋼片に成形してから棒鋼工場
等で製品圧延する場合には、Ti炭、窒化物の粗大化を
防止するため、さらに連鋳工程から分塊圧延を経て鋼片
になるまでの温度履歴や加工条件を特定範囲に制限する
必要があり、逆に、それらを特定範囲に制御することに
よって分塊工程を経ても、高い靭性が安定して出現する
熱間鍛造用非調質鋼が製造可能となることが判明した。
However, when the cast slab cooled under the conditions of the present invention is subjected to slab rolling and once formed into a steel slab and then rolled at a steel bar factory or the like, coarsening of Ti coal and nitride is prevented. Therefore, it is necessary to further restrict the temperature history and processing conditions from the continuous casting process to the billet through the slab rolling to the slab to a specific range. It has been found that non-heat treated steel for hot forging in which high toughness appears stably can be manufactured even after passing through.

【0031】即ち、連鋳工程やそれに引続く工程におい
て鋳片表面温度が900℃以下に冷却し、且つ、500
℃以下の温度に20min以上冷却することなく、熱片
のまま加熱炉へ装入し、その際、加熱温度(T1)およ
び加熱炉在炉時間(t1)が(2)式を満足するよう加
熱した後、分塊圧延にて1パス当たり10〜35%の減
面率で、2〜6パスの圧下を加えて、外鋳片から鋼片へ
の成形を実施することで、より一層Tiの炭、窒化物は
微細に、かつ、十分に析出させることができ、優れた靭
性を有する熱間鍛造用非調質鋼が製造可能となる。
That is, in the continuous casting step and subsequent steps, the surface temperature of the slab is cooled to 900 ° C. or less, and
The heating piece was charged into the heating furnace without cooling to a temperature of 20 ° C. or less for 20 minutes or more, and the heating was performed so that the heating temperature (T1) and the heating furnace time (t1) satisfied the formula (2). Then, by performing rolling from outer cast slab to steel slab by applying reduction of 2 to 6 passes at a reduction rate of 10 to 35% per pass by slab rolling, Ti is further reduced. Charcoal and nitride can be finely and sufficiently precipitated, and a non-heat treated steel for hot forging having excellent toughness can be manufactured.

【0032】加熱炉装入温度を900℃以下とし、50
0℃以下の温度に20min以上冷却することなく、熱
片のまま加熱炉へ装入するといったような制限を付ける
理由は、このような加熱炉装入前の温度履歴を取ること
によって、連鋳工程の冷却で過飽和に固溶していたTi
の微細炭、窒化物の析出が促進され、且つ、析出してい
る炭、窒化物のオストワルド成長が抑制される結果、T
i炭、窒化物の微細分散を実現できる。
The heating furnace charging temperature is set to 900 ° C. or less, and 50
The reason why a restriction such as charging a heating piece into a heating furnace without cooling it to a temperature of 0 ° C. or less for 20 minutes or more is given by taking a temperature history before charging the heating furnace. Ti dissolved in supersaturation by cooling in the process
Is promoted, and the Ostwald growth of the deposited charcoal and nitride is suppressed.
Fine distribution of i-charcoal and nitride can be realized.

【0033】鋳片表面温度が900℃を越えるような温
度で加熱炉へ装入した場合は、Tiの炭、窒化物が析出
するサイトがまばらとなり、加熱炉で炭、窒化物が不均
一に、しかも粗大に析出して、熱間鍛造時の結晶粒粗大
化を十分抑制できない。
When the slab is charged into a heating furnace at a temperature exceeding 900 ° C., the sites where Ti coals and nitrides precipitate are sparse, and the coals and nitrides become uneven in the heating furnace. In addition, it is coarsely precipitated, and the coarsening of crystal grains during hot forging cannot be sufficiently suppressed.

【0034】一方、500℃以下の温度に20min以
上冷却された鋳片を加熱すると、既に析出している(M
n,Fe)S等の析出物上にTiの炭、窒化物が析出す
る傾向が増大し、(Mn,Fe)S等の分布状況によっ
てはTiの炭、窒化物の分布が不均一となり、熱間鍛造
時に粗大粒が発生し易くその分靭性がバラつくため、そ
のような条件は避けるのが好ましい。
On the other hand, when the slab cooled to a temperature of 500 ° C. or less for 20 minutes or more is heated, it is already precipitated (M
The tendency of Ti coals and nitrides to precipitate on precipitates such as (n, Fe) S increases, and depending on the distribution of (Mn, Fe) S etc., the distribution of Ti coals and nitrides becomes non-uniform, It is preferable to avoid such conditions because coarse grains are easily generated during hot forging and the toughness varies accordingly.

【0035】また、分塊圧延前の鋳片の加熱条件につい
ても(2)式を満足するように制限するのもTiの微細
炭、窒化物の析出を促進すると共に炭、窒化物の粗大化
を抑制する為である。
Further, the heating conditions of the slab before the slab rolling are restricted so as to satisfy the expression (2), because the precipitation of fine coal and nitride of Ti is promoted and the coarsening of char and nitride is promoted. It is for suppressing.

【0036】さらに、連鋳工程及び分塊圧延前の加熱工
程で上記熱履歴を付与した鋳片を、分塊圧延にて1段当
たり10〜35%の減面率で、2〜6パスの圧下を加え
て、該鋳片から鋼片への成形を実施すると、Tiの炭、
窒化物の析出が分塊圧延で導入された歪により促進さ
れ、微細な炭、窒化物の析出量を効果的に増大できる。
1段当たりの減面率を10〜35%に制限する理由は、
10%以下では素材の中心部まで変形が十分浸透せず、
中心部に歪を十分導入できない。また、減面率が35%
を越えると表面品質や鋼片の形状や寸法精度の確保、圧
下ロールへの噛み込みが難しくなる等から圧延が困難と
なるためである。
Further, the slab to which the above-mentioned heat history has been applied in the continuous casting step and the heating step before slab rolling is subjected to two- to six-pass passes by slab rolling at a reduction in area of 10 to 35% per stage. When a reduction is applied to form the slab into a billet, Ti charcoal,
Precipitation of nitride is promoted by the strain introduced by slab rolling, and the amount of fine carbon and nitride precipitated can be effectively increased.
The reason for limiting the area reduction rate per stage to 10 to 35% is as follows:
If it is less than 10%, the deformation does not penetrate sufficiently to the center of the material,
Sufficient distortion cannot be introduced at the center. The area reduction rate is 35%
This is because if it exceeds 300 mm, rolling becomes difficult because the surface quality, the shape and dimensional accuracy of the slab are secured, and it becomes difficult to bite into the reduction roll.

【0037】パス回数を制限したのは0パスでは歪が導
入されず、1パスでは製品圧延に供するに必要な寸法精
度を有する鋼片の成形は極めて困難であり、一方、パス
回数が6パス以上では、そのTiの炭、窒化物の析出を
促進する効果は飽和するのに対し、連続圧延する場合に
は圧延機等の台数の増加による設備投資の増大や、逆転
式のミルでは生産性の低下や製造コストの増大を招くた
め得策ではない。
The reason for limiting the number of passes is that no strain is introduced in the 0 pass, and it is extremely difficult to form a slab having the dimensional accuracy required for product rolling in the 1 pass, while the number of passes is 6 passes. In the above, the effect of promoting the precipitation of charcoal and nitride of Ti saturates. On the other hand, in the case of continuous rolling, an increase in capital investment due to an increase in the number of rolling mills and the like, and in the case of a reversing mill, the productivity is increased. This is not a good idea because it causes a decrease in the manufacturing cost and an increase in the manufacturing cost.

【0038】尚、本発明では1パス当たり10〜35%
の減面率で、2〜6パスの圧下を加えた後に、鋼片形状
を整えるために1パス当たり10%以下の減面率で圧下
しても、何等その効果は損われない。
In the present invention, 10% to 35% per pass
After applying the reduction of 2 to 6 passes at the reduction of area, even if the reduction is performed at a reduction of 10% or less per pass in order to adjust the shape of the billet, the effect is not impaired at all.

【0039】以上述べたように、本発明では連鋳から分
塊工程への熱履歴や分塊工程での加熱時間や加熱温度お
よび圧延条件を特定の範囲に制限して、微細なTiの
炭、窒化物の析出を促進する制御加熱、圧延技術を組合
わせることにより、従来鋳片内の冷却速度を大きくとる
ことだけで、Tiの炭、窒化物の微細分散を実現してい
た場合に比べ、より鋳片内の冷却速度が遅く、分塊工程
を経なければ製品圧延用の鋼片が得られないような断面
サイズの鋳片に鋳造する場合についても、高靭性型非調
質鋼の製造が可能となる。
As described above, in the present invention, the heat history from the continuous casting to the sizing step, the heating time and the heating temperature in the sizing step, and the rolling conditions are limited to specific ranges, and the fine Ti By combining controlled heating and rolling technology to promote nitride precipitation, it is possible to increase the cooling rate in the slab, and to achieve a finer dispersion of Ti char and nitride. Also, when casting into a slab having a cross-sectional size such that the cooling rate in the slab is slower and a slab for product rolling can not be obtained without passing through the lumping step, the high toughness type non-heat treated steel Manufacturing becomes possible.

【0040】一方、自動車部品等に使用される棒鋼製品
では、製品中心部の健全性を確保するためにある程度
の、例えば4〜8以上の圧下比を確保する必要があり、
鋳片の断面サイズが決まると、圧下比を確保するために
製造可能な製品サイズは規定される。よって、本発明を
適用することにより高靭性非調質鋼としての特性を実現
可能な鋳片断面サイズが拡大できれば、高靭性非調質鋼
としての特性を満足し、さらに、上記圧下比を確保して
製品中心部の健全性も満足する製品のサイズは大幅に拡
大できる。
On the other hand, in steel bar products used for automobile parts and the like, it is necessary to secure a certain reduction ratio, for example, 4 to 8 or more, in order to secure the soundness of the center of the product.
When the cross-sectional size of the slab is determined, the size of a product that can be manufactured to secure a reduction ratio is defined. Therefore, if the slab cross-sectional size capable of realizing the characteristics as a high-toughness non-heat treated steel can be expanded by applying the present invention, the characteristics as a high toughness non-heat-treated steel are satisfied, and further, the reduction ratio is secured. As a result, the size of a product that satisfies the soundness of the product center can be greatly expanded.

【0041】次に、請求項2に記載の発明の実施形態に
ついて説明する。
Next, an embodiment of the present invention will be described.

【0042】非調質鋼の鋳片を熱片のまま加熱炉へ装入
して分塊圧延する場合、結晶粒を微細化をするために添
加したAl,Ti,V等の炭、窒化物や(Mn,Fe)
S等の硫化物の析出が多く、それらのオーステナイト
(γ)粒界への析出によって熱間延性が低下するため、
鋳片の加熱工程や分塊工程で表面疵が発生し易く、特に
N濃度が80ppm以上の高窒素鋼では、窒化物の析出
に起因して表面割れ感受性が極めて悪い。そのような鋼
種では、表面疵のために分塊圧延での歩留りが大幅に低
下したり、疵の検査や手入れのための費用が掛かり、製
造コストの大幅アップにつながるため、表面疵の防止や
熱間延性の改善を図る必要が有る。
When a non-heat treated steel slab is charged into a heating furnace as a hot slab and subjected to slab rolling, carbon, nitride such as Al, Ti, V, etc. added for refining crystal grains. And (Mn, Fe)
The precipitation of sulfides such as S is large, and their precipitation at the austenite (γ) grain boundaries lowers the hot ductility.
Surface flaws are likely to occur in the slab heating step and in the ingot slab step, and particularly in high nitrogen steel with an N concentration of 80 ppm or more, the surface cracking sensitivity is extremely poor due to the precipitation of nitrides. In such a steel type, the yield in slab rolling is greatly reduced due to surface flaws, and costs for inspection and maintenance of flaws are increased, leading to a significant increase in manufacturing costs. It is necessary to improve hot ductility.

【0043】上記のような析出物による熱間延性の低
下、それによる表面疵の悪化を防止するには、鋳片の表
層部を一旦Ar1点温度以下に冷却し、その後の昇温過
程で逆変態させることでγ粒を微細化することが最も有
効である。表層組織の微細化範囲が不十分であると、表
面疵の発生を十分防止できない場合もあり、少なくとも
鋳片の表層から10mm以上の範囲は微細化する必要が
あり、そのためにはその範囲を一旦Ar1点温度以下に
冷却しなければならない。
In order to prevent the decrease in hot ductility due to the precipitates and the deterioration of surface flaws due to the precipitates, the surface layer portion of the slab is once cooled to a temperature not higher than the Ar1 point temperature, and the temperature is reduced during the subsequent temperature rise process. It is most effective to make the γ grains fine by transformation. If the microstructure range of the surface layer structure is insufficient, it may not be possible to sufficiently prevent the occurrence of surface flaws, and it is necessary to miniaturize at least a range of 10 mm or more from the surface layer of the cast slab. It must be cooled below the Ar1 point temperature.

【0044】一方、そのような熱履歴に、炭、窒化物の
析出挙動が大きく影響されるため、非調質鋼としての特
性が変化することが懸念されたが、本発明者らが調査し
た結果、請求項1に記載した温度条件を逸脱しない範囲
では、鋳片表層部にγ粒を微細化して熱間延性を改善す
るための熱履歴を負荷しても、上記の炭、窒化物の分布
状況や熱間鍛造時の結晶粒の粗大化傾向に顕著な差は認
められなかった。
On the other hand, there was a concern that the properties of the non-heat treated steel would change because the behavior of precipitation of carbon and nitride was greatly affected by such thermal history. As a result, as long as the temperature conditions described in claim 1 are not deviated, even if a heat history for refining γ grains and improving hot ductility is applied to the surface layer of the slab, the above-described carbon and nitrides can be used. No remarkable difference was observed in the distribution state and the tendency of the crystal grains to become coarse during hot forging.

【0045】加熱炉装入前に鋳片表層を一旦Ar1点温
度以下に短時間で冷却する方法としては、水やミストス
プレーによる冷却や、水槽等に浸漬して冷却する方法や
単に放冷して冷却する方法等があり、所定の冷却条件を
達成できる方法であればどれを採用しても構わない。
As a method of temporarily cooling the surface layer of the slab to a temperature not higher than the Ar 1 point temperature in a short time before charging the heating furnace, a method of cooling with water or mist spray, a method of cooling by dipping in a water tank or the like, or a method of simply allowing to cool down And any other method that can achieve predetermined cooling conditions.

【0046】最期に請求項3に記載の発明の実施形態に
ついて説明する。
Finally, an embodiment of the present invention will be described.

【0047】鋼片を棒鋼に圧延する前の加熱条件が不適
切であると、熱間鍛造時にγ粒の粗大化防止に有効な析
出物がマトリックスへ固溶したり、粗大に成長してその
γ粒の粗大化防止効果が減少し、熱間鍛造材の靭性が大
幅に低下する場合がある。
If the heating conditions before rolling the slab into bar steel are inappropriate, precipitates effective for preventing coarsening of γ grains during hot forging form a solid solution in the matrix or grow coarsely. The effect of preventing coarsening of γ grains may be reduced, and the toughness of the hot forged material may be significantly reduced.

【0048】請求項3に記載の発明はそのような棒鋼に
圧延する前の加熱条件を規制することで、熱間鍛造のま
まで常に安定して高い靭性を示す熱間鍛造用非調質鋼の
製造を可能とする発明である。
According to the third aspect of the present invention, a non-heat treated steel for hot forging, which constantly and stably exhibits high toughness as it is in hot forging, by regulating the heating conditions before rolling to such a steel bar. It is an invention that enables the production of

【0049】本発明者らが、棒鋼圧延前に鋼片を加熱す
る際の加熱条件の非調質特性に及ぼす影響について調査
した結果、棒鋼での熱間圧延か可能な範囲では加熱温度
が低く、加熱炉在炉時間が短い条件で安定して熱間鍛造
時の結晶粒の粗大化が防止でき、加熱温度が高過ぎた
り、加熱温度が長いと結晶粒の粗大化防止効果や、靭性
改善効果にバラツキが見られた。
The present inventors have investigated the effect of the heating conditions on the non-tempering properties when the slab is heated before rolling the steel bars. As a result, the heating temperature is low as long as the hot rolling of the steel bars is possible. , The heating furnace staying time is short, the crystal grain coarsening during hot forging can be prevented stably, and the heating temperature is too high, or if the heating temperature is too long, the crystal grain coarsening prevention effect and toughness improvement The effect varied.

【0050】その原因については、加熱温度が高い場合
は、既に鋼片内に析出しているTiの炭、窒化物が固溶
したり、オストワルド成長で一部の炭、窒化物のみが粗
大化したりして、大型の炭、窒化物のみが残留するた
め、一方、加熱温度がそれ程高くなくても加熱炉内に滞
留する時間が長いと、オストワルド成長によりTiの
炭、窒化物のサイズが増大するため、結晶粒の粗大化抑
制効果が現象してしまうためと考えられる。
Regarding the cause, when the heating temperature is high, the charcoal and nitride of Ti already precipitated in the steel slab are dissolved or only a part of the charcoal and nitride are coarsened by Ostwald ripening. However, since only large coals and nitrides remain, if the residence time in the heating furnace is long even if the heating temperature is not so high, the size of the charcoal and nitrides of Ti increases due to Ostwald growth. Therefore, it is considered that the effect of suppressing the coarsening of crystal grains occurs.

【0051】本発明者らが調査した結果、工業的規模で
安定して結晶粒の粗大化を防止でき、熱鍛ままで高い靭
性が得られる非調質鋼を製造するには、棒鋼圧延前の加
熱温度(T2)および加熱炉在炉時間(T2)を(3)
式を満足するように制御する必要があった。加熱温度
(T2)を900℃以上、1240℃以下としたのは、
加熱温度が900℃をきると圧延負荷が極めて大きく棒
鋼圧延が困難で工業的に製造できないためであり、12
40℃を越えた場合は先に述べた理由により熱間鍛造材
の靭性が大幅に低下するためである。
As a result of the investigations by the present inventors, it has been found that the production of a non-heat treated steel which can stably prevent crystal grain coarsening on an industrial scale and obtain high toughness while hot forging is required before rolling a steel bar. The heating temperature (T2) and the heating furnace time (T2) of (3)
It was necessary to control to satisfy the equation. The reason why the heating temperature (T2) is set to 900 ° C. or higher and 1240 ° C. or lower is that
If the heating temperature is lower than 900 ° C., the rolling load is extremely large, so that it is difficult to roll the steel bars and cannot be industrially manufactured.
If the temperature exceeds 40 ° C., the toughness of the hot forged material is significantly reduced for the above-mentioned reason.

【0052】[0052]

【実施例】以下に実施例を挙げて本発明について更に詳
しく説明する。
The present invention will be described in more detail with reference to the following examples.

【0053】(実施例1)各実施例については表1に示
す化学成分を有する鋼を転炉で溶製し、ブルーム鋳片の
断面サイズを350mm×560mm、300mm×3
00mm、270mm×270mm、220mm×22
0mm、162mm×162mmと変えて鋳造し、鋳片
内の冷却速度を変化させた。鋳造後は鋳片を熱片のまま
加熱炉へ装入、加熱した後、断面サイズが162mm×
162mmの鋳片を除き、分塊圧延で断面サイズが16
2mm×162mmの鋼片に1パス当たりの減面率15
〜25%で圧延し、その後放冷して室温まで冷却した。
比較のため220mm×220mm鋳片を1段当たりの
減面率10%以下で圧延したり、断面サイズが162m
m×162mmの鋳片はパス回数の影響を検討するた
め、加熱のみ実施し、その後は分塊圧延せずに放冷し
た。
Example 1 In each example, steel having the chemical components shown in Table 1 was melted in a converter, and the cross-sectional size of the bloom slab was 350 mm × 560 mm, 300 mm × 3.
00mm, 270mm × 270mm, 220mm × 22
Casting was performed while changing the size to 0 mm and 162 mm x 162 mm, and the cooling rate in the slab was changed. After casting, the slab is charged into a heating furnace as a hot slab and heated, and the cross-sectional size is 162 mm x
Excluding the slab of 162 mm, the sectional size of 16
15% reduction of area per pass on 2mm x 162mm slab
Rolled at 2525%, then allowed to cool to room temperature.
For comparison, a 220 mm × 220 mm slab is rolled at a reduction ratio of 10% or less per step, or the cross-sectional size is 162 m.
In order to examine the influence of the number of passes, the slab of mx 162 mm was heated only, and then allowed to cool without slab rolling.

【0054】[0054]

【表1】 [Table 1]

【0055】このように製造された鋼片を棒鋼工場で加
熱、圧延し、直径70mmの棒鋼に加工した。この棒鋼
は熱間鍛造によりトラック用の前車軸に鍛造成型し、鍛
造後放冷した。この鍛造ままの状態で、車軸中心部よ
り、軸方向に平行に衝撃試験片等を採取して靭性等の材
料について調査した。
The steel slab thus produced was heated and rolled in a steel bar factory and processed into a steel bar having a diameter of 70 mm. This steel bar was forged into a front axle for a truck by hot forging, and allowed to cool after forging. In this as-forged state, impact test specimens and the like were sampled from the center of the axle in parallel with the axial direction, and materials such as toughness were investigated.

【0056】表2にその調査結果を示す。図1には鋳片
冷却速度と熱鍛ままで衝撃値の関係を、図2には分塊前
の加熱炉における鋳片加熱条件と衝撃値の関係を示す。
これらの図、表より本発明方法を適用した例では高い靭
性が得られているのに対し、特に鍛造時の冷却速度や分
塊圧延前の加熱条件が(2)式を満足していない比較例
や1パス当たりの減面率10%以下で圧延した例及び断
面サイズが162mm×162mmの鋳片を加熱しただ
けで分塊圧延していない比較例では本発明の実施例に比
べ靭性が低いことが分かる。
Table 2 shows the results of the investigation. FIG. 1 shows the relationship between the slab cooling rate and the impact value with hot forging, and FIG. 2 shows the relationship between the slab heating conditions and the impact value in a heating furnace before slabging.
From these figures and tables, high toughness was obtained in the example to which the method of the present invention was applied, but the cooling rate during forging and the heating conditions before slab rolling did not satisfy the formula (2). The toughness is lower than the examples of the present invention in the examples and the examples in which rolling was performed at a reduction in area of 10% or less per pass and the comparative example in which a slab having a cross-sectional size of 162 mm x 162 mm was heated but not subjected to slab rolling. You can see that.

【0057】また、本発明を適用することで分塊工程を
経ても製造が可能となった断面サイズが270mm×2
70mmの鋳片からは、直径124mmの製品まで圧下
比6を確保して製造可能となるが、断面サイズが棒鋼圧
延用鋼片サイズと同じで分解工程を経ない162mm×
162mmの鋳片からは、直径75mmの製品までしか
製造できない。
Also, by applying the present invention, the cross-sectional size that can be manufactured even after the sizing process is 270 mm × 2
From a 70 mm slab, it can be manufactured with a reduction ratio of 6 to a product with a diameter of 124 mm, but the cross-sectional size is the same as the size of the bar for rolling steel bars and 162 mm x
From 162 mm slabs, only products up to 75 mm in diameter can be manufactured.

【0058】[0058]

【表2】 [Table 2]

【0059】[0059]

【表3】 [Table 3]

【0060】(実施例2)実施例2では実施例1と同一
成分の220mm×220mmの断面サイズのブルーム
鋳片を加熱炉へ装入する前に水槽へ浸漬してから加熱炉
へ挿入し、浸漬時間を種々変更することでAr1点温度
以下に冷却する範囲を変化させても分塊圧延し、得られ
た鋼片において表面疵の発生状況を観察した。
(Example 2) In Example 2, a bloom slab having the same component as in Example 1 and having a cross-sectional size of 220 mm x 220 mm was immersed in a water tank before being charged into the heating furnace, and then inserted into the heating furnace. Even if the range of cooling to the Ar1 point temperature or less was changed by variously changing the immersion time, slab rolling was performed, and the state of occurrence of surface flaws in the obtained steel slab was observed.

【0061】表3には鋼片での疵発生状況を評点付けし
て評価した結果を、図3には鋳片表層部のAr1点温度
以下に冷却した範囲と疵評点の関係を示した。また、工
業的に棒鋼圧延に振り向けできる評点2以下の鋼片につ
いては実施例と同様な方法でトラック用の前車軸に鍛造
成型し、鍛造ままで靭性を調整した。
Table 3 shows the results of evaluation by scoring the state of flaw occurrence in the steel slab. FIG. 3 shows the relationship between the range of the surface area of the slab that was cooled to the Ar 1 point temperature or lower and the flaw score. Further, the steel slab having a rating of 2 or less, which can be industrially redirected to steel bar rolling, was forged into a front axle for a truck by the same method as in the example, and the toughness was adjusted as it was.

【0062】[0062]

【表4】 [Table 4]

【0063】表3及び図3に示したように、請求項2に
記載の方法を採用することで疵評点は1以下を安定して
達成することが可能となり、且つ、本請求項2に記載の
方法を実施した場合と実施していない場合の靭性を比較
しても両者には顕著な差は認められていない。
As shown in Table 3 and FIG. 3, by adopting the method described in claim 2, it is possible to stably achieve a flaw score of 1 or less. No remarkable difference was observed between the cases where the method was performed and the case where the method was not performed.

【0064】従って、請求項2に記載の発明を適用する
ことにより、非調質鋼としての特性を損うことなく、請
求項2に記載の方法を実施しない場合に比べると、鋼片
段階での屑化等による歩留りの低下や、疵の手入れや検
査によるコストアップを低く抑えてより経済的に製造す
ることが可能となる。
Therefore, by applying the invention described in claim 2, the characteristics of the non-heat-treated steel are not impaired, and the steel sheet can be produced at the billet stage as compared with the case where the method described in claim 2 is not performed. It is possible to manufacture more economically by suppressing the reduction of the yield due to the scraping and the like, and the cost increase due to the care and inspection of flaws.

【0065】(実施例3)実施例3では実施例1及び2
と同様な成分の鋼種において、断面サイズを270mm
×270mm、220mm×220mmのブルーム鋳片
から製造した鋼片を種々の条件で加熱、圧延して棒鋼に
成型し、さらに実施例1と同様な方法で熱間鍛造材の靭
性を調査した。
(Embodiment 3) In Embodiment 3, Embodiments 1 and 2
The cross section size is 270mm in the steel type of the same composition as
Steel slabs manufactured from bloom slabs of × 270 mm and 220 mm × 220 mm were heated and rolled under various conditions to form steel bars, and the toughness of the hot forged material was investigated in the same manner as in Example 1.

【0066】調査結果を表4と図4に示す。これらの図
表に示したように、断面サイズが220mm×220m
mのブルーム鋳片から製造した場合には、棒鋼圧延前の
加熱条件が請求項3に記載の条件から外れた場合におい
ても、比較的靭性の低下が少ないのに対し、断面サイズ
が270mm×270mmのブルーム鋳片から製造した
場合には、上記加熱条件が請求項3に記載の条件外れる
ことで熱間鍛造ままでの靭性は大幅に低下した。
The results of the investigation are shown in Table 4 and FIG. As shown in these figures, the cross-sectional size is 220 mm x 220 m
m, the cross-sectional size is 270 mm x 270 mm, even though the heating conditions before the steel bar rolling deviate from the conditions described in claim 3, while the reduction in toughness is relatively small. In the case of manufacturing from bloom cast slab, the toughness under hot forging was significantly reduced because the heating conditions were out of the conditions described in claim 3.

【0067】本結果より、請求項3に記載の発明を適用
することにより、適用しない場合に比べより安定して、
より確実に高い靭性が得られる。
From these results, it can be seen that the application of the invention according to claim 3 is more stable than the case where it is not applied,
Higher toughness can be obtained more reliably.

【0068】[0068]

【表5】 [Table 5]

【0069】[0069]

【表6】 [Table 6]

【0070】(実施例4)表5に示す化学成分を有する
鋼を転炉で溶製し、実施例1と同様に、ブルーム鋳片の
断面サイズを350mm×560mm、300mm×3
00mm、270mm×270mm、220mm×22
0mmと変えて鋳造し、鋳片内の冷却速度を変化させ
た。鋳造後は鋳片を熱片のまま加熱炉へ装入、加熱した
後、分塊圧延で断面サイズが162mm×162mmの
鋼片に圧延し、その後放冷して室温まで冷却した。この
ように製造された鋼片を棒鋼工場で加熱、圧延し、直径
85mmの棒鋼に加工した。この棒鋼は熱間鍛造により
トラック用の前車軸に鍛造成形し、鍛造後放冷した。こ
の鍛造ままの状態で、車軸中心部より、軸方向に平行に
衝撃試験片を採取して靭性等の材質を調査した。
Example 4 Steel having the chemical components shown in Table 5 was melted in a converter, and the sectional size of the bloom slab was 350 mm × 560 mm, 300 mm × 3 in the same manner as in Example 1.
00mm, 270mm × 270mm, 220mm × 22
The casting was changed to 0 mm, and the cooling rate in the slab was changed. After casting, the slab was charged into a heating furnace as a hot slab, heated, and then rolled into a slab having a cross-sectional size of 162 mm x 162 mm by slab rolling, and then allowed to cool to room temperature. The steel slab thus produced was heated and rolled in a steel bar factory and processed into a steel bar having a diameter of 85 mm. This steel bar was forged into a front axle for a truck by hot forging, and allowed to cool after forging. In this as-forged state, an impact test piece was sampled from the center of the axle in parallel with the axial direction, and the material such as toughness was examined.

【0071】[0071]

【表7】 [Table 7]

【0072】調査結果を表6に示す。本発明の実施例に
ついては比較例に比べ、熱間鍛造ままでの靭性は極めて
高く、且つ、安定して高い靭性が得られていることがわ
かる。
Table 6 shows the inspection results. It can be seen that the examples of the present invention have extremely high toughness as hot forged as compared with the comparative examples, and that stable high toughness is obtained.

【0073】[0073]

【表8】 [Table 8]

【0074】[0074]

【表9】 [Table 9]

【0075】[0075]

【発明の効果】以上述べたごとく、本発明の熱間鍛造用
非調質鋼の製造方法を採用することで、機械部品の製造
工程において、熱間鍛造後の熱処理を省略しても常に安
定して高い靭性が得られ自動車の足回り部品等の重要保
安部品へ非調質棒鋼を適用できるばかりでなく、特に、
分塊工程を経ても安定して高い靭性の達成を可能とする
ことで、従来適用が見送られてきた大型部品への適用も
可能となる。併せて、非調質鋼を分塊圧延する際に発生
し易い表面疵の発生を抑制し、歩留り低下や疵手入れ等
による製造コストのアップを防止することが可能とな
り、熱間鍛造用非調質鋼のより経済的な製造が可能とな
る。
As described above, by adopting the method for producing a non-heat treated steel for hot forging according to the present invention, the method is always stable even if the heat treatment after the hot forging is omitted in the production process of the machine parts. Not only can high toughness be obtained and non-heat treated steel bars can be applied to important safety parts such as underbody parts of automobiles,
By making it possible to stably achieve high toughness even after the lumping process, it becomes possible to apply to large parts, which have been postponed in the past. At the same time, it is possible to suppress the occurrence of surface flaws, which are likely to occur when slab-rolling non-heat-treated steel, and to prevent an increase in production cost due to a decrease in yield or maintenance of flaws. More economical production of high quality steel is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】連鋳鋳片での固相線温度〜1000℃までの鋳
片冷却速度と熱鍛放冷後の衝撃値の関係を示す。
FIG. 1 shows the relationship between the slab cooling rate from the solidus temperature to 1000 ° C. in continuous cast slab and the impact value after cooling with hot forging.

【図2】鋳片加熱炉での連鋳鋳片の加熱条件と熱鍛放冷
後の衝撃値の関係を示す。
FIG. 2 shows a relationship between a heating condition of a continuous cast slab in a slab heating furnace and an impact value after cooling by hot forging.

【図3】鋳片加熱炉装入前鋳片表層部のAr1点温度ま
で冷却された範囲と分塊圧延後の鋼片における疵成績の
関係を示す図。
FIG. 3 is a graph showing a relationship between a range of a surface portion of a slab before being charged to a slab heating furnace, which is cooled to a temperature of Ar1 point, and a flaw performance of a steel slab after slab rolling.

【図4】棒鋼加熱炉での鋼片の加熱条件と熱鍛放冷後の
衝撃値の関係を示す図。
FIG. 4 is a view showing a relationship between heating conditions of a steel slab in a steel bar heating furnace and an impact value after cooling by hot forging.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 38/00 301 C22C 38/00 301Y 38/28 38/28 (72)発明者 田中 勉 室蘭市仲町12番地 新日本製鐵株式会社室 蘭製鐵所内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C22C 38/00 301 C22C 38/00 301Y 38/28 38/28 (72) Inventor Tsutomu Tanaka 12 Nakamachi, Muroran Nippon Steel Corporation Muroran Works, Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 (1)式で示されるCeq.が0.70
から1.30の範囲で C:0.20〜0.60%、 Si:0.10〜1.5% Mn:0.60〜2.00% Cr:0.10〜1.0% V:0.03〜0.35% Ti:0.01〜0.07% N:0.0030〜0.0200% Al:0.005〜0.050% を含み、残りは実質的に不可避の不純物とFeよりなる
鋼を転炉あるいは電気炉を用いて溶製し、さらに連続鋳
造法で鋳造するに際し、固相線温度〜1000℃の温度
範囲を15℃/min以上の冷却速度となるよう鋳造、
冷却し、その後、鋳片表面温度を900℃以下に冷却
し、且つ、500℃以下の温度に20min以上冷却す
ることなく、熱片のまま加熱炉へ装入し、その際、該鋳
片を加熱温度(T1)および加熱炉在炉時間(t1)が
(2)式を満足するよう加熱した後、分塊圧延にて1パ
ス当たり10〜35%の減面率で、2〜6パスの圧下を
加えて、鋼片に成形し、さらに該鋼片を棒鋼圧延するこ
とを特徴とする高靭性熱間鍛造用非調質棒鋼の製造方
法。 Ceq.(%)=C%+1/7×Si%+1/5×Mn%+1/9×Cr% +1.54×V% (1) 加熱炉在炉時間:t1(min)≦(1181−T1)/0.77 (2) ここで T1:加熱温度(℃) 但し、900≦T1≦
1181(℃)
1. The method according to claim 1, wherein Ceq. Is 0.70
C: 0.20 to 0.60%, Si: 0.10 to 1.5% Mn: 0.60 to 2.00% Cr: 0.10 to 1.0% V: 0.03 to 0.35% Ti: 0.01 to 0.07% N: 0.0030 to 0.0200% Al: 0.005 to 0.050%, with the balance being substantially unavoidable impurities When a steel made of Fe is melted using a converter or an electric furnace, and further cast by a continuous casting method, a temperature range from the solidus temperature to 1000 ° C. is cooled at a cooling rate of 15 ° C./min or more.
After cooling, the slab surface temperature is cooled to 900 ° C. or less, and without being cooled to a temperature of 500 ° C. or less for 20 minutes or more, the slab is charged into a heating furnace as a hot slab. After heating so that the heating temperature (T1) and the heating furnace residence time (t1) satisfy the expression (2), two to six passes are performed by slab rolling at a reduction rate of 10 to 35% per pass. A method for producing a non-heat-treated non-heat-treated steel bar for hot forging, comprising: applying a reduction to form a steel slab, and further rolling the steel slab. Ceq. (%) = C% + / × Si% + / × Mn% + 1/9 × Cr% + 1.54 × V% (1) Furnace heating time: t1 (min) ≦ (1181-T1) / 0.77 (2) where T1: heating temperature (° C.) where 900 ≦ T1 ≦
1181 (° C)
【請求項2】 連鋳鋳片の冷却過程において少なくとも
鋳片表層から10mm以上の範囲を、一旦Ar1点温度
以下に冷却してから加熱炉へ装入し、鋳片を加熱するこ
とを特徴とする請求項1に記載の高靭性熱間鍛造用非調
質棒鋼の製造方法。
2. A method of cooling a continuously cast slab, wherein at least a range of at least 10 mm or more from the surface layer of the cast slab is cooled to a temperature not higher than the Ar1 point temperature and then charged into a heating furnace to heat the cast slab. The method for producing a non-heat treated steel bar for high toughness hot forging according to claim 1.
【請求項3】 鋼片を棒鋼圧延前に加熱する際に、加熱
温度(T2)および加熱炉在炉時間(t2)が(3)式
を満足するよう加熱した後、該鋼片を棒鋼に圧延するこ
とを特徴とする請求項1または2に記載の高靭性熱間鍛
造用非調質棒鋼の製造方法。 加熱炉在炉時間:t2(min)≦(1240−T2)/1.33 (3) ここで T2:加熱温度(℃) 但し、900≦T2≦
1240(℃)
3. When the slab is heated before the bar is rolled, the slab is heated to a heating temperature (T2) and a heating furnace sintering time (t2) satisfying the formula (3). The method for producing a non-heat treated steel bar for high toughness hot forging according to claim 1, wherein the steel bar is rolled. Heating furnace time: t2 (min) ≦ (1240−T2) /1.33 (3) where T2: heating temperature (° C.), but 900 ≦ T2 ≦
1240 (° C)
JP08374897A 1997-04-02 1997-04-02 Manufacturing method of non-tempered steel bar for high toughness hot forging Expired - Fee Related JP3357264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08374897A JP3357264B2 (en) 1997-04-02 1997-04-02 Manufacturing method of non-tempered steel bar for high toughness hot forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08374897A JP3357264B2 (en) 1997-04-02 1997-04-02 Manufacturing method of non-tempered steel bar for high toughness hot forging

Publications (2)

Publication Number Publication Date
JPH10277705A true JPH10277705A (en) 1998-10-20
JP3357264B2 JP3357264B2 (en) 2002-12-16

Family

ID=13811161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08374897A Expired - Fee Related JP3357264B2 (en) 1997-04-02 1997-04-02 Manufacturing method of non-tempered steel bar for high toughness hot forging

Country Status (1)

Country Link
JP (1) JP3357264B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10296396A (en) * 1997-04-22 1998-11-10 Nippon Steel Corp Production of bar steel for hot-forging
US6712914B2 (en) 2002-06-28 2004-03-30 Sumitomo Metal Industries, Ltd. Non-heat treated crankshaft
JP2008127596A (en) * 2006-11-17 2008-06-05 Kobe Steel Ltd High strength cold forged non-heat treated steel having excellent fatigue limit ratio
WO2012132786A1 (en) * 2011-03-29 2012-10-04 株式会社神戸製鋼所 Case hardening steel, method for producing same, and mechanical structural part using case hardening steel
CN111041325A (en) * 2019-11-06 2020-04-21 中天钢铁集团有限公司 Production method of steel for hand tool
CN111549271A (en) * 2020-06-23 2020-08-18 张彦辉 Production process of converter titanium microalloyed refined grains
CN112210706A (en) * 2020-09-30 2021-01-12 江苏永钢集团有限公司 Smelting process for producing 700 MPa-grade high-strength twisted steel
CN115261734A (en) * 2022-08-19 2022-11-01 中天钢铁集团有限公司 High-homogeneity non-quenched and tempered steel for engineering machinery and production method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10296396A (en) * 1997-04-22 1998-11-10 Nippon Steel Corp Production of bar steel for hot-forging
US6712914B2 (en) 2002-06-28 2004-03-30 Sumitomo Metal Industries, Ltd. Non-heat treated crankshaft
JP2008127596A (en) * 2006-11-17 2008-06-05 Kobe Steel Ltd High strength cold forged non-heat treated steel having excellent fatigue limit ratio
WO2012132786A1 (en) * 2011-03-29 2012-10-04 株式会社神戸製鋼所 Case hardening steel, method for producing same, and mechanical structural part using case hardening steel
JP2012207244A (en) * 2011-03-29 2012-10-25 Kobe Steel Ltd Case hardening steel, method for producing the same, and mechanical structural part using the case hardening steel
US9297051B2 (en) 2011-03-29 2016-03-29 Kobe Steel, Ltd. Case hardening steel, method for producing same, and mechanical structural part using case hardening steel
CN111041325A (en) * 2019-11-06 2020-04-21 中天钢铁集团有限公司 Production method of steel for hand tool
CN111549271A (en) * 2020-06-23 2020-08-18 张彦辉 Production process of converter titanium microalloyed refined grains
CN112210706A (en) * 2020-09-30 2021-01-12 江苏永钢集团有限公司 Smelting process for producing 700 MPa-grade high-strength twisted steel
CN115261734A (en) * 2022-08-19 2022-11-01 中天钢铁集团有限公司 High-homogeneity non-quenched and tempered steel for engineering machinery and production method

Also Published As

Publication number Publication date
JP3357264B2 (en) 2002-12-16

Similar Documents

Publication Publication Date Title
KR101245701B1 (en) METHOD FOR MANUFACTURING TENSILE STRENGTH 590MPa CLASS HOT ROLLED DP STEEL WITH EXCELLENT WORKABILITY AND VARIATION OF MECHANICAL PROPERTY
KR20020088425A (en) Hot rolled wire or steel bar for machine structural use capable of dispensing with annealing, and method for producing the same
JPH10273756A (en) Cold tool made of casting, and its production
KR100428581B1 (en) A non qt steel having superior strength and toughness and a method for manufacturing wire rod by using it
JP3357264B2 (en) Manufacturing method of non-tempered steel bar for high toughness hot forging
JP4299744B2 (en) Hot rolled wire rod for cold forging and method for producing the same
JP3554506B2 (en) Manufacturing method of hot-rolled wire and bar for machine structure
JPS6159379B2 (en)
JPH0112815B2 (en)
JPH0762204B2 (en) Manufacturing method of high-toughness non-heat treated steel for hot forging and its steel bars and parts
KR950009168B1 (en) Making method of non-heat-treatment steel with hot forging
JPH11131137A (en) Production of high carbon hot rolled steel sheet
JPS62196359A (en) Non-heattreated steel for hot forging and production thereof
JP3091795B2 (en) Manufacturing method of steel bars with excellent drawability
JP3091794B2 (en) Method of manufacturing automotive shaft parts excellent in extrudability and forgeability
JPH03254341A (en) Manufacture of low cr bearing raw material having excellent service life to rolling fatigue
JP2674644B2 (en) Manufacturing method for machine structural parts
JPH0814001B2 (en) Method for manufacturing hot forged non-heat treated parts
JPS62253725A (en) Production of high-toughness non-heattreated bar steel for hot forging
JPH0559964B2 (en)
JPH02163319A (en) Production of high-toughness steel and production of high-toughness steel parts
KR101060785B1 (en) Wire rod for 600MPa special welding rod which can omit heat treatment and its manufacturing method
JPH01220A (en) Method for manufacturing hot-forged non-thermal parts for machine structures
JPH0688129A (en) Production of high strength steel pipe as welded low in residual stress
KR100415653B1 (en) Method for manufacturing micro-alloyed steel sheet having high strength and high ductility for hot-forging

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071004

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101004

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101004

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121004

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121004

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131004

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131004

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131004

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees