JP5629598B2 - Manufacturing method for seamless steel pipe for high strength hollow spring - Google Patents

Manufacturing method for seamless steel pipe for high strength hollow spring Download PDF

Info

Publication number
JP5629598B2
JP5629598B2 JP2011029259A JP2011029259A JP5629598B2 JP 5629598 B2 JP5629598 B2 JP 5629598B2 JP 2011029259 A JP2011029259 A JP 2011029259A JP 2011029259 A JP2011029259 A JP 2011029259A JP 5629598 B2 JP5629598 B2 JP 5629598B2
Authority
JP
Japan
Prior art keywords
less
mass
steel
steel pipe
excluding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011029259A
Other languages
Japanese (ja)
Other versions
JP2012166238A (en
Inventor
琢哉 高知
琢哉 高知
畑野 等
等 畑野
孝太郎 豊武
孝太郎 豊武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Shinko Metal Products Co Ltd
Original Assignee
Kobe Steel Ltd
Shinko Metal Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Shinko Metal Products Co Ltd filed Critical Kobe Steel Ltd
Priority to JP2011029259A priority Critical patent/JP5629598B2/en
Publication of JP2012166238A publication Critical patent/JP2012166238A/en
Application granted granted Critical
Publication of JP5629598B2 publication Critical patent/JP5629598B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、高強度の中空ばね用シームレス鋼管用素管の製造方法に関し、特に自動車などに使用される中空形状の鋼製懸架ばねなどの製造に適した高品質のシームレス鋼管用素管の製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a method for producing a high-strength seamless steel pipe element for a hollow spring, and in particular, to produce a high-quality seamless steel pipe element pipe suitable for producing a hollow steel suspension spring used in automobiles and the like. It is about the method.

近年、排ガス低減や燃費改善を目的とする自動車の軽量化や高出力化の要請が高まるにつれて、サスペンション、エンジン、クラッチ等に使用される懸架ばね、弁ばね、クラッチばね等においても高応力設計が志向されている。そのため、これらのばねは、高強度化・細径化していく方向であり、負荷応力がさらに増大する傾向にある。こうした傾向に対応するため、耐疲労性や耐へたり性においても一段と高性能なばね鋼が強く望まれている。また、耐疲労性や耐へたり性を維持しつつ軽量化を実現するために、ばねの素材としてこれまで用いられている棒状の線材(即ち、中実の線材)ではなく、中空にしたパイプ状の鋼材であって溶接部分のないもの(即ち、シームレスパイプ)をばねの素材として用いられるようになっている。上記のような中空シームレス鋼管を製造するための技術についても、これまでにも様々提案されている。   In recent years, with increasing demands for lighter and higher output vehicles for the purpose of reducing exhaust gas and improving fuel efficiency, high-stress designs have been applied to suspension springs, valve springs, clutch springs, etc. used in suspensions, engines, clutches, etc. Is oriented. Therefore, these springs are in the direction of increasing the strength and reducing the diameter, and the load stress tends to further increase. In order to respond to these trends, spring steel with higher performance in terms of fatigue resistance and sag resistance is strongly desired. Also, in order to achieve weight reduction while maintaining fatigue resistance and sag resistance, pipes that are hollow rather than the rod-shaped wire (ie, solid wire) that has been used as a spring material so far A steel material having no welded portion (that is, a seamless pipe) is used as a spring material. Various techniques for producing the hollow seamless steel pipe as described above have been proposed so far.

例えば、特許文献1には、マンネスマン穿孔の後、マンドレルミル圧延を行う、ばね用の継目無鋼管の製造方法が開示されているが、マンネスマン穿孔時に深い内面疵が発生しやすい問題がある。また特許文献2には円筒状のビレットを用い、静水圧押出することで表面疵の浅いシームレス鋼管を製造する方法が開示されているものの、粗大な内面疵の発生を確実に抑制することができない問題を抱えていた。   For example, Patent Document 1 discloses a method of manufacturing a seamless steel pipe for a spring in which mandrel mill rolling is performed after Mannesmann drilling, but there is a problem that deep inner surface flaws are likely to occur during Mannesmann drilling. Further, although Patent Document 2 discloses a method of manufacturing a seamless steel pipe having a shallow surface flaw by using a cylindrical billet and performing hydrostatic extrusion, the generation of coarse inner flaws cannot be reliably suppressed. I had a problem.

特許2512984号公報Japanese Patent No. 2512984 特開2007−125588号公報JP 2007-125588 A

本発明は、上述した技術背景に鑑みてなされたものであり、高強度中空ばね用シームレス鋼管の製造時、特にその熱間押出工程の加熱時に、中空ビレットの中空表層部における粗大な内面疵の発生を抑制するシームレス鋼管用素管の製造方法を提供することをその課題としてなされたものである。   The present invention has been made in view of the above-described technical background, and it is possible to produce coarse inner surface flaws in the hollow surface layer portion of a hollow billet during the manufacture of a seamless steel pipe for a high-strength hollow spring, particularly during the hot extrusion process. An object of the present invention is to provide a method for manufacturing a raw steel pipe for seamless steel pipe that suppresses generation.

1.C:0.2〜0.7質量%、Si:0.5〜3質量%、Mn:0.1〜2質量%、Al:0.1質量%以下(0%を含まない)、P:0.02質量%以下(0%を含まない)、S:0.02質量%以下(0%を含まない)及びN: 0.02質量%以下(0%を含まない)を含有する鋼からなり、且つ、その内面表層部における鋼組織の平均結晶粒径が15μm以下に調整された中空ビレットを用いて熱間押出加工を行い、中空シームレス鋼管用の素管を製造することを特徴とする高強度中空ばね用シームレス鋼管用素管の製造方法。   1. C: 0.2-0.7 mass%, Si: 0.5-3 mass%, Mn: 0.1-2 mass%, Al: 0.1 mass% or less (excluding 0%), P: From steel containing 0.02% by mass or less (excluding 0%), S: 0.02% by mass or less (not including 0%) and N: 0.02% by mass or less (not including 0%) And a hollow billet in which the average crystal grain size of the steel structure in the inner surface layer portion is adjusted to 15 μm or less is subjected to hot extrusion to produce a hollow seamless steel pipe. A manufacturing method of a base pipe for a seamless steel pipe for a high-strength hollow spring.

2.前記中空ビレットの内面表層部における鋼組織の結晶粒径の調整を、鍛造仕上げ温度が900℃以上、1000℃未満の熱間鍛造によって行なう請求項1に記載の高強度中空ばね用シームレス鋼管用素管の製造方法。   2. The element for a seamless steel pipe for high-strength hollow springs according to claim 1, wherein the crystal grain size of the steel structure in the inner surface layer of the hollow billet is adjusted by hot forging at a forging finish temperature of 900 ° C or higher and lower than 1000 ° C. A method of manufacturing a tube.

3.前記中空ビレットの内面表層部における鋼属組織の結晶粒径の調整を、熱間鍛造後に行う、900℃以上、1000℃未満の焼ならし処理によって行う請求項1に記載の高強度中空ばね用シームレス鋼管用素管の製造方法。   3. 2. The high strength hollow spring according to claim 1, wherein the adjustment of the crystal grain size of the steel structure in the inner surface layer portion of the hollow billet is performed by a normalizing treatment at 900 ° C. or more and less than 1000 ° C. performed after hot forging. A method for producing a seamless steel pipe.

4.C:0.2〜0.7質量%、Si:0.5〜3質量%、Mn:0.1〜2質量%、Al:0.1質量%以下(0%を含まない)、P:0.02質量%以下(0%を含まない)、S:0.02質量%以下(0%を含まない)及びN: 0.02質量%以下(0%を含まない)を含有する鋼からなる中空ビレットを、50〜600℃の温度に一旦予熱してから、熱間押出加工を行って中空シームレス鋼管を製造することを特徴とする高強度中空ばね用シームレス鋼管用素管の製造方法。   4). C: 0.2-0.7 mass%, Si: 0.5-3 mass%, Mn: 0.1-2 mass%, Al: 0.1 mass% or less (excluding 0%), P: From steel containing 0.02% by mass or less (excluding 0%), S: 0.02% by mass or less (not including 0%) and N: 0.02% by mass or less (not including 0%) A hollow billet is preheated to a temperature of 50 to 600 ° C., and then subjected to hot extrusion to produce a hollow seamless steel pipe. A method for producing a seamless steel pipe for a high-strength hollow spring.

5.前記鋼が、さらに、Cr:3質量%以下(0%を含まない)を含有する請求項1〜4のいずれかに記載の高強度中空ばね用シームレス鋼管用素管の製造方法。   5. The said steel further contains Cr: 3 mass% or less (0% is not included), The manufacturing method of the raw steel pipe for seamless steel pipes for high-strength hollow springs in any one of Claims 1-4.

6.前記鋼が、さらに、B:0.015質量%以下(0%を含まない)を含有する請求項1〜5のいずれかに記載の高強度中空ばね用シームレス鋼管用素管の製造方法。   6). The method for producing a raw steel pipe for a high-strength hollow spring seamless steel pipe according to any one of claims 1 to 5, wherein the steel further contains B: not more than 0.015 mass% (not including 0%).

7.前記鋼が、さらに、V:1質量%以下(0%を含まない)、Ti:0.3質量%以下(0%を含まない)及びNb:0.3質量%以下(0%を含まない)から選ばれる1以上を含有する請求項1〜6のいずれかに記載の高強度中空ばね用シームレス鋼管用素管の製造方法。   7). The steel further includes V: 1% by mass or less (excluding 0%), Ti: 0.3% by mass or less (not including 0%), and Nb: 0.3% by mass or less (excluding 0%). The manufacturing method of the raw steel pipe for seamless steel pipes for high-strength hollow springs in any one of Claims 1-6 containing 1 or more chosen from these.

8.前記鋼が、さらに、Ni:3質量%以下(0%を含まない)及びCu:3質量%以下(0%を含まない)から選ばれる1以上を含有する請求項1〜7のいずれかに記載の高強度中空ばね用シームレス鋼管用素管の製造方法。   8). The steel according to any one of claims 1 to 7, further comprising at least one selected from Ni: 3% by mass or less (excluding 0%) and Cu: 3% by mass or less (not including 0%). The manufacturing method of the elementary pipe for seamless steel pipes for high-strength hollow springs of description.

9.前記鋼が、さらに、Mo:2質量%以下(0%を含まない)を含有する請求項1〜8のいずれかに記載の高強度中空ばね用シームレス鋼管用素管の製造方法。   9. The method for manufacturing a raw steel pipe for a high-strength hollow spring according to any one of claims 1 to 8, wherein the steel further contains Mo: 2 mass% or less (not including 0%).

10.前記鋼が、さらにCa:0.005質量%以下(0%を含まない)、Mg:0.005質量%以下(0%を含まない)及びREM:0.02質量%以下(0%を含まない)から選ばれる1以上を含有する請求項1〜9のいずれかに記載の高強度中空ばね用シームレス鋼管用素管の製造方法。   10. The steel is further Ca: 0.005 mass% or less (excluding 0%), Mg: 0.005 mass% or less (not including 0%), and REM: 0.02 mass% or less (including 0%). The manufacturing method of the raw steel pipe for seamless steel pipes for high intensity | strength hollow springs in any one of Claims 1-9 containing 1 or more chosen from.

11.前記鋼が、さらに、Zr:0.1質量%以下(0%を含まない)、Ta:0.1質量%以下(0%を含まない)及びHf:0.1質量%以下(0%を含まない)から選ばれる1種以上を含有する請求項1〜10のいずれかに記載の高強度中空ばね用シームレス鋼管用素管の製造方法。   11. The steel further includes Zr: 0.1% by mass or less (excluding 0%), Ta: 0.1% by mass or less (excluding 0%), and Hf: 0.1% by mass or less (0% The manufacturing method of the raw | natural pipe | tube for seamless steel pipes for high strength hollow springs in any one of Claims 1-10 containing 1 or more types chosen from (it does not contain).

本発明によれば、内面表層部における粗大な内面疵の発生を抑制し、高品質の高強度中空ばね用シームレス鋼管用素管を製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, generation | occurrence | production of the coarse inner surface flaw in an inner surface surface layer part can be suppressed, and a high quality high intensity | strength hollow steel spring for seamless steel pipes can be manufactured.

以下、本発明の内容につき、詳述する。
先ず、本発明高強度中空ばね用シームレス鋼管用素管の製造方法(以下、本発明法製造方法、本製造方法、本方法、本発明などと略称する場合がある)においてその素材(中空ビレット)となる鋼の化学成分について、その基本成分(元素)であるC、Si、Mn、Al、P、S、Nからその成分範囲と限定理由を説明する。なお、以下の各成分についての%表示は全て質量%を意味する。
Hereinafter, the contents of the present invention will be described in detail.
First, the raw material (hollow billet) in the method for producing a raw steel pipe for a seamless steel pipe for high-strength hollow springs of the present invention (hereinafter may be abbreviated as the present method production method, the present production method, the present method, the present invention, etc.). Regarding the chemical components of steel, the component ranges and reasons for limitation will be described from the basic components (elements) C, Si, Mn, Al, P, S, and N. In addition, the% display about each following component means all the mass%.

(1)C:0.2〜0.7%
Cは、高強度を確保するのに必要な元素であり、そのためには0.20%以上含有させる必要がある。C含有量は、好ましくは0.3%以上であり、より好ましくは0.35%以上である。しかしながら、C含有量が過剰になると、延性の確保が困難になので、0.7%以下とする必要がある。C含有量は、好ましくは0.65%以下であり、より好ましくは0.6%以下である。
(1) C: 0.2 to 0.7%
C is an element necessary for ensuring high strength, and for that purpose it is necessary to contain 0.20% or more. The C content is preferably 0.3% or more, more preferably 0.35% or more. However, if the C content is excessive, it is difficult to ensure ductility, so it is necessary to set the content to 0.7% or less. The C content is preferably 0.65% or less, and more preferably 0.6% or less.

(2)Si:0.5〜3%
Siは、ばねに必要な耐へたり性の向上に有効な元素であり、本発明で対象とする強度レベルのばねに必要な耐へたり性を得るには、Si含有量を0.5%以上とする必要がある。好ましくは1%以上、より好ましくは1.5%以上である。しかしながら、Siは脱炭を促進させる元素でもあるため、Siを過剰に含有させると鋼材表面の脱炭層形成を促進させる。その結果、脱炭層削除のためのピーリング工程が必要となるので、製造コストの面で不都合である。こうしたことから、本発明ではSi含有量の上限を3%とした。好ましくは2.5%以下、より好ましくは2.2%以下である。
(2) Si: 0.5 to 3%
Si is an element effective for improving the sag resistance necessary for the spring. To obtain the sag resistance necessary for the spring of the strength level targeted in the present invention, the Si content is 0.5%. It is necessary to do it above. Preferably it is 1% or more, More preferably, it is 1.5% or more. However, since Si is also an element that promotes decarburization, if Si is excessively contained, formation of a decarburized layer on the steel surface is promoted. As a result, a peeling process for removing the decarburized layer is required, which is inconvenient in terms of manufacturing cost. For these reasons, the upper limit of the Si content is set to 3% in the present invention. Preferably it is 2.5% or less, More preferably, it is 2.2% or less.

(3)Mn:0.1〜2%
Mnは、脱酸元素として利用されると共に、鋼材中の有害元素であるSとMnSを形成して無害化する有益な元素である。この様な効果を有効に発揮させるには、Mnは0.1%以上含有させる必要がある。好ましくは0.15%以上、より好ましくは0.2%以上である。しかしながら、Mn含有量が過剰になると、偏析帯が形成されて材質のばらつきが生じる。こうしたことから、本発明ではMn含有量の上限を2%とした。好ましくは1.5%以下であり、より好ましくは1%以下である。
(3) Mn: 0.1 to 2%
Mn is a beneficial element that is used as a deoxidizing element and detoxifies by forming S and MnS, which are harmful elements in steel. In order to exhibit such an effect effectively, it is necessary to contain 0.1% or more of Mn. Preferably it is 0.15% or more, more preferably 0.2% or more. However, when the Mn content is excessive, segregation bands are formed, resulting in variations in materials. For these reasons, the upper limit of the Mn content is set to 2% in the present invention. Preferably it is 1.5% or less, More preferably, it is 1% or less.

(4)Al:0.1%以下(0%を含まない)
Alは、主に脱酸元素として添加される。また、NとAlNを形成して固溶Nを無害化すると共に組織の微細化にも寄与する。特に固溶Nを固定させるには、N含有量の2倍を超えるようAlを含有させることが好ましい。しかしながら、AlはSiと同様に脱炭を促進させる元素でもあるため、Siを多く含有するばね鋼ではAlの多量添加を抑える必要があり、本発明では0.1%以下とした。好ましくは0.07%以下、より好ましくは0.05%以下である。
(4) Al: 0.1% or less (excluding 0%)
Al is mainly added as a deoxidizing element. Further, N and AlN are formed to render the solid solution N harmless and contribute to the refinement of the structure. In particular, in order to fix the solute N, it is preferable to contain Al so as to exceed twice the N content. However, since Al is an element that promotes decarburization in the same way as Si, it is necessary to suppress the addition of a large amount of Al in the spring steel containing a large amount of Si. Preferably it is 0.07% or less, More preferably, it is 0.05% or less.

(5)P:0.02%以下(0%を含まない)
Pは、鋼材の靭性や延性を劣化させる有害元素であるため、極力低減することが重要であり、本発明ではその上限を0.02%とする。好ましくは0.01%以下、より好ましくは0.008%以下に抑えるのが良い。尚、Pは鋼材に不可避的に含まれる不純物であり、その量を0%にすることは工業生産上困難である。
(5) P: 0.02% or less (excluding 0%)
Since P is a harmful element that deteriorates the toughness and ductility of steel, it is important to reduce it as much as possible. In the present invention, the upper limit is set to 0.02%. Preferably it is 0.01% or less, more preferably 0.008% or less. Note that P is an impurity inevitably contained in the steel material, and it is difficult to make the amount 0% in industrial production.

(6)S:0.02%以下(0%を含まない)
Sは、上記Pと同様に鋼材の靭性や延性を劣化させる有害元素であるため、極力低減することが重要であり、本発明では0.02%以下に抑える。好ましくは0.01%以下、より好ましくは0.008%以下である。尚、Sは鋼に不可避的に含まれる不純物であり、その量を0%とすることは工業生産上困難である。
(6) S: 0.02% or less (excluding 0%)
Since S is a harmful element that deteriorates the toughness and ductility of steel as in the case of P described above, it is important to reduce it as much as possible. In the present invention, S is suppressed to 0.02% or less. Preferably it is 0.01% or less, More preferably, it is 0.008% or less. In addition, S is an impurity inevitably contained in steel, and it is difficult to make the amount 0% in industrial production.

(7)N:0.02%以下(0%を含まない)
Nは、Al、Ti等が存在すると窒化物を形成して組織を微細化させる効果があるが、固溶状態で存在すると、鋼材の靭延性及び耐水素脆化特性を劣化させる。本発明では、N量の上限を0.02%とする。好ましくは0.01%以下、より好ましくは0.005%以下である。
(7) N: 0.02% or less (excluding 0%)
N has the effect of forming nitrides and refining the structure when Al, Ti, and the like are present, but when present in a solid solution state, N deteriorates the toughness and hydrogen embrittlement resistance of the steel material. In the present invention, the upper limit of the N amount is set to 0.02%. Preferably it is 0.01% or less, More preferably, it is 0.005% or less.

本発明の対象とする素材は上記の基本成分を必須とするが、さらにこれに選択成分としてCr、B、[V、Ti、Nb]、[Ni、Cu]、Mo、[Ca、Mg、REM]、[Zr、Ta及びHf]などを適宜添加、含有させることもできる。これらの選択成分について、その成分範囲と限定理由を説明する。なお、[]で括った成分は同効の元素であることを示している。   The material to which the present invention is applied requires the above-mentioned basic components, and further, Cr, B, [V, Ti, Nb], [Ni, Cu], Mo, [Ca, Mg, REM] as selective components. ], [Zr, Ta and Hf] can be added and contained as appropriate. About these selection components, the component range and the reason for limitation will be described. In addition, it has shown that the component enclosed with [] is an element of the same effect.

Cr:3%以下(0%を含まない)
Crは焼戻し後の強度確保や耐食性向上に有効な元素であり、特に高レベルの耐食性が要求される懸架ばねに重要な元素である。こうした効果は、Cr含有量が増大するにつれて大きくなるが、こうした効果を優先的に発揮させるためには、Crは0.2%以上含有させることが好ましい。さらに好ましくは0.5%以上とするのがよい。しかしながら、Cr含有量が過剰になると、過冷組織が発生し易くなると共に、セメンタイトに濃化して塑性変形能を低下させ、冷間加工性の劣化を招く。またCr含有量が過剰になると、セメンタイトとは異なるCr炭化物が形成されやすくなり、強度と延性のバランスが悪くなる。こうしたことから、本発明で用いる鋼材では、Cr含有量を3%以下に抑えることが好ましい。より好ましくは2%以下、さらに好ましくは1.7%以下である。
Cr: 3% or less (excluding 0%)
Cr is an effective element for securing strength and improving corrosion resistance after tempering, and is an important element for suspension springs that require a high level of corrosion resistance. Such an effect increases as the Cr content increases, but in order to exert such an effect preferentially, it is preferable to contain Cr by 0.2% or more. More preferably, the content is 0.5% or more. However, when the Cr content is excessive, a supercooled structure is likely to be generated, and it is concentrated in cementite to lower the plastic deformability, resulting in deterioration of cold workability. When the Cr content is excessive, Cr carbide different from cementite is likely to be formed, and the balance between strength and ductility is deteriorated. For these reasons, in the steel material used in the present invention, the Cr content is preferably suppressed to 3% or less. More preferably, it is 2% or less, and still more preferably 1.7% or less.

B:0.015%以下(0%を含まない)
Bは、鋼材の焼入れ・焼戻し後において旧オーステナイト粒界からの破壊を抑制する効果がある。この様な効果を発現させるには、Bを0.001%以上含有させることが好ましい。しかしながら、Bを過剰に含有させると、粗大な炭硼化物を形成して鋼材の特性を害する。またBは、必要以上に含有させると圧延材の疵の発生原因にもなる。こうしたことから、B含有量の上限を0.015%とした。より好ましくは0.010%以下、さらに好ましくは0.005%以下とするのが良い。
B: 0.015% or less (excluding 0%)
B has an effect of suppressing fracture from the prior austenite grain boundaries after quenching and tempering of the steel material. In order to exhibit such an effect, it is preferable to contain B 0.001% or more. However, when B is contained excessively, a coarse carbon boride is formed and the characteristics of the steel material are impaired. Moreover, when B is contained more than necessary, it also causes generation of wrinkles in the rolled material. For these reasons, the upper limit of the B content is set to 0.015%. More preferably, it is 0.010% or less, and further preferably 0.005% or less.

[V:1%以下(0%を含まない)、Ti:0.3%以下(0%を含まない)およびNb:0.3%以下(0%を含まない)よりなる群から選ばれる1種以上]
V、TiおよびNbは、C、N、S等と炭・窒化物(炭化物、窒化物および炭窒化物)、或は硫化物等を形成して、これらの元素を無害化する作用を有する。また上記炭・窒化物を形成して組織を微細化する効果も発揮する。更に、耐遅れ破壊特性を改善するという効果も有する。しかしながら、これらの元素の含有量が過剰になると、粗大な炭・窒化物が形成されて靭性や延性が劣化する場合がある。よって本発明では、V、TiおよびNbの含有量の上限を、夫々1%、0.3%、0.3%とすることが好ましい。より好ましくは、V:0.5%以下、Ti:0.1%以下、Nb:0.1%以下である。更には、コスト低減の観点からして、V:0.3%以下、Ti:0.05%以下、Nb:0.05%以下とすることが好ましい。
[V: 1% or less (not including 0%), Ti: 0.3% or less (not including 0%) and Nb: 0.3% or less (not including 0%) 1 More than species]
V, Ti, and Nb form carbon / nitrides (carbides, nitrides, carbonitrides), sulfides, and the like with C, N, S, etc., and have the effect of detoxifying these elements. Further, the effect of refining the structure by forming the charcoal / nitride is also exhibited. Furthermore, it has the effect of improving delayed fracture resistance. However, when the content of these elements is excessive, coarse charcoal / nitride is formed, and the toughness and ductility may deteriorate. Therefore, in this invention, it is preferable to make the upper limit of content of V, Ti, and Nb into 1%, 0.3%, and 0.3%, respectively. More preferably, V is 0.5% or less, Ti is 0.1% or less, and Nb is 0.1% or less. Furthermore, from the viewpoint of cost reduction, it is preferable that V: 0.3% or less, Ti: 0.05% or less, and Nb: 0.05% or less.

[Ni:3%以下(0%を含まない)および/またはCu:3%以下(0%を含まない)]
Niは、コスト低減を考慮した場合には、添加を控えるためその下限を特に設けないが、表層脱炭を抑制したり耐食性を向上させる場合には、0.1%以上含有させることが好ましい。しかしながら、Ni含有量が過剰になると、圧延材に過冷組織が発生したり、焼入れ後に残留オーステナイトが存在し、鋼材の特性が劣化する場合がある。こうしたことから、Niを含有させる場合には、その上限を3%とする。コスト低減の観点からは、好ましくは2%以下、より好ましくは1%以下とするのが良い。
[Ni: 3% or less (not including 0%) and / or Cu: 3% or less (not including 0%)]
In consideration of cost reduction, Ni does not have a lower limit in order to prevent addition. However, when suppressing surface decarburization or improving corrosion resistance, Ni is preferably contained in an amount of 0.1% or more. However, if the Ni content is excessive, a supercooled structure may be generated in the rolled material, or retained austenite may be present after quenching, which may deteriorate the properties of the steel material. For these reasons, when Ni is contained, the upper limit is made 3%. From the viewpoint of cost reduction, it is preferably 2% or less, more preferably 1% or less.

Cuは、上記Niと同様に表層脱炭を抑制したり耐食性を向上するのに有効な元素である。この様な効果を発揮させるには、Cuを0.1%以上含有させることが好ましい。しかしながら、Cuの含有量が過剰になると、過冷組織が発生したり、熱間加工時に割れが生じる場合がある。こうしたことから、Cuを含有させる場合には、その上限を3%とする。コスト低減の観点からは、好ましくは2%以下、より好ましくは1%以下とするのが良い。   Cu is an element effective for suppressing surface layer decarburization and improving the corrosion resistance like Ni. In order to exert such an effect, it is preferable to contain 0.1% or more of Cu. However, if the Cu content is excessive, a supercooled structure may be generated or cracks may occur during hot working. For these reasons, when Cu is contained, the upper limit is made 3%. From the viewpoint of cost reduction, it is preferably 2% or less, more preferably 1% or less.

Mo:2%以下(0%を含まない)
Moは焼戻し後の強度確保、靭性向上に有効な元素である。しかしながら、Mo含有量が過剰になると靭性が劣化する。こうしたことからMo含有量の上限は2%とすることが好ましい。より好ましくは0.5%以下とするのが良い。
Mo: 2% or less (excluding 0%)
Mo is an element effective for securing strength and improving toughness after tempering. However, when the Mo content is excessive, toughness deteriorates. For these reasons, the upper limit of the Mo content is preferably 2%. More preferably, it is 0.5% or less.

[Ca:0.005%以下(0%を含まない)、Mg:0.005%以下(0%を含まない)およびREM:0.02%以下(0%を含まない)よりなる群から選ばれる1種以上]
Ca,MgおよびREM(希土類元素)は、いずれも硫化物を形成し、MnSの伸長を防ぐことで、靭性を改善する効果を有し、要求特性に応じて添加することができる。しかしながら、夫々上記上限を超えて含有させると、逆に靭性を劣化させる。夫々の好ましい上限は、Caで0.003%、Mgで0.003%、REMで0.01%である。
尚、本発明において、REMとは、ランタノイド元素(LaからLnまでの15元素)およびSc(スカンジウム)とY(イットリウム)を含む意味である。
[Ca: selected from the group consisting of 0.005% or less (excluding 0%), Mg: 0.005% or less (not including 0%), and REM: 0.02% or less (not including 0%) One or more
Ca, Mg, and REM (rare earth elements) all form sulfides and have an effect of improving toughness by preventing elongation of MnS, and can be added according to required characteristics. However, if the content exceeds the upper limit, the toughness is deteriorated. The preferable upper limit of each is 0.003% for Ca, 0.003% for Mg, and 0.01% for REM.
In the present invention, REM means a lanthanoid element (15 elements from La to Ln), Sc (scandium) and Y (yttrium).

[Zr:0.1%以下(0%を含まない)、Ta:0.1%以下(0%を含まない)およびHf:0.1%以下(0%を含まない)よりなる群から選ばれる1種以上]
これの元素は、Nと結びついて窒化物を形成し、安定で加熱時のオーステナイト(γ)粒径の成長を抑制し、最終的な組織を微細化し、靭性を改善する効果がある。但し、いずれも0.1%を超えて過剰に含有させると窒化物が粗大化し、疲労特性を劣化させるため好ましくない。こうしたことから、いずれもその上限を0.1%とした。より好ましい上限はいずれも0.05%であり、更に好ましい上限は0.025%である。
[Zr: selected from the group consisting of 0.1% or less (not including 0%), Ta: 0.1% or less (not including 0%), and Hf: 0.1% or less (not including 0%) One or more
These elements are combined with N to form nitrides and are stable and suppress the growth of austenite (γ) grain size during heating, and have the effect of reducing the final structure and improving toughness. However, it is not preferable to add excessively in excess of 0.1% because the nitride becomes coarse and deteriorates fatigue characteristics. For these reasons, the upper limit was set to 0.1%. A more preferable upper limit is 0.05% in all cases, and a further preferable upper limit is 0.025%.

そして、本発明法においては、上記成分を有する高強度ばね用鋼を素材として基本的には熱間押出加工法を適用してシームレス鋼管用素管を製造する。全体の製造工程としては、同成分の鋼を転炉などの精錬炉により溶製し、連続鋳造法により鋳片とし、この鋳片を熱間圧延して素ビレット(角または丸)とする。この素ビレットを熱間鍛造及び/または熱間圧延し、更に必要によって焼ならしなどの熱処理を実施した後、機械加工を行って中空ビレットを成形する。この中空ビレットを熱間押出加工して熱間押出鋼管(シームレス鋼管用素管)を造る。さらに得られたシームレス鋼管用素管に抽伸やピルガーミル圧延などの冷間加工、および軟質化目的の焼鈍、更には焼鈍スケール除去を目的とした酸洗を、通常、複数回繰り返し実施して、製品であるシームレス鋼管形状に成形する。   And in this invention method, a hot-extrusion method is fundamentally applied using the high strength spring steel which has the said component as a raw material, and a raw steel pipe for seamless steel pipes is manufactured. As a whole manufacturing process, the steel of the same component is melted by a refining furnace such as a converter, and is cast into a slab by a continuous casting method, and this slab is hot-rolled to form a billet (square or round). The raw billet is hot forged and / or hot-rolled, and further subjected to heat treatment such as normalization as necessary, and then machined to form a hollow billet. This hollow billet is hot-extruded to produce a hot-extruded steel pipe (seamless pipe for seamless steel pipe). In addition, the obtained seamless steel pipes are usually subjected to cold processing such as drawing and pilger mill rolling, annealing for softening purposes, and pickling for the purpose of removing annealing scale, usually repeatedly several times, It is formed into a seamless steel pipe shape.

本発明者らは、かかるシーレス鋼管の製造において発生する粗大な内面疵の原因について種々、検討行なったところ、上記熱間押出加工前の中空ビレットの加熱時に、ビレット内面に割れが発生し、これがその後の冷間加工を経た製品の内面疵として残存することを発見した。このビレット内面の割れは、加熱時に中空部の内面に生じる熱応力によるものであると共に、本発明で対象とする高強度ばね用鋼を用いて熱間押出用ビレットを作製する際には、機械加工性確保のためにフェライト・パーライト組織に制御するが、中炭素鋼のフェライト・パーライト組織は切欠き靭性に乏しいことが要因であることが判明した。   The present inventors have conducted various studies on the cause of coarse inner surface flaws that occur in the manufacture of such a seamless steel pipe, and when the hollow billet is heated before the hot extrusion process, cracks are generated on the inner surface of the billet. It was discovered that it remained as an internal flaw in the product after the subsequent cold working. This crack on the inner surface of the billet is due to thermal stress generated on the inner surface of the hollow part during heating, and when producing a billet for hot extrusion using the steel for high strength springs targeted in the present invention, In order to ensure workability, the ferrite and pearlite structure is controlled, but it was found that the ferrite and pearlite structure of medium carbon steel is due to the lack of notch toughness.

こうした知見から、ビレット材質の切欠き靭性の改善がシームレス鋼管の内面疵発生抑制に有効であることを着想するにいたった。この切欠き靭性を向上させるためには、熱間押出加工前の中空ビレットの鋼組織を適切な結晶粒径の範囲に微細化、調整すること、あるいは中空ビレットを熱間押出加工前に適切な温度範囲に予熱することが重要であることが分かった。これらの条件についてより具体的に説明する。   Based on these findings, we came up with the idea that improving the notch toughness of billet materials is effective in suppressing the occurrence of internal flaws in seamless steel pipes. In order to improve the notch toughness, the steel structure of the hollow billet before hot extrusion is refined and adjusted to an appropriate crystal grain size range, or the hollow billet is appropriately processed before hot extrusion. It has been found important to preheat to a temperature range. These conditions will be described more specifically.

(A)中空ビレットの鋼組織(平均結晶粒径:15ミクロン以下)
本発明の対象とする前記鋼成分の高強度ばね用鋼からなる中空ビレットの組織サイズと、熱間押出加工後の割れ発生に関して調査したところ、同ビレットの内面表層部(中空内面表層部)における鋼組織の平均結晶粒径が15μmを超える場合に内面割れが発生し、一方、この平均結晶粒径が15μm以下であれば割れが発生しないことが確認された。この結果から、本発明では内面表層部における平均結晶粒径が予め15μm以下に調整された中空ビレットを用いて熱間押出加工を行なうことを必須とするものである。また、平均結晶粒径を好ましく12μm以下、さらに好ましくは10μm以下に調整された中空ビレットとすることにより鋼の切り欠靭性はより改善され、内面割れの発生をさらに確実に抑制することが可能となる。ここで、内面表層部とは内面からの厚みが0.1mm以下の範囲の領域を示すものである。
(A) Steel structure of hollow billet (average crystal grain size: 15 microns or less)
When the structure size of the hollow billet made of high strength spring steel of the steel component of the present invention and the occurrence of cracks after hot extrusion were investigated, the inner surface layer portion (hollow inner surface layer portion) of the billet It was confirmed that internal cracks occurred when the average crystal grain size of the steel structure exceeded 15 μm, whereas cracks did not occur when the average crystal grain size was 15 μm or less. From this result, in the present invention, it is essential to perform hot extrusion using a hollow billet in which the average crystal grain size in the inner surface layer portion is adjusted to 15 μm or less in advance. Further, by using a hollow billet having an average crystal grain size of preferably 12 μm or less, more preferably 10 μm or less, the notch toughness of steel is further improved, and the occurrence of internal cracks can be more reliably suppressed. Become. Here, the inner surface layer portion indicates a region in which the thickness from the inner surface is 0.1 mm or less.

そして、この内面表層部の平均結晶粒径を15μm以下に調整する具体的な方法としては、前記中空ビレットの成形工程における熱間鍛造または熱間圧延の際に、仕上げ温度を900℃以上、1000℃未満とするか、熱間鍛造または熱間圧延の後に900℃以上、1000℃未満の温度で焼ならし処理を行えば良い。勿論、中空ビレットの上記の平均結晶粒径を15μm以下に調整できる方法であれば、これらの方法に限定されるものではない。なお、熱間鍛造または熱間圧延の際に、仕上げ温度を900℃以上、1000℃未満とする場合、加工前の加熱温度は前記仕上げ温度の条件に制御しやすいようにすればよい。具体的には900〜1250℃程度に加熱をすればよい。また、熱間鍛造または熱間圧延の後に900℃以上、1000℃未満の温度で焼ならし処理を行う場合、熱間鍛造または熱間圧延は通常の条件で行えばよい。通常、熱間鍛造や熱間圧延は加熱温度が1000〜1250℃程度、仕上げ温度が1000℃以上となるような条件で行われる。   And as a concrete method for adjusting the average crystal grain size of the inner surface layer portion to 15 μm or less, the finishing temperature is set to 900 ° C. or higher and 1000 ° C. during hot forging or hot rolling in the forming step of the hollow billet. It is sufficient to perform the normalizing treatment at a temperature of 900 ° C. or more and less than 1000 ° C. after the hot forging or hot rolling. Of course, the method is not limited to these methods as long as the average crystal grain size of the hollow billet can be adjusted to 15 μm or less. In the case of hot forging or hot rolling, when the finishing temperature is set to 900 ° C. or higher and lower than 1000 ° C., the heating temperature before processing may be easily controlled to the finishing temperature condition. Specifically, heating may be performed at about 900 to 1250 ° C. Moreover, when performing the normalizing process at a temperature of 900 ° C. or higher and lower than 1000 ° C. after the hot forging or hot rolling, the hot forging or hot rolling may be performed under normal conditions. Usually, hot forging and hot rolling are performed under conditions such that the heating temperature is about 1000 to 1250 ° C. and the finishing temperature is 1000 ° C. or higher.

(B)中空ビレットの予熱(予熱温度:50〜600℃)
一方、高強度ばね溶鋼の切欠き靭性は比較的低温での加熱状態の影響が大きいことから、熱間押出加工時の加熱の前に予熱することが切欠き靭性を向上に有効ではないかと考え、中空ビレットの予熱温度と熱間押出加工後の割れ発生の関係について調査したところ、この予熱温度が50〜600℃とすることにより内面割れが生じないこと分かった。
この結果に基づき、本発明では前記の鋼組織の結晶粒度の調整とは別の手段として、熱間押出加工時の加熱の前に、一旦50〜600℃の予熱を行なうことも必須とするものである。また、この中空ビレットの予熱温度の下限を好ましくは100℃さらに好ましくは300℃とすることにより、鋼の切り欠靭性はより改善され、内面割れの発生をさらに確実に抑制することができる。
(B) Preheating of the hollow billet (preheating temperature: 50 to 600 ° C.)
On the other hand, the notch toughness of high-strength spring molten steel is greatly affected by the heating state at a relatively low temperature, so it is considered that preheating before heating during hot extrusion is effective for improving the notch toughness. The relationship between the preheating temperature of the hollow billet and the occurrence of cracks after hot extrusion was investigated, and it was found that no internal cracking occurred when the preheating temperature was 50 to 600 ° C.
Based on this result, in the present invention, as a means different from the adjustment of the grain size of the steel structure, it is also essential to preheat at 50 to 600 ° C. once before the heating at the time of hot extrusion. It is. Further, by setting the lower limit of the preheating temperature of the hollow billet to 100 ° C., more preferably 300 ° C., the notch toughness of the steel is further improved, and the occurrence of internal cracks can be more reliably suppressed.

そして、本発明ではこれら(A)及び/または(B)の条件により処理された後は、中空ビレットを通常の条件で熱間押出加工を行えばよい。通常、熱間押出加工はビレットを950〜1150℃程度に加熱した後、押出加工を行う。   And in this invention, after processing by these (A) and / or (B) conditions, a hollow billet should just be hot-extruded on normal conditions. Usually, hot extrusion is performed after heating the billet to about 950 to 1150 ° C.

(実施例)
以下に、本発明の優れた効果を実証するために実施例を挙げる。
供試鋼として表1に示す化学成分を有する中炭素ばね用鋼を溶製し、これを連続鋳造により製造した鋳片を熱間圧延し、155角のビレット(鋼片)を作製した後、900〜1250℃の種々の鍛造加熱温度及び鍛造仕上げ温度で熱間鍛造を行って150φの丸棒に成形した。一部については、熱間鍛造後に900℃、950℃で焼きならし処理を行った。次に150φの丸棒を機械加工して外径143φ×内径40φの押出用中空ビレット作成し、この中空ビレットを高周波加熱により1000〜1050℃に加熱した後、熱間押出加工を行って、外径54φ×内径38φの熱間押出鋼管(シームレス鋼管用素管)を得た。
(Example)
Examples are given below to demonstrate the excellent effects of the present invention.
After melting a medium carbon spring steel having the chemical composition shown in Table 1 as test steel and hot rolling a slab produced by continuous casting to produce a 155 square billet (steel slab), Hot forging was performed at various forging heating temperatures and forging finishing temperatures of 900 to 1250 ° C. to form 150φ round bars. About some, the normalizing process was performed at 900 degreeC and 950 degreeC after hot forging. Next, a 150φ round bar is machined to produce a hollow billet for extrusion having an outer diameter of 143φ × inner diameter of 40φ. The hollow billet is heated to 1000 to 1050 ° C. by high-frequency heating, and then subjected to hot extrusion. A hot-extruded steel pipe having a diameter of 54φ and an inner diameter of 38φ (elementary tube for seamless steel pipe) was obtained.

そして、このようにして得られた各シームレス鋼管用素管の軸方向中央部から組織観察用サンプルを湿式切断により採取し、鋼管横断面(押出軸方向と垂直な面)を観察するように観察試料を調整した。この際、金属組織を現出させるための腐食液として、ナイタール(硝酸+アルコール)を使用した。作製した試料の内面表層部(内面から0.1mm以下の領域)の鋼組織を、光学顕微鏡を用いて倍率100〜400倍で観察し、フェライトパーライト組織の結晶粒度を、フェライト粒度の測定方法(JISG0552)に準拠して、結晶粒度番号を小数点以下第1位まで測定した。各試料につき5視野の結晶粒度番号を測定して、それらの平均の粒度番号Gを算出し、次の式によってμmの単位に換算した結晶粒径を求めた。
結晶粒径D(μm)=10×2(10-G)/2
また、超音波探傷検査により疵の有無をチェックした。超音波探傷検査により、疵信号が認められた場合は、信号部を切断して、疵サイズを測定した。この際、超音波探傷検査で100μm以上の疵が認められなかったものを○、疵信号があり切断検査で100μm以上200μm以下だったものを×、200μm超だったものを××として評価した。これらの結果を、前記中空ビレットの製造条件と合わせて表2に示した。
Then, a sample for observing the structure is collected from the axial center of each seamless steel pipe obtained in this way by wet cutting, and observed to observe the cross section of the steel pipe (plane perpendicular to the extrusion axis direction). The sample was adjusted. At this time, nital (nitric acid + alcohol) was used as a corrosive solution for revealing the metal structure. The steel structure of the inner surface layer portion (region of 0.1 mm or less from the inner surface) of the prepared sample was observed with an optical microscope at a magnification of 100 to 400 times, and the crystal grain size of the ferrite pearlite structure was measured by a ferrite grain size measuring method ( In accordance with JISG0552), the crystal grain size number was measured to the first decimal place. The crystal grain size number of 5 fields was measured for each sample, the average particle size number G was calculated, and the crystal grain size converted to the unit of μm was obtained by the following formula.
Crystal grain size D (μm) = 10 × 2 (10-G) / 2
In addition, the presence or absence of wrinkles was checked by ultrasonic inspection. When a wrinkle signal was recognized by ultrasonic flaw detection, the signal portion was cut and the wrinkle size was measured. At this time, the case where wrinkles of 100 μm or more were not recognized in the ultrasonic flaw detection test was evaluated as “◯”, the case where there was a wrinkle signal and the cut inspection was 100 μm or more and 200 μm or less was evaluated as “X”, These results are shown in Table 2 together with the manufacturing conditions of the hollow billet.

表2の本発明法による実施例(発明例)と比較例との対比から明らかなように、熱間押出加工前の中空ビレット(内面表層部)の平均結晶粒径を15μm以下に調整すること、または同中空ビレットを50〜600℃に予熱することによって、熱間押出加工時の加熱によっても割れが発生せず、内面疵のない高品質の高強度中空ばね用シームレス鋼管用素管が得られることが分かる。

Figure 0005629598

Figure 0005629598
As is clear from the comparison between the examples (invention examples) according to the method of the present invention and the comparative examples in Table 2, the average crystal grain size of the hollow billet (inner surface layer part) before hot extrusion is adjusted to 15 μm or less. Alternatively, by preheating the hollow billet to 50 to 600 ° C, cracks do not occur even when heated during hot extrusion, and a high-quality, high-strength seamless steel pipe for hollow springs with no internal defects is obtained. You can see that

Figure 0005629598

Figure 0005629598

Claims (11)

C:0.2〜0.7質量%、Si:0.5〜3質量%、Mn:0.1〜2質量%、Al:0.1質量%以下(0%を含まない)、P:0.02質量%以下(0%を含まない)、S:0.02質量%以下(0%を含まない)及びN: 0.02質量%以下(0%を含まない)を含有する鋼からなり、且つ、その内面表層部における鋼組織の平均結晶粒径が15μm以下に調整された中空ビレットを用いて熱間押出加工を行い、中空シームレス鋼管用の素管を製造することを特徴とする高強度中空ばね用シームレス鋼管用素管の製造方法。   C: 0.2-0.7 mass%, Si: 0.5-3 mass%, Mn: 0.1-2 mass%, Al: 0.1 mass% or less (excluding 0%), P: From steel containing 0.02% by mass or less (excluding 0%), S: 0.02% by mass or less (not including 0%) and N: 0.02% by mass or less (not including 0%) And a hollow billet in which the average crystal grain size of the steel structure in the inner surface layer portion is adjusted to 15 μm or less is subjected to hot extrusion to produce a hollow seamless steel pipe. A manufacturing method of a base pipe for a seamless steel pipe for a high-strength hollow spring. 前記中空ビレットの内面表層部における鋼組織の結晶粒径の調整を、鍛造仕上げ温度が900℃以上、1000℃未満の熱間鍛造によって行なう請求項1に記載の高強度中空ばね用シームレス鋼管用素管の製造方法。   The element for a seamless steel pipe for high-strength hollow springs according to claim 1, wherein the crystal grain size of the steel structure in the inner surface layer of the hollow billet is adjusted by hot forging at a forging finish temperature of 900 ° C or higher and lower than 1000 ° C. A method of manufacturing a tube. 前記中空ビレットの内面表層部における鋼属組織の結晶粒径の調整を、熱間鍛造後に行う、900℃以上、1000℃未満の焼ならし処理によって行う請求項1に記載の高強度中空ばね用シームレス鋼管用素管の製造方法。   2. The high strength hollow spring according to claim 1, wherein the adjustment of the crystal grain size of the steel structure in the inner surface layer portion of the hollow billet is performed by a normalizing treatment at 900 ° C. or more and less than 1000 ° C. performed after hot forging. A method for producing a seamless steel pipe. C:0.2〜0.7質量%、Si:0.5〜3質量%、Mn:0.1〜2質量%、Al:0.1質量%以下(0%を含まない)、P:0.02質量%以下(0%を含まない)、S:0.02質量%以下(0%を含まない)及びN: 0.02質量%以下(0%を含まない)を含有する鋼からなる中空ビレットを、50〜600℃の温度に一旦予熱してから、熱間押出加工を行って中空シームレス鋼管用の素管を製造することを特徴とする高強度中空ばね用シームレス鋼管用素管の製造方法。   C: 0.2-0.7 mass%, Si: 0.5-3 mass%, Mn: 0.1-2 mass%, Al: 0.1 mass% or less (excluding 0%), P: From steel containing 0.02% by mass or less (excluding 0%), S: 0.02% by mass or less (not including 0%) and N: 0.02% by mass or less (not including 0%) The hollow billet is preheated to a temperature of 50 to 600 ° C., and then subjected to hot extrusion to produce a hollow seamless steel pipe blank for seamless steel pipe. Manufacturing method. 前記鋼が、さらに、Cr:3質量%以下(0%を含まない)を含有する請求項1〜4のいずれかに記載の高強度中空ばね用シームレス鋼管用素管の製造方法。   The said steel further contains Cr: 3 mass% or less (0% is not included), The manufacturing method of the raw steel pipe for seamless steel pipes for high-strength hollow springs in any one of Claims 1-4. 前記鋼が、さらに、B:0.015質量%以下(0%を含まない)を含有する請求項1〜5のいずれかに記載の高強度中空ばね用シームレス鋼管用素管の製造方法。   The method for producing a raw steel pipe for a high-strength hollow spring seamless steel pipe according to any one of claims 1 to 5, wherein the steel further contains B: not more than 0.015 mass% (not including 0%). 前記鋼が、さらに、V:1質量%以下(0%を含まない)、Ti:0.3質量%以下(0%を含まない)及びNb:0.3質量%以下(0%を含まない)から選ばれる1以上を含有する請求項1〜6のいずれかに記載の高強度中空ばね用シームレス鋼管用素管の製造方法。   The steel further includes V: 1% by mass or less (excluding 0%), Ti: 0.3% by mass or less (not including 0%), and Nb: 0.3% by mass or less (excluding 0%). The manufacturing method of the raw steel pipe for seamless steel pipes for high-strength hollow springs in any one of Claims 1-6 containing 1 or more chosen from these. 前記鋼が、さらに、Ni:3質量%以下(0%を含まない)及びCu:3質量%以下(0%を含まない)から選ばれる1以上を含有する請求項1〜7のいずれかに記載の高強度中空ばね用シームレス鋼管用素管の製造方法。   The steel according to any one of claims 1 to 7, further comprising at least one selected from Ni: 3% by mass or less (excluding 0%) and Cu: 3% by mass or less (not including 0%). The manufacturing method of the elementary pipe for seamless steel pipes for high-strength hollow springs of description. 前記鋼が、さらに、Mo:2質量%以下(0%を含まない)を含有する請求項1〜8のいずれかに記載の高強度中空ばね用シームレス鋼管用素管の製造方法。   The method for manufacturing a raw steel pipe for a high-strength hollow spring according to any one of claims 1 to 8, wherein the steel further contains Mo: 2 mass% or less (not including 0%). 前記鋼が、さらにCa:0.005質量%以下(0%を含まない)、Mg:0.005質量%以下(0%を含まない)及びREM:0.02質量%以下(0%を含まない)から選ばれる1以上を含有する請求項1〜9のいずれかに記載の高強度中空ばね用シームレス鋼管用素管の製造方法。   The steel is further Ca: 0.005 mass% or less (excluding 0%), Mg: 0.005 mass% or less (not including 0%), and REM: 0.02 mass% or less (including 0%). The manufacturing method of the raw steel pipe for seamless steel pipes for high intensity | strength hollow springs in any one of Claims 1-9 containing 1 or more chosen from. 前記鋼が、さらに、Zr:0.1質量%以下(0%を含まない)、Ta:0.1質量%以下(0%を含まない)及びHf:0.1質量%以下(0%を含まない)から選ばれる1種以上を含有する請求項1〜10のいずれかに記載の高強度中空ばね用シームレス鋼管用素管の製造方法。

The steel further includes Zr: 0.1% by mass or less (excluding 0%), Ta: 0.1% by mass or less (excluding 0%), and Hf: 0.1% by mass or less (0% The manufacturing method of the raw | natural pipe | tube for seamless steel pipes for high strength hollow springs in any one of Claims 1-10 containing 1 or more types chosen from (it does not contain).

JP2011029259A 2011-02-15 2011-02-15 Manufacturing method for seamless steel pipe for high strength hollow spring Expired - Fee Related JP5629598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011029259A JP5629598B2 (en) 2011-02-15 2011-02-15 Manufacturing method for seamless steel pipe for high strength hollow spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011029259A JP5629598B2 (en) 2011-02-15 2011-02-15 Manufacturing method for seamless steel pipe for high strength hollow spring

Publications (2)

Publication Number Publication Date
JP2012166238A JP2012166238A (en) 2012-09-06
JP5629598B2 true JP5629598B2 (en) 2014-11-19

Family

ID=46970924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011029259A Expired - Fee Related JP5629598B2 (en) 2011-02-15 2011-02-15 Manufacturing method for seamless steel pipe for high strength hollow spring

Country Status (1)

Country Link
JP (1) JP5629598B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4039382A4 (en) * 2020-12-08 2022-08-10 Maruyoshi Kogyo Co., Ltd. Pipe member manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9834832B2 (en) * 2013-01-09 2017-12-05 The Nanosteel Company, Inc. Classes of steels for tubular products
EP3715490B1 (en) * 2019-03-29 2023-08-23 Bayerische Motoren Werke Aktiengesellschaft Method of casting steel alloy component and cast component

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3954772B2 (en) * 2000-04-26 2007-08-08 新日本製鐵株式会社 Shaped material for high-temperature carburized parts with excellent grain coarsening prevention characteristics and manufacturing method thereof
JP4998086B2 (en) * 2007-05-24 2012-08-15 住友金属工業株式会社 Billet for clad tube and method for producing clad tube
JP5324311B2 (en) * 2009-05-15 2013-10-23 株式会社神戸製鋼所 Hollow seamless pipe for high strength springs
JP5503195B2 (en) * 2009-06-18 2014-05-28 株式会社神戸製鋼所 Steel for machine structure suitable for friction welding, manufacturing method thereof, friction welding component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4039382A4 (en) * 2020-12-08 2022-08-10 Maruyoshi Kogyo Co., Ltd. Pipe member manufacturing method

Also Published As

Publication number Publication date
JP2012166238A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
JP5324311B2 (en) Hollow seamless pipe for high strength springs
JP6017341B2 (en) High strength cold-rolled steel sheet with excellent bendability
RU2674176C2 (en) Thick-walled steel pipe for oil wells and method for manufacture thereof
JP5142141B2 (en) Hot-rolled steel sheets for hydroforming, steel pipes for hydroforming, and methods for producing them
JP5333700B1 (en) Low alloy oil well pipe steel with excellent resistance to sulfide stress cracking and method for producing low alloy oil well pipe steel
RU2650466C2 (en) Steel pipe for high-pressure fuel pipe and high-pressure fuel pipe comprising it
WO2016013205A1 (en) Low-alloy steel pipe for oil well
WO2016111292A1 (en) Hollow seamless steel pipe for spring
JP5476598B2 (en) Manufacturing method of seamless steel pipe for high strength hollow spring
JP5629598B2 (en) Manufacturing method for seamless steel pipe for high strength hollow spring
JP6018394B2 (en) Hollow seamless pipe for high strength springs
JP5986434B2 (en) Seamless steel pipe for hollow spring
JP5523288B2 (en) Seamless steel pipe for high-strength hollow springs
JP5816136B2 (en) Manufacturing method of seamless steel pipe for hollow spring
JP2018168460A (en) Ferritic stainless steel pipe and ferritic stainless steel pipe for automotive exhaust system parts
JP7226083B2 (en) wire and steel wire
JP2016125119A (en) Hollow seamless steel pipe for spring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140710

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141006

R150 Certificate of patent or registration of utility model

Ref document number: 5629598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees