JP2013213255A - Hot working die steel - Google Patents

Hot working die steel Download PDF

Info

Publication number
JP2013213255A
JP2013213255A JP2012083766A JP2012083766A JP2013213255A JP 2013213255 A JP2013213255 A JP 2013213255A JP 2012083766 A JP2012083766 A JP 2012083766A JP 2012083766 A JP2012083766 A JP 2012083766A JP 2013213255 A JP2013213255 A JP 2013213255A
Authority
JP
Japan
Prior art keywords
steel
less
quenching
toughness
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012083766A
Other languages
Japanese (ja)
Inventor
Yukio Tate
幸生 舘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2012083766A priority Critical patent/JP2013213255A/en
Publication of JP2013213255A publication Critical patent/JP2013213255A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide hot working die steel in which hot strength and hardenability are ensured by optimizing the amounts of alloy elements added, and lengthening of die life span is achieved by controlling the amount of undissolved carbide at quenching, thereby imparting high levels of strength and toughness to the die steel for hot working.SOLUTION: A hot working die steel comprises, by mass, 0.30-0.50% C, 0.10-0.30% Si, 0.40-0.80% Mn, ≤0.005% S, 1.00-2.00% Ni, ≥1.00% but <2.80% Cr, ≥1.00% but <1.80% Mo, 0.10-0.40% V, ≤0.10% Nb, >0.0060% but ≤0.0100% N, ≤0.005% Ti and the balance being Fe and unavoidable impurities. In the die steel, the crystal grain size number after quenching is ≥7.0 and the structure upon heating for quenching comprises substantially austenite and undissolved MC type carbide, nitride and carbonitride.

Description

本発明は熱間鍛造、熱間押出、鋳造、ダイカストなどに用いる硬度および靱性に優れ、さらに被削性にも優れた熱間金型鋼に関する。   The present invention relates to a hot die steel excellent in hardness and toughness used for hot forging, hot extrusion, casting, die casting and the like, and also excellent in machinability.

金型の長寿命化にとって、金型鋼の硬度と耐割れ性(靭性)の両立が必要である。その理由は、熱間成形用の金型においては、高温の被加工材との接触や摺動により、金型表面が軟化し、摩耗する。この場合、金型表面に顕著な摩耗が生じると、目的とした製品形状を成形することができず、金型は寿命に至る。また、被加工材から金型ヘの入熱と潤滑剤や離型剤の塗布時の金型からの抜熱との繰返しにより、金型表面は加熱−冷却サイクルに曝される。金型表面は加熱時には膨張して圧縮応力が付与される。この加熱時の軟化により金型表面強度が低下し、この強度の低下した金型表面には、微視的な座屈が生じる。逆に、冷却時には収縮による引張応力が金型に付与される。このときの引張応力が軟化した金型表面の強度を超えると、金型表面には座屈を起点とした熱疲労亀裂(ヒートチェック、ヒートクラック)が発生する。熱疲労亀裂は、成形品に転写されることで、成形品の意匠性を損ない、製品品質を劣化させたり、成形品と金型との離型性を悪化させ、生産性を低下させたりする原因になる。また、熱疲労亀裂が伸展することで、表面の微細な欠けや脱落により摩耗を早めたり、さらには金型の割れ破損の原因になる。   In order to extend the life of the mold, it is necessary to satisfy both hardness and crack resistance (toughness) of the mold steel. The reason for this is that in a hot forming mold, the mold surface softens and wears due to contact and sliding with a high-temperature workpiece. In this case, if significant wear occurs on the mold surface, the intended product shape cannot be molded, and the mold reaches the end of its life. Further, the mold surface is exposed to a heating-cooling cycle by repetition of heat input from the workpiece to the mold and heat removal from the mold during application of the lubricant or mold release agent. The mold surface expands when heated and is given compressive stress. This softening during heating reduces the mold surface strength, and microscopic buckling occurs on the mold surface where the strength is reduced. Conversely, during cooling, a tensile stress due to shrinkage is applied to the mold. If the tensile stress at this time exceeds the strength of the softened mold surface, thermal fatigue cracks (heat check, heat crack) starting from buckling occur on the mold surface. Thermal fatigue cracks are transferred to a molded product, which impairs the design of the molded product, degrades the product quality, deteriorates the releasability between the molded product and the mold, and decreases the productivity. Cause. In addition, the extension of thermal fatigue cracks can lead to accelerated wear due to fine chipping or dropping off of the surface, and further to cracking of the mold.

すなわち、熱間成形用の金型鋼の長寿命化には、高温での強度の維持と亀裂の進展を抑制する靭性の両立が求められる。熱間プレス鍛造や熱間押出しやダイカスト用の金型には、JIS−SKD61が、熱間ハンマー鍛造用の金型には、JIS−SKT4が汎用的に使用されている(いずれもJIS G 4404参照。)。JIS−SKD61は強度と靭性の双方を比較的高位で兼備した金型用鋼であるが、使用中の割れによる早期破損が生じることが多く、靭性面では必ずしも十分ではない。また、JIS−SKD61の靭性は、熱疲労亀裂の伸展を抑制するためには不足している。JIS−SKT4はハンマー鍛造による大きな衝撃にも耐え得るように靭性を重視した一方で、軟化抵抗性が低いために耐摩耗性が不足する。また、再生加工を目的とした型彫り面の引下げを繰返して行うと、焼入性が低いために中心部では硬さ低下が生じてしまい、強度不足から割れやヘタリなどが発生する。さらには、適用可能な硬さが低いために耐摩耗性や強度が不足し、熱間プレス鍛造や熱間押出の用途には向いていない。   That is, in order to prolong the life of the mold steel for hot forming, it is required to maintain both strength at high temperatures and toughness that suppresses the progress of cracks. JIS-SKD61 is generally used for hot press forging, hot extrusion and die casting dies, and JIS-SKT4 is generally used for hot hammer forging dies (all are JIS G 4404). reference.). JIS-SKD61 is a mold steel that combines both strength and toughness at a relatively high level. However, premature breakage often occurs due to cracking during use, and the toughness is not always sufficient. Moreover, the toughness of JIS-SKD61 is insufficient to suppress the extension of thermal fatigue cracks. JIS-SKT4 emphasizes toughness so that it can withstand a large impact caused by hammer forging, but lacks wear resistance due to low softening resistance. Further, when the die-carved surface is repeatedly pulled down for the purpose of reclaiming, the hardenability is low, resulting in a decrease in hardness at the center, and cracking or settling occurs due to insufficient strength. Furthermore, since the applicable hardness is low, the wear resistance and strength are insufficient, and it is not suitable for use in hot press forging or hot extrusion.

これに対する従来の先行技術としては、大型製品の鍛造に使用される金型において、使用中のヒートトラック、大割れ、あるいは軟化による摩耗やへたりを著しく改善できるようにした高強度高靱性の熱間工具鋼が提案されている(例えば、特許文献1参照。)。しかし、この発明は、鋼中のN量について制限を行っていないため、窒化物や炭窒化物の粗大な晶出物を形成し、靱性が不十分になる場合がある。さらに、鋼中のTi量についても制限を行っていないことから、結晶粒の粗大化を抑制するのに有効な5μm以下の微細な炭窒化物が減少して靱性が不十分になることがある。   As a conventional prior art, high strength and toughness heat that can significantly improve wear and sag due to heat tracks, large cracks, or softening in molds used for forging large products. Interstitial tool steel has been proposed (see, for example, Patent Document 1). However, since the present invention does not limit the amount of N in the steel, a coarse crystallized product of nitride or carbonitride may be formed, and the toughness may be insufficient. Furthermore, since there is no restriction on the amount of Ti in the steel, fine carbonitrides of 5 μm or less effective for suppressing the coarsening of crystal grains may be reduced, resulting in insufficient toughness. .

さらに、熱間鍛造型、押し出し型、ダイカスト金型等に使用される被削性と工具寿命に優れた熱間工具鋼が提案されている(例えば、特許文献2参照。)。しかし、この提案の発明の実施例におけるMoの含有量は0.63%以下であり、請求項における0.30〜2.00%よりも大幅に少なく、0.63%を超えて2.00%までがこの特許文献2の発明とし優れているとする実施例が全く示されていないものである。したがって、特許文献2の発明のMo量は、後述する本発明におけるMo量に比して実質的に少なく、本発明と異なるものである。   Furthermore, hot tool steel excellent in machinability and tool life used for hot forging dies, extrusion dies, die casting dies, etc. has been proposed (for example, see Patent Document 2). However, the Mo content in the example of the proposed invention is 0.63% or less, significantly less than 0.30 to 2.00% in the claims, exceeding 0.63% and exceeding 2.00. % Is not shown at all in the examples that are excellent as the invention of Patent Document 2. Therefore, the amount of Mo of the invention of Patent Document 2 is substantially smaller than the amount of Mo in the present invention described later, and is different from the present invention.

また、さらに、熱間加工工具として、鍛造プレスや鍛造型用の工具並びにダイカスト工具、押出成形ダイおよび特に軽金属および鋼用のマンドレル、あるいはプラスチック成形用工具として、プラスチック射出成形用金型およびプロフィール製造用ダイが提案されている(例えば、特許文献3参照。)。しかし、この文献では、段落0012で、Sの適正量は0.025〜0.030%と言及しており、実施例に示される発明鋼は0.027%以上のSが積極添加されている。これに対して本願の発明は、後述するように、Sは0.005%以下であるので、この点で特許文献3の発明は、本願発明と相違する。さらに、同様に、引用文献3の実施例である表3に示される鋼No.のQ9277、Q9278、Q9279、Q9280、Q9286、Q9287は、全てC≦0.38%、V≧0.71%であり、これも本願発明の範囲と異なる。   Furthermore, as hot working tools, tools for forging presses and forging dies as well as die casting tools, extrusion dies and especially mandrels for light metals and steel, or plastic injection molds and profile manufacturing as plastic molding tools A die for use has been proposed (see, for example, Patent Document 3). However, in this document, paragraph 0012 mentions that the appropriate amount of S is 0.025 to 0.030%, and the inventive steel shown in the examples is positively added with 0.027% or more of S. . On the other hand, as described later, since the S of the present application is 0.005% or less, the invention of Patent Document 3 is different from the present invention in this respect. Furthermore, similarly, the steel No. shown in Table 3 which is an example of the cited document 3 is shown. Q9277, Q9278, Q9279, Q9280, Q9286, and Q9287 are all C ≦ 0.38% and V ≧ 0.71%, which are also different from the scope of the present invention.

さらに、熱疲労特性および軟化抵抗を高めることによってヒートチェック、水冷孔割れを抑制し、寿命を延ばした金型鋼が提案されている(例えば、特許文献4参照。)。しかし、表3に見られる実施例の発明鋼では何れもMn含有量が0.86%以上であり、本願発明のMn含有量よりも高く実質的に相違する。さらに、特許文献4のものでは、焼入温度が1010〜1050℃に限定されており、これでは、本願発明に適用するには、焼入加熱時に必要な未固溶炭化物であるMCが不足し、結晶粒粗大化による靭性低下を招くことがあり得る。このように、従来技術である特許文献1〜4のいずれの先行技術においても、焼入加熱時における組織の規定が本願発明と異なるものである。   Further, there has been proposed a mold steel that increases heat fatigue characteristics and softening resistance, thereby suppressing heat check and water-cooled hole cracking and extending the life (see, for example, Patent Document 4). However, in all of the inventive steels of Examples shown in Table 3, the Mn content is 0.86% or more, which is substantially higher than the Mn content of the present invention. Furthermore, in the thing of patent document 4, quenching temperature is limited to 1010-1050 degreeC, and in this, MC which is an insoluble carbide required at the time of quenching heating is insufficient to apply to this invention. The toughness may be reduced due to the coarsening of crystal grains. As described above, in any of the prior arts of Patent Documents 1 to 4 which are the prior art, the definition of the structure at the time of quenching heating is different from that of the present invention.

特開平6−88163号公報JP-A-6-88163 特許第4186340号公報Japanese Patent No. 4186340 特表2011−517729号公報Special table 2011-517729 gazette 特開2008−56982号公報JP 2008-56982 A

本発明が解決しようとする課題は、合金元素添加量の最適化により、硬度、熱間強度および焼入性を確保し、さらに焼入時の未固溶炭化物量を制御することで、熱間加工用の金型鋼の強度と靭性を高位で兼備させて金型の長寿命化を実現させた熱間金型鋼を提案することである。   The problem to be solved by the present invention is to secure hardness, hot strength and hardenability by optimizing the amount of alloying elements added, and also to control the amount of undissolved carbide during quenching, The aim is to propose a hot mold steel that achieves a long life of the mold by combining the strength and toughness of the mold steel for processing at a high level.

上記の課題を解決するための、本発明の手段は、熱間金型鋼に関する手段である。すなわち、請求項1の手段では、質量%で、C:0.30〜0.50%、Si:0.10〜0.30%、Mn:0.40〜0.80%、S:0.005%以下、Ni:1.00〜2.00%、Cr:1.00%以上かつ2.80%未満、Mo:1.00%以上かつ1.80%未満、V:0.10〜0.40%、Nb:0.10%以下、N:0.0060%超かつ0.0100%以下、Ti:0.005%以下、望ましくはTi:0.003%以下を含有し、残部Feおよび不可避不純物からなる鋼で、この鋼の焼入後の結晶粒度番号が7.0以上で、焼入れ加熱時の組織が実質的にオーステナイトと未固溶のMC型の炭化物、窒化物、および炭窒化物であることを特徴とする熱間金型鋼である。   The means of the present invention for solving the above-mentioned problems is a means relating to hot die steel. That is, in the means of claim 1, C: 0.30 to 0.50%, Si: 0.10 to 0.30%, Mn: 0.40 to 0.80%, S: 0.0. 005% or less, Ni: 1.00 to 2.00%, Cr: 1.00% or more and less than 2.80%, Mo: 1.00% or more and less than 1.80%, V: 0.10 to 0 .40%, Nb: 0.10% or less, N: more than 0.0060% and 0.0100% or less, Ti: 0.005% or less, preferably Ti: 0.003% or less, and the balance Fe and A steel composed of inevitable impurities. The grain size number after quenching of this steel is 7.0 or more, and the structure during quenching heating is substantially austenite and insoluble in MC type carbides, nitrides, and carbonitriding. It is a hot mold steel characterized by being a product.

請求項2の手段では、請求項1に記載の鋼成分のMoの一部または全部を2倍の量のWで置換し、すなわち1.00%≦Mo+0.5W<1.80%とし、その他の鋼成分の含有量は請求項1と同様とし、残部Feおよび不可避不純物からなる鋼で、焼入後の結晶粒度番号が7.0以上で、焼入れ加熱時の組織が実質的にオーステナイトと未固溶のMC型の炭化物、窒化物、および炭窒化物であることを特徴とする熱間金型鋼である。   In the means of claim 2, part or all of Mo of the steel component of claim 1 is replaced with twice the amount of W, that is, 1.00% ≦ Mo + 0.5W <1.80%, The steel component content is the same as in claim 1 and the steel is composed of the balance Fe and unavoidable impurities, the grain size number after quenching is 7.0 or more, and the structure during quenching heating is substantially austenite and non-austenite. It is a hot mold steel characterized by solid solution MC type carbides, nitrides, and carbonitrides.

請求項3の手段では、請求項1に記載の鋼成分に加えて、さらに質量%で、Co:2.0%以下を含有し、残部Feおよび不可避不純物からなる鋼で、焼入れ加熱時の組織が実質的にオーステナイトと未固溶のMC型の炭化物、窒化物、および炭窒化物であることを特徴とする熱間金型鋼である。   According to the third aspect of the present invention, in addition to the steel component of the first aspect, the steel further comprises, by mass%, Co: 2.0% or less, the balance being Fe and inevitable impurities, and the structure during quenching heating. Is a hot mold steel characterized by being MC type carbides, nitrides, and carbonitrides which are substantially insoluble in austenite.

請求項4の手段では、請求項2に記載の鋼成分に加えて、さらに質量%で、Co:2.0%以下を含有し、残部Feおよび不可避不純物からなる鋼で、焼入後の結晶粒度番号が7.0以上で、この鋼の焼入れ加熱時の組織が実質的にオーステナイトと未固溶のMC型の炭化物、窒化物、および炭窒化物であることを特徴とする熱間金型鋼である。   In the means of claim 4, in addition to the steel component of claim 2, the steel further contains, by mass%, Co: 2.0% or less, the balance being Fe and inevitable impurities, and crystals after quenching. Hot mold steel having a grain size number of 7.0 or more, and the structure of this steel during quenching heating is substantially austenite and insoluble MC type carbides, nitrides, and carbonitrides It is.

上記の熱間金型鋼の鋼成分の限定理由について以下に説明する。なお、%は質量%を示すものである。   The reasons for limiting the steel components of the hot mold steel will be described below. In addition,% shows the mass%.

C:0.30〜0.50%
Cは、十分な焼入性を確保し、炭化物を形成させることで耐摩耗性や高温強度を得るために必要な元素である。Cが0.30%より低すぎると、十分な高温強度および耐摩耗性が得られない。一方、Cが0.50%より多すぎると、凝固偏析を助長し、靭性を阻害する。そこで、Cは0.30〜0.50%とする。
C: 0.30 to 0.50%
C is an element necessary for ensuring sufficient hardenability and forming carbides to obtain wear resistance and high temperature strength. If C is lower than 0.30%, sufficient high-temperature strength and wear resistance cannot be obtained. On the other hand, when C is more than 0.50%, solidification segregation is promoted and toughness is inhibited. Therefore, C is set to 0.30 to 0.50%.

Mn:0.40〜0.80%
Mnは、焼入性の確保するために必要な元素である。しかし、Mnが0.40%未満では不十分である。一方、Mnが0.80%を超えると鋼材の加工性を低下させる。そこで、Mnは0.40〜0.80%とする。
Mn: 0.40 to 0.80%
Mn is an element necessary for ensuring hardenability. However, it is insufficient if Mn is less than 0.40%. On the other hand, when Mn exceeds 0.80%, the workability of the steel material is lowered. Therefore, Mn is set to 0.40 to 0.80%.

S:0.005%以下
Sは、0.005%を超えて含有されると、Mnと結合してMnSを形成して靭性を阻害する。そこで、Sは0.005%以下とする。
S: 0.005% or less When S is contained in excess of 0.005%, it combines with Mn to form MnS and inhibit toughness. Therefore, S is set to 0.005% or less.

Ni:1.00〜2.00%
Niは、焼入性と靭性を改善する元素である。しかし、Niが1.00%未満であると焼入性と靭性を改善する効果が無い。一方、Niが2.00%より多く含有されると鋼材の高温強度および被削性を阻害する。そこで、Niは1.00〜2.00%とする。
Ni: 1.00 to 2.00%
Ni is an element that improves hardenability and toughness. However, if Ni is less than 1.00%, there is no effect of improving hardenability and toughness. On the other hand, if Ni is contained in an amount of more than 2.00%, the high temperature strength and machinability of the steel material are hindered. Therefore, Ni is set to 1.00 to 2.00%.

Cr:1.00%以上かつ2.80%未満
Crは、焼入性を改善する元素である。しかし、Crが1.00%未満では焼入性の改善は不十分である。一方、Crが2.80%以上では、焼入れ焼戻し時にCr系の炭化物が過多に形成されて、高温強度および軟化抵抗性を低下させる。そこで、Crは1.00%以上かつ2.80%未満とする。
Cr: 1.00% or more and less than 2.80% Cr is an element that improves hardenability. However, if Cr is less than 1.00%, the improvement of hardenability is insufficient. On the other hand, when Cr is 2.80% or more, excessive Cr-based carbides are formed during quenching and tempering, and the high temperature strength and softening resistance are lowered. Therefore, Cr is made 1.00% or more and less than 2.80%.

Mo:1.00%以上かつ1.80%未満
Moは、焼入性と、二次硬化、耐摩耗性、高温強度に寄与する析出炭化物を得るために必用な元素である。また、焼入時に未固溶となった微細な炭化物が結晶粒の粗大化を抑制する効果を有する元素である。しかし、Moが1.00%より少ないと上記の効果が得られない。一方、Moは1.80%以上の過剰に添加しても効果が飽和するばかりか、偏析を助長して炭化物が粗大凝集することにより靭性を低下させる。また、Moの過剰な添加はコスト高になる。そこで、Moは1.00%以上かつ1.80%未満とする。
Mo: 1.00% or more and less than 1.80% Mo is an element necessary for obtaining precipitated carbides that contribute to hardenability, secondary hardening, wear resistance, and high-temperature strength. Further, fine carbides that have become insoluble during quenching are elements that have an effect of suppressing the coarsening of crystal grains. However, if Mo is less than 1.00%, the above effect cannot be obtained. On the other hand, even if Mo is added in an excess of 1.80% or more, the effect is not only saturated, but also segregation is promoted and carbides are coarsely aggregated to reduce toughness. Further, excessive addition of Mo increases the cost. Therefore, Mo is made 1.00% or more and less than 1.80%.

V:0.10〜0.40%
Vは、0.10%以上含有されると、焼戻時に微細で硬質なMC型の炭化物、窒化物、炭窒化物を析出し、高温強度や耐摩耗性に寄与し、また、焼入時には微細な炭化物および炭窒化物が結晶粒の粗大化を抑制し、靭性の低下を抑制する。しかし、Vが0.10%より少ないと上記の効果が得られない。一方、Vは0.40%より多すぎると、凝固時に粗大な炭化物、窒化物、炭窒化物を晶出し、靭性を阻害する。また、コストが嵩む。そこでVは0.10〜0.40%とする。
V: 0.10 to 0.40%
When V is contained in an amount of 0.10% or more, fine and hard MC type carbides, nitrides, and carbonitrides are precipitated during tempering, contributing to high temperature strength and wear resistance, and during quenching. Fine carbides and carbonitrides suppress the coarsening of crystal grains and suppress the decrease in toughness. However, if V is less than 0.10%, the above effect cannot be obtained. On the other hand, when V is more than 0.40%, coarse carbides, nitrides, and carbonitrides are crystallized during solidification, thereby inhibiting toughness. Moreover, cost increases. Therefore, V is set to 0.10 to 0.40%.

Nb:0.10%以下
Nbは、焼戻時に微細で硬質なMC型の炭化物、窒化物、炭窒化物を析出し、高温強度や耐摩耗性に寄与する。また、焼入時には、微細な炭化物や炭窒化物が結晶粒の粗大化を抑制し、靭性の低下を抑制する。しかし、Nbが0.10%より多過ぎると、凝固時に粗大な炭化物、窒化物、炭窒化物を晶出し、靭性を阻害する。また、コストが嵩む。そこでNbは0.10%以下とする。
Nb: 0.10% or less Nb precipitates fine and hard MC-type carbides, nitrides, and carbonitrides during tempering and contributes to high-temperature strength and wear resistance. Moreover, at the time of quenching, fine carbides and carbonitrides suppress the coarsening of crystal grains and suppress the decrease in toughness. However, if Nb is more than 0.10%, coarse carbides, nitrides, and carbonitrides are crystallized during solidification, thereby inhibiting toughness. Moreover, cost increases. Therefore, Nb is made 0.10% or less.

N:0.0060%超かつ0.0100%以下
Nは、V、Nbと結合しMC型の窒化物および/または炭窒化物を形成し、硬度および耐摩耗性に寄与する。それらのMC型の窒化物および/または炭窒化物は、焼入時に結晶粒粗大化を抑制し、靭性を改善する。しかし、Nが0.0060%以下であると上記の効果が無い。一方、Nが0.0100%を超えて多すぎると、凝固の過程で避けられない偏析部(合金元素濃縮部)にて、より高温でのV、Nbとの結合が助長されるため、晶出のMC型の窒化物および/または炭窒化物が粗大化し、逆に靭性を阻害する。そこで、Nは0.0060%超かつ0.0100%以下とする。
N: more than 0.0060% and 0.0100% or less N combines with V and Nb to form MC type nitrides and / or carbonitrides, and contributes to hardness and wear resistance. Those MC-type nitrides and / or carbonitrides suppress grain coarsening during quenching and improve toughness. However, when N is 0.0060% or less, the above effect is not obtained. On the other hand, if N exceeds 0.0100% and too much, bonding with V and Nb at higher temperatures is promoted in the segregation part (alloy element enrichment part) that cannot be avoided in the solidification process. The MC type nitrides and / or carbonitrides thus produced become coarse, and conversely, toughness is inhibited. Therefore, N is set to more than 0.0060% and 0.0100% or less.

Ti:0.005%以下、望ましくは0.003%以下
Tiは、凝固時にVやNbよりも高温からMC型の炭化物、窒化物、炭窒化物を生成し、それを核としてVおよび/またはNbのMC型の炭化物、窒化物、炭窒化物が粗大に成長するため、靭性を阻害する。また、Tiは0.005%より多いと、VやNbが粗大MC型の炭化物、窒化物、炭窒化物として消費され、5μm以下の微細なMC型の炭化物、窒化物、炭窒化物が減少するために、焼入時の結晶粒の粗大化を抑制する効果が減少する。そこで、Tiは0.005%以下とし、望ましくは0.003%以下とする。
Ti: 0.005% or less, desirably 0.003% or less Ti produces MC-type carbides, nitrides, carbonitrides at a temperature higher than V and Nb during solidification, and uses them as nuclei for V and / or Nb MC-type carbides, nitrides, and carbonitrides grow coarsely, thus impairing toughness. When Ti is more than 0.005%, V and Nb are consumed as coarse MC-type carbides, nitrides, and carbonitrides, and fine MC-type carbides, nitrides, and carbonitrides of 5 μm or less are reduced. Therefore, the effect of suppressing the coarsening of crystal grains during quenching is reduced. Therefore, Ti is set to 0.005% or less, preferably 0.003% or less.

焼入後の結晶粒の大きさは結晶粒度番号:7.0以上
結晶粒度番号7.0より小さいと、結晶粒が大き過ぎて靭性が低下する。そこで、焼入後の結晶粒の大きさは結晶粒度番号:7.0以上とする。
The size of the crystal grain after quenching is a crystal grain size number of 7.0 or more. When the crystal grain size number is less than 7.0, the crystal grain is too large and the toughness is lowered. Therefore, the size of the crystal grains after quenching is set to a crystal grain size number: 7.0 or more.

焼入れ加熱時の組織が実質的にオーステナイトと未固溶のMC型の炭化物、窒化物、炭窒化物
MC型以外の炭化物が未固溶で残存すると、焼戻時に析出して二次硬化に寄与する炭化物が減少し、十分な焼戻し硬さおよび高温強度を得られない。そこで、焼入れ加熱時の組織が実質的にオーステナイトと未固溶のMC型の炭化物、窒化物、炭窒化物とする。
MC type carbides, nitrides, carbonitrides that are substantially austenite and insoluble in quenching heating If carbides other than MC type remain in an insoluble solution, they precipitate during tempering and contribute to secondary hardening Carbide is reduced, and sufficient tempering hardness and high temperature strength cannot be obtained. Therefore, MC type carbides, nitrides, and carbonitrides in which the structure during quenching heating is substantially insoluble with austenite are used.

請求項2に係る発明:請求項1に係る発明のMoの一部または全部を2倍の量でWに置換して有する。すなわち、質量%で、1.00%≦Mo+0.5W<1.80%
Wは、Moと同様の効果が得られる元素である。しかし、Moと同等の効果を得るには、Wは質量%でMoの2倍量が必要であり、1.00%≦Mo+0.5Wとする。一方、WはMoと同じく、効果が飽和するばかりか、偏析を助長し炭化物が粗大凝集することにより靭性を低下させる。また、コスト高になる。そこで、Mo+0.5W<1.80%とする。
Invention according to claim 2: A part or all of Mo of the invention according to claim 1 is replaced with W in double amount. That is, in mass%, 1.00% ≦ Mo + 0.5W <1.80%
W is an element that can obtain the same effect as Mo. However, in order to obtain the same effect as Mo, W needs to be twice the amount of Mo by mass%, and 1.00% ≦ Mo + 0.5W. On the other hand, W, like Mo, not only saturates the effect, but also promotes segregation and reduces toughness by coarse aggregation of carbides. In addition, the cost increases. Therefore, Mo + 0.5W <1.80%.

請求項3に係る発明:請求項1に係る発明の鋼成分に、質量%で、Co:2.0%以下を加えた発明
Coが2.0%以下とする理由は、基地を強化し高温強度を改善することができる。一方、Coが2.0%より多いと、靭性が阻害され、コストも嵩む。そこで、請求項1に係る発明の鋼成分に加えるCoは2.0%以下とする。
Invention according to claim 3: Invention in which steel component of the invention according to claim 1 is added by mass% and Co: 2.0% or less Co is made 2.0% or less because the base is strengthened and the high temperature Strength can be improved. On the other hand, if the Co content is more than 2.0%, the toughness is hindered and the cost increases. Therefore, Co added to the steel component of the invention according to claim 1 is made 2.0% or less.

請求項4に係る発明:請求項2に係る発明の鋼成分に、質量%で、Co:2.0%以下を加えた発明
Coが2.0%以下とする理由は、基地を強化し高温強度を改善することができる。一方、Coが2.0%より多いと、靭性が阻害され、コストも嵩む。そこで、請求項2に係る発明の鋼成分に加えるCoは2.0%以下とする。
Invention according to claim 4: Invention in which the steel component of the invention according to claim 2 is added by mass% and Co: 2.0% or less Co is made 2.0% or less because of strengthening the base and high temperature Strength can be improved. On the other hand, if the Co content is more than 2.0%, the toughness is hindered and the cost increases. Therefore, Co added to the steel component of the invention according to claim 2 is made 2.0% or less.

本発明は、上記の手段とすることで、強度と靭性を高位で兼備させて金型の長寿命化を実現させた熱間金型鋼となっている。   By adopting the above means, the present invention provides a hot mold steel in which the strength and toughness are combined at a high level and the life of the mold is increased.

本発明例の記号Aの鋼の焼入温度と結晶粒度番号の関係を示す図である。It is a figure which shows the relationship between the quenching temperature of the steel of the symbol A of the example of this invention, and a crystal grain size number. 本発明例の記号AおよびDの鋼の焼入温度とM2C型の炭化物の体積率の関係を示す図である。Is a diagram showing the relationship between quenching temperature and M 2 C-type volume percentage of carbide of steel symbols A and D of the present invention embodiment.

質量%で、表1に示す本発明例および比較例に挙げた成分を含有し、残部がFeと不可避不純物からなる組成の鋼を、1ton真空溶解炉を用いて溶製した後、インゴットに造塊し、これらのインゴットを1240℃で10時間保持して均質化熱処理を施した後、鍛錬成形比が凡そ6Sとなる熱間鍛造し、直径160mmの鋼材を製造した。   A steel having the composition of the present invention and the comparative example shown in Table 1 in mass% and the balance consisting of Fe and inevitable impurities is melted using a 1 ton vacuum melting furnace, and then formed into an ingot. The ingots were agglomerated and subjected to a homogenization heat treatment at 1240 ° C. for 10 hours, followed by hot forging with a forging ratio of about 6S to produce a steel material having a diameter of 160 mm.

Figure 2013213255
Figure 2013213255

上記で製造した鋼材を920〜980℃に加熱して焼入れを実施した。この場合、各鋼材の中周部より割出した25mm×25mm×25mmのブロックを用いて、表2に示す※1の焼入れ温度にて30分間均熱保持した後、撹拌している50℃の油に投入する油冷により実施した。   The steel material manufactured above was heated to 920-980 degreeC, and it quenched. In this case, using a block of 25 mm × 25 mm × 25 mm indexed from the middle part of each steel material, the soaking temperature was maintained at 30 ° C. for 30 minutes at the quenching temperature shown in Table 2, and then stirred at 50 ° C. It was carried out by oil cooling to the oil.

Figure 2013213255
Figure 2013213255

※2の焼入後の結晶粒度(旧オーステナイト結晶粒度)番号は、JIS G 0551にて規定される「鋼−結晶粒度の顕微鏡試験方法」に従い判定した。   The crystal grain size (old austenite crystal grain size) number after quenching of * 2 was determined in accordance with “steel—microscopic test method of crystal grain size” defined in JIS G 0551.

※3の高温特性である高温強度は、各鋼材の中周部から各辺25mmのブロック状の供試材を割出し、焼入焼戻しにより44〜46HRCに調質した。この44〜46HRCの値は供試材の表面にあるスケール層を除去した後、ロックウェル硬度計にて測定し初期硬さである。これらの供試材を650℃にて50時間保持し、これらの鋼材を空冷した後、再び鋼材の表面にあるスケール層を除去した後、ロックウェル硬度計にて測定し、初期硬さとの差、すなわち硬度低下度であるΔHRCにより評価した。   The high-temperature strength, which is the high-temperature characteristic of * 3, was determined by indexing a block-shaped specimen having a side of 25 mm from the middle circumference of each steel material and tempering to 44 to 46 HRC by quenching and tempering. These 44 to 46 HRC values are the initial hardness measured with a Rockwell hardness meter after removing the scale layer on the surface of the test material. These test materials were held at 650 ° C. for 50 hours, and after these steel materials were air-cooled, the scale layer on the surface of the steel materials was removed again, and then measured with a Rockwell hardness meter. That is, it was evaluated by ΔHRC, which is a degree of hardness reduction.

※4の靭性は、シャルピー衝撃試験により破壊に要したエネルギーで評価した。これらに用いた試験片は、直径140mm鍛造材の中心部の圧延方向と垂直方向から採取した。さらに、これらの試験片は、焼入焼戻しにより44〜46HRCに調質し、JIS Z 2242に規定する深さ2mmのUノッチを圧延方向に垂直となる面に加工したものである。   * 4 Toughness was evaluated by the energy required for fracture by Charpy impact test. The test pieces used for these were taken from the direction perpendicular to the rolling direction at the center of the forged material having a diameter of 140 mm. Further, these test pieces were tempered to 44 to 46 HRC by quenching and tempering, and a U-notch having a depth of 2 mm defined in JIS Z 2242 was processed into a surface perpendicular to the rolling direction.

※5の被削性は、焼なまし状態の各鋼材をSKH51製のφ5mmのドリルにて、深さ10mmの留り穴を穿孔し、折損するまでの工具寿命にて評価した。   The machinability of * 5 was evaluated based on the tool life until each steel material in an annealed state was drilled with a SKH51 φ5 mm drill with a 10 mm deep hole and broken.

※6の比較鋼のAL、AH、DLおよびDHは、本発明鋼AまたはDと同じ素材を異なる温度で焼入れしたものである。なお、ALは、素材はAであるが焼入温度がAよりも低いことを示し、AHは、素材はAであるが焼入温度がAよりも高いことを示している。   * 6 AL, AH, DL and DH of comparative steels are obtained by quenching the same material as steel A or D of the present invention at different temperatures. Note that AL indicates that the material is A but the quenching temperature is lower than A, and AH indicates that the material is A but the quenching temperature is higher than A.

比較例について以下に説明する。先ず、例示として比較例の記号の「a1」について説明すると、比較例の「a1」の「a」は本発明の「A」に該当することを示している。但し、比較例の「a1」の「1」はAの鋼成分のどれかの成分の含有量が多すぎるか少なすぎるかのいずれかを示している。「a1」の場合はどれかの成分というのはTiを指しており、この場合は多すぎることを指している。多すぎるか、少なすぎるかは、個々のケースで異なっており、どちらかを1で示し、その逆のものを2で示している。したがって、以下の解説をここに参照するものとしている。   A comparative example will be described below. First, the symbol “a1” of the comparative example will be described as an example, and “a” of “a1” of the comparative example corresponds to “A” of the present invention. However, “1” of “a1” in the comparative example indicates that the content of any of the steel components of A is either too much or too little. In the case of “a1”, any component indicates Ti, and in this case, it indicates that there are too many components. Whether it is too much or too little is different in each case, one is indicated by 1 and the opposite is indicated by 2. Therefore, the following explanation is referred to here.

比較例のa1は、本発明のAよりも、Ti含有量が多すぎるため、粗大なMC型の炭化物、窒化物、炭窒化物が形成され、かつ、焼入時に未固溶の5μm以下のMC量が減少して、結晶粒が粗大化するために、靭性が劣っている。   Since a1 of the comparative example has a Ti content that is higher than that of A of the present invention, coarse MC-type carbides, nitrides, carbonitrides are formed, and 5 μm or less of undissolved at the time of quenching Since the amount of MC decreases and the crystal grains become coarse, the toughness is inferior.

比較例のf1は、本発明のFよりも、Nの添加量が多すぎ、粗大なMC型の炭化物、窒化物、炭窒化物が形成されたために、靭性が劣っている。   The f1 of the comparative example is inferior in toughness because the amount of N added is larger than that of F of the present invention, and coarse MC-type carbides, nitrides, and carbonitrides are formed.

比較例のf2は、本発明のFよりも、Nの添加量が少なすぎ、焼入時に未固溶の5μm以下のMC量が減少して結晶粒が粗大化するために、靭性が劣っている。   The f2 of the comparative example is inferior in toughness because the amount of N added is too small compared with F of the present invention, and the amount of MC of 5 μm or less of undissolved solution is reduced during quenching and the crystal grains become coarse. Yes.

比較例のc1は、本発明のCよりも、C添加量が多いため、偏析を助長し、靭性を低下させている。   Since c1 of a comparative example has more C addition amount than C of this invention, it promotes segregation and reduces toughness.

比較例のc2は、本発明のCよりも、C添加量が少なすぎるため、必要な量の炭化物析出が得られず、高温強度が劣っている。   Since c2 of a comparative example has too little C addition amount than C of this invention, a required quantity of carbide precipitation cannot be obtained and high temperature strength is inferior.

比較例のh1は、本発明のHよりも、Si添加量が過少で、焼入性を低下させるため、靭性が劣っている。また、被削性が悪くなっている。   The comparative example h1 is inferior in toughness because the amount of Si added is less than H of the present invention and the hardenability is lowered. Moreover, the machinability is getting worse.

比較例のh2は、本発明のHよりも、Si添加量が多すぎるため、基地組織の延性が低下し、靭性が劣っている。   Since h2 of a comparative example has too much Si addition amount than H of the present invention, the ductility of the base structure is lowered and the toughness is inferior.

比較例のe1は、本発明のEよりも、Mn添加量が少なく、焼入性が不足することで、靭性が低下している。   The e1 of the comparative example has a lower amount of Mn than E of the present invention, and the toughness is reduced due to insufficient hardenability.

比較例のe2は、本発明のEよりも、Mn添加量が過多のため、焼なまし硬さが硬くなり、被削性が悪くなっている。   In the comparative example e2, since the amount of Mn added is larger than that of E of the present invention, the annealing hardness becomes harder and the machinability becomes worse.

比較例のd1は、本発明のDよりも、S含有量が多すぎるため、靭性が低下している。   Since d1 of a comparative example has too much S content rather than D of this invention, toughness has fallen.

比較例のb1は、本発明のBよりも、Ni添加量が少ないため、焼入性が不十分で靭性が低下している。   Since b1 of a comparative example has less Ni addition amount than B of this invention, hardenability is inadequate and toughness is falling.

比較例のb2は、本発明のBよりも、Ni添加量が多すぎるため、高温強度が悪化し、被削性も劣っている。   Since b2 of a comparative example has too much Ni addition amount than B of this invention, high temperature strength deteriorates and machinability is also inferior.

比較例のg1は、本発明のGよりも、Cr添加量が少なく、十分な焼入性が得られないため、靭性が低下している。   Since g1 of the comparative example has a smaller Cr addition amount than G of the present invention and sufficient hardenability cannot be obtained, toughness is lowered.

比較例のg2は、本発明のGよりも、Cr添加量が多すぎるため、高温強度に有効なMCやM2C量が少なくなり、軟化抵抗性が低下している。
比較例のa2は、本発明のAよりも、Mo添加量が少なく、十分な高温強度が得られていない。
Since g2 of the comparative example has too much Cr addition amount than G of the present invention, the amount of MC and M2C effective for high-temperature strength is reduced and softening resistance is lowered.
Comparative example a2 has less Mo addition than A in the present invention, and sufficient high-temperature strength is not obtained.

比較例のa3は、本発明のAよりも、Mo添加量が多すぎるため、炭化物の粗大凝集が生じて靭性を低下させている。適正量を超えて添加しても、高温強度は飽和している。   Since a3 of a comparative example has too much Mo addition amount than A of this invention, the coarse aggregation of the carbide | carbonized_material arises and the toughness is reduced. Even if it is added in an amount exceeding the proper amount, the high-temperature strength is saturated.

比較例のe3は、本発明のEよりも、V添加量が少なく、十分な高温強度が得られていない。また、焼入時に未固溶の5μm以下のMC量が減少し、結晶粒が粗大化するために、靭性が劣っている。   E3 of the comparative example has a smaller V addition amount than E of the present invention, and a sufficient high-temperature strength is not obtained. Moreover, since the amount of undissolved MC of 5 μm or less during quenching decreases and the crystal grains become coarse, the toughness is inferior.

比較例のe4は、本発明のEよりも、V添加量が過剰で、凝固時に粗大な炭窒化物を晶出し、靭性を阻害している。   In the comparative example e4, the amount of addition of V is excessive as compared with E of the present invention, and coarse carbonitrides are crystallized during solidification to inhibit toughness.

比較例のf3は、本発明のFよりも、Nb添加量が過剰で、凝固時に粗大な炭窒化物を晶出し、靭性を阻害している。   In the comparative example f3, the amount of Nb added is larger than that of F of the present invention, and coarse carbonitrides are crystallized during solidification to inhibit toughness.

比較例のd2は、本発明のDよりも、Co添加量が過剰で、靭性を阻害している。   In d2 of the comparative example, the amount of Co added is excessive as compared with D of the present invention, and the toughness is inhibited.

比較例のAL、DLは、本発明のAおよびDよりも、焼入温度が低すぎるため、焼入時の合金元素の固溶が不足し、焼戻時に析出する炭化物が減少している。そのため、十分な高温強度が得られていない。   Since the quenching temperatures of the comparative examples AL and DL are too lower than those of A and D of the present invention, the solid solution of the alloy elements at the time of quenching is insufficient, and the carbides precipitated at the time of tempering are reduced. For this reason, sufficient high-temperature strength is not obtained.

比較例のAH、DHは、本発明のAおよびDよりも、焼入温度が高すぎるため、焼入時の未固の5μm以下のMC量が減少し、結晶粒粗大化を招き、靭性を悪化させている。   Since AH and DH of comparative examples have a quenching temperature that is higher than A and D of the present invention, the amount of unhardened MC of 5 μm or less at the time of quenching decreases, leading to grain coarsening and toughness. It is getting worse.

図1は、本発明の表1に示すA鋼からなる鋼材を850〜1000℃に加熱して30分間均熱保持した後、撹拌している50℃の油に投入して油冷により焼入れした鋼材の、焼入れ温度と結晶粒度No.の関係を示すグラフである。このグラフから、焼入温度ガ980℃を超えると、未固溶のMC型の炭化物、窒化物、炭窒化物が不足し、結晶粒が粗大化していることが解る。   FIG. 1 shows a steel material made of steel A shown in Table 1 of the present invention, heated to 850 to 1000 ° C. and kept soaked for 30 minutes, and then poured into 50 ° C. stirring oil and quenched by oil cooling. The quenching temperature and grain size No. of the steel material. It is a graph which shows the relationship. From this graph, it can be seen that when the quenching temperature exceeds 980 ° C., undissolved MC type carbides, nitrides and carbonitrides are insufficient, and the crystal grains are coarsened.

図2は、本発明の表1に示すA鋼およびD鋼からなる鋼材を850〜1000℃に加熱して30分間均熱保持した後、撹拌している50℃の油に投入して油冷により焼入れした鋼材の、焼入れ温度とM2C体積率(vol%)の関係を示すグラフである。このグラフから、焼入温度が930℃未満では、MC型以外の炭化物が完全に固溶しないことが解る。 FIG. 2 shows a steel material composed of A steel and D steel shown in Table 1 of the present invention, heated to 850 to 1000 ° C. and kept soaked for 30 minutes, and then poured into oil at 50 ° C. with stirring. steel was hardened by a graph showing the relationship between the quenching temperature and M 2 C volume ratio (vol%). From this graph, it can be seen that when the quenching temperature is less than 930 ° C., carbides other than the MC type do not completely dissolve.

上記の表1および表2の結果並びに図1および図2の結果から判るように、本発明は、熱間金型鋼としての合金元素の添加量を最適なものとすることで、金型鋼の硬度、熱間強度および焼入性を確保し、さらに、炭化物量をコントロールすることで、焼入れ時の未固溶の5μm以下のMC量の減少を無くして結晶粒の粗大化を防いで靱性に優れ、かつ、調寿命である熱間金型鋼としている。   As can be seen from the results of Tables 1 and 2 above and the results of FIGS. 1 and 2, the present invention can optimize the hardness of the mold steel by optimizing the addition amount of the alloy element as the hot mold steel. In addition, ensuring hot strength and hardenability, and controlling the amount of carbide eliminates the decrease in the amount of MC less than 5 μm in solid solution at the time of quenching and prevents coarsening of crystal grains and has excellent toughness And, it is a hot die steel that has a controlled life.

Claims (4)

質量%で、C:0.30〜0.50%、Si:0.10〜0.30%、Mn:0.40〜0.80%、S:0.005%以下、Ni:1.00〜2.00%、Cr:1.00%以上かつ2.80%未満、Mo:1.00%以上かつ1.80%未満、V:0.10〜0.40%、Nb:0.10%以下、N:0.0060%超かつ0.0100%以下、Ti:0.005%以下を含有し、残部Feおよび不可避不純物からなる鋼で、この鋼の焼入後の結晶粒度番号が7.0以上で、焼入れ加熱時の組織が実質的にオーステナイトと未固溶のMC型の炭化物、窒化物、および炭窒化物であることを特徴とする熱間金型鋼。   In mass%, C: 0.30 to 0.50%, Si: 0.10 to 0.30%, Mn: 0.40 to 0.80%, S: 0.005% or less, Ni: 1.00 ~ 2.00%, Cr: 1.00% or more and less than 2.80%, Mo: 1.00% or more and less than 1.80%, V: 0.10 to 0.40%, Nb: 0.10 %, N: more than 0.0060% and 0.0100% or less, Ti: 0.005% or less, and the balance Fe and inevitable impurities, the grain size number after quenching of this steel is 7 A hot die steel characterized by having a structure of 0.0 or more and a structure of MC type carbides, nitrides, and carbonitrides which are substantially insoluble in austenite and quenching and heating in the quenching heating. 請求項1に記載の鋼成分のMoの一部または全部を2倍の量のWで置換し、すなわち1.00%≦Mo+0.5W<1.80%とし、その他の鋼成分の含有量は請求項1と同様とし、残部Feおよび不可避不純物からなる鋼で、焼入後の結晶粒度番号が7.0以上で、焼入れ加熱時の組織が実質的にオーステナイトと未固溶のMC型の炭化物、窒化物、および炭窒化物であることを特徴とする熱間金型鋼。   A part or all of Mo in the steel component according to claim 1 is replaced with twice the amount of W, that is, 1.00% ≦ Mo + 0.5W <1.80%, and the content of other steel components is The steel of the balance Fe and inevitable impurities as in claim 1 and having a grain size number of not less than 7.0 after quenching and an MC type carbide whose structure during quenching heating is substantially austenite and insoluble. , Nitride, and carbonitride, hot mold steel. 請求項1に記載の鋼成分に加えて、質量%で、Co:2.0%以下を含有し、残部Feおよび不可避不純物からなる鋼で、焼入後の結晶粒度番号が7.0以上で、焼入れ加熱時の組織が実質的にオーステナイトと未固溶のMC型の炭化物、窒化物、および炭窒化物であることを特徴とする熱間金型鋼。   In addition to the steel components according to claim 1, a steel comprising Co: 2.0% or less in mass%, the balance being Fe and inevitable impurities, and the grain size number after quenching is 7.0 or more A hot die steel characterized in that the microstructure during quenching heating is substantially austenite and insoluble MC type carbides, nitrides, and carbonitrides. 請求項2に記載の鋼成分に加えて、さらに質質量%で、Co:2.0%以下を含有し、残部Feおよび不可避不純物からなる鋼で、焼入後の結晶粒度番号が7.0以上で、焼入れ加熱時の組織が実質的にオーステナイトと未固溶のMC型の炭化物、窒化物、および炭窒化物であることを特徴とする熱間金型鋼。   In addition to the steel components according to claim 2, the steel further comprises mass%, Co: 2.0% or less, the balance being Fe and inevitable impurities, and the grain size number after quenching is 7.0. As described above, a hot die steel characterized in that the structure during quenching heating is substantially MC-type carbide, nitride, and carbonitride which are not dissolved in austenite.
JP2012083766A 2012-04-02 2012-04-02 Hot working die steel Pending JP2013213255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012083766A JP2013213255A (en) 2012-04-02 2012-04-02 Hot working die steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012083766A JP2013213255A (en) 2012-04-02 2012-04-02 Hot working die steel

Publications (1)

Publication Number Publication Date
JP2013213255A true JP2013213255A (en) 2013-10-17

Family

ID=49586798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012083766A Pending JP2013213255A (en) 2012-04-02 2012-04-02 Hot working die steel

Country Status (1)

Country Link
JP (1) JP2013213255A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104911505A (en) * 2014-03-15 2015-09-16 紫旭盛业(昆山)金属科技有限公司 High temperature-resistance die steel
CN104911507A (en) * 2014-03-15 2015-09-16 紫旭盛业(昆山)金属科技有限公司 High temperature-resistance die steel
JP2015193867A (en) * 2014-03-31 2015-11-05 山陽特殊製鋼株式会社 high toughness hot work tool steel
JP2017053023A (en) * 2015-09-11 2017-03-16 大同特殊鋼株式会社 Steel for mold and molding tool
CN107974636A (en) * 2017-12-06 2018-05-01 钢铁研究总院 A kind of high rigidity high-hardenability pre-hardening plastic die steel and preparation method thereof
CN108380841A (en) * 2017-09-30 2018-08-10 湖北川冶科技有限公司 A kind of die casting proprietary material
JP2019019374A (en) * 2017-07-15 2019-02-07 山陽特殊製鋼株式会社 Hot tool steel excellent in hardening property and toughness
CN109321826A (en) * 2018-10-24 2019-02-12 昆明理工大学 A kind of high manganese and low chromium type hot die steel and preparation method thereof
CN109468537A (en) * 2018-12-25 2019-03-15 上海合毓模具技术有限公司 A kind of novel advanced hot stamping die steel HS8 and preparation method thereof
CN109852779A (en) * 2019-03-04 2019-06-07 内蒙金属材料研究所 A kind of heat treatment method of civilian bullet proof steel
CN110157984A (en) * 2019-05-29 2019-08-23 唐山志威科技有限公司 A kind of high uniformity height polishing plastic mould steel ZW636 and preparation method thereof
CN111593257A (en) * 2019-09-07 2020-08-28 江苏宏晟模具钢材料科技有限公司 High-toughness and high-thermal-stability hot-work die steel and preparation method thereof
CN112011739A (en) * 2020-08-27 2020-12-01 江苏大学 High-toughness iron alloy and preparation method and application thereof
WO2021095831A1 (en) * 2019-11-14 2021-05-20 山陽特殊製鋼株式会社 Hot-work tool steel having exceptional high-temperature strength and toughness
CN113802068A (en) * 2021-09-18 2021-12-17 建龙北满特殊钢有限责任公司 Alloy structural steel containing tungsten and production method thereof
CN114410893A (en) * 2021-12-24 2022-04-29 钢铁研究总院 Ultra-fine grain structure heat treatment process of annealed hot work die steel
CN114703425A (en) * 2022-04-07 2022-07-05 燕山大学 Martensite and bainite dual-phase hot work die steel and preparation method thereof
CN115491584A (en) * 2022-02-16 2022-12-20 上海钰灏新材料科技有限公司 High-strength wear-resistant hot work die steel and preparation method thereof
WO2023008413A1 (en) * 2021-07-27 2023-02-02 山陽特殊製鋼株式会社 Hot work tool steel having excellent high-temperature strength and toughness
CN115896607A (en) * 2021-09-24 2023-04-04 宝山钢铁股份有限公司 High-hardenability wind power bolt steel, bar and manufacturing method thereof
CN116287583A (en) * 2023-05-22 2023-06-23 苏州创镕新材料科技有限公司 Niobium-containing hot working die steel 5CrNiMoV and heat treatment method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04358040A (en) * 1991-06-03 1992-12-11 Hitachi Metals Ltd Hot tool steel
JP2001152246A (en) * 1999-11-22 2001-06-05 Sanyo Special Steel Co Ltd Method for producing steel for plastic molding die excellent in toughness, mirror finishing property and machinability
JP2001158937A (en) * 1999-09-22 2001-06-12 Sumitomo Metal Ind Ltd Tool steel for hot working, method for producing same and method for producing tool for hot working
JP2004091840A (en) * 2002-08-30 2004-03-25 Hitachi Metals Ltd Steel for metal mold with excellent machinability and polishability
JP2011195917A (en) * 2010-03-23 2011-10-06 Sanyo Special Steel Co Ltd Hot work tool steel excellent in toughness

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04358040A (en) * 1991-06-03 1992-12-11 Hitachi Metals Ltd Hot tool steel
JP2001158937A (en) * 1999-09-22 2001-06-12 Sumitomo Metal Ind Ltd Tool steel for hot working, method for producing same and method for producing tool for hot working
JP2001152246A (en) * 1999-11-22 2001-06-05 Sanyo Special Steel Co Ltd Method for producing steel for plastic molding die excellent in toughness, mirror finishing property and machinability
JP2004091840A (en) * 2002-08-30 2004-03-25 Hitachi Metals Ltd Steel for metal mold with excellent machinability and polishability
JP2011195917A (en) * 2010-03-23 2011-10-06 Sanyo Special Steel Co Ltd Hot work tool steel excellent in toughness

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104911505A (en) * 2014-03-15 2015-09-16 紫旭盛业(昆山)金属科技有限公司 High temperature-resistance die steel
CN104911507A (en) * 2014-03-15 2015-09-16 紫旭盛业(昆山)金属科技有限公司 High temperature-resistance die steel
JP2015193867A (en) * 2014-03-31 2015-11-05 山陽特殊製鋼株式会社 high toughness hot work tool steel
JP2017053023A (en) * 2015-09-11 2017-03-16 大同特殊鋼株式会社 Steel for mold and molding tool
US11141778B2 (en) 2015-09-11 2021-10-12 Daido Steel Co., Ltd. Steel for molds and molding tool
JP2019019374A (en) * 2017-07-15 2019-02-07 山陽特殊製鋼株式会社 Hot tool steel excellent in hardening property and toughness
CN108380841A (en) * 2017-09-30 2018-08-10 湖北川冶科技有限公司 A kind of die casting proprietary material
CN107974636A (en) * 2017-12-06 2018-05-01 钢铁研究总院 A kind of high rigidity high-hardenability pre-hardening plastic die steel and preparation method thereof
CN109321826A (en) * 2018-10-24 2019-02-12 昆明理工大学 A kind of high manganese and low chromium type hot die steel and preparation method thereof
CN109468537A (en) * 2018-12-25 2019-03-15 上海合毓模具技术有限公司 A kind of novel advanced hot stamping die steel HS8 and preparation method thereof
CN109852779A (en) * 2019-03-04 2019-06-07 内蒙金属材料研究所 A kind of heat treatment method of civilian bullet proof steel
CN110157984A (en) * 2019-05-29 2019-08-23 唐山志威科技有限公司 A kind of high uniformity height polishing plastic mould steel ZW636 and preparation method thereof
CN110157984B (en) * 2019-05-29 2020-04-10 唐山志威科技有限公司 High-uniformity high-polishing type plastic die steel ZW636 and preparation method thereof
CN111593257A (en) * 2019-09-07 2020-08-28 江苏宏晟模具钢材料科技有限公司 High-toughness and high-thermal-stability hot-work die steel and preparation method thereof
WO2021095831A1 (en) * 2019-11-14 2021-05-20 山陽特殊製鋼株式会社 Hot-work tool steel having exceptional high-temperature strength and toughness
JP2021080492A (en) * 2019-11-14 2021-05-27 山陽特殊製鋼株式会社 Hot work tool steel excellent in high-temperature strength and toughness
CN112011739B (en) * 2020-08-27 2021-08-06 江苏大学 High-toughness iron alloy and preparation method and application thereof
CN112011739A (en) * 2020-08-27 2020-12-01 江苏大学 High-toughness iron alloy and preparation method and application thereof
WO2023008413A1 (en) * 2021-07-27 2023-02-02 山陽特殊製鋼株式会社 Hot work tool steel having excellent high-temperature strength and toughness
JP2023024893A (en) * 2021-07-27 2023-02-20 山陽特殊製鋼株式会社 Hot work tool steel having excellent high-temperature strength and toughness
JP7220750B1 (en) 2021-07-27 2023-02-10 山陽特殊製鋼株式会社 Hot work tool steel with excellent high-temperature strength and toughness
CN113802068A (en) * 2021-09-18 2021-12-17 建龙北满特殊钢有限责任公司 Alloy structural steel containing tungsten and production method thereof
CN115896607A (en) * 2021-09-24 2023-04-04 宝山钢铁股份有限公司 High-hardenability wind power bolt steel, bar and manufacturing method thereof
CN114410893B (en) * 2021-12-24 2022-11-15 钢铁研究总院 Ultra-fine grain structure heat treatment process for annealed hot work die steel
CN114410893A (en) * 2021-12-24 2022-04-29 钢铁研究总院 Ultra-fine grain structure heat treatment process of annealed hot work die steel
CN115491584A (en) * 2022-02-16 2022-12-20 上海钰灏新材料科技有限公司 High-strength wear-resistant hot work die steel and preparation method thereof
CN114703425B (en) * 2022-04-07 2022-10-14 燕山大学 Martensite and bainite dual-phase hot work die steel and preparation method thereof
CN114703425A (en) * 2022-04-07 2022-07-05 燕山大学 Martensite and bainite dual-phase hot work die steel and preparation method thereof
CN116287583A (en) * 2023-05-22 2023-06-23 苏州创镕新材料科技有限公司 Niobium-containing hot working die steel 5CrNiMoV and heat treatment method thereof
CN116287583B (en) * 2023-05-22 2023-11-17 苏州创镕新材料科技有限公司 Niobium-containing hot working die steel 5CrNiMoV and heat treatment method thereof

Similar Documents

Publication Publication Date Title
JP2013213255A (en) Hot working die steel
JP6432070B2 (en) Hot die steel for long-life die casting excellent in high-temperature thermal conductivity and method for producing the same
JP5649111B2 (en) Press mold made of spheroidal graphite cast iron and method for producing the same
JP2017043814A (en) Die steel and die
JP5929963B2 (en) Hardening method of steel
JP6366326B2 (en) High toughness hot work tool steel and manufacturing method thereof
KR20060125467A (en) Steel for a plastic molding die
JP2009013439A (en) High toughness high-speed tool steel
JP5655366B2 (en) Bainite steel
JP4860774B1 (en) Cold work tool steel
JP5504680B2 (en) Free-cutting alloy tool steel
JP6620490B2 (en) Age-hardening steel
JP2020026567A (en) Hot stamp die steel, hot stamp die and method for producing the same
JP5351528B2 (en) Cold mold steel and molds
JP2014025103A (en) Hot tool steel
JP2005336553A (en) Hot tool steel
KR20020001933A (en) A low alloyed high speed tool steel for hot and warm working having good toughness and high strength and manufacture method thereof
JP6788520B2 (en) Hot tool steel with excellent toughness and softening resistance
JP5668942B2 (en) Die steel excellent in hole workability and suppression of machining strain and method for producing the same
JP5345415B2 (en) Steel for cold press dies and press dies excellent in machinability, heat treatment sizing characteristics and impact characteristics
JP5597999B2 (en) Cold work tool steel with excellent machinability
JP2019019374A (en) Hot tool steel excellent in hardening property and toughness
CN109415793B (en) Steel for tool holder
JP6083014B2 (en) High strength matrix high speed
JP2016156081A (en) Alloy tool steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170131