JP2001152246A - Method for producing steel for plastic molding die excellent in toughness, mirror finishing property and machinability - Google Patents

Method for producing steel for plastic molding die excellent in toughness, mirror finishing property and machinability

Info

Publication number
JP2001152246A
JP2001152246A JP33104499A JP33104499A JP2001152246A JP 2001152246 A JP2001152246 A JP 2001152246A JP 33104499 A JP33104499 A JP 33104499A JP 33104499 A JP33104499 A JP 33104499A JP 2001152246 A JP2001152246 A JP 2001152246A
Authority
JP
Japan
Prior art keywords
less
steel
machinability
toughness
plastic molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33104499A
Other languages
Japanese (ja)
Inventor
Takeshi Fujimatsu
威史 藤松
Nobuhiro Tsujii
信博 辻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP33104499A priority Critical patent/JP2001152246A/en
Publication of JP2001152246A publication Critical patent/JP2001152246A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing steel for a plastic molding die excellent in toughness, mirror finishing properties and crimping properties and moreover excellent in a machinability. SOLUTION: In this method for producing steel for a plastic molding die, steel containing, by weight, 0.01 to 0.20% C, <=1.0% Si, 0.5 to 2.5% Mn, 1.5 to 3.5% Ni, 0.3 to 2.5% Cu, 0.3 to 1.5% Al, <=15 ppm O, <=150 ppm N, and the balance Fe is hot-worked, is cooled to <=1173 K at a cooling rate of 0.5 to 10 K/s to a lower bainitic region, is held at >=1.8 Ks and is thereafter subjected to again treatment at 723 to 873 K. Moreover, the steel may contain 0.01 to 0.30% S, <=0.3% Pb, <=0.3% Bi, <=0.3% Se, <=0.3% Te, <=0.005% Zr, <=0.01% B, <=0.02% Ca, 0.05 to 0.04% Cr, 0.1 to 1.0% Mo, <=0.5% W, 0.6% V, 0.6% Ti and <=0.6% Nb as well.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プラスチック部品
およびプラスチック製品を成形する金型用鋼の製造方法
に関し、詳しくはプラスチックの射出成形等の金型用鋼
であって、さらに靭性、鏡面仕上げ性、シボ加工性に優
れた特性を示すとともに切削加工等における被削性に優
れたプラスチック成形金型用鋼の製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a mold steel for molding plastic parts and plastic products, and more particularly to a mold steel for plastic injection molding and the like, and further having toughness and mirror finish. The present invention relates to a method for producing a steel for a plastic molding die, which exhibits excellent characteristics in graining workability and also has excellent machinability in cutting and the like.

【0002】[0002]

【従来の技術】従来、プラスチック部品およびプラスチ
ック製品成形用の金型は自動車部品をはじめ、事務機器
部品、精密機械部品、電気部品、光学機器部品などに至
るまで、種々の部品、製品を製造するために鏡面加工や
シボ加工が加えられ使用されている。また、最近のプラ
スチック成形金型用鋼の分野においては射出成形サイク
ルの短縮により、金型の使用環境が過酷化しており、ま
た金型寿命向上の観点からもさらに靭性に優れたプラス
チック成形金型用鋼が要求されるようになってきてい
る。
2. Description of the Related Art Conventionally, molds for molding plastic parts and plastic products are used to manufacture various parts and products ranging from automobile parts, office equipment parts, precision machine parts, electric parts, optical equipment parts, and the like. For this purpose, mirror finishing and grain finishing are used. In addition, in the field of plastic molding die steel in recent years, the use environment of the die has become severe due to the shortening of the injection molding cycle, and the plastic molding die which is more excellent in toughness from the viewpoint of improving the life of the die. Demand for steel is increasing.

【0003】一方、光学レンズや注射器をはじめとする
医療機器等の透明なプラスチック製品などではその表面
は極めて平滑であることが求められ、その成形に用いる
金型用鋼は高度な鏡面仕上げ性が要求されている。さら
に、最近のプラスチック成形金型用鋼の分野において金
型製作費の比率上昇に伴い、金型製作の簡便化、切削工
具寿命延長による低コスト化、高精密化等の厳しい条件
が求められるようになってきており、金型用鋼において
はさらに優れた被削性が要求されている。また、金型製
作費に占める材料コストの低減のため、より安価なプラ
スチック成形金型用鋼が望まれている。
On the other hand, transparent plastic products such as optical lenses and syringes and other medical equipment are required to have an extremely smooth surface, and the mold steel used for the molding has a high mirror finish. Has been requested. In addition, in the field of steel for plastic molding dies, strict conditions such as simplification of die production, cost reduction by extending the life of cutting tools, and high precision are required as the ratio of die production cost rises. Therefore, more excellent machinability is required for mold steel. Further, in order to reduce the material cost in the mold manufacturing cost, a cheaper steel for a plastic mold is desired.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来の技術
における上記の課題に鑑みてなされたものであり、靭
性、鏡面性および被削性に優れた安価なプラスチック成
形金型用鋼の製造方法を提供することを目的としてい
る。従来の析出硬化系のプラスチック成形金型用鋼にお
いては、被削性を重視して上部ベイナイトを主体とする
基地組織を有するため、靭性に劣るという問題があっ
た。また、析出硬化系プラスチック金型用鋼は、通常は
熱間加工し、溶体化後に時効処理が施されている。しか
しながら、上記熱処理工程では熱間加工後に再度加熱を
行うことになり、コストアップとなっている。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned problems in the prior art, and is intended to produce an inexpensive steel for a plastic molding die excellent in toughness, mirror finish and machinability. It is intended to provide a way. Conventional precipitation hardening type plastic molding die steel has a problem that it has poor toughness because it has a base structure mainly composed of upper bainite with emphasis on machinability. Further, precipitation hardening type plastic mold steel is usually subjected to hot working and aging treatment after solution treatment. However, in the above heat treatment step, heating is performed again after hot working, and the cost is increased.

【0005】例えば、特開平7−278737号公報に
はプラスチック成形用鋼において靭性向上を達成するた
めに、基地組織を靭性の高い下部ベイナイトに調整する
という提案がなされている。また、特開昭63−162
811号公報には熱処理工程において再加熱を省略する
ことにより、製造コストを低減するととともにマルテン
サイトの生成を抑制してベイナイト組織にすることによ
りシボ加工性を改善するという提案もある。
For example, Japanese Unexamined Patent Publication No. 7-278737 proposes to adjust the base structure to lower toughness of lower bainite in order to achieve improvement in toughness in plastic molding steel. Also, JP-A-63-162
No. 811 proposes that the reheating is omitted in the heat treatment step, thereby reducing the manufacturing cost and improving the grain formability by suppressing the formation of martensite to form a bainite structure.

【0006】このように、従来技術において、上記の特
開平7−278737号公報はオーステナイト領域加熱
後、下部ベイナイト領域へ冷却することで靭性に優れた
基地組織を得るものであるが、下部ベイナイト領域での
保持が考慮されていないため鋼材全体の下部ベイナイト
化が未だ十分でない。また、熱間加工後に改めて溶体化
処理を行うため、製造費用が高くなるという問題があ
る。また、上記の特開昭63−162811号公報では
973〜1173Kで10〜40%の熱間加工を行った
後、723〜823Kの温度範囲で1〜100時間保持
することにより、マルテンサイト化を抑制して基地をベ
イナイト組織とすることでシボ加工性を改善するととも
に時効処理を同時に達成し、再加熱省略による製造コス
トの低減を図っている。しかしながら基地のベイナイト
化と時効処理を兼ねるよう723〜823Kの範囲で熱
処理を行うため、上部ベイナイトが主体となり、被削性
に優れるものの靭性が十分ではない。
As described above, in the prior art, the above-mentioned Japanese Patent Application Laid-Open No. 7-278737 is to obtain a base structure having excellent toughness by heating to an austenite region and then cooling to a lower bainite region. Since the holding in the steel is not taken into account, the lower bainite of the entire steel material is not yet sufficient. Further, since the solution treatment is performed again after the hot working, there is a problem that the manufacturing cost is increased. Further, in the above-mentioned JP-A-63-162811, after performing hot working at 973 to 1173K at 10 to 40%, and holding at a temperature range of 723 to 823K for 1 to 100 hours, martensite is formed. By suppressing the base to have a bainite structure, the graining processability is improved and the aging treatment is achieved at the same time, and the manufacturing cost is reduced by omitting reheating. However, since the heat treatment is performed in the range of 723 to 823K so as to combine the bainite formation and the aging treatment of the base, the upper bainite is mainly used, and although the machinability is excellent, the toughness is not sufficient.

【0007】[0007]

【課題を解決するための手段】上記の問題点について本
発明者らが検討を行った結果、熱間加工後の冷却速度を
制御して下部ベイナイト領域まで冷却し、下部ベイナイ
ト領域で保持を行うことにより、鋼材全体を下部ベイナ
イト組織とすることで靭性に優れたプラスチック成形金
型用鋼が得られるとともに、溶体化工程を省略できるこ
とを見出した。さらにプラスチック成形金型用鋼中の酸
素量および窒素量を重量割合でO:15ppm以下、
N:150ppm以下に調整することにより、非金属介
在物が大幅に低減し、極めて鏡面性に優れたプラスチッ
ク成形金型用鋼が得られるのみならず、また被削性に優
れたものにできることを見出し、本発明を完成するに至
ったものである。
As a result of the present inventors' investigation on the above problems, the cooling rate after hot working is controlled to cool down to the lower bainite region, and to hold in the lower bainite region. As a result, it has been found that by forming the entire steel material into a lower bainite structure, a steel for a plastic molding die having excellent toughness can be obtained, and the solution treatment step can be omitted. Further, the amount of oxygen and the amount of nitrogen in the steel for plastic molding molds are O: 15 ppm or less by weight,
By adjusting the N content to 150 ppm or less, not only non-metallic inclusions are significantly reduced, and not only a steel for a plastic molding die having excellent mirror surface properties is obtained, but also excellent machinability can be obtained. This has led to the completion of the present invention.

【0008】その発明の要旨とするところは、 (1)重量割合で、C:0.01〜0.20%、Si:
1.0%以下、Mn:0.5〜2.5%、Ni:1.5
〜3.5%、Cu:0.3〜2.5%、Al:0.3〜
1.5%、O:15ppm以下、N:150ppm以下
残部Feおよび不可避的不純物からなる鋼を熱間加工
後、1173K以下を0.5K/s以上の冷却速度で下
部ベイナイト領域まで冷却して、その領域で1.8Ks
以上の保持を行った後、723K〜873Kの温度で時
効処理を行うことを特徴とする靭性、鏡面性および被削
性に優れたプラスチック成形金型用鋼の製造方法。 (2)さらに重量割合で、S:0.01〜0.30%、
Pb:0.3%以下、Bi:0.3%以下、Se:0.
3%以下、Te:0.3%以下、Zr:0.005%以
下、B:0.01%以下、Ca:0.02%以下のうち
の1種または2種以上を含有することを特徴とする前記
(1)に記載の靭性、鏡面性および被削性に優れたプラ
スチック成形金型用鋼の製造方法。
The gist of the invention is as follows: (1) C: 0.01 to 0.20% by weight, Si:
1.0% or less, Mn: 0.5 to 2.5%, Ni: 1.5
-3.5%, Cu: 0.3-2.5%, Al: 0.3-
1.5%, O: 15 ppm or less, N: 150 ppm or less After hot-working steel consisting of the balance Fe and unavoidable impurities, 1173 K or less is cooled to a lower bainite region at a cooling rate of 0.5 K / s or more, 1.8Ks in that area
A method for producing a steel for a plastic molding die having excellent toughness, mirror finish, and machinability, comprising performing aging treatment at a temperature of 723 K to 873 K after the above holding. (2) Further, by weight ratio, S: 0.01 to 0.30%,
Pb: 0.3% or less, Bi: 0.3% or less, Se: 0.
It is characterized by containing one or more of 3% or less, Te: 0.3% or less, Zr: 0.005% or less, B: 0.01% or less, and Ca: 0.02% or less. The method for producing a steel for a plastic molding die excellent in toughness, mirror finish and machinability according to the above (1).

【0009】(3)さらに重量割合で、Cr:0.05
〜4.0%、Mo:0.1〜1.0%、W:0.5%以
下のうちの1種または2種以上を含有することを特徴と
する前記(1)または(2)に記載の靭性、鏡面性およ
び被削性に優れたプラスチック成形金型用鋼の製造方
法。 (4)さらに重量割合で、V:0.6%、Ti:0.6
%、Nb:0.6%以下のうち1種または2種以上を含
有することを特徴とする前記(1)〜(3)に記載の靭
性、鏡面性および被削性に優れたプラスチック成形金型
用鋼の製造方法にある。
(3) Further, in a weight ratio, Cr: 0.05
To 4.0%, Mo: 0.1 to 1.0%, W: 0.5% or less, wherein (1) or (2) is contained. A method for producing a steel for a plastic molding die having excellent toughness, mirror finish and machinability as described above. (4) Further, by weight ratio, V: 0.6%, Ti: 0.6
%, Nb: one or more of 0.6% or less are contained, and the plastic molding metal having excellent toughness, mirror finish and machinability according to the above (1) to (3), In the manufacturing method of mold steel.

【0010】続いて、本発明に関わる靭性、鏡面性およ
び被削性に優れたプラスチック成形金型用鋼における化
学成分の組成範囲の限定理由について説明する。C:
0.01〜0.20重量%について、Cは当該発明鋼の
焼入性および焼入相の硬さを確保するために必要な元素
であり0.01%以上必要である。しかし、多すぎると
溶接性を損なうとともに、基地をマルテンサイト化して
被削性を低下させるため上限を0.20%とする。S
i:1.0重量%以下について、Siは溶製時の脱酸材
として必要不可欠な元素であるが、多すぎると時効硬化
後の靭性を低下させるので1.0重量%を上限とする。
Next, the reasons for limiting the composition range of the chemical components in the steel for plastic molding dies having excellent toughness, mirror finish and machinability according to the present invention will be described. C:
With respect to 0.01 to 0.20% by weight, C is an element necessary for securing the hardenability of the invention steel and the hardness of the quenching phase, and is required to be 0.01% or more. However, if the content is too large, the weldability is impaired and the base is made martensitic to reduce machinability, so the upper limit is made 0.20%. S
For i: 1.0% by weight or less, Si is an indispensable element as a deoxidizing material at the time of smelting, but if too much, the toughness after age hardening is reduced, so the upper limit is 1.0% by weight.

【0011】Mn:0.5〜2.5重量%について、M
nは脱酸および焼入れ性を確保するために添加するが、
その効果を得るために、0.5重量%を下限とする。し
かし余りに多量に添加した場合は靭性の低下を招き、ま
た基地のマルテンサイト量が増加して被削性、シボ加工
性の低下をもたらすため上限を2.5重量%とする。N
i:1.5〜3.5重量%について、Niはベイナイト
焼入性を高め、またフェライトの生成を抑制し、時効処
理実施時にNi−Al系の金属間化合物を析出させ、硬
さを確保するために不可欠であり、プラスチック金型に
必要なシボ加工性を向上させるために有効な成分である
ことから、少なくとも1.5重量%以上は必要である。
過剰な添加は熱伝導率を低下させて射出成形サイクルを
長くするという問題があり、また被削性も損なうため
3.5重量%を上限とする。
Mn: 0.5-2.5% by weight, M
n is added to ensure deoxidation and hardenability,
In order to obtain the effect, the lower limit is 0.5% by weight. However, if added in an excessively large amount, the toughness is reduced, and the amount of martensite in the matrix is increased, resulting in a reduction in machinability and grain workability. Therefore, the upper limit is set to 2.5% by weight. N
i: 1.5 to 3.5% by weight, Ni enhances bainite hardenability, suppresses ferrite formation, precipitates Ni-Al intermetallic compounds during aging treatment, and secures hardness. Therefore, at least 1.5% by weight or more is necessary because it is an effective component for improving the grain formability required for a plastic mold.
Excessive addition has the problem of lowering the thermal conductivity and lengthening the injection molding cycle, and also impairs machinability, so the upper limit is 3.5% by weight.

【0012】Cu:0.3〜2.5重量%について、C
uはNi,Alとともに微細析出による析出硬化をもた
らすとともに、被削性向上にも有効であるため少なくと
も0.3重量%以上は必要である。しかし、過剰な添加
は熱間加工性を低下させるとともに、被削性、靭性を低
下させるため2.5重量%を上限とする。Al:0.3
〜1.5重量%について、Alは時効処理実施時にNi
−Al系金属間化合物を生成し、所望の硬さを得るため
に必須であるため、少なくとも0.3重量%以上は必要
である。しかし、過剰な添加は熱間加工性、靭性を低下
させるとともにOやNと結合して酸化物や窒化物系の非
金属介在物を生成して鏡面仕上げ性、被削性に悪影響を
及ぼすため1.5重量%を上限とする。
Cu: 0.3-2.5% by weight, C
Since u brings about precipitation hardening due to fine precipitation together with Ni and Al, and is also effective in improving machinability, at least 0.3% by weight or more is necessary. However, excessive addition lowers the hot workability and also lowers machinability and toughness, so the upper limit is 2.5% by weight. Al: 0.3
About 1.5% by weight, Al is Ni at the time of aging treatment.
Since it is indispensable to generate an Al-based intermetallic compound and obtain a desired hardness, at least 0.3% by weight or more is necessary. However, excessive addition lowers hot workability and toughness and combines with O and N to form oxide or nitride non-metallic inclusions, which adversely affects mirror finish and machinability. The upper limit is 1.5% by weight.

【0013】O、Nの成分限定理由について、本発明に
関わる鏡面仕上げ性および被削性に優れたプラスチック
成形金型溶鋼において、その溶製時、O量について重量
割合でO:15ppm以下とすることが必要となる。こ
こでO量を15ppm以下とするのは、O量がこれより
も増加すると酸化物系介在物が増加し、鏡面仕上げ性お
よび被削性が低下するためである。N量については重量
割合でN:150ppm以下とすることが必要となる。
ここでN量を150ppm以下とするのは、NはAlと
窒化物を形成し、オーステナイト粒を微細化して均一な
組織が得られるが、過剰に添加することにより、硬質で
粗大な窒化物を形成し、鏡面加工時に容易にその脱落を
招くことにより鏡面加工性を低下させるとともに被削性
の低下をもたらすためである。
Regarding the reasons for limiting the components of O and N, in a plastic molding die molten steel excellent in mirror finish and machinability according to the present invention, the O content at the time of melting is set to O: 15 ppm or less by weight. It is necessary. Here, the reason why the O content is 15 ppm or less is that if the O content increases more than this, the amount of oxide-based inclusions increases, and the mirror surface finish and machinability deteriorate. It is necessary to set the N amount to 150 ppm or less by weight.
The reason why the N content is set to 150 ppm or less is that N forms nitride with Al and refines austenite grains to obtain a uniform structure. However, by adding excessively, hard and coarse nitride is reduced. The reason for this is that, when it is formed, it easily falls off at the time of mirror finishing, thereby lowering the mirror workability and lowering the machinability.

【0014】プラスチック成形金型用鋼として重要な特
性である被削性はO、Nを規制することにより達成され
るが、さらに重量割合で、S:0.01〜0.30%、
Pb:0.3%以下、Bi:0.3%以下、Se:0.
3%以下、Te:0.3%以下、Zr:0.005%以
下、B:0.01%以下、Ca:0.02%以下のうち
の1種または2種以上が含有されても良い。Sは被削性
の向上に有効であり、その効果を示すには0.01%以
上が必要である。ただし、Sを多量に添加した場合は粗
大な硫化物系介在物を形成し、靭性を損なうとともに孔
食の発生や、過度のピットの発生の原因となるため、
0.30重量%を上限とする。また、Pb,Bi,S
e,Te,Zr,BおよびCaも被削性の向上に有効な
元素であり、必要に応じて添加しても良い。ただし、過
度の添加は熱間加工性を低下させ、また靱性を損なうた
め、Pb,Bi,SeおよびTeについては0.3重量
%、Zrについては0.005重量%、Bについては
0.01重量%、Caについては0.02重量%をそれ
ぞれ上限とする。
Machinability, which is an important property as plastic molding die steel, can be achieved by regulating O and N. Further, by weight ratio, S: 0.01 to 0.30%,
Pb: 0.3% or less, Bi: 0.3% or less, Se: 0.
One or more of 3% or less, Te: 0.3% or less, Zr: 0.005% or less, B: 0.01% or less, and Ca: 0.02% or less may be contained. . S is effective in improving machinability, and 0.01% or more is required to show the effect. However, if a large amount of S is added, coarse sulfide-based inclusions are formed, which impairs toughness and causes pitting corrosion and excessive pits.
The upper limit is 0.30% by weight. Also, Pb, Bi, S
e, Te, Zr, B and Ca are also effective elements for improving machinability, and may be added as necessary. However, excessive addition lowers hot workability and impairs toughness, so that Pb, Bi, Se and Te are 0.3% by weight, Zr is 0.005% by weight, and B is 0.01% by weight. The upper limits are 0.02% by weight for Ca and Ca, respectively.

【0015】Cr,Mo,Wの成分の限定理由につい
て、Cr:0.05〜4.0重量%、Mo:0.1〜
1.0重量%、W:0.5重量%以下とするのは、C
r,Mo,Wは金型の焼入れ性を改善させ、硬さ、靭性
を向上させるために有効であるため、これらのうち1種
または2種以上の合金成分が含有されても良い。特にC
r,Moは耐食性の向上にも有効な成分であるため、そ
の効果を有効にするためにはCrは0.05重量%を下
限とし、Moは0.1重量%を下限とする。しかし、あ
まりに過剰に添加した場合は炭化物を析出させて靭性を
低下させるとともに、熱伝導率を低下させてプラスチッ
ク射出成形サイクルを長くするという問題があるため、
Crは4.0重量%、Moは1.0重量%、Wは0.5
重量%を上限とする。
Regarding the reasons for limiting the components of Cr, Mo and W, Cr: 0.05 to 4.0% by weight, Mo: 0.1 to
1.0% by weight, W: 0.5% by weight or less,
Since r, Mo, and W are effective for improving the hardenability of the mold and improving the hardness and toughness, one or more of these alloy components may be contained. Especially C
Since r and Mo are effective components for improving the corrosion resistance, the lower limit of Cr is set to 0.05% by weight and the lower limit of Mo is set to 0.1% by weight in order to make the effect effective. However, if it is added in excessive amount, it causes a problem of precipitating carbide and lowering toughness, lowering thermal conductivity and lengthening a plastic injection molding cycle,
Cr is 4.0% by weight, Mo is 1.0% by weight, W is 0.5% by weight.
The upper limit is wt%.

【0016】V,Ti,Nbの成分の限定理由につい
て、V:0.6%以下、Ti:0.6%以下、Nb:
0.6%以下とするのは、V,Ti,Nbは結晶粒を微
細化して、靭性向上に効果が得られるが、多量の添加は
溶体化硬さを必要以上に高くし、逆に靭性を低下させ、
また被削性も低下させることとなるため、0.6重量%
以下とした。
The reasons for limiting the components of V, Ti, and Nb are as follows: V: 0.6% or less, Ti: 0.6% or less, Nb:
When the content is set to 0.6% or less, V, Ti, and Nb refine the crystal grains to obtain an effect of improving the toughness. However, if a large amount is added, the solution hardening hardness is increased more than necessary, and conversely, the toughness is increased. Lower
In addition, since the machinability is also reduced, 0.6% by weight
It was as follows.

【0017】本発明における靭性、鏡面仕上げ性および
被削性に優れたプラスチック金型用鋼の製造方法は、熱
間での圧延もしくは鍛造を行ったのち、1173K以下
を0.5K/s以上の冷却速度で下部ベイナイト領域ま
で冷却して、その領域で1.8Ks以上の保持を行った
後、723K〜873Kの温度で時効処理を行うことを
特徴とする。ここで、熱間加工後、1173K以下を
0.5K/s以上で冷却するのは、1173K以下の冷
却速度が0.5K/s未満である場合、基地組織がフェ
ライトとパーライトを主体とする組織となり、靭性が低
下するためである。
The method for producing a plastic mold steel excellent in toughness, mirror finish and machinability according to the present invention is characterized in that after hot rolling or forging, 1173K or less is reduced to 0.5K / s or more. It is characterized by cooling to a lower bainite region at a cooling rate, holding at least 1.8 Ks in that region, and then performing aging treatment at a temperature of 723K to 873K. Here, cooling after 1173K at a rate of 0.5K / s or more after hot working is performed when the cooling rate at a temperature of 1173K or less is less than 0.5K / s and the base structure is a structure mainly composed of ferrite and pearlite. And the toughness decreases.

【0018】また、下部ベイナイト領域での保持時間を
1.8Ks以上とするのは、下部ベイナイト変態領域が
鋼のCCT曲線におけるベイナイトノーズの下部、すな
わちベイナイトノーズの先端より低温側であり、少なく
とも1.8Ks以上の保持を行うことにより、十分に鋼
材全体を下部ベイナイト組織とすることが可能となるた
めである。
The reason why the holding time in the lower bainite region is set to 1.8 Ks or more is that the lower bainite transformation region is located below the bainite nose in the CCT curve of steel, that is, at a lower temperature side than the tip of the bainite nose. This is because the holding of not less than .8 Ks allows the entire steel material to have a sufficiently lower bainite structure.

【0019】[0019]

【発明の実施の形態】本発明の実施の形態を以下の実施
例に示す。表1に示す化学成分を有するプラスチック成
形金型用鋼を通常の溶製方法により溶製し供試材を作製
する。ここで発明鋼1〜6は、請求項1〜4のいずれか
に記載された成分を満足するプラスチック成形金型用鋼
である。これに対し、比較鋼1はO、Nは請求範囲と異
なるが、他は発明鋼1と同等成分である。また、比較鋼
2はO、Nは請求範囲と異なるが、他は発明鋼4と同等
成分である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention are shown in the following examples. Steels for plastic molding dies having the chemical components shown in Table 1 are smelted by a normal smelting method to prepare test materials. Here, the invention steels 1 to 6 are plastic molding die steels satisfying the components described in any one of the first to fourth aspects. On the other hand, the comparative steel 1 has O and N different from those in the claims, but the other components are equivalent to the invention steel 1. In Comparative Steel 2, O and N are different from those in the claims, but the other components are equivalent to those of Invention Steel 4.

【0020】表1において成分値の“−”の表記は不可
避的不純物であることを示す。続いて、表1に示された
供試材について、熱間での圧延または鍛造により、所定
の形状に成形したのち、表2に示された条件で1173
K以下を下部ベイナイト域まで冷却して、所定の温度で
保持を行ったのち、773Kの温度で時効処理を行うこ
とによりプリハードンプラスチック成形金型用鋼を製造
した。図1は本発明の熱処理パターンを示す図である。
また、表1に示された発明鋼2、5について熱間加工
後、1173K以下の冷却速度を請求項に記載された冷
却速度未満で冷却したものが、表2に示す比較例No
9、10である。
In Table 1, the notation "-" of the component value indicates that it is an unavoidable impurity. Subsequently, the test materials shown in Table 1 were formed into a predetermined shape by hot rolling or forging, and then 1173 under the conditions shown in Table 2.
After cooling to a lower bainite region below K and holding it at a predetermined temperature, it was subjected to aging treatment at a temperature of 773K to produce steel for a pre-hardened plastic molding die. FIG. 1 is a view showing a heat treatment pattern of the present invention.
Further, after the hot working of the inventive steels 2 and 5 shown in Table 1, the cooling rate of 1173K or less was cooled at a cooling rate less than the cooling rate described in the claims.
9 and 10.

【0021】さらに比較例No11〜14は、それぞれ
発明鋼1、3、4、6を従来の工程により製造したプリ
ハードンプラスチック成形金型用鋼であり、図2は従来
の熱処理パターンの例を示す図である。前記熱処理条件
にて処理されたプリハードンプラスチック成形金型用鋼
の熱処理後の硬さ、組織、衝撃値、鏡面仕上げ性、被削
性、シボ加工性を評価した結果を表2にまとめる。表2
において、組織が下部ベイナイト:L.B、上部ベイナ
イト:U.B、フェライト:α、およびパーライト:P
として表記した。なお、衝撃値については2mmUノッ
チシャルピー試験片に加工し、室温にて評価した。
Further, Comparative Examples Nos. 11 to 14 are pre-hardened plastic molding die steels in which inventive steels 1, 3, 4, and 6 are manufactured by a conventional process, respectively. FIG. 2 is a diagram showing an example of a conventional heat treatment pattern. It is. Table 2 summarizes the results of evaluating the hardness, structure, impact value, mirror finish, machinability, and grain workability of the pre-hardened plastic molding die steel treated under the above heat treatment conditions. Table 2
In, the structure is lower bainite: L. B, upper bainite: U.S. B, ferrite: α, and pearlite: P
Notation as In addition, about the impact value, it processed into a 2 mm U notch Charpy test piece, and evaluated at room temperature.

【0022】鏡面仕上げ性について、今回の供試材にお
いては、鏡面仕上げ性が非常に良好であるもの:◎、鏡
面仕上げ性が良好であるもの:○、鏡面仕上げ性がやや
劣るもの:△、鏡面仕上げ性が劣るもの:×、とし、評
価を行った。被削性については、各供試材についてエン
ドミル加工性試験を表3に示す条件にて実施した。エン
ドミル加工性試験は工具折損までの切削長(m)にて評
価を行った。シボ加工性については、各供試材について
同条件にてシボ加工を実施し、その結果シボむらが発生
したものにつき:シボむら有、シボむらが発生しなかっ
たものにつき:シボむら無、として評価を行った。
Regarding the mirror finish, in the test specimens of this test, the mirror finish was very good: 、, the mirror finish was good: 、, the mirror finish was slightly inferior: Δ, Poor mirror finish: x, and evaluated. Regarding machinability, an end mill workability test was performed on each test material under the conditions shown in Table 3. The end mill workability test was evaluated based on the cutting length (m) up to tool breakage. Regarding the grain formability, each specimen was subjected to graining under the same conditions, and as a result, uneven grain was generated: if grain unevenness was present, and if grain unevenness was not generated: grain unevenness was absent. An evaluation was performed.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【表3】 [Table 3]

【0026】以上、表2に示す結果より明らかなよう
に、本発明に関わるプラスチック成形金型用鋼の製造方
法により製造した本発明例No1〜6は比較例No9〜
14に対し、組織を下部ベイナイトに調整することによ
り、靭性に優れたものであることが明らかとなった。さ
らに、本発明例No1〜6は比較例No7、8、9、1
0に対して、鏡面仕上げ性に優れていることが分かる。
比較例No7、8はO、N量が本発明の成分範囲を著し
く越えるものであり、硬質で粗大な非金属介在物が多く
鏡面仕上げ性が極めて悪い。また、比較例No9、10
は基地組織がフェライト、パーライトならびに上部ベイ
ナイトの混在する組織であるため鏡面仕上げ性が低下し
ている。
As is clear from the results shown in Table 2, Examples 1 to 6 of the present invention produced by the method for producing steel for a plastic molding die according to the present invention are Comparative Examples 9 to 9.
On the other hand, by adjusting the structure to lower bainite, it was clarified that the toughness was excellent. Furthermore, the inventive examples Nos. 1 to 6 are comparative examples Nos. 7, 8, 9, 1
With respect to 0, it can be seen that the mirror surface finish is excellent.
In Comparative Examples Nos. 7 and 8, the amounts of O and N significantly exceed the component ranges of the present invention, and there are many hard and coarse nonmetallic inclusions, and the mirror finish is extremely poor. Further, Comparative Examples Nos. 9 and 10
Since the base structure is a structure in which ferrite, pearlite and upper bainite are mixed, the mirror finish is reduced.

【0027】また、本発明例No1〜6は比較例No
7、8に対して、エンドミル加工性試験において良好な
結果が得られた。比較例No7、8についてはO、N量
が本発明の成分を越えるため被削性が低下しているもの
である。さらに、本発明例No1〜6は基地組織を下部
ベイナイトに調整することによりシボむらが発生せず、
シボ加工性が良好であった。比較例No9、10は基地
組織がフェライトとパーライトと上部ベイナイトの混在
する組織となっているため、シボむらが発生し、シボ加
工性が低下している。
The inventive examples Nos. 1 to 6 correspond to the comparative example Nos.
For Nos. 7 and 8, good results were obtained in the end mill workability test. In Comparative Examples 7 and 8, the amounts of O and N exceeded the components of the present invention, so that the machinability was reduced. Further, the present invention examples Nos. 1 to 6 do not cause uneven grain by adjusting the base structure to lower bainite,
The grain workability was good. In Comparative Examples Nos. 9 and 10, since the base structure is a structure in which ferrite, pearlite, and upper bainite are mixed, uneven grain occurs, and the grain formability is reduced.

【0028】[0028]

【発明の効果】以上に説明したとおり、本発明は熱間加
工後の冷却速度を制御して下部ベイナイト領域まで冷却
し、保持を行い、下部ベイナイト生成処理を行うこと
で、靭性に優れた組織を有するとともに溶体化工程が省
略可能となり、かつ、O量について重量%で15ppm
以下に調整されたもの、およびN量について重量%で1
50ppm以下に調整され、非金属介在物の低減を図る
ことで優れた鏡面仕上げ性を有し、被削性、シボ加工性
に優れたプラスチック成形金型用鋼の製造方法を提供す
ることにより、製造コストの低減と金型の寿命向上を同
時に達成するという極めて有益な効果をもたらすもので
ある。
As described above, the present invention controls the cooling rate after hot working, cools down to the lower bainite region, holds the lower bainite region, and performs the lower bainite forming treatment to obtain a structure having excellent toughness. And the solution treatment step can be omitted, and the amount of O is 15 ppm by weight%.
Adjusted below, and 1% by weight for N content
Adjusted to 50 ppm or less, has excellent mirror finish by reducing non-metallic inclusions, machinability, by providing a method of manufacturing a plastic mold steel excellent in graining workability, This has an extremely beneficial effect of simultaneously reducing the manufacturing cost and increasing the life of the mold.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱処理パターンを示す図である。FIG. 1 is a view showing a heat treatment pattern of the present invention.

【図2】従来の熱処理パターンの例を示す図である。FIG. 2 is a diagram showing an example of a conventional heat treatment pattern.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量割合で、 C:0.01〜0.20%、 Si:1.0%以下、 Mn:0.5〜2.5%、 Ni:1.5〜3.5%、 Cu:0.3〜2.5%、 Al:0.3〜1.5%、 O:15ppm以下、 N:150ppm以下、 残部Feおよび不可避的不純物からなる鋼を熱間加工
後、1173K以下を0.5K/s以上の冷却速度で下
部ベイナイト領域まで冷却して、その領域で1.8Ks
以上の保持を行った後、723K〜873Kの温度で時
効処理を行うことを特徴とする靭性、鏡面性および被削
性に優れたプラスチック成形金型用鋼の製造方法。
C: 0.01 to 0.20%; Si: 1.0% or less; Mn: 0.5 to 2.5%; Ni: 1.5 to 3.5%; Cu: 0.3 to 2.5%, Al: 0.3 to 1.5%, O: 15 ppm or less, N: 150 ppm or less, After hot working steel consisting of the balance Fe and unavoidable impurities, 1173K or less Cooling to the lower bainite region at a cooling rate of 0.5 K / s or more, and 1.8 Ks in that region
A method for producing a steel for a plastic molding die having excellent toughness, mirror finish, and machinability, comprising performing aging treatment at a temperature of 723 K to 873 K after the above holding.
【請求項2】 さらに重量割合で、S:0.01〜0.
30%、Pb:0.3%以下、Bi:0.3%以下、S
e:0.3%以下、Te:0.3%以下、Zr:0.0
05%以下、B:0.01%以下、Ca:0.02%以
下のうちの1種または2種以上を含有することを特徴と
する請求項1に記載の靭性、鏡面性および被削性に優れ
たプラスチック成形金型用鋼の製造方法。
2. The weight ratio of S: 0.01 to 0.1.
30%, Pb: 0.3% or less, Bi: 0.3% or less, S
e: 0.3% or less, Te: 0.3% or less, Zr: 0.0
The toughness, specularity and machinability according to claim 1, wherein one or more of B: 0.01% or less and Ca: 0.02% or less are contained. Method for producing excellent steel for plastic molding dies.
【請求項3】 さらに重量割合で、Cr:0.05〜
4.0%、Mo:0.1〜1.0%、W:0.5%以下
のうちの1種または2種以上を含有することを特徴とす
る請求項1または2に記載の靭性、鏡面性および被削性
に優れたプラスチック成形金型用鋼の製造方法。
3. The method according to claim 1, wherein the weight ratio of Cr: 0.05 to
The toughness according to claim 1, wherein one or more of 4.0%, Mo: 0.1 to 1.0%, and W: 0.5% or less are contained. A method for producing steel for plastic molding dies having excellent mirror finish and machinability.
【請求項4】 さらに重量割合で、V:0.6%、T
i:0.6%、Nb:0.6%以下のうち1種または2
種以上を含有することを特徴とする請求項1〜3に記載
の靭性、鏡面性および被削性に優れたプラスチック成形
金型用鋼の製造方法。
4. In a weight ratio, V: 0.6%, T:
i: 0.6%, Nb: one or more of 0.6% or less
The method for producing a steel for a plastic molding die having excellent toughness, specularity and machinability according to any one of claims 1 to 3, characterized by containing at least one kind.
JP33104499A 1999-11-22 1999-11-22 Method for producing steel for plastic molding die excellent in toughness, mirror finishing property and machinability Pending JP2001152246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33104499A JP2001152246A (en) 1999-11-22 1999-11-22 Method for producing steel for plastic molding die excellent in toughness, mirror finishing property and machinability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33104499A JP2001152246A (en) 1999-11-22 1999-11-22 Method for producing steel for plastic molding die excellent in toughness, mirror finishing property and machinability

Publications (1)

Publication Number Publication Date
JP2001152246A true JP2001152246A (en) 2001-06-05

Family

ID=18239221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33104499A Pending JP2001152246A (en) 1999-11-22 1999-11-22 Method for producing steel for plastic molding die excellent in toughness, mirror finishing property and machinability

Country Status (1)

Country Link
JP (1) JP2001152246A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7354487B2 (en) * 2002-12-03 2008-04-08 Ascometal Cooled and annealed bainite steel part, and a method of manufacturing it
JP2011084809A (en) * 2009-09-18 2011-04-28 Hitachi Metals Ltd Steel for metal mold having excellent hole workability, and method for producing the same
JP2012246527A (en) * 2011-05-26 2012-12-13 Nippon Steel Corp Steel component for machine structure with high fatigue strength and high toughness, and method of manufacturing the same
JP2013023708A (en) * 2011-07-19 2013-02-04 Daido Steel Co Ltd Prehardened steel for plastic molding die
JP2013127109A (en) * 2011-11-18 2013-06-27 Daido Steel Co Ltd Steel for molding mold excellent in heat conductive performance, mirror polishing property and toughness
JP2013213255A (en) * 2012-04-02 2013-10-17 Sanyo Special Steel Co Ltd Hot working die steel
KR20140051039A (en) * 2012-10-20 2014-04-30 다이도 스틸 코오퍼레이션 리미티드 Steel for molding die having excellent thermal conductivity, mirror polishing properties and toughness
KR101463312B1 (en) * 2012-12-20 2014-12-05 주식회사 포스코 Precipitation hardening typed die steel with excellent toughness and cutting charateristic and manufacturing method thereof
KR20180117563A (en) * 2017-04-19 2018-10-29 다이도 토쿠슈코 카부시키가이샤 Prehardened steel material, mold, and mold component
CN110257689A (en) * 2019-04-29 2019-09-20 如皋市宏茂重型锻压有限公司 A kind of high polishing pre-hardening plastic mould steel and its preparation process
CN114250422A (en) * 2021-12-31 2022-03-29 安徽哈特三维科技有限公司 Die steel with good toughness and high thermal conductivity and preparation method thereof
EP3926065A4 (en) * 2019-03-01 2022-05-11 Ironovation Materials Technology Co., Ltd. Hot work die steel, heat treatment method thereof and hot work die

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149811A (en) * 1985-12-24 1987-07-03 Kobe Steel Ltd Production of prehardened steel by direct hardening
JPH01279709A (en) * 1988-05-06 1989-11-10 Kobe Steel Ltd Production of pre-hardened steel for plastic die by directly quenching
JPH07278737A (en) * 1994-04-05 1995-10-24 Hitachi Metals Ltd Preharden steel for plastic molding and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149811A (en) * 1985-12-24 1987-07-03 Kobe Steel Ltd Production of prehardened steel by direct hardening
JPH01279709A (en) * 1988-05-06 1989-11-10 Kobe Steel Ltd Production of pre-hardened steel for plastic die by directly quenching
JPH07278737A (en) * 1994-04-05 1995-10-24 Hitachi Metals Ltd Preharden steel for plastic molding and its production

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7354487B2 (en) * 2002-12-03 2008-04-08 Ascometal Cooled and annealed bainite steel part, and a method of manufacturing it
JP2011084809A (en) * 2009-09-18 2011-04-28 Hitachi Metals Ltd Steel for metal mold having excellent hole workability, and method for producing the same
JP2012246527A (en) * 2011-05-26 2012-12-13 Nippon Steel Corp Steel component for machine structure with high fatigue strength and high toughness, and method of manufacturing the same
JP2013023708A (en) * 2011-07-19 2013-02-04 Daido Steel Co Ltd Prehardened steel for plastic molding die
JP2013127109A (en) * 2011-11-18 2013-06-27 Daido Steel Co Ltd Steel for molding mold excellent in heat conductive performance, mirror polishing property and toughness
JP2013213255A (en) * 2012-04-02 2013-10-17 Sanyo Special Steel Co Ltd Hot working die steel
KR101928106B1 (en) * 2012-10-20 2018-12-11 다이도 스틸 코오퍼레이션 리미티드 Steel for molding die having excellent thermal conductivity, mirror polishing properties and toughness
KR20140051039A (en) * 2012-10-20 2014-04-30 다이도 스틸 코오퍼레이션 리미티드 Steel for molding die having excellent thermal conductivity, mirror polishing properties and toughness
KR101463312B1 (en) * 2012-12-20 2014-12-05 주식회사 포스코 Precipitation hardening typed die steel with excellent toughness and cutting charateristic and manufacturing method thereof
KR20180117563A (en) * 2017-04-19 2018-10-29 다이도 토쿠슈코 카부시키가이샤 Prehardened steel material, mold, and mold component
KR102062180B1 (en) * 2017-04-19 2020-01-03 다이도 토쿠슈코 카부시키가이샤 Prehardened steel material for mold, mold, and mold component
US11091825B2 (en) 2017-04-19 2021-08-17 Daido Steel Co., Ltd. Prehardened steel material, mold, and mold component
EP3926065A4 (en) * 2019-03-01 2022-05-11 Ironovation Materials Technology Co., Ltd. Hot work die steel, heat treatment method thereof and hot work die
CN114908301A (en) * 2019-03-01 2022-08-16 育材堂(苏州)材料科技有限公司 Hot work die steel, heat treatment method thereof and hot work die
CN114908301B (en) * 2019-03-01 2023-06-09 育材堂(苏州)材料科技有限公司 Hot work die steel, heat treatment method thereof and hot work die
CN110257689A (en) * 2019-04-29 2019-09-20 如皋市宏茂重型锻压有限公司 A kind of high polishing pre-hardening plastic mould steel and its preparation process
CN114250422A (en) * 2021-12-31 2022-03-29 安徽哈特三维科技有限公司 Die steel with good toughness and high thermal conductivity and preparation method thereof
CN114250422B (en) * 2021-12-31 2022-09-30 安徽哈特三维科技有限公司 Die steel with good toughness and high thermal conductivity and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5412851B2 (en) Steel for plastic molds and plastic molds
KR100836699B1 (en) Die steel
JP4802435B2 (en) Non-tempered steel with small material anisotropy and excellent strength, toughness and machinability, and method for producing the same
JP2001152246A (en) Method for producing steel for plastic molding die excellent in toughness, mirror finishing property and machinability
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP4269293B2 (en) Steel for mold
JP5080708B2 (en) Non-tempered steel forged product, method for producing the same, and connecting rod component for internal combustion engine using the same
JP3141735B2 (en) Steel for plastic molding dies
JP3738003B2 (en) Steel for case hardening excellent in cold workability and properties of preventing coarse grains during carburizing and method for producing the same
JP2005336553A (en) Hot tool steel
JP4556770B2 (en) Carburizing steel and method for producing the same
JP3921040B2 (en) Method for producing high carbon steel sheet with excellent workability
KR101243129B1 (en) Precipitation hardening typed die steel with excellent hardness and toughness, and manufacturing method thereof
JP3581028B2 (en) Hot work tool steel and high temperature members made of the hot work tool steel
JP3360926B2 (en) Prehardened steel for plastic molding and method for producing the same
JP2004183065A (en) High strength steel for induction hardening, and production method therefor
JP3166652B2 (en) Method for producing high carbon thin steel sheet with excellent formability
JP2001152278A (en) Steel for plastic molding die excellent in mirror- finishing property, weldability and machinability
JP3469462B2 (en) Steel for plastic molds with excellent mirror finish and machinability
JP2002146480A (en) Wire rod/steel bar having excellent cold workability, and manufacturing method
JP2001220646A (en) Prehardened steel for plastic molding die
JP3751707B2 (en) High-strength bolt wire excellent in strength and ductility and its manufacturing method
KR101312822B1 (en) Die steel and manufacturing method using the same
JP2000160285A (en) High-strength and high-toughness non-heat treated steel
JP2001049394A (en) Tool steel excellent in weldability and machinability, and die using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091124