JP3166652B2 - Method for producing high carbon thin steel sheet with excellent formability - Google Patents

Method for producing high carbon thin steel sheet with excellent formability

Info

Publication number
JP3166652B2
JP3166652B2 JP06061097A JP6061097A JP3166652B2 JP 3166652 B2 JP3166652 B2 JP 3166652B2 JP 06061097 A JP06061097 A JP 06061097A JP 6061097 A JP6061097 A JP 6061097A JP 3166652 B2 JP3166652 B2 JP 3166652B2
Authority
JP
Japan
Prior art keywords
steel sheet
steel
temperature
annealing
workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06061097A
Other languages
Japanese (ja)
Other versions
JPH10251757A (en
Inventor
清 福井
浩行 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP06061097A priority Critical patent/JP3166652B2/en
Publication of JPH10251757A publication Critical patent/JPH10251757A/en
Application granted granted Critical
Publication of JP3166652B2 publication Critical patent/JP3166652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、クラッチ部品、チ
ェーン部品、事務器部品、自動車部品、等に使用される
加工性にすぐれた高炭素鋼帯の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a high carbon steel strip having excellent workability used for clutch parts, chain parts, office equipment parts, automobile parts, and the like.

【0002】[0002]

【従来の技術】高炭素の薄鋼板は、通常、切削や、打ち
抜き、曲げ、絞り等のプレス加工により所要形状に成形
後、焼入れ焼戻しなどの熱処理をおこなって必要とする
強度に調質してから、目的の用途に適用することが多
い。このため、鋼板製品の段階においては、できるだけ
軟質で、加工性にすぐれていることが重要である。しか
しながら、焼入れ焼戻しなどの熱処理によって、所要の
機械的性質を得ることを前提としているために、通常の
プレス加工のまま部品に適用される薄鋼板に比較してC
含有量は高く、焼入れ性を確保するための元素も多く含
まれており、加工性が劣ることは避けがたい。しかし、
プレス加工で複雑な形状に成形し、熱処理して最終使用
部品とすれば、所要形状を切削加工や溶接などで成形す
るよりもはるかに合理的に製造できることから、この高
炭素薄鋼板の加工性に対する要求はますます高まる傾向
にある。薄鋼板を加工した後、熱処理により所要強度を
得る手段として、加工性のよい低炭素鋼板を用いて成形
し、成形後表面から浸炭し焼入れする方法がある。これ
は、とくに表面の耐摩耗性が要求される場合に有用であ
るが、高温長時間の浸炭熱処理を要するため、熱処理の
コスト上昇や成型品の変形などの難点がある。
2. Description of the Related Art A high carbon steel sheet is usually formed into a required shape by pressing, such as cutting, punching, bending, and drawing, and then subjected to a heat treatment such as quenching and tempering to be refined to a required strength. Therefore, it is often applied to the intended use. For this reason, at the stage of a steel sheet product, it is important that it is as soft as possible and has excellent workability. However, since it is premised that the required mechanical properties are obtained by heat treatment such as quenching and tempering, compared to a thin steel sheet applied to a part as it is in a normal press working,
It has a high content and contains many elements for securing hardenability, and it is inevitable that the workability is inferior. But,
Forming into a complex shape by pressing and heat-treating it into a final-use part can be manufactured much more rationally than forming the required shape by cutting or welding. Requirements are increasing. As a means of obtaining the required strength by heat treatment after processing a thin steel sheet, there is a method of forming a low carbon steel sheet having good workability, carburizing and quenching from the surface after forming. This is particularly useful when abrasion resistance of the surface is required. However, since carburizing heat treatment at a high temperature for a long time is required, there are disadvantages such as an increase in heat treatment cost and deformation of a molded product.

【0003】高炭素薄鋼板の加工性を向上させる手段と
して、広く用いられているのは、セメンタイトの球状化
焼鈍である。通常の熱間圧延などで得られる高炭素鋼の
組織は、層状のセメンタイトとフェライトからなるパー
ライト組織であるが、このセメンタイトを焼鈍条件など
の管理により粒状にするもので、硬さが低下し、伸びが
改善される。しかしながら、組成や履歴によっては必ず
しも十分には加工性、ことに伸びは改善されず、球状化
のための焼鈍条件は、温度が高く、時間も長く処理費用
がかさみがちである。
[0003] As a means for improving the workability of a high carbon thin steel sheet, spheroidizing annealing of cementite is widely used. The structure of high carbon steel obtained by ordinary hot rolling etc. is a pearlite structure composed of layered cementite and ferrite.However, this cementite is granulated by management of annealing conditions etc., the hardness decreases, Elongation is improved. However, workability, especially elongation, is not always improved depending on the composition and history, and annealing conditions for spheroidization tend to be high in temperature, long in time, and high in processing cost.

【0004】高炭素薄鋼板に対し加工性改善の目的で球
状化焼鈍をおこなう場合、さらにいくつかの問題があ
る。球状化焼鈍は、均熱に長時間要するため、薄鋼板で
はコイル状にして箱焼鈍される。薄鋼板がコイル状に巻
かれている場合、コイルの巻き軸方向に比較して、その
直角方向の熱伝達がきわめて悪い。このため、箱焼鈍法
はコイルの外側の炉内雰囲気に接する部分およびそれに
近い部分と、コイルの巻き層の中心部分近傍とは、加熱
冷却の熱履歴が大きく異なる。軟化焼鈍のように、温度
さえ十分に管理すれば目的が達成できる場合はよいが、
球状化焼鈍では所要温度の幅が狭く、保持時間や冷却速
度も結果に影響するため、コイルの位置による特性のば
らつきが大きくなり、目標性能に合格する部分の歩留ま
りが悪くなる。この傾向は、コイルの幅や総重量が増す
ほど大きくなり、生産性の向上を阻害する。また薄鋼板
は、美麗であることやメッキ、塗装などのための表面性
状がよいことを強く要求され、焼鈍は酸化を極力避ける
ために還元性雰囲気中でおこなわれるのが普通である。
このため、雰囲気による脱炭を生じやすく、高温長時間
の球状化焼鈍は、とくに注意を要する。
[0004] When spheroidizing annealing is performed on a high carbon steel sheet for the purpose of improving workability, there are some more problems. Since spheroidizing annealing requires a long time for soaking, a thin steel plate is coiled and box-annealed. When the thin steel sheet is wound in a coil shape, heat transfer in the direction perpendicular to the direction of the winding axis of the coil is extremely poor. For this reason, in the box annealing method, the heat history of heating and cooling is greatly different between a portion in contact with the furnace atmosphere outside the coil and a portion close to the atmosphere and the vicinity of the center portion of the coil winding layer. As in the case of soft annealing, it is good if the purpose can be achieved if the temperature is sufficiently controlled,
In the spheroidizing annealing, the required temperature range is narrow, and the holding time and the cooling rate also affect the results. Therefore, the variation in the characteristics depending on the coil position increases, and the yield of the portion that passes the target performance deteriorates. This tendency increases as the width and the total weight of the coil increase, and hinders an improvement in productivity. Further, thin steel sheets are required to be beautiful and have good surface properties for plating, painting, etc., and annealing is usually performed in a reducing atmosphere in order to minimize oxidation.
For this reason, decarburization easily occurs due to the atmosphere, and special attention is required for spheroidizing annealing at a high temperature for a long time.

【0005】高炭素鋼で加工性向上を目的に成分を変え
た例として、例えば特開昭63-100161号公報には条鋼に
て冷間鍛造性を向上させるため、C量が0.2%以上の鋼
のMnやSiを低減し、代わりにCrやBを添加して焼
入れ性を補った発明が提示されている。しかしながら、
条鋼では圧延など製造の条件は異なり、焼鈍などの加熱
や冷却速度が相違し、加工時の材料の受ける変形も違う
ものなので、そのまま薄鋼板製品に適用しても、有意な
効果が得られるかどうかは明らかでない。また、熱処理
して高強度を得ることを目的とし、できるだけ加工性を
向上させた例として、加工後の浸炭を前提としてCを0.
20〜0.25に低減し、SiやMnを低め、CrやBを添加
した鋼が紹介されている(日新製鋼技報:Vol.45(1981・
Dec),p.30)。この場合、確かに低C化によって加工性は
大きく向上するが、浸炭熱処理は高温長時間を要する熱
処理であり、熱処理の費用や高温加熱時の変形等を考え
れば、用途は限定されると思われる。
As an example of changing the composition of high carbon steel for the purpose of improving workability, for example, Japanese Patent Application Laid-Open No. 63-100161 discloses a steel strip having a carbon content of 0.2% or more in order to improve cold forgeability. An invention has been proposed in which Mn and Si of steel are reduced, and instead of Cr and B, hardenability is compensated. However,
In the case of strip steel, manufacturing conditions such as rolling are different, heating and cooling rates such as annealing are different, and the deformation of the material during processing is different, so if it is applied to thin steel products as it is, will a significant effect be obtained? It is not clear. In addition, as an example of improving the workability as much as possible with the aim of obtaining high strength by heat treatment, C is set to 0.
Steels that have been reduced to 20 to 0.25, have reduced Si and Mn, and have been added with Cr and B have been introduced (Nissin Steel Engineering Report: Vol. 45 (1981)
Dec), p.30). In this case, although the workability is greatly improved by lowering the C, the carburizing heat treatment is a heat treatment that requires a long time at a high temperature. It is.

【0006】本発明者の一人は、加工性にすぐれ、しか
も焼入れなど熱処理後の靱性がすぐれている高炭素鋼板
の製造方法を発明し、特開平5-98356号公報および特開
平5-98357号公報にて提示した。これらの場合、C量を
0.4%以下に下げ、Mnを増し、Bを添加している。し
かしながら、Mnを多く添加しているため、加工性はそ
れほどは改善されないと予想され、また得られた鋼板の
加工後の熱処理条件は提示されているが、鋼板の製造条
件は明らかでない。高炭素鋼薄板の場合、鋼板製品とす
るまでの過程の、例えば球状化焼鈍条件などにより、そ
の加工性は大きく影響を受けるので、単に成分範囲を規
制しただけでは、加工性を向上させたとは一概には言え
ない。高炭素薄鋼板に関して、加工性向上と成形後の熱
処理による強度確保とを両立させるために、その鋼の化
学組成を規制した例はこのようにいくつか示されてい
る。また、現状では高炭素薄鋼板の加工性向上に関し、
球状化焼鈍を主とした対策がとられるのが一般的であ
る。しかし、球状化焼鈍以外の製造条件と成分との組み
合わせにより、加工性向上を図った例は多くはなく、製
品性能ばかりでなく、製造方法の合理化に関しても多く
の問題が残されている。
One of the present inventors has invented a method for producing a high carbon steel sheet having excellent workability and excellent toughness after heat treatment such as quenching, and is disclosed in JP-A-5-98356 and JP-A-5-98357. It was presented in the gazette. In these cases, the amount of C
It is reduced to 0.4% or less, Mn is increased, and B is added. However, since a large amount of Mn is added, the workability is not expected to be significantly improved, and the heat treatment conditions after working the obtained steel sheet are suggested, but the manufacturing conditions of the steel sheet are not clear. In the case of high carbon steel sheet, its workability is greatly affected by the process until it is made into a steel sheet product, for example, spheroidizing annealing conditions, so simply controlling the component range improved workability. I can't say it. There are several examples of restricting the chemical composition of high carbon thin steel sheets in order to achieve both improvement in workability and securing strength by heat treatment after forming. At present, regarding the improvement of workability of high carbon steel sheets,
It is common to take measures mainly on spheroidizing annealing. However, there are not many examples in which workability is improved by a combination of manufacturing conditions and components other than spheroidizing annealing, and many problems remain regarding not only product performance but also rationalization of a manufacturing method.

【0007】[0007]

【発明が解決しようとする課題】本発明は、プレス加工
性にすぐれ、加工成形後の焼入れ焼戻しなどの熱処理に
よって十分な強度の得られる高炭素薄鋼板を、特性のば
らつきが小さく、かつより合理的に製造する方法を提供
するものである。
SUMMARY OF THE INVENTION The present invention is intended to provide a high carbon thin steel sheet which has excellent press workability and has sufficient strength by heat treatment such as quenching and tempering after working and forming. It is intended to provide a method for manufacturing the semiconductor device.

【0008】[0008]

【課題を解決するための手段】加工性にすぐれ、かつ熱
処理により十分な強度が得られる鋼の例として、条鋼製
品での高強度ボルトに用いられているB添加鋼がある。
この鋼は、条鋼をボルトに加工するための良好な冷間鍛
造加工性および転造加工性が要求され、熱処理により高
強度を得るために十分な焼入れ性が要求される。その目
的に対して、C含有量を0.3%前後に低くして加工性を
改善し、C量低減による焼入れ性低下をB添加で補い、
さらに水系の冷却剤を用いて急冷効果を高め、十分な焼
入れ硬化を得るよう工夫されている。
As an example of steel having excellent workability and sufficient strength obtained by heat treatment, there is B-added steel used for high-strength bolts in strip steel products.
This steel is required to have good cold forging workability and rolling workability for forming a steel bar into a bolt, and sufficient hardenability to obtain high strength by heat treatment. For this purpose, the workability is improved by lowering the C content to about 0.3%, and the decrease in hardenability due to the reduced C content is compensated for by the addition of B.
Further, the quenching effect is enhanced by using a water-based cooling agent so that sufficient quench hardening is obtained.

【0009】高炭素薄板の加工性を向上し、その上で十
分な焼入れ後の硬さを確保するという目的に対して、こ
の条鋼におけるボルト用のB添加鋼を参考にし、種々検
討をおこなうことにした。薄鋼板の場合、条鋼の高強度
ボルトなどより焼入れで冷却される部分の質量ないしは
厚さが小さいので、冷媒の冷却能にとくに配慮しなくて
も、冷却速度を大きくできる点有利である。
For the purpose of improving the workability of the high carbon thin plate and securing sufficient hardness after quenching, various studies are to be made with reference to the B-added steel for bolts in this strip. I made it. In the case of a thin steel plate, since the mass or thickness of a portion cooled by quenching from a high-strength bolt of a bar steel or the like is small, it is advantageous that the cooling rate can be increased without particular consideration of the cooling capacity of the refrigerant.

【0010】従来用いられているプレスなどで加工し熱
処理する高炭素薄鋼板は、刃物のなど耐摩耗性が要求さ
れる場合を除き、C含有量が0.45%から0.60%までのも
の、すなわちS45CからS60Cまでの炭素鋼系のものが
ほとんどである。これらの薄鋼板を使用する部品加工業
における、加工後の熱処理作業での焼入れままの状態の
硬さを調査したところ、HRCにて50を多少超える程度
になっている場合が多かった。焼入れままにてHRC50
〜53程度の硬さは、十分な焼入れがおこなわれた場合、
C含有量0.35%前後で容易に達成できる。それにもかか
わらず、0.45%を超えるC含有量の鋼を採用するのは、
一つには、C量を増すことによる焼入れ性増大効果を期
待しているものと考えられた。
[0010] Conventionally used high carbon steel sheets which are processed by a press or the like and heat-treated are those having a C content of 0.45% to 0.60%, that is, S45C, unless wear resistance is required such as a cutting tool. Most are carbon steels from to S60C. In parts processing industry to use these steel sheets, it was investigated hardness of as-quenched state of the heat treatment operation after processing, in many cases that is a degree of greater than 50 at H R C or less. H R C50 with quenching
Hardness of ~ 53, when sufficient quenching is performed,
It can be easily achieved at a C content of about 0.35%. Nevertheless, adopting steel with a C content of more than 0.45% is
For one thing, it was considered that the effect of increasing the hardenability by increasing the amount of C was expected.

【0011】しかしながら、Cはその量が増加すると鋼
の加工性を著しく劣化させる。これは、C量と共に増加
するする鋼中のセメンタイトは、硬く脆いので鋼の変形
により割れて、亀裂の起点になりやすいためである。こ
の亀裂の起点となる危険性の抑止に、球状化焼鈍が実施
される。すなわち、従来の高炭素薄鋼板の使用方法は、
加工後の熱処理において安定した焼入れ性が安易に確保
できるため、C含有量を必要以上多く含む鋼を用いてお
り、高いC含有量の鋼は加工性が劣るので十分な球状化
焼鈍を必要としていた、とも思われた。
However, when the amount of C increases, the workability of steel deteriorates remarkably. This is because cementite in steel, which increases with the amount of C, is hard and brittle, so that it is likely to be cracked by deformation of the steel and become a starting point of a crack. Spheroidizing annealing is performed to suppress the risk of starting the crack. In other words, the conventional method of using high carbon steel sheets is
Since a stable hardenability can be easily secured in the heat treatment after processing, a steel containing an excessive amount of C is used, and a steel having a high C content is inferior in workability, so that sufficient spheroidizing annealing is required. I thought it was.

【0012】したがって、他の手段で焼入れ性が十分確
保できるならば、C含有量を低減でき、加工性が向上で
きると考えられる。そこで着目したのがB添加である。
Bは他の元素に比較し、わずかな量で著しい焼入れ性向
上効果があり、焼鈍材の加工性にはほとんど影響しな
い。しかも、その焼入れ性向上効果は、添加量にはほと
んど依存せず、C含有量に強く影響され、C量が少ない
ほど大きい。このことは、C量を低くして加工性を改善
し、C量低減による焼入れ性の低下を補う目的にはきわ
めて好都合である。そこで、C量を低下したB添加鋼を
基本条件とし、高炭素薄鋼板として用いる場合の適用条
件について、さらに調査を進めた。
Therefore, it is considered that if sufficient hardenability can be ensured by other means, the C content can be reduced and workability can be improved. Therefore, attention was paid to B addition.
B has a significant hardenability improving effect with a small amount compared to other elements, and hardly affects the workability of the annealed material. In addition, the effect of improving the hardenability hardly depends on the added amount, but is strongly influenced by the C content, and is larger as the C amount is smaller. This is extremely convenient for the purpose of improving workability by lowering the amount of C and compensating for a decrease in hardenability due to the reduction of the amount of C. Therefore, further investigations were made on the application conditions when using B-added steel with a reduced C content as a basic condition and using it as a high carbon thin steel sheet.

【0013】厚さ3mmの板を対象にC量が0.35%の場合
のB添加の効果を確認した結果、焼入れままにて十分な
硬さが得られ、焼入れ性については、比較に用いたS55
Cよりも遥かに大で、規定されているMn量を1/2程
度に低減しても、なお十分に大きい値を示すことが確認
された。Mnは含有量が増すと素地を硬くするので、こ
れを低減できることは冷間加工性向上に好ましい。しか
し、加工性を悪くしない限りにおいては、焼入れ性は大
きい方が安定した熱処理ができるので、Mnを低下する
場合、Crを多少添加しておくこととした。
As a result of confirming the effect of the addition of B when the C content is 0.35% for a plate having a thickness of 3 mm, sufficient hardness can be obtained as-quenched.
It was confirmed that even though the Mn content was much larger than C and the specified Mn amount was reduced to about 1/2, the value was still sufficiently large. When the content of Mn increases, the base material becomes harder. Therefore, reducing the content of Mn is preferable for improving the cold workability. However, as long as the workability is not deteriorated, the hardenability is higher, so that a stable heat treatment can be performed. Therefore, when Mn is reduced, Cr is added to some extent.

【0014】B添加により焼入れ性を向上させる場合、
固溶Nの存在はその効果を大きく減退させる。Alが添
加されているとNは固定できるが、含有量が不十分な場
合や熱履歴によってはB添加の効果が不安定となる。こ
れは、Alでは十分Nを固定できないことがあるため
で、Nとの結合力がAlよりも遥かに強いTiの少量添
加が一般的におこなわれている。この薄鋼板において
も、不純物として混入するNの化学当量に見合う程度の
少量のTi添加することにより、安定したBの焼入れ性
向上効果が得られることが確認された。
When the hardenability is improved by adding B,
The presence of solute N greatly reduces its effect. When Al is added, N can be fixed, but the effect of adding B becomes unstable when the content is insufficient or depending on the heat history. This is because Al may not be able to sufficiently fix N, and a small amount of Ti, which has much stronger bonding force with N than Al, is generally used. Also in this thin steel plate, it was confirmed that a stable effect of improving the hardenability of B can be obtained by adding a small amount of Ti corresponding to the chemical equivalent of N mixed as an impurity.

【0015】ところが、プレス加工された成型品の焼入
れ後に、曲げ半径の小さな部分や剪断加工の切断面近傍
など強度の加工を受けた部分で、オーステナイト粒が粗
大化していることがわかった。オーステナイト粒の粗大
化は、製品の靱性を著しく劣化させる。この粗大化には
二つの理由が考えられる。一つは、強加工によってその
部分に他よりも多くの歪みエネルギーが蓄積されるが、
その部分が加熱により再結晶する際に、解放されるネル
ギーが結晶粒成長の駆動力となって、粒が粗大化するた
めである。
However, it has been found that after the quenching of the pressed molded product, the austenite grains are coarsened in portions having a small bending radius or portions subjected to high strength processing, such as near the cut surface of the shearing process. The coarsening of austenite grains significantly deteriorates the toughness of the product. There are two possible reasons for this coarsening. One is that strong processing causes more strain energy to accumulate in the part than others,
This is because when the part is recrystallized by heating, the released energy becomes a driving force for crystal grain growth and the grains become coarse.

【0016】もう一つは、粒成長抑止効果の消失によ
る。脱酸の目的でAlを添加すると鋼中にAlが残存
し、不純物として鋼中に存在しているNと結合してAl
Nを形成する。スラブ加熱温度域で鋼中に固溶している
AlおよびNは、熱間圧延およびその後の過程で結合し
て、鋼中に微細なAlN粒子として分散析出する。この
微細なAlNは、オーステナイト粒の成長を強く抑止す
る作用がある。したがってAlで脱酸した鋼は、以前よ
り細粒鋼として知られており、微細なAlN析出物が存
在しておれば、上述のような強加工部の粗粒化は、現れ
なかったと考えられる。これに対し、Nの十分な固定を
目的にTiを添加すると、TiはNとの結合力がAlよ
りも遥かに強力なため、凝固直後の温度域においてTi
Nを形成してしまう。高温で形成されたTiNは比較的
粗大な析出物となり、オーステナイト結晶粒成長の抑止
効果は弱い。すなわち、Alが含まれていても熱間圧延
温度域では結合すべき固溶Nが存在しないため、微細な
AlNは形成されず、オーステナイト粒の成長が抑止さ
れない。
Another is due to the disappearance of the grain growth inhibiting effect. When Al is added for the purpose of deoxidation, Al remains in the steel and combines with N existing in the steel as an impurity to form Al.
Form N. Al and N dissolved in the steel in the slab heating temperature range are combined in hot rolling and the subsequent process, and are dispersed and precipitated as fine AlN particles in the steel. This fine AlN has the effect of strongly inhibiting the growth of austenite grains. Therefore, steel deoxidized with Al has been known as a fine-grained steel for some time, and it is considered that the coarse graining of the strongly worked portion as described above did not appear if fine AlN precipitates were present. . On the other hand, when Ti is added for the purpose of sufficiently fixing N, Ti has a much stronger bonding force with N than Al, so that Ti is added in the temperature range immediately after solidification.
N is formed. TiN formed at a high temperature becomes a relatively coarse precipitate, and the effect of suppressing austenite crystal grain growth is weak. That is, even if Al is contained, there is no solid solution N to be bonded in the hot rolling temperature range, so that fine AlN is not formed and growth of austenite grains is not suppressed.

【0017】そこで、強加工部のオーステナイト粒の粗
粒化抑止を目的とし、種々検討を進めた結果、Tiをや
や多めに含有させることが効果的であることを見出した
のである。鋼中に添加されたTiは、その化合物の安定
性や溶解度積から、前述のようにまずNと結びついてT
iNを形成し、次いでSと結合すると推定される。その
上で、さらに過剰のTiがあれば、Cと反応してTiC
生成する。TiCはTi量やC量にもよるが、熱間圧延
のスラブ加熱段階にてある程度固溶し、その後の過程で
微細に析出する可能性があり、オーステナイト粒の粗粒
化抑止効果があると考えられる。ただし過剰の存在は加
工性を大きく劣化するので、添加量には十分注意が必要
である。
Therefore, as a result of conducting various studies for the purpose of suppressing coarsening of austenite grains in the strongly worked portion, it was found that it is effective to contain a relatively large amount of Ti. From the stability and solubility product of the compound, the Ti added to the steel first binds to N as described above,
It is presumed to form iN and then combine with S. On top of that, if there is further excess Ti, it reacts with C to form TiC.
Generate. Although depending on the amount of Ti and the amount of C, TiC may form a solid solution to some extent in the slab heating stage of hot rolling, and may precipitate finely in the subsequent process, and may have an effect of suppressing coarsening of austenite grains. Conceivable. However, the presence of an excessive amount greatly deteriorates the processability, so that sufficient attention must be paid to the added amount.

【0018】このようにして得られた高炭素薄鋼板は、
通常の薄鋼板の製造条件であっても、従来のS45C〜S
60Cの薄鋼板よりも加工性は良好で、しかも十分な焼入
れ性を有するものであった。この良好な加工性をさらに
改善するため、この鋼に適した熱間圧延や焼鈍条件の検
討をさらにおこなった。その結果、熱間圧延においては
仕上げ温度をAc3点にできるだけ近づけ、巻き取り酸洗
後の焼鈍においては、Ac1点を超える温度にまで加熱す
ることにより、より一層軟質の、しかも伸びのよりすぐ
れた高炭素薄鋼板が得られることがわかった。これらの
鋼は、C量がやや低めのため、顕微鏡観察による球状化
率の判定では、必ずしも十分とは言えないが、より炭素
含有量の大きい十分に球状化された薄鋼板に比べ、すぐ
れた加工性を有している。
The high carbon thin steel sheet thus obtained is
Conventional S45C-S
The workability was better than that of a 60C thin steel sheet, and the steel had sufficient hardenability. In order to further improve this good workability, further studies were made on hot rolling and annealing conditions suitable for this steel. As a result, in the hot rolling, the finishing temperature is brought as close as possible to the Ac 3 point, and in the annealing after winding and pickling, the material is heated to a temperature exceeding the Ac 1 point, so that it is softer and more stretchable. It was found that an excellent high carbon steel sheet could be obtained. Since these steels have a slightly lower C content, the spheroidization ratio determined by microscopic observation is not necessarily sufficient, but is superior to a sufficiently spheroidized thin steel sheet having a larger carbon content. Has workability.

【0019】熱間圧延工程にて所要の板厚に圧延し、上
記の焼鈍をおこなうことによって、加工性のすぐれた熱
処理により十分な強度や靱性を示す薄鋼板が得られる。
しかし、より薄い鋼板、あるいはより板厚精度の必要な
鋼板、あるいは表面性状の要求の厳しい鋼板の要求に対
しては、さらに冷間圧延し焼鈍することによっても、加
工性にすぐれ、かつ熱処理後十分な強度の得られる鋼板
を製造することができる。
By rolling to a required thickness in the hot rolling step and performing the above-described annealing, a thin steel sheet having sufficient strength and toughness can be obtained by heat treatment with excellent workability.
However, in order to meet the requirements for thinner steel sheets, steel sheets that require more accurate thickness, or steel sheets that require strict surface properties, cold rolling and annealing are also excellent in workability and after heat treatment. A steel sheet with sufficient strength can be manufactured.

【0020】球状化焼鈍により加工性を改善する場合、
ことに焼鈍にてコイル形状が広幅かつ大径化していくほ
ど、コイルの部位による球状化の相違が大きくなり、ひ
いては特性のばらつきが大となる。これに対し、本発明
方法の化学組成の鋼では、焼鈍条件の相違による機械的
性質の変動が小さく、大きなコイルでも、場所による性
質のばらつきが小さい。
When improving workability by spheroidizing annealing,
In particular, as the coil shape becomes wider and larger by annealing, the difference in spheroidization between coil portions becomes larger, and the variation in characteristics becomes larger. On the other hand, in the steel having the chemical composition according to the method of the present invention, the variation in mechanical properties due to the difference in annealing conditions is small, and even in a large coil, the variation in properties depending on the location is small.

【0021】以上のような検討結果に基づき、さらに各
製造条件要因の変動許容範囲を明確にし、本発明を完成
させた。本発明の要旨は次のとおりである。
Based on the above examination results, the allowable range of variation of each manufacturing condition factor was clarified, and the present invention was completed. The gist of the present invention is as follows.

【0022】(1) 重量%にて、C:0.25〜0.45%、S
i:0.05%以下、Mn:0.2〜0.5%、Cr:0.05〜0.50
%、B:0.0005〜0.0050%、sol.Al:0.01〜0.10%、
N:0.008%以下、S:0.015%以下の、Tiの含有量が
0.06%以下でかつ下記の式を満足し、残部が実質的に
Feおよび不可避的不純物からなる高炭素鋼を、仕上げ
温度を(Ar3点+20℃)〜(Ar3点+50℃)の範囲とし
て熱間圧延し、550〜600℃の温度範囲にて巻き取り、酸
洗後、水素を95容積%以上含む雰囲気中でAc1点〜(A
c1点+30℃)の温度範囲にて1〜10時間均熱した後、3〜
20℃/hの冷却速度で(Ar1点−50℃)を下回る温度ま
で徐冷する焼鈍をおこなうことを特徴とする高炭素薄鋼
板の製造方法。
(1) By weight%, C: 0.25 to 0.45%, S
i: 0.05% or less, Mn: 0.2 to 0.5%, Cr: 0.05 to 0.50
%, B: 0.0005 to 0.0050%, sol. Al: 0.01 to 0.10%,
N: 0.008% or less, S: 0.015% or less, Ti content
A high carbon steel which is 0.06% or less and satisfies the following formula, and the balance substantially consists of Fe and unavoidable impurities, with finishing temperature in the range of (Ar 3 points + 20 ° C.) to (Ar 3 points + 50 ° C.) After hot rolling, winding in a temperature range of 550 to 600 ° C., pickling, and then in an atmosphere containing 95% by volume or more of hydrogen, Ac 1 point to (A
c 1 point + 30 ° C) After soaking for 1 to 10 hours in the temperature range,
A method for producing a high carbon steel sheet, comprising annealing at a cooling rate of 20 ° C./h to a temperature lower than (Ar 1 point-50 ° C.).

【0023】 Ti(%)−[(48/14)×N(%)+(48/32)×S(%)]≧0.005・・・ (2) 重量%にて、C:0.25〜0.45%、Si:0.05%以
下、Mn:0.2〜0.5%、Cr:0.05〜0.50%、B:0.00
05〜0.0050%、sol.Al:0.01〜0.10%、N:0.008%
以下、S:0.015%以下の、Tiの含有量が0.06%以下
でかつ上記の式を満足し、残部が実質的にFeおよび
不可避的不純物からなる高炭素鋼を、仕上げ温度を(A
r3点+20℃)〜(Ar3点+50℃)の範囲として熱間圧延
し、550〜600℃の温度範囲にて巻き取り、酸洗後、水素
を95容積%以上含む雰囲気中でAc1点〜(Ac1点+30
℃)の温度範囲にて1〜10時間均熱した後、3〜20℃/h
の冷却速度で(Ar1点−50℃)を下回る温度まで徐冷す
る焼鈍をおこなってから、冷間圧延を施し、650℃〜
(Ac1点−10℃)の温度範囲で2時間以上均熱する焼鈍
をおこなうことを特徴とする高炭素冷延鋼板の製造方
法。
Ti (%) − [(48/14) × N (%) + (48/32) × S (%)] ≧ 0.005 (2) C: 0.25 to 0.45% by weight% , Si: 0.05% or less, Mn: 0.2 to 0.5%, Cr: 0.05 to 0.50%, B: 0.00
05 to 0.0050%, sol. Al: 0.01 to 0.10%, N: 0.008%
Hereinafter, S: 0.015% or less, a high carbon steel having a Ti content of 0.06% or less and satisfying the above formula and the balance substantially consisting of Fe and unavoidable impurities, was prepared by setting the finishing temperature to (A
hot rolling a range of r 3 point + 20 ℃) ~ (Ar 3 point + 50 ° C.), wound at a temperature range of 550 to 600 ° C., after pickling, Ac in an atmosphere containing hydrogen 95% by volume or more 1 Point ~ (Ac 1 point + 30
C) in a temperature range of 1 to 10 hours, and then 3 to 20 ° C / h
Annealing at a cooling rate of less than (Ar 1 point -50 ° C), and then cold rolling, 650 ° C
A method for producing a high-carbon cold-rolled steel sheet, comprising performing annealing at a temperature range of (Ac 1 point −10 ° C.) for 2 hours or more.

【0024】なお、いずれの製造方法でも、最終の焼鈍
後、形状の修正あるいはストレッチャーストレイン抑止
の目的で軽度の調質圧延をおこなっても、本発明の方法
の効果は損なわれるものではない。
In any of the manufacturing methods, the effect of the method of the present invention is not impaired even if a light temper rolling is performed after the final annealing for the purpose of correcting the shape or suppressing the stretcher strain.

【0025】[0025]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(1)鋼の化学組成 以下の化学組成の「%」はすべて重量%である。 (1) Chemical composition of steel "%" in the following chemical composition is all percentages by weight.

【0026】Cの含有範囲を0.25〜0.45%とする。Cの
含有量が0.25%を下回ると、焼入れ後の硬さが不十分に
なる。一方、0.45%を超えるC含有量の場合、十分な焼
鈍をおこなっても加工性はよくならず、本発明の目標は
達成できない。ことにBを添加する場合は、C含有量を
低くするほど効果的に焼入れ性を向上させることができ
る。
The content range of C is set to 0.25 to 0.45%. When the content of C is less than 0.25%, hardness after quenching becomes insufficient. On the other hand, when the C content exceeds 0.45%, the workability is not improved even if sufficient annealing is performed, and the object of the present invention cannot be achieved. In particular, when B is added, the hardenability can be effectively improved as the C content is reduced.

【0027】Siの含有量は、高炭素薄鋼板に関連した
JIS規格G−3311では0.15〜0.35%となっており、脱
酸の目的で添加される。しかし本発明の場合、脱酸は主
としてAlでおこなうので、とくに含有させる必要はな
い。それよりも、Siは焼鈍した鋼板の硬さを増し加工
性を劣化させるばかりでなく、薄鋼板製品としての表面
性状を劣化させるので、少ないければ少ないほどよい。
このような影響を及ぼさない限界として、その含有量を
0.05%以下とする。
The content of Si is 0.15 to 0.35% in JIS standard G-3311 relating to high carbon steel sheets, and is added for the purpose of deoxidation. However, in the case of the present invention, since deoxidation is mainly performed with Al, it is not particularly necessary to contain it. Rather, Si not only increases the hardness of the annealed steel sheet and deteriorates the workability, but also deteriorates the surface properties as a thin steel sheet product.
As a limit that does not have such an effect, the content
0.05% or less.

【0028】Mnの含有範囲を0.2〜0.5%とする。Mn
は不可避的不純物の一つであるSによる熱間脆性を抑止
するとともに、焼入れ性確保のため含有させる。その目
的には、少なくとも0.2%以上の含有が必要である。焼
入れ性はその含有量に応じて大幅に向上し、しかも低コ
ストであるので可能な限り多く添加したい。しかし、鋼
の素地を硬くする元素であり、含有量が増すと加工性が
劣化してくるので、本発明の方法においては多くても0.
5%までとする。
The content range of Mn is set to 0.2 to 0.5%. Mn
Is contained to prevent hot brittleness due to S, one of the inevitable impurities, and to ensure hardenability. For that purpose, a content of at least 0.2% or more is required. The hardenability is greatly improved depending on the content, and the cost is low, so it is desirable to add as much as possible. However, it is an element that hardens the steel base, and when the content increases, the workability deteriorates.
Up to 5%.

【0029】CrはMnと同様な焼入れ性向上元素であ
るが、Mnほどには素地を硬くしない。また焼入れ性の
向上には、一種類の元素のみ多く添加するよりも複数の
元素を複合させる方が効果的なので、Mnとともに0.05
〜0.50%の範囲で含有させる。Crは、0.05未満の含有
では焼入れ性向上効果が小さいが、含有量が多くなって
くると延性が劣化してくるばかりでなく、めっきや塗装
などの、薄鋼板製品に要求される表面処理性が劣化して
くるので、多くても0.50%までとする。
Cr is a hardenability improving element similar to Mn, but does not harden the substrate as much as Mn. Further, in order to improve the hardenability, it is more effective to combine a plurality of elements than to add a large amount of only one kind of element.
It is contained in the range of 0.50%. If the content of Cr is less than 0.05, the effect of improving hardenability is small, but if the content is large, not only does the ductility deteriorate, but also the surface treatment properties required for thin steel products such as plating and painting. Is degraded, so it should be at most 0.50%.

【0030】Bは、焼鈍材の加工性を損なうことなく、
焼入れ性を大きく向上させることができる。含有量は、
0.0005%未満ではその効果は十分でないが、これより多
ければ、その量に関係なくほぼ一定の焼入れ性向上効果
が得られる。しかし、0.005%を超えると鋼を脆化させ
るおそれがある。そこで含有量の範囲を0.0005〜0.0050
%とする。
B can be obtained without impairing the workability of the annealed material.
Hardenability can be greatly improved. The content is
If it is less than 0.0005%, the effect is not sufficient, but if it is more than this, almost constant hardenability improvement effect can be obtained regardless of the amount. However, if it exceeds 0.005%, the steel may be embrittled. Therefore, the range of the content is 0.0005 to 0.0050
%.

【0031】Tiは、鋼中の固溶Nの固定と、オーステ
ナイト結晶粒の成長抑止とを目的に添加する。固溶Nは
Bと容易に結合し、Bの焼入れ性向上効果を減退させて
しまう。そこでTiを添加してTiNを形成させ、固溶
状態のNを排除しておく。また、微細なTiCを生じさ
せて、加熱時のオーステナイト結晶粒成長を抑止する作
用もおこなわせる。鋼中のTiは、CよりもNやSとの
親和力が大きく、通常は先にそれらと結合してしまうの
で、TiCを生成し得るだけの量を、最小限含有させて
おく必要がある。したがって、Tiは、少なくとも下記
の式を満足する量の含有が必要である。
Ti is added for the purpose of fixing solid solution N in steel and suppressing growth of austenite crystal grains. The solute N easily bonds with B, and reduces the effect of improving the hardenability of B. Therefore, Ti is added to form TiN, and N in a solid solution state is excluded. In addition, it produces fine TiC and also has an effect of suppressing austenite crystal grain growth during heating. Since Ti in steel has a higher affinity for N and S than C and usually binds to them first, it is necessary to contain a minimum amount of Ti that can generate TiC. Therefore, Ti needs to be contained in an amount that satisfies at least the following equation.

【0032】 Ti(%)−[(48/14)×N(%)+(48/32)×S(%)]≧0.005・・・ しかし、多すぎると過剰のTiC析出物を生じさせて加
工性を悪くし、熱処理後の靭性を大きく劣化させるの
で、その含有量は多くても0.06%までとする。
Ti (%) − [(48/14) × N (%) + (48/32) × S (%)] ≧ 0.005 However, if too large, excessive TiC precipitates are generated. Since the workability is deteriorated and the toughness after the heat treatment is significantly deteriorated, its content is limited to at most 0.06%.

【0033】sol.Al(酸可溶Al)は、鋳片の健全性
を維持するための、溶鋼脱酸の結果として含有される。
通常は、鋼中にてNと結合してAlNの微細析出物を形
成し、オーステナイト結晶粒の粗大化を抑止する効果が
ある。本発明方法の場合、NはTiによってほぼ完全に
固定されるので、AlNは形成されない。しかし、溶鋼
の脱酸を十分おこなわせ、さらに、添加するTiやBの
歩留まりをできるだけよくする結果として、0.01%以上
の含有が必須である。ただし、多くなると加工性を害
し、表面性状を悪くするので0.10%以下とすべきであ
る。すなわちsol.Alの含有量は0.01〜0.10%とする。
Sol.Al (acid-soluble Al) is contained as a result of molten steel deoxidation to maintain the soundness of the slab.
Usually, it has an effect of forming fine precipitates of AlN by combining with N in steel and suppressing coarsening of austenite crystal grains. In the case of the method of the present invention, Al is not formed because N is almost completely fixed by Ti. However, as a result of sufficiently deoxidizing the molten steel and further improving the yield of added Ti and B as much as possible, the content of 0.01% or more is essential. However, if the content increases, the workability is impaired and the surface properties deteriorate, so the content should be 0.10% or less. That is, the content of sol.Al is set to 0.01 to 0.10%.

【0034】不可避的不純物として混入してくる元素
は、一般に加工性を悪くするので少ない程よい。その中
でとくにNとSとは、加工性を害する析出物を生じさ
せ、Tiの必要添加量を増加させるので、その含有量は
少なければ少ない程よい。Nの含有量は、生じた析出物
が加工性や熱処理品の靭性に影響を及ぼさない限界とし
て、0.008%以下とする。Sは条鋼製品などで切削が主
となる加工成型品の場合、切削性を改善する効果がある
ので、ある程度の含有が望ましいこともあるが、薄鋼板
ではプレス成形が主になるので、その際の加工性への影
響が顕在化しない限界として、0.015%以下とする。
The elements which are mixed as unavoidable impurities generally impair the workability, so the smaller the better, the better. Among them, N and S generate precipitates which impair workability and increase the required amount of Ti. Therefore, the smaller the content, the better. The content of N is set to 0.008% or less as a limit at which the generated precipitate does not affect the workability and the toughness of the heat-treated product. S may be desirable to contain S to some extent because it has the effect of improving machinability in the case of processed and formed products whose cutting is the main, such as strip steel products, but press forming is mainly used for thin steel sheets. The limit is not more than 0.015%, at which the effect on workability of the steel does not become apparent.

【0035】(2)鋼板製造条件 高炭素薄鋼板は、熱間圧延にて所要の板厚としてもよい
し、熱間圧延後さらに冷間圧延をおこなって、より薄い
板厚に仕上げてもよい。
(2) Steel Sheet Manufacturing Conditions The high-carbon thin steel sheet may be hot-rolled to a required thickness, or may be further cold-rolled after hot rolling to finish to a thinner thickness. .

【0036】本発明の方法で定める化学組成の鋼では、
熱間圧延後、酸洗して焼鈍することによって、加工性の
すぐれた鋼板を得ることができるが、その場合、熱間圧
延の仕上げ温度により焼鈍後の鋼板の伸びなどの加工性
が影響を受ける。そこで熱間圧延の仕上げ温度を(Ar3
点+20℃)〜(Ar3点+50℃)の範囲とする。熱間圧延
は、オーステナイト域のできるだけ低い温度で仕上げる
ことが好ましい。これは、仕上げ温度が高くなると、結
晶粒が大きくなり、それとともにパーライトが粗大化
し、後の焼鈍によってもその形態は大きくは変化せず、
加工性を悪くする。そこで、仕上げの上限温度をAr3
+50℃までとする。また、低くしすぎると変態温度を下
回ってしまうおそれがあり、そうなると変形抵抗の増大
をきたし圧延制御が困難になるので、下限の温度はAr3
点+20℃までである。
In steel having a chemical composition determined by the method of the present invention,
After hot rolling, by pickling and annealing, a steel sheet with excellent workability can be obtained, but in that case, the workability such as elongation of the steel sheet after annealing depends on the finishing temperature of hot rolling. receive. Therefore, the finishing temperature of hot rolling is set to (Ar 3
(Point + 20 ° C) to (Ar 3 points + 50 ° C). The hot rolling is preferably finished at a temperature as low as possible in the austenite region. This is because the higher the finishing temperature, the larger the crystal grains, the coarser the pearlite becomes, and the morphology does not change significantly even after annealing,
Poor workability. Therefore, the upper limit temperature of the finishing is set to Ar 3 points + 50 ° C. Further, there is a fear that below the transformation temperature is too low, Sonaruto since rolling control Kitaichi becomes difficult to increase the deformation resistance, the temperature of the lower limit Ar 3
Up to the point + 20 ° C.

【0037】熱間圧延の巻取り温度は、550〜600℃の範
囲とする。600℃を超える温度で巻き取ると、パーライ
トのラメラーが粗大化し、焼鈍時に形態があまり変化せ
ず、加工性が改善されない。また、550℃未満の巻取り
温度ではコイルの部位によってはベーナイト組織になる
おそれがあるためである。
The coiling temperature for hot rolling is in the range of 550 to 600 ° C. If it is wound at a temperature exceeding 600 ° C., the pearlite lamellar becomes coarse, the shape does not change much during annealing, and the workability is not improved. Also, at a winding temperature of less than 550 ° C., there is a possibility that a bainite structure may be formed depending on the position of the coil.

【0038】焼鈍は、熱間圧延後酸洗し、Ac1点〜(A
c1点+30℃)の温度範囲で1〜10時間均熱し、3〜20℃/
hの冷却速度にて、Ar1点−50℃を下回る温度に達する
まで徐冷する。その後は、放冷または強制冷却して室温
まで低下させる。Ac1点以上の温度にまで加熱する焼鈍
をおこなうのは、それによって伸びが大きく改善される
からである。しかし、高くなりすぎてAc1点+30℃を超
える温度になると、セメンタイトの再固溶が進みすぎ、
その後の冷却で再度パーライトが現れて伸びを劣化させ
る。また均熱時間は、1時間未満では十分な軟化が得ら
れず、10時間を超えてもそれ以上の延性の向上はなく加
熱エネルギーの浪費となるので、1〜10時間とする。均
熱後の冷却の、とくにAr1変態点を通過する時の速度
は、速すぎるとパーライトが生じたり、固溶したCの再
析出が不十分となって伸びを悪くするので、できるだけ
遅い方が好ましい。しかし遅すぎても効率低下をきたす
だけとなるので、冷却速度の範囲は3〜20℃/hとす
る。さらに固溶Cを十分析出させ、伸びをよくするた
め、Ar1点−50℃まではこの冷却速度で徐冷する。
Annealing is performed by pickling after hot rolling, and from Ac 1 point to (A
c 1 point + 30 ° C) soak for 1 to 10 hours in a temperature range of 3 to 20 ° C /
At a cooling rate of h, the temperature is gradually cooled until the temperature reaches a temperature lower than Ar 1 point −50 ° C. After that, the temperature is lowered to room temperature by cooling or forced cooling. The annealing for heating to a temperature of one or more Ac is performed because the elongation is greatly improved. However, if the temperature becomes too high and the temperature exceeds Ac 1 point + 30 ° C., the solid solution of cementite re-dissolves too much,
After cooling, pearlite appears again and deteriorates elongation. If the soaking time is less than 1 hour, sufficient softening cannot be obtained, and if it exceeds 10 hours, the ductility is not further improved and heating energy is wasted. The rate of cooling after soaking, especially when passing through the Ar 1 transformation point, should be as slow as possible because if it is too fast, pearlite will be generated and solid solution C will be insufficient to reprecipitate and elongation will deteriorate. Is preferred. However, if it is too slow, the efficiency will only be reduced, so the range of the cooling rate is 3 to 20 ° C./h. Further, in order to sufficiently precipitate solid solution C and improve elongation, the cooling is carried out slowly at this cooling rate until Ar 1 point-50 ° C.

【0039】より板厚の薄い鋼板、またはより高精度の
板厚が必要な鋼板、あるいは表面性状の要求の厳しい鋼
板の要望に対しては、上述のような焼鈍を施した熱延鋼
板をさらに冷間圧延し焼鈍することによっても、加工性
にすぐれかつ熱処理後十分な強度の得られる鋼板を製造
することができる。その場合、熱間圧延条件および熱間
圧延後の焼鈍の条件は上記の通りとするが、焼鈍の均熱
後の徐冷はAr1点−20℃までであってもよい。これは、
固溶Cが冷間圧延の前の段階で多少多く残っていても冷
間圧延は十分可能であり、その後の焼鈍などの過程でさ
らに固溶Cの析出が進むからである。
To meet the demand for a thinner steel sheet, a steel sheet requiring a higher precision sheet thickness, or a steel sheet having strict surface properties, the above-described annealed hot-rolled steel sheet is further added. Cold rolling and annealing can also produce a steel sheet having excellent workability and having sufficient strength after heat treatment. In this case, the hot rolling conditions and the annealing conditions after the hot rolling are as described above, but the slow cooling after the soaking of the annealing may be up to an Ar 1 point to −20 ° C. this is,
This is because cold rolling is sufficiently possible even if a large amount of solid solution C remains before the cold rolling, and the precipitation of solid solution C further proceeds in the subsequent process such as annealing.

【0040】冷間圧延の圧下率は、必要な板厚と十分な
形状制御ができる範囲であればとくには規制しないが、
30〜70%程度であればよい。また、必要により冷間圧延
の途中で中間焼鈍をおこなってもよい。中間焼鈍または
最終焼鈍は、650℃〜(Ac1点−10℃)の温度範囲でお
こなうものとする。これは、650℃未満の温度では軟化
が不十分で加工性が不足する一方、Ac1点を超える温度
では、冷間圧延後の場合粗大パーライトができやすく固
溶Cも増加し加工性が大幅に劣化するためである。そこ
で過熱防止を確実にするため上限をAc1点−10℃とす
る。なお、均熱時間は十分な軟化には2時間以上必要で
あるが、これよりさらに長時間保持してもそれ以上の改
善効果は小さいので適宜選定すればよい。
The rolling reduction of the cold rolling is not particularly limited as long as the required thickness and the shape can be sufficiently controlled.
It may be about 30-70%. If necessary, intermediate annealing may be performed during the cold rolling. The intermediate annealing or the final annealing is performed in a temperature range of 650 ° C. to (Ac 1 point−10 ° C.). This is because at temperatures lower than 650 ° C, softening is insufficient and workability is insufficient, whereas at temperatures exceeding 1 point Ac, coarse pearlite is easily formed after cold rolling, solute C is increased, and workability is greatly increased. It is because it is deteriorated. Therefore, the upper limit is set to Ac 1 point-10 ° C. in order to prevent overheating. The soaking time requires at least 2 hours for sufficient softening, but if the holding time is longer than this, the effect of further improvement is small, so it may be appropriately selected.

【0041】熱延鋼板および冷延鋼板の焼鈍の際の炉内
不活性雰囲気は、窒素ガスの混入が少なく、露点のでき
るだけ低い、水素を95容積%以上含むガスとする。この
水素雰囲気中で焼鈍する目的は、水素ガスは熱伝導度が
良好なので薄鋼板のコイルを焼鈍する際に、部位による
温度偏差を大きく低減できるからである。また、薄鋼板
では表面の酸化、および汚れを極度に嫌うので、この点
からも水素ガスを使うのが好ましい。窒素ガスの混入を
避けるのは、Alを含む鋼では、表面を清浄にして水素
と窒素を含む雰囲気中で高温に加熱すると吸窒をおこ
し、固溶AlがAlNに変化するおそれがあるためで、
焼鈍温度が高いほどその危険性が増す。ことに薄鋼板の
場合、体積に対する表面積の比が大きいので、甚だしい
ときには鋼中のAlがほとんどすべてAlN化してしま
い、伸びが著しく悪化することがある。また、露点を低
くしておくのは、焼鈍中の表面からの脱炭を抑止するた
めである。
The inert atmosphere in the furnace at the time of annealing the hot-rolled steel sheet and the cold-rolled steel sheet is a gas containing little nitrogen gas and having a dew point as low as possible and containing 95% by volume or more of hydrogen. The purpose of annealing in a hydrogen atmosphere is that hydrogen gas has a good thermal conductivity, so that when a coil of a thin steel sheet is annealed, a temperature deviation depending on a portion can be greatly reduced. In addition, since a thin steel sheet extremely dislikes oxidation and dirt on the surface, it is preferable to use hydrogen gas also from this point. The reason for avoiding the mixing of nitrogen gas is that, in the case of steel containing Al, if the surface is cleaned and heated to a high temperature in an atmosphere containing hydrogen and nitrogen, nitrogen absorption may occur, and solute Al may be changed to AlN. ,
The higher the annealing temperature, the greater the risk. In particular, in the case of a thin steel sheet, since the ratio of the surface area to the volume is large, almost all of the Al in the steel is converted to AlN, and the elongation may be significantly deteriorated. Also, the reason why the dew point is set low is to suppress decarburization from the surface during annealing.

【0042】本発明の説明において、変態温度は昇温の
場合Ac1またはAc3、降温の場合Ar1またはAr3と表示
した。変態温度は、鋼の化学組成、および加熱または冷
却の速度により変動し、厳密にはその鋼にて同じ加熱ま
たは冷却速度にて変態させて実測する必要がある。しか
しながら、現実には本発明の効果に影響を及ぼぼす工程
における加熱または冷却の速度は大きくはないので、加
熱と冷却の変態温度の相違は小さく実質的にはほぼ同一
としてもよい。そこでAc1とAr1はA1に同じ、Ac3
Ar3はA3に同じとして、次式を用いて化学組成より推
定するものとする。A1(℃)=723+29.1Si(%)−10.7
Mn(%)+16.9Cr(%)・・・・・・ A3(℃)=881−205.7C(%)+53.1Si(%)−15.0Mn(%)−0.7Cr(%) ・・・・・・・
In the description of the present invention, the transformation temperature is indicated as Ac 1 or Ac 3 when the temperature is raised, and Ar 1 or Ar 3 when the temperature is lowered. The transformation temperature varies depending on the chemical composition of the steel and the heating or cooling rate. Strictly, it is necessary to measure the steel by transforming it at the same heating or cooling rate. However, in reality, since the heating or cooling speed in the step that affects the effect of the present invention is not large, the difference between the transformation temperatures of heating and cooling may be small and substantially the same. Therefore, it is assumed that Ac 1 and Ar 1 are the same as A 1 , and that Ac 3 and Ar 3 are the same as A 3 , and are estimated from the chemical composition using the following equation. A 1 (° C.) = 723 + 29.1Si (%) − 10.7
Mn (%) + 16.9Cr (% ) ······ A 3 (℃) = 881-205.7C (%) + 53.1Si (%) - 15.0Mn (%) - 0.7Cr (%) ··· ...

【0043】[0043]

【実施例】【Example】

〔実施例1〕表1に示す化学組成の鋼を溶製してスラブ
とし、1200℃に加熱した後、熱間圧延をおこない、幅91
0mm、厚さ4mmの熱延薄鋼板に仕上げ、得られたコイルを
酸洗し、水素雰囲気中にて箱焼鈍した。表2に熱間圧延
の仕上げ温度、巻取り温度、箱焼鈍の均熱温度、時間、
均熱温度からの徐冷速度、および徐冷終了温度をそれぞ
れ示す。焼鈍の際の炉内は、まず空気を窒素ガスにて十
分置換した後、露点−50℃以下純度99%以上の水素ガス
を導入してさらに置換し、600℃以上では完全な水素雰
囲気となるようにした。
[Example 1] Steel having the chemical composition shown in Table 1 was melted into a slab, heated to 1200 ° C, and then hot-rolled to a width of 91 mm.
The resulting coil was finished into a hot-rolled thin steel sheet having a thickness of 0 mm and a thickness of 4 mm, and the obtained coil was pickled and box-annealed in a hydrogen atmosphere. Table 2 shows the finishing temperature of hot rolling, winding temperature, soaking temperature of box annealing, time,
The slow cooling rate from the soaking temperature and the slow cooling end temperature are shown respectively. In the furnace at the time of annealing, after air is sufficiently replaced with nitrogen gas, hydrogen gas with a dew point of -50 ° C or less and purity of 99% or more is introduced and further replaced, and a complete hydrogen atmosphere is obtained at 600 ° C or more. I did it.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】焼鈍後の鋼板について、板の中央部および
エッジより約25mmの位置にて圧延方向に平行にJIS13
号Bの引張り試験片を採取し、強度および伸びを測定し
た。
With respect to the annealed steel sheet, JIS 13 parallel to the rolling direction at a position approximately 25 mm from the center and the edge of the sheet.
A tensile test piece of No. B was collected and measured for strength and elongation.

【0047】これらの結果も合わせて表2に示す。Table 2 also shows these results.

【0048】鋼番号12は通常使用されるS50C相当の化
学組成であり、表2の試番18にはこの鋼により得られた
鋼板の引張り試験値が示されている。これと本発明で定
める範囲に入る試番1、3、4、6、8、9、11、12および13
を比較すれば、本発明の方法の効果は明らかで、伸びが
著しく大きく加工性がすぐれていることがわかる。これ
はC量を低くした効果に負うところが大きい。C量を低
くしただけでは、加工性は改善されても焼入れ性が不足
することが多いが、本発明の方法による鋼板では薄鋼板
としては十分な焼入れ性を有している。また、試番3お
よび4、と2および5との比較、または試番8および9と、7
および10との比較からわかるように、本発明の範囲に入
る化学組成の鋼であっても、熱間圧延条件または熱延板
の焼鈍条件が不十分であればよくないが、これを本発明
の定める範囲とすればより一層伸びのすぐれた鋼板が得
られることが明らかである。
Steel No. 12 has a chemical composition equivalent to S50C which is usually used, and Test No. 18 in Table 2 shows tensile test values of a steel plate obtained from this steel. Test numbers 1, 3, 4, 6, 8, 9, 11, 12, and 13 that fall within the range defined by the present invention.
By comparing the results, it is clear that the effect of the method of the present invention is obvious, and the elongation is remarkably large and the workability is excellent. This largely depends on the effect of lowering the amount of C. Even if the workability is improved by simply reducing the C content, the hardenability is often insufficient, but the steel sheet according to the method of the present invention has sufficient hardenability as a thin steel sheet. In addition, comparison of test numbers 3 and 4, and 2 and 5, or test numbers 8 and 9 and 7
As can be seen from the comparison with Examples 10 and 10, even if the steel has a chemical composition falling within the range of the present invention, it is not sufficient if the hot rolling conditions or the annealing conditions of the hot-rolled sheet are insufficient. It is clear that a steel sheet with even better elongation can be obtained within the range defined by.

【0049】〔実施例2〕表1に示した鋼番号1〜3、
6、9、11、12および14の組成のスラブにより、仕上げ温
度780〜890℃、巻取り温度580℃にて熱間圧延をおこな
い、幅910mm、厚さ3mmの熱延鋼板コイルに仕上げた。得
られたコイルは酸洗後、条件を変えて焼鈍し、次いで67
%の圧下率にて冷間圧延し、1mm厚とした。冷間圧延し
た鋼板は、680℃にて4時間焼鈍した後、0.5%の調質圧
延をおこなった。なお、焼鈍雰囲気は熱延鋼板の場合も
冷延鋼板の場合も95%以上の水素を含む雰囲気とした。
得られた鋼板について、板の中央部およびエッジより約
25mmの位置にて圧延方向に平行にJIS13号Bの引張り
試験片を採取し、強度および伸びを測定した。
Example 2 Steel numbers 1 to 3 shown in Table 1
Using a slab having a composition of 6, 9, 11, 12 and 14, hot rolling was performed at a finishing temperature of 780 to 890 ° C and a winding temperature of 580 ° C to finish a hot-rolled steel coil having a width of 910 mm and a thickness of 3 mm. The obtained coil was pickled, annealed under different conditions, and then
%, And cold-rolled to a thickness of 1 mm. The cold-rolled steel sheet was annealed at 680 ° C. for 4 hours and then subjected to 0.5% temper rolling. The annealing atmosphere was an atmosphere containing 95% or more of hydrogen in both the hot-rolled steel sheet and the cold-rolled steel sheet.
About the obtained steel sheet,
A tensile test piece of JIS No. 13B was sampled at a position of 25 mm parallel to the rolling direction, and the strength and elongation were measured.

【0050】表3に熱延鋼板に施した焼鈍の条件、およ
び得られた冷延鋼板の強度および伸びの測定結果を示
す。
Table 3 shows the annealing conditions applied to the hot-rolled steel sheet and the measurement results of the strength and elongation of the obtained cold-rolled steel sheet.

【0051】[0051]

【表3】 [Table 3]

【0052】次ぎに、これらの冷延鋼板より、幅30mm、
長さ100mmの試験片を切り出し、内側の半径r=板厚、
角度180゜の曲げ加工をおこなってから、880℃にて30分
間加熱し、80℃に保った油中に焼入れた。焼入れままで
の状態での硬さ、および曲げ部でのオーステナイト粒度
を調査した。これらの結果を合わせて表3に示す。
Next, from these cold-rolled steel sheets, a width of 30 mm,
Cut out a test piece of 100mm length, inner radius r = plate thickness,
After bending at an angle of 180 °, it was heated at 880 ° C for 30 minutes and quenched in oil kept at 80 ° C. The hardness in the as-quenched state and the austenite grain size at the bent portion were investigated. The results are shown in Table 3.

【0053】実施例1と同様、鋼番号12による試番33
は、従来のS50Cに相当する鋼板である。これと比較し
て、化学組成および製造条件が本発明で定める範囲に入
る場合を見ると、冷圧延および焼鈍をおこなってもやは
り伸びのすぐれた鋼板の得られている。また、焼入れま
まの硬さもC量が0.3%を超えれば、HRC50以上の硬さ
が得られ、厳しい加工を受けても加熱による粒成長はな
いことがわかる。さらに、鋼板の中央部と端部との引張
り試験値をみれば、試番33に比較し本発明例はその差が
小さく、コイル焼鈍における、位置によるばらつきも大
きく低減されている。
In the same manner as in Example 1, the test number 33 using the steel number 12 was used.
Is a steel plate corresponding to conventional S50C. In comparison with this, when the case where the chemical composition and the manufacturing conditions fall within the ranges defined by the present invention, a steel sheet with excellent elongation is obtained even after cold rolling and annealing. Also, when the C content exceeds 0.3%, the hardness as quenched is higher than H R C50, and it can be seen that there is no grain growth by heating even under severe processing. Further, when looking at the tensile test values of the central portion and the end portion of the steel sheet, the difference of the present invention example is smaller than that of the test sample No. 33, and the variation due to the position in the coil annealing is greatly reduced.

【0054】[0054]

【発明の効果】プレス成形などにより加工して成形後、
焼入れ焼戻し等の熱処理をおこなう高炭素薄鋼板の製造
に本発明の方法を用いれば、プレス加工性にすぐれ、し
かも成形後の熱処理により十分な強度の得られる鋼板が
容易に得られる。
[Effect of the Invention] After processing by press molding and the like,
If the method of the present invention is used for producing a high carbon thin steel sheet subjected to heat treatment such as quenching and tempering, a steel sheet having excellent press workability and having sufficient strength can be easily obtained by heat treatment after forming.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21D 9/46 - 9/48 C21D 38/00 - 38/60 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C21D 9/46-9/48 C21D 38/00-38/60

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%にて、C:0.25〜0.45%、Si:0.
05%以下、Mn:0.2〜0.5%、Cr:0.05〜0.50%、
B:0.0005〜0.0050%、sol.Al:0.01〜0.10%、N:
0.008%以下、S:0.015%以下の、Tiの含有量が0.06
%以下でかつ下記の式を満足し、残部が実質的にFe
および不可避的不純物からなる高炭素鋼を、仕上げ温度
を(Ar3点+20℃)〜(Ar3点+50℃)の範囲として熱
間圧延し、550〜600℃の温度範囲にて巻き取り、酸洗
後、水素を95容積%以上含む雰囲気中でAc1点〜(Ac1
点+30℃)の温度範囲にて1〜10時間均熱した後、3〜20
℃/hの冷却速度で(Ar1点−50℃)を下回る温度まで
徐冷する焼鈍をおこなうことを特徴とする高炭素薄鋼板
の製造方法。 Ti(%)−[(48/14)×N(%)+(48/32)×S(%)]≧0.005・・・
(1) In terms of% by weight, C: 0.25 to 0.45%, Si: 0.
05% or less, Mn: 0.2-0.5%, Cr: 0.05-0.50%,
B: 0.0005 to 0.0050%, sol. Al: 0.01 to 0.10%, N:
0.008% or less, S: 0.015% or less, Ti content is 0.06%
% Or less and the following formula is satisfied, and the balance is substantially Fe
And high-carbon steel consisting of unavoidable impurities is hot-rolled at a finishing temperature of (Ar 3 points + 20 ° C.) to (Ar 3 points + 50 ° C.), wound up in a temperature range of 550 to 600 ° C., and acidified. After washing, in an atmosphere containing 95% by volume or more of hydrogen, Ac 1 point to (Ac 1
3 to 20 hours after soaking for 1 to 10 hours in the temperature range of
A method for producing a high carbon steel sheet, comprising annealing at a cooling rate of ° C / h to a temperature lower than (Ar 1 point-50 ° C). Ti (%) − [(48/14) × N (%) + (48/32) × S (%)] ≧ 0.005 ・ ・ ・
【請求項2】重量%にて、C:0.25〜0.45%、Si:0.
05%以下、Mn:0.2〜0.5%、Cr:0.05〜0.50%、
B:0.0005〜0.0050%、sol.Al:0.01〜0.10%、N:
0.008%以下、S:0.015%以下の、Tiの含有量が0.06
%以下でかつ下記の式を満足し、残部が実質的にFe
および不可避的不純物からなる高炭素鋼を、仕上げ温度
を(Ar3点+20℃)〜(Ar3点+50℃)の範囲として熱
間圧延し、550〜600℃の温度範囲にて巻き取り、酸洗
後、水素を95容積%以上含む雰囲気中でAc1点〜(Ac1
点+30℃)の温度範囲にて1〜10時間均熱した後、3〜20
℃/hの冷却速度で(Ar1点−50℃)を下回る温度まで
徐冷する焼鈍をおこなってから、冷間圧延を施し、650
℃〜(Ac1点−10℃)の温度範囲で2時間以上均熱する
焼鈍をおこなうことを特徴とする高炭素冷延鋼板の製造
方法。 Ti(%)−[(48/14)×N(%)+(48/32)×S(%)]≧0.005・・・
2. C .: 0.25 to 0.45% by weight, Si: 0.
05% or less, Mn: 0.2-0.5%, Cr: 0.05-0.50%,
B: 0.0005 to 0.0050%, sol. Al: 0.01 to 0.10%, N:
0.008% or less, S: 0.015% or less, Ti content is 0.06%
% Or less and the following formula is satisfied, and the balance is substantially Fe
And high-carbon steel consisting of unavoidable impurities is hot-rolled at a finishing temperature of (Ar 3 points + 20 ° C.) to (Ar 3 points + 50 ° C.), wound up in a temperature range of 550 to 600 ° C., and acidified. After washing, in an atmosphere containing 95% by volume or more of hydrogen, Ac 1 point to (Ac 1
3 to 20 hours after soaking for 1 to 10 hours in the temperature range of
After annealing at a cooling rate of ° C./h to gradually lower the temperature to below (Ar 1 point-50 ° C.), cold rolling is performed, and 650 ° C.
A method for producing a high-carbon cold-rolled steel sheet, comprising annealing at a temperature in a temperature range of 1 to 10 ° C for 2 hours or more. Ti (%) − [(48/14) × N (%) + (48/32) × S (%)] ≧ 0.005 ・ ・ ・
JP06061097A 1997-03-14 1997-03-14 Method for producing high carbon thin steel sheet with excellent formability Expired - Fee Related JP3166652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06061097A JP3166652B2 (en) 1997-03-14 1997-03-14 Method for producing high carbon thin steel sheet with excellent formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06061097A JP3166652B2 (en) 1997-03-14 1997-03-14 Method for producing high carbon thin steel sheet with excellent formability

Publications (2)

Publication Number Publication Date
JPH10251757A JPH10251757A (en) 1998-09-22
JP3166652B2 true JP3166652B2 (en) 2001-05-14

Family

ID=13147213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06061097A Expired - Fee Related JP3166652B2 (en) 1997-03-14 1997-03-14 Method for producing high carbon thin steel sheet with excellent formability

Country Status (1)

Country Link
JP (1) JP3166652B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3918589B2 (en) * 2002-03-08 2007-05-23 Jfeスチール株式会社 Steel plate for heat treatment and manufacturing method thereof
JPWO2007097043A1 (en) * 2006-02-27 2009-07-09 アイシン精機株式会社 Clutch member and manufacturing method thereof
JP5029500B2 (en) * 2008-06-10 2012-09-19 住友金属工業株式会社 Steel sheet for dehydrogenation treatment, electroplated steel sheet member, and method for producing electroplated steel sheet member
JP4782243B2 (en) * 2009-03-16 2011-09-28 新日本製鐵株式会社 Boron-added steel sheet with excellent hardenability and manufacturing method
CN102149839B (en) 2009-03-27 2015-06-03 新日铁住金株式会社 Carbon steel sheet having excellent carburization properties, and method for producing same

Also Published As

Publication number Publication date
JPH10251757A (en) 1998-09-22

Similar Documents

Publication Publication Date Title
EP1870483A1 (en) Hot-rolled steel sheet, method for production thereof and molded article formed from hot-rolled steel sheet
JP2005528519A5 (en)
CN114686777A (en) Flat steel product with good aging resistance and method for the production thereof
JP7239685B2 (en) Hot-rolled steel sheet with high hole expansion ratio and method for producing the same
JP6927427B2 (en) High carbon hot-rolled steel sheet and its manufacturing method
JPH0441616A (en) Production of low-hardness water-resistant steel excellent in wear resistance and bendability
JP2876968B2 (en) High-strength steel sheet having high ductility and method for producing the same
JP3247908B2 (en) High strength hot rolled steel sheet excellent in ductility and delayed fracture resistance and method for producing the same
JP2023553672A (en) Coated steel plate, high-strength press-hardened steel parts, and manufacturing method thereof
JPH11343535A (en) Coating/baking hardening type high tensile strength steel plate and its production
KR101065781B1 (en) Ultrahigh strength hot-rolled steel and method of producing bands
JP3468048B2 (en) Manufacturing method of high carbon cold rolled steel sheet with excellent formability
JP3166652B2 (en) Method for producing high carbon thin steel sheet with excellent formability
JPH06145891A (en) High strength cold rolled steel sheet excellent in ductility and delayed fracture resistance and its production
JP4205893B2 (en) High-strength hot-rolled steel sheet excellent in press formability and punching workability and manufacturing method thereof
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
JP3918589B2 (en) Steel plate for heat treatment and manufacturing method thereof
JP3921040B2 (en) Method for producing high carbon steel sheet with excellent workability
JPH108189A (en) Steel for induction hardening excellent in bendability and induction hardened part excellent in bendability using the same steel
JP5034296B2 (en) Hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP2023554400A (en) Coated steel plate, high-strength press-hardened steel parts, and manufacturing method thereof
JPH11131187A (en) Rapidly graphitizable steel and its production
JP2621744B2 (en) Ultra-high tensile cold rolled steel sheet and method for producing the same
JP3371952B2 (en) Manufacturing method of soft high carbon steel sheet for processing that can omit pickling process

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080309

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 12

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees