JP2001158937A - Tool steel for hot working, method for manufacturing the same, and method for manufacturing tool for hot working - Google Patents
Tool steel for hot working, method for manufacturing the same, and method for manufacturing tool for hot workingInfo
- Publication number
- JP2001158937A JP2001158937A JP2000026056A JP2000026056A JP2001158937A JP 2001158937 A JP2001158937 A JP 2001158937A JP 2000026056 A JP2000026056 A JP 2000026056A JP 2000026056 A JP2000026056 A JP 2000026056A JP 2001158937 A JP2001158937 A JP 2001158937A
- Authority
- JP
- Japan
- Prior art keywords
- less
- hardness
- steel
- tool
- hot working
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001315 Tool steel Inorganic materials 0.000 title claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 238000000034 method Methods 0.000 title claims description 12
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 15
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 10
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 10
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 9
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910000831 Steel Inorganic materials 0.000 claims description 31
- 238000010791 quenching Methods 0.000 claims description 31
- 239000010959 steel Substances 0.000 claims description 31
- 230000000171 quenching effect Effects 0.000 claims description 29
- 238000005496 tempering Methods 0.000 claims description 24
- 239000012535 impurity Substances 0.000 claims description 17
- 238000010438 heat treatment Methods 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 14
- 239000000126 substance Substances 0.000 claims description 14
- 229910052717 sulfur Inorganic materials 0.000 claims description 13
- 238000003754 machining Methods 0.000 claims description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 229910000717 Hot-working tool steel Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 abstract description 5
- 230000000694 effects Effects 0.000 description 16
- 238000005242 forging Methods 0.000 description 13
- 239000011651 chromium Substances 0.000 description 9
- 238000001816 cooling Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 229910001563 bainite Inorganic materials 0.000 description 6
- 150000001247 metal acetylides Chemical class 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 229910000734 martensite Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004512 die casting Methods 0.000 description 2
- 238000007656 fracture toughness test Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000010583 slow cooling Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 102100033041 Carbonic anhydrase 13 Human genes 0.000 description 1
- 102100032566 Carbonic anhydrase-related protein 10 Human genes 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 101000867860 Homo sapiens Carbonic anhydrase 13 Proteins 0.000 description 1
- 101000867836 Homo sapiens Carbonic anhydrase-related protein 10 Proteins 0.000 description 1
- 229910015202 MoCr Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000003245 working effect Effects 0.000 description 1
Landscapes
- Heat Treatment Of Articles (AREA)
Abstract
(57)【要約】
【課題】高温強度と靭性が共に優れた熱間加工用工具鋼
の提供。
【解決手段】本発明の工具鋼は、質量%で、C:0.2
5〜0.45%、Si:0.1〜1%、Mn:0.2〜
1%、Ni:0.5〜2%、Cr:2.8〜4.2%、
Mo:1〜2%、V:0.1〜1%、Al:0.005
〜0.1%を含有し、かつ下記式で表される硬さ指数
Kが0.2以上0.95以下を満足する。
K=(H−H2)/(H1−H2)・・式
ここで、
H1:オーステナイト領域の温度に加熱後、水焼入れし
た場合の硬さ
H2:オーステナイト領域の温度に加熱後、室温まで徐
冷した場合の硬さ(57) [Summary] [Problem] To provide a tool steel for hot working excellent in both high-temperature strength and toughness. The tool steel of the present invention has a C: 0.2% by mass.
5 to 0.45%, Si: 0.1 to 1%, Mn: 0.2 to
1%, Ni: 0.5 to 2%, Cr: 2.8 to 4.2%,
Mo: 1-2%, V: 0.1-1%, Al: 0.005
And the hardness index K represented by the following formula satisfies 0.2 or more and 0.95 or less. K = (H−H 2) / (H 1 −H 2) where H 1: Heat to the temperature in the austenite region, then hardness when quenched with water H 2: Heat to the temperature in the austenite region, then gradually cool to room temperature Hardness when
Description
【0001】[0001]
【発明の属する技術分野】本発明は、熱間鍛造用金型、
押し出し型、ダイキャスト用金型等の工具に使用される
熱間加工用工具鋼に関する。TECHNICAL FIELD The present invention relates to a hot forging die,
The present invention relates to hot working tool steel used for tools such as extrusion dies and die casting dies.
【0002】[0002]
【従来の技術】鉄道車両用の車輪や自動車用のクランク
軸などを製造する場合には、通常、鋼片を1300℃程
度に加熱した後、金型を用いて鍛造することによって成
形する熱間鍛造法が採用されている。このような熱間加
工法には、熱間鍛造法のほかに、ダイスを用いて棒鋼や
鋼管を製造する熱間押出法がある。また、熱間で用いら
れる金型として、アルミニウム合金などをダイキャスト
法によって鋳造する際に用いられる金型もある。2. Description of the Related Art When manufacturing wheels for railway vehicles, crankshafts for automobiles, and the like, usually, a steel slab is heated to about 1300 ° C. and then formed by forging using a mold. Forging method is adopted. As such a hot working method, in addition to the hot forging method, there is a hot extrusion method of manufacturing a steel bar or a steel pipe using a die. There is also a mold used for hot casting when an aluminum alloy or the like is cast by a die casting method.
【0003】これらの熱間加工に用いられる金型やダイ
スなどの工具は、高温下で機械的、熱的な衝撃を受け
る。そのため、熱間加工の際の被加工材との間の摩擦に
よる摩耗のほかに、急熱・急冷が繰り返されることによ
って生じる亀裂(ヒートチェックと呼ばれる)の発生、
機械的な衝撃に起因する亀裂の発生、およびこれらの亀
裂の進展よる大割れのなどが生じる。[0003] Tools such as dies and dies used for these hot workings are subjected to mechanical and thermal shocks at high temperatures. Therefore, in addition to abrasion due to friction with the workpiece during hot working, cracks (called heat checks) caused by repeated rapid heating / cooling,
Cracks are generated due to mechanical impact, and large cracks are caused by the propagation of these cracks.
【0004】したがって、上記のような熱間加工用工具
鋼には、摩耗、ヒートチェック、大割れなどに耐え得る
十分な高温強度および破壊靭性というような性能が要求
される。[0004] Therefore, the tool steel for hot working as described above is required to have properties such as high-temperature strength and fracture toughness sufficient to withstand abrasion, heat check, large cracks and the like.
【0005】このような性能を持つ工具用鋼としては、
JIS G 4404に規定されており、例えば5Cr
−Mo−V系のSKD61やSKD62等、3Cr−3
Mo−V系のSKD7、Ni−Cr−Mo−V系のSK
T3やSKT4などの工具鋼がある。しかし、使用条件
が厳しい場合には、これらの工具鋼では、前述した要求
される性能を十分に満足させることができない。[0005] As tool steel having such performance,
Specified in JIS G 4404, for example, 5Cr
-MoCr-based SKD61, SKD62, etc., 3Cr-3
Mo-V based SKD7, Ni-Cr-Mo-V based SK
There are tool steels such as T3 and SKT4. However, when the use conditions are severe, these tool steels cannot sufficiently satisfy the required performance described above.
【0006】そのような厳しい条件で使用することがで
きる工具鋼として、出願人は、すでに特開平6−256
897号公報で次の工具鋼を提案した。その特徴は「重
量%で、C:0.25〜0.45%、Si:0.50%
以下、Mn:0.20〜1.0%、P:0.015%以
下、Sは0.005%以下、Ni:0.5〜2.0%、
Cr:2.8〜4.2%、Mo:1.0〜2.0%、
V:0.1〜1%」を含む金型用鋼である。As a tool steel which can be used under such severe conditions, the applicant has already disclosed Japanese Patent Application Laid-Open No. 6-256.
No. 897 proposes the following tool steel. Its characteristics are "by weight, C: 0.25 to 0.45%, Si: 0.50%
Hereinafter, Mn: 0.20 to 1.0%, P: 0.015% or less, S is 0.005% or less, Ni: 0.5 to 2.0%,
Cr: 2.8 to 4.2%, Mo: 1.0 to 2.0%,
V: 0.1-1% ".
【0007】この金型用鋼の化学組成は、金型用として
靱性に優れたマルテンサイト組織を得るために選択され
た組成である。工具として使用する場合には、油焼入れ
後、焼戻しを行い、工具の形状に加工して、その表面に
クロムめっきを施して金型を得る方法を示している。The chemical composition of the steel for molds is a composition selected for obtaining a martensitic structure having excellent toughness for molds. In the case of using as a tool, a method is shown in which after oil quenching, tempering is performed, the tool is processed into a shape, and the surface thereof is plated with chromium to obtain a mold.
【0008】上記の工具鋼を基にして製造される金型
は、熱間鍛造用の金型としてほぼ満足できる性能を持っ
ており、通常の熱間鍛造条件では十分実用可能である。A mold manufactured based on the above tool steel has almost satisfactory performance as a mold for hot forging, and is sufficiently practicable under ordinary hot forging conditions.
【0009】[0009]
【発明が解決しようとする課題】本発明の課題は、従来
の工具鋼よりもさらに高温強度と破壊靭性に優れ、長い
工具寿命を得ることができる熱間加工用工具鋼およびそ
の製造方法ならびに熱間加工用工具の製造方法を提供す
ることにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a tool steel for hot working capable of obtaining a longer tool life with higher high-temperature strength and fracture toughness than conventional tool steel, a method for producing the same, and a method for manufacturing the same. An object of the present invention is to provide a method for manufacturing a tool for cold working.
【0010】[0010]
【課題を解決するための手段】本発明の要旨は、次の
(1)の熱間加工用工具鋼、(2)(3)の熱間加工用
工具鋼の製造方法および(4)(5)の熱間加工用工具
の製造方法にある。 (1)質量%で、C:0.25〜0.45%、Si:
0.1〜1%、Mn:0.2〜1%、Ni:0.5〜2
%、Cr:2.8〜4.2%、Mo:1〜2%、V:
0.1〜1%、Al:0.005〜0.1%を含有し、
残部はFeおよび不純物からなり、不純物中のPは0.
015%以下、Sは0.005%以下、Nは0.015
%以下の化学組成を有し、かつ硬さ指数Kが0.2以上
0.95以下となる硬さHを有する熱間加工用工具鋼。 (2)質量%で、C:0.25〜0.45%、Si:
0.1〜1%、Mn:0.2〜1%、Ni:0.5〜2
%、Cr:2.8〜4.2%、Mo:1〜2%、V:
0.1〜1%、Al:0.005〜0.1%を含有し、
残部はFeおよび不純物からなり、不純物中のPは0.
015%以下、Sは0.005%以下、Nは0.015
%以下の化学組成を有する鋼を、硬さ指数Kが0.2以
上0.95以下となるような硬さHに焼入れすることに
よる熱間加工用工具鋼の製造方法。 (3)焼入れ後、さらに焼戻す前記(2)に記載の熱間
加工用工具鋼の製造方法。 (4)質量%で、C:0.25〜0.45%、Si:
0.1〜1%、Mn:0.2〜1%、Ni:0.5〜2
%、Cr:2.8〜4.2%、Mo:1〜2%、V:
0.1〜1%、Al:0.005〜0.1%を含有し、
残部はFeおよび不純物からなり、不純物中のPは0.
015%以下、Sは0.005%以下、Nは0.015
%以下の化学組成を有する鋼を工具の形状に加工した
後、硬さ指数Kが0.2以上0.95以下となるような
硬さHに焼入れし、さらに焼戻すことによる熱間加工用
工具の製造方法。 (5)質量%で、C:0.25〜0.45%、Si:
0.1〜1%、Mn:0.2〜1%、Ni:0.5〜2
%、Cr:2.8〜4.2%、Mo:1〜2%、V:
0.1〜1%、Al:0.005〜0.1%を含有し、
残部はFeおよび不純物からなり、不純物中のPは0.
015%以下、Sは0.005%以下、Nは0.015
%以下の化学組成を有する鋼を、硬さ指数Kが0.2以
上0.95以下となるような硬さHに焼入れし、焼戻し
した後、工具の形状に加工することによる熱間加工用工
具の製造方法。SUMMARY OF THE INVENTION The gist of the present invention is to provide the following (1) hot working tool steel, (2) and (3) hot working tool steel manufacturing methods, and (4) (5) ) In the method for manufacturing a hot working tool. (1) In mass%, C: 0.25 to 0.45%, Si:
0.1-1%, Mn: 0.2-1%, Ni: 0.5-2
%, Cr: 2.8 to 4.2%, Mo: 1 to 2%, V:
0.1-1%, Al: 0.005-0.1%,
The balance is composed of Fe and impurities, and P in the impurities is not more than 0.1.
015% or less, S is 0.005% or less, N is 0.015
%, And a hardness H having a hardness index K of 0.2 or more and 0.95 or less. (2) In mass%, C: 0.25 to 0.45%, Si:
0.1-1%, Mn: 0.2-1%, Ni: 0.5-2
%, Cr: 2.8 to 4.2%, Mo: 1 to 2%, V:
0.1-1%, Al: 0.005-0.1%,
The balance is composed of Fe and impurities, and P in the impurities is not more than 0.1.
015% or less, S is 0.005% or less, N is 0.015
%. A method for producing tool steel for hot working by quenching steel having a chemical composition of not more than% to a hardness H such that a hardness index K is 0.2 or more and 0.95 or less. (3) The method for producing tool steel for hot working according to (2), wherein the steel is further tempered after quenching. (4) In mass%, C: 0.25 to 0.45%, Si:
0.1-1%, Mn: 0.2-1%, Ni: 0.5-2
%, Cr: 2.8 to 4.2%, Mo: 1 to 2%, V:
0.1-1%, Al: 0.005-0.1%,
The balance is composed of Fe and impurities, and P in the impurities is not more than 0.1.
015% or less, S is 0.005% or less, N is 0.015
% Of a steel having a chemical composition of not more than 0.2% for hot working by hardening to a hardness H such that the hardness index K becomes 0.2 or more and 0.95 or less, and further tempering. Tool manufacturing method. (5) In mass%, C: 0.25 to 0.45%, Si:
0.1-1%, Mn: 0.2-1%, Ni: 0.5-2
%, Cr: 2.8 to 4.2%, Mo: 1 to 2%, V:
0.1-1%, Al: 0.005-0.1%,
The balance is composed of Fe and impurities, and P in the impurities is not more than 0.1.
015% or less, S is 0.005% or less, N is 0.015
% Of a steel having a chemical composition of not more than 0.2% to a hardness H such that the hardness index K is not less than 0.2 and not more than 0.95. Tool manufacturing method.
【0011】なお、上記(1)から(5)において、硬
さ指数Kは下記の式により表される。 K=(H−H2)/(H1−H2)・・式 ここで、 H1:オーステナイト領域の温度に加熱後、水焼入れし
た場合のビッカース硬さ H2:オーステナイト領域の温度に加熱後、室温まで徐
冷した場合のビッカース硬さ。In the above (1) to (5), the hardness index K is represented by the following equation. K = (H−H2) / (H1−H2) formula where H1: Vickers hardness when quenched with water after heating to austenite temperature H2: After heating to austenite temperature, then gradually to room temperature Vickers hardness when cooled.
【0012】熱間加工用工具は、通常十分に焼入れした
後、焼戻しした状態で使用される。工具の形状への加工
は、焼入れ前または焼戻し後のいずれかに行われる。[0012] The hot working tool is usually used after being sufficiently quenched and then tempered. The processing into the shape of the tool is performed either before quenching or after tempering.
【0013】本発明者らは、熱間加工用工具鋼の焼入れ
後の硬さと鋼の特性との関係について注目し検討を行っ
た結果、次の知見を得た。本発明における硬さ指数Kの
規定は、この知見に基づくものである。The present inventors have paid attention to the relationship between the hardness after quenching of tool steel for hot working and the properties of the steel, and as a result, have obtained the following findings. The definition of the hardness index K in the present invention is based on this finding.
【0014】図1は、後述する実施例におけるNo.1
〜29の試験で得られた焼入れ、焼戻し後の破壊靭性値
と高温強度と焼入れ後の硬さ指数Kとの関係を示す図で
ある。同図からわかるように、焼入れ後の硬さ指数Kが
0.15以下では、焼戻し後の高温強度に優れるが、破
壊靭性値が極めて低い。また、焼入れ後の硬さ指数Kが
0.96以上では、焼戻し後の破壊靭性値は高いが、高
温強度が極めて低い。一方、焼入れ後の硬さ指数Kが
0.23〜0.94の場合には、焼戻し後の高温強度、
破壊靭性値ともに高い。FIG. 1 is a diagram showing an example of No. 1
It is a figure which shows the relationship between the fracture toughness value after quenching and tempering obtained by the test of -29, the high temperature strength, and the hardness index K after quenching. As can be seen from the figure, when the hardness index K after quenching is 0.15 or less, the high temperature strength after tempering is excellent, but the fracture toughness value is extremely low. When the hardness index K after quenching is 0.96 or more, the fracture toughness after tempering is high, but the high-temperature strength is extremely low. On the other hand, when the hardness index K after quenching is 0.23 to 0.94, the high temperature strength after tempering,
Both fracture toughness values are high.
【0015】その理由は、焼入れ後のベイナイト相とマ
ルテンサイト相から焼戻しの際に析出する炭化物の形態
に依存するものと考えられる。つまり、焼戻し後のベイ
ナイト相は、マルテンサイト相と比較すると、相中に粗
大な炭化物が析出しやすいため、鋼の靱性を低下させる
傾向にあるが、相中に微細なMo2 Cが析出するために
鋼の高温強度を上昇させる作用を持つからである。The reason is considered to depend on the form of carbides precipitated during tempering from the bainite phase and the martensite phase after quenching. In other words, the bainite phase after tempering tends to lower the toughness of the steel because coarse carbides tend to precipitate in the phase as compared to the martensite phase, but fine Mo 2 C precipitates in the phase. Therefore, it has the effect of increasing the high-temperature strength of steel.
【0016】そのため、焼入れ後の状態で適正な量のベ
イナイト相を選択しておくことにより、焼戻し後の高温
強度、破壊靭性値ともに優れた鋼を得ることができる。
この焼入れ後のベイナイト相の量は、硬さと密接な関係
を持っており、前述の適正な硬さ指数Kの範囲0.23
〜0.94は、適正な割合のベイナイト相の範囲と考え
ることができる。Therefore, by selecting an appropriate amount of the bainite phase in the state after quenching, a steel excellent in both high-temperature strength and fracture toughness after tempering can be obtained.
The amount of the bainite phase after quenching is closely related to the hardness, and the above-mentioned range of the appropriate hardness index K of 0.23
0.90.94 can be considered as a range of the bainite phase in an appropriate ratio.
【0017】特に本発明で規定する化学組成の場合は、
焼戻しの際にさらに微細な炭化物を析出させることが可
能なため、硬さ指数Kが高めでも高温強度の低下を抑え
ることができる。しかし、硬さ指数Kが0.95を超え
る場合には、ベイナイト相中に析出する微細な炭化物の
量が少なすぎるために、高温強度の向上効果が小さい。
一方、硬さ指数Kが0.20未満では微細な炭化物の析
出量が増加するが、粗大な炭化物の析出量も多くなるの
で、十分な破壊靭性値向上効果が得られないものと考え
られる。In particular, in the case of the chemical composition specified in the present invention,
Since finer carbides can be precipitated during tempering, even if the hardness index K is high, a decrease in high-temperature strength can be suppressed. However, when the hardness index K exceeds 0.95, the effect of improving the high-temperature strength is small because the amount of fine carbides precipitated in the bainite phase is too small.
On the other hand, when the hardness index K is less than 0.20, the precipitation amount of fine carbides increases, but the precipitation amount of coarse carbides also increases, so it is considered that a sufficient effect of improving the fracture toughness value cannot be obtained.
【0018】[0018]
【発明の実施の形態】以下に、本発明の熱間加工用工具
鋼の化学組成および焼入れ後の硬さ指数Kについて説明
する。なお以下の説明において、化学成分の含有量は質
量%で表す。 C:Cは鋼の焼入性および靱性を向上させ、焼戻し時に
炭窒化物として二次析出して高温強度を向上させる作用
を有する。しかし、その含有量が0.25%未満では効
果が乏しく、0.45%を超えると被削性の低下を引き
起こす。したがって、Cの含有量は0.25〜0.45
%とする。 Si:Siは鋼の被削性を向上させる作用を有する。し
かし、その含有量が0.1%未満では添加効果に乏し
く、1%を超えると靱性および高温強度を低下させて熱
間工具寿命の低下を引き起こす。したがって、Siの含
有量は0.1〜1%とする。好ましい範囲は、0.2〜
0.5%である。 Mn:Mnは鋼の焼入性および靱性を高めるのに有効な
元素である。しかし、その含有量が0.2%未満では添
加効果が得られず、1%を超えると鋼中にMnの偏析が
生じて靱性および強度の低下を招く。したがって、Mn
の含有量は0.2〜1%とする。好ましい範囲は、0.
5〜0.8%である。 Ni:NiはMnと同様に焼入性および靱性を改善する
のに有効な元素であるが、その含有量が0.5%未満で
はその効果が乏しく、2%を超えると変態点を下げて高
温強度の低下を招く。したがって、Niの含有量は0.
5〜2%とする。好ましい範囲は、0.8〜1.7%で
ある。 Cr:Crは靱性および耐摩耗性の向上に有効な元素で
あるが、その含有量が2.8%未満では十分な効果が得
られず、4.2%を超えると高温強度の低下を招く。し
たがって、Crの含有量は2.8〜4.2%とする。 Mo:Moは鋼の焼入性と焼戻し軟化抵抗を向上させ
て、靱性と高温強度を高める作用を有する。しかし、そ
の含有量が1%未満では添加効果が得られず、2%を超
えると被削性および靱性が低下する。したがって、Mo
の含有量は1〜2%とする。好ましい範囲は、1.3〜
1.7%である。 V:Vは高温強度を高めるのに必要な元素であるが、そ
の含有量が0.1%未満ではその効果が乏しく、1%を
超えると靭性を悪化させる。したがって、Vの含有量は
0.1〜1%とする。なお、0.6%を超えると被削性
を低下させるので、被削性を考慮した場合の望ましいV
の含有量は0.1〜0.6%、さらに望ましくは0.1
から0.5%である。 Al:Alは鋼の脱酸および均質化を図るのに有効な元
素であるが、その含有量が0.005%未満ではその効
果を得ることができない。一方、0.1%を超えると被
削性の低下や非金属介在物の増加の原因となる。したが
って、Alの含有量は0.005〜0.1%とする。好
ましい範囲は、0.005〜0.06%である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The chemical composition of the tool steel for hot working and the hardness index K after quenching will be described below. In the following description, the content of a chemical component is represented by mass%. C: C has the effect of improving the hardenability and toughness of steel, and improving the high-temperature strength by secondary precipitation as carbonitride during tempering. However, if the content is less than 0.25%, the effect is poor, and if it exceeds 0.45%, the machinability is reduced. Therefore, the content of C is 0.25 to 0.45.
%. Si: Si has an effect of improving the machinability of steel. However, if the content is less than 0.1%, the effect of addition is poor, and if it exceeds 1%, the toughness and high-temperature strength are reduced, and the life of the hot tool is reduced. Therefore, the content of Si is set to 0.1 to 1%. The preferred range is 0.2 to
0.5%. Mn: Mn is an element effective for improving the hardenability and toughness of steel. However, if the content is less than 0.2%, the effect of addition cannot be obtained, and if it exceeds 1%, segregation of Mn occurs in the steel, leading to a decrease in toughness and strength. Therefore, Mn
Is 0.2 to 1%. The preferred range is 0.
5 to 0.8%. Ni: Ni is an element effective for improving hardenability and toughness like Mn, but if its content is less than 0.5%, its effect is poor, and if it exceeds 2%, the transformation point is lowered. This leads to a decrease in high-temperature strength. Therefore, the content of Ni is 0.1.
5 to 2%. A preferred range is 0.8-1.7%. Cr: Cr is an element effective for improving toughness and wear resistance, but if its content is less than 2.8%, sufficient effect cannot be obtained, and if it exceeds 4.2%, the high-temperature strength is reduced. . Therefore, the content of Cr is set to 2.8 to 4.2%. Mo: Mo has the effect of improving the hardenability and temper softening resistance of steel to increase toughness and high-temperature strength. However, if the content is less than 1%, the effect of addition cannot be obtained, and if it exceeds 2%, the machinability and toughness decrease. Therefore, Mo
Is 1 to 2%. A preferred range is from 1.3 to
1.7%. V: V is an element necessary for increasing the high-temperature strength, but if its content is less than 0.1%, its effect is poor, and if it exceeds 1%, toughness is deteriorated. Therefore, the content of V is set to 0.1 to 1%. If the content exceeds 0.6%, the machinability is reduced.
Is 0.1 to 0.6%, more preferably 0.1 to 0.6%.
To 0.5%. Al: Al is an element effective for deoxidizing and homogenizing steel, but its effect cannot be obtained if its content is less than 0.005%. On the other hand, if it exceeds 0.1%, it causes a decrease in machinability and an increase in nonmetallic inclusions. Therefore, the content of Al is set to 0.005 to 0.1%. A preferred range is 0.005 to 0.06%.
【0019】本発明に係わる熱間加工用工具鋼では、不
純物としてのP、SおよびNの含有量を、それぞれ次の
通りに規制する。 P:Pは鋼中で偏析しやすく、靱性の低下や熱亀裂の発
生の原因となるので、その含有量は可能な限り低いこと
が望ましい。そこでPの含有量は0.015%以下とす
る。 S:Sは硫化物を形成し、靱性を低下させるので、その
含有量は可能な限り低いことが望ましい。そこでSの含
有量は0.005%以下とする。 N:NはVとの親和力が強く、焼入れの際の加熱時に窒
化物を形成しやすいので、固溶V量を減少させる。固溶
V量が少ない場合には、焼戻し時に二次的に析出するV
炭窒化物の量が減少するので、高温強度が低下する。と
くにV含有量が低い場合にその影響が顕著である。そこ
でNの含有量は0.015%以下とする。 硬さ指数K:焼入れ後の硬さ指数Kが0.2未満の場合
は、焼戻し後の靭性が低下する。一方硬さ指数Kが、
0.95を超える場合には焼戻し後の高温強度の低下が
著しい。そこで、硬さ指数Kを0.2以上0.95以下
とする(図1参照)。なお、硬さ指数の好ましい範囲
は、0.5以上0.8以下である。硬さ指数Kは、厚さ
10mmの基準材をオーステナイト領域の温度に加熱後
焼入れする際に、水冷した場合の硬さをH1、室温まで
20時間かけて徐冷した場合の硬さをH2とし、対象と
する材料を焼入れをしたときの硬さをHとしたとき、次
の式により表される。ここで、硬さは荷重98Nで測
定した場合のビッカース硬さで表示する。In the tool steel for hot working according to the present invention, the contents of P, S and N as impurities are regulated as follows. P: P is easily segregated in steel and causes a decrease in toughness and the occurrence of thermal cracks. Therefore, it is desirable that the content of P is as low as possible. Therefore, the content of P is set to 0.015% or less. S: Since S forms sulfide and lowers toughness, its content is desirably as low as possible. Therefore, the content of S is set to 0.005% or less. N: N has a strong affinity with V, and easily forms a nitride during heating during quenching, and thus reduces the amount of solid solution V. If the amount of solid solution V is small, the secondary precipitation V during tempering
Since the amount of carbonitride is reduced, the high temperature strength is reduced. The effect is particularly remarkable when the V content is low. Therefore, the content of N is set to 0.015% or less. Hardness index K: If the hardness index K after quenching is less than 0.2, the toughness after tempering decreases. On the other hand, when the hardness index K is
If it exceeds 0.95, the high-temperature strength after tempering is significantly reduced. Therefore, the hardness index K is set to 0.2 or more and 0.95 or less (see FIG. 1). The preferred range of the hardness index is 0.5 or more and 0.8 or less. The hardness index K is defined as H1 when the reference material having a thickness of 10 mm is heated to the temperature in the austenite region and then quenched. The hardness when water-cooled is H1, and the hardness when gradually cooled to room temperature over 20 hours is H2. When the hardness when the target material is quenched is H, it is expressed by the following equation. Here, the hardness is represented by Vickers hardness when measured under a load of 98N.
【0020】 K=(H−H2)/(H1−H2)・・式 前記の熱間加工用工具鋼は、電気炉、転炉などにより溶
製して製造された前記の化学組成の鋼塊を、圧延、鍛造
等の熱間加工、焼なましおよび焼入れにより製造され
る。K = (H−H 2) / (H 1 −H 2) formula The tool steel for hot working is a steel ingot of the above chemical composition produced by melting with an electric furnace, a converter or the like. Is manufactured by hot working such as rolling and forging, annealing and quenching.
【0021】焼入れは、オーステナイト領域の温度、例
えば900〜1050℃に加熱した後、水冷または徐冷
により行い、前記式で表される硬さ指数Kが0.2以
上0.95以下となるような硬さに焼入れする。この
際、硬さ指数Kの値が0.2〜0.95となる工具鋼の
硬さHは、冷却条件と硬さ指数Kとの関係を予め求めて
おき、その中で適正な冷却条件を選べばよい。工具とし
て使用する場合には、焼入れ後、さらに550〜640
℃で焼戻しを行う。The quenching is carried out by heating to a temperature in the austenite region, for example, 900 to 1050 ° C., and then cooling with water or slow cooling so that the hardness index K represented by the above formula becomes 0.2 or more and 0.95 or less. Quench to the desired hardness. At this time, the hardness H of the tool steel having a value of the hardness index K of 0.2 to 0.95 is determined in advance by determining the relationship between the cooling condition and the hardness index K, You can choose When used as a tool, after quenching, further 550 to 640
Tempering at ℃.
【0022】本発明の熱間加工用工具は、電気炉、転炉
などにより溶製して製造された前記の化学組成の鋼塊
を、圧延、鍛造等の熱間加工および焼なましした後、例
えば機械加工、放電加工により工具の形状に加工し、そ
の後焼入れおよび焼戻しにより製造される。The hot working tool of the present invention is obtained by subjecting a steel ingot having the above-mentioned chemical composition produced by melting in an electric furnace or a converter to hot working such as rolling and forging and annealing. For example, it is manufactured by machining into a tool shape by machining or electric discharge machining, and then quenching and tempering.
【0023】焼入れは、オーステナイト領域の温度、例
えば900〜1050℃に加熱した後、水冷または徐冷
により行い、前記式で表される硬さ指数Kが0.2以
上0.95以下となるような硬さに焼入れする。The quenching is performed by heating to a temperature in the austenite region, for example, 900 to 1050 ° C., and then cooling with water or slow cooling so that the hardness index K represented by the above formula becomes 0.2 or more and 0.95 or less. Quench to the desired hardness.
【0024】機械加工、放電加工等により工具の形状に
加工する工程は、焼入れおよび焼戻しの後であってもよ
い。The step of machining into a tool shape by machining, electric discharge machining or the like may be after quenching and tempering.
【0025】[0025]
【実施例】本発明に係わる熱間加工用工具鋼の効果を実
施例に基づいて説明する。表1および表2に示す化学組
成の鋼を電気炉で溶製し、得られた鋼塊を分塊圧延し、
次いで鍛造比5以上で鍛造した後、800〜850℃で
焼きなましを実施した。EXAMPLES The effects of the tool steel for hot working according to the present invention will be described based on examples. Steels having the chemical compositions shown in Tables 1 and 2 were melted in an electric furnace, and the obtained steel ingot was subjected to slab rolling.
Next, after forging at a forging ratio of 5 or more, annealing was performed at 800 to 850 ° C.
【0026】[0026]
【表1】 [Table 1]
【表2】 その後、焼入れ後の硬さ指数Kを変化させるために、厚
さ10〜800mmの素材を作製し、この素材を900
〜1050℃からの水冷、油冷または炉冷による焼入れ
を行った。その後、この素材の硬さをビッカース硬さ
(荷重98N)により測定し、硬さ指数Kを求めた。結
果を表1および表2に併せて示す。[Table 2] Thereafter, in order to change the hardness index K after quenching, a material having a thickness of 10 to 800 mm was prepared, and
Quenching by water cooling, oil cooling or furnace cooling from 〜101050 ° C. was performed. Thereafter, the hardness of the material was measured by Vickers hardness (load 98N), and a hardness index K was obtained. The results are shown in Tables 1 and 2.
【0027】続いて、550〜640℃で焼戻しを行っ
た後、破壊靭性試験および高温強度試験を行った。これ
らの結果も表1および表2に併せて示す。なお、破壊靱
性試験はASTM E399−83により行って破壊靭
性値を求めた。また、高温強度試験は、JIS 14A
号試験片(直径:6mm)を用いてJIS G 056
7により600℃の試験温度で行い、0.2%耐力を測
定した。Subsequently, after tempering at 550 to 640 ° C., a fracture toughness test and a high temperature strength test were performed. These results are also shown in Tables 1 and 2. The fracture toughness test was performed according to ASTM E399-83 to determine a fracture toughness value. The high-temperature strength test is based on JIS 14A
JIS G 056 using a No. test piece (diameter: 6 mm)
The test was performed at a test temperature of 600 ° C. according to No. 7, and the 0.2% proof stress was measured.
【0028】経験的に、破壊靱性値が77.5MPa・
m1/2 以上、且つ600℃における0.2%耐力が58
8MPa以上であれば、工具寿命が優れることがわかっ
ている。表1に示すNo.1からNo.20の本発明例
は、焼戻し後の破壊靱性値および高温強度の両方が前記
の所定値を満足しているのに対し、表1および表2に示
すNo.21からNo.55の比較例は、破壊靭性値と
高温強度のいずれか一方または両方が、前記の所定値未
満である。なお、図2は、前記表1および表2の結果を
破壊靭性値と600℃における0.2%耐力とを関連付
けて示す図で、本発明例は、比較例に比べて優れている
ことがわかる。Empirically, a fracture toughness value of 77.5 MPa ·
0.2% proof stress at m 1/2 or more and 600 ° C is 58
It is known that when the pressure is 8 MPa or more, the tool life is excellent. No. shown in Table 1. No. 1 to No. In the inventive examples of No. 20, both the fracture toughness value after tempering and the high-temperature strength satisfy the above-mentioned predetermined values. 21 to No. 21. In the comparative example of No. 55, one or both of the fracture toughness value and the high-temperature strength are less than the above-mentioned predetermined value. FIG. 2 is a diagram showing the results of Tables 1 and 2 in relation to the fracture toughness value and the 0.2% proof stress at 600 ° C. The example of the present invention is superior to the comparative example. Understand.
【0029】表1および表2の焼入れ焼戻し後の素材の
うち、No.1からNo.18、No.20、No.2
1、No.27、No.34、No.37、No.40
およびNo.44からNo.55を選択し、機械加工と
放電加工により鍛造用金型を製造した。この鍛造用金型
を用いて鍛造加工を行い、寿命(型打ち数)を調査し
た。結果を表3に示す。同図からわかるように、本発明
例はいずれも比較例より寿命が長い。Of the materials after quenching and tempering in Tables 1 and 2, No. 1 to No. 18, No. 20, no. 2
1, No. 27, no. 34, no. 37, no. 40
And No. 44 to No. 55 was selected and a forging die was manufactured by machining and electric discharge machining. Forging was performed using this forging die, and the life (the number of stampings) was investigated. Table 3 shows the results. As can be seen from the figure, the examples of the present invention all have a longer life than the comparative examples.
【0030】[0030]
【表3】 [Table 3]
【発明の効果】本発明の熱間加工用工具鋼によれば、従
来の工具鋼よりも高温強度と破壊靭性に優れる。また、
本発明の製造方法によれば、寿命の長い熱間加工用工具
を製造することができる。According to the tool steel for hot working of the present invention, the high temperature strength and the fracture toughness are superior to the conventional tool steel. Also,
According to the manufacturing method of the present invention, a hot working tool having a long life can be manufactured.
【図1】焼入れ、焼戻し後の破壊靭性値と高温強度と、
焼入れ後の硬さ指数Kとの関係を示す図である。FIG. 1 shows fracture toughness values and high-temperature strengths after quenching and tempering,
It is a figure which shows the relationship with the hardness index K after quenching.
【図2】本発明例および比較例を破壊靭性と高温強度と
を関連付けて示す図である。FIG. 2 is a view showing an example of the present invention and a comparative example in relation to fracture toughness and high-temperature strength.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 康孝 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (72)発明者 近藤 邦夫 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 Fターム(参考) 4K042 AA25 BA02 BA03 CA06 CA08 CA10 CA13 DA01 DA02 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yasutaka Okada 4-33, Kitahama, Chuo-ku, Osaka-shi, Osaka Inside Sumitomo Metal Industries Co., Ltd. (72) Kunio Kondo 4-5-5-1 Kitahama, Chuo-ku, Osaka-shi, Osaka No. 33 Sumitomo Metal Industries, Ltd. F term (reference) 4K042 AA25 BA02 BA03 CA06 CA08 CA10 CA13 DA01 DA02
Claims (5)
i:0.1〜1%、Mn:0.2〜1%、Ni:0.5
〜2%、Cr:2.8〜4.2%、Mo:1〜2%、
V:0.1〜1%、Al:0.005〜0.1%を含有
し、残部はFeおよび不純物からなり、不純物中のPは
0.015%以下、Sは0.005%以下、Nは0.0
15%以下の化学組成を有し、かつ下記の式で表され
る硬さ指数Kが0.2以上0.95以下となる硬さHを
有する熱間加工用工具鋼。 K=(H−H2)/(H1−H2)・・式 ここで、 H1:オーステナイト領域の温度に加熱後、水焼入れし
た場合のビッカース硬さ H2:オーステナイト領域の温度に加熱後、室温まで徐
冷した場合のビッカース硬さC. 0.25 to 0.45% by mass, S
i: 0.1-1%, Mn: 0.2-1%, Ni: 0.5
22%, Cr: 2.8 to 4.2%, Mo: 1 to 2%,
V: 0.1 to 1%, Al: 0.005 to 0.1%, the balance being Fe and impurities, P in the impurities is 0.015% or less, S is 0.005% or less, N is 0.0
A hot working tool steel having a chemical composition of 15% or less and a hardness index K represented by the following formula of 0.2 to 0.95. K = (H−H2) / (H1−H2) formula where H1: Vickers hardness when quenched with water after heating to austenite temperature H2: After heating to austenite temperature, then gradually to room temperature Vickers hardness when cooled
i:0.1〜1%、Mn:0.2〜1%、Ni:0.5
〜2%、Cr:2.8〜4.2%、Mo:1〜2%、
V:0.1〜1%、Al:0.005〜0.1%を含有
し、残部はFeおよび不純物からなり、不純物中のPは
0.015%以下、Sは0.005%以下、Nは0.0
15%以下の化学組成を有する鋼を、下記の式で表さ
れる硬さ指数Kが0.2以上0.95以下となるような
硬さHに焼入れすることによる熱間加工用工具鋼の製造
方法。 K=(H−H2)/(H1−H2)・・式 ここで、 H1:オーステナイト領域の温度に加熱後、水焼入れし
た場合のビッカース硬さ H2:オーステナイト領域の温度に加熱後、室温まで徐
冷した場合のビッカース硬さ2. In mass%, C: 0.25 to 0.45%, S
i: 0.1-1%, Mn: 0.2-1%, Ni: 0.5
22%, Cr: 2.8 to 4.2%, Mo: 1 to 2%,
V: 0.1 to 1%, Al: 0.005 to 0.1%, the balance being Fe and impurities, P in the impurities is 0.015% or less, S is 0.005% or less, N is 0.0
A tool steel for hot working by quenching a steel having a chemical composition of 15% or less to a hardness H such that a hardness index K represented by the following formula becomes 0.2 or more and 0.95 or less. Production method. K = (H−H2) / (H1−H2) formula where H1: Vickers hardness when quenched with water after heating to austenite temperature H2: After heating to austenite temperature, then gradually to room temperature Vickers hardness when cooled
熱間加工用工具鋼の製造方法。3. The method for producing tool steel for hot working according to claim 3, wherein the steel is further tempered after quenching.
i:0.1〜1%、Mn:0.2〜1%、Ni:0.5
〜2%、Cr:2.8〜4.2%、Mo:1〜2%、
V:0.1〜1%、Al:0.005〜0.1%を含有
し、残部はFeおよび不純物からなり、不純物中のPは
0.015%以下、Sは0.005%以下、Nは0.0
15%以下の化学組成を有する鋼を工具の形状に加工し
た後、下記の式で表される硬さ指数Kが0.2以上
0.95以下となるような硬さHに焼入れし、さらに焼
戻すことによる熱間加工用工具の製造方法。 K=(H−H2)/(H1−H2)・・式 ここで、 H1:オーステナイト領域の温度に加熱後、水焼入れし
た場合のビッカース硬さ H2:オーステナイト領域の温度に加熱後、室温まで徐
冷した場合のビッカース硬さ4. C: 0.25 to 0.45% by mass%, S:
i: 0.1-1%, Mn: 0.2-1%, Ni: 0.5
22%, Cr: 2.8 to 4.2%, Mo: 1 to 2%,
V: 0.1 to 1%, Al: 0.005 to 0.1%, the balance being Fe and impurities, P in the impurities is 0.015% or less, S is 0.005% or less, N is 0.0
After processing a steel having a chemical composition of 15% or less into a tool shape, the steel is quenched to a hardness H such that a hardness index K represented by the following formula is 0.2 or more and 0.95 or less. A method for manufacturing a hot working tool by tempering. K = (H−H2) / (H1−H2) formula where H1: Vickers hardness when quenched with water after heating to austenite temperature H2: After heating to austenite temperature, then gradually to room temperature Vickers hardness when cooled
i:0.1〜1%、Mn:0.2〜1%、Ni:0.5
〜2%、Cr:2.8〜4.2%、Mo:1〜2%、
V:0.1〜1%、Al:0.005〜0.1%を含有
し、残部はFeおよび不純物からなり、不純物中のPは
0.015%以下、Sは0.005%以下、Nは0.0
15%以下の化学組成を有する鋼を、下記の式で表さ
れる硬さ指数Kが0.2以上0.95以下となるような
硬さHに焼入れし、焼戻しした後、工具の形状に加工す
ることによる熱間加工用工具の製造方法。 K=(H−H2)/(H1−H2)・・式 ここで、 H1:オーステナイト領域の温度に加熱後、水焼入れし
た場合のビッカース硬さ H2:オーステナイト領域の温度に加熱後、室温まで徐
冷した場合のビッカース硬さ5. C: 0.25 to 0.45% by mass%, S:
i: 0.1-1%, Mn: 0.2-1%, Ni: 0.5
22%, Cr: 2.8 to 4.2%, Mo: 1 to 2%,
V: 0.1 to 1%, Al: 0.005 to 0.1%, the balance being Fe and impurities, P in the impurities is 0.015% or less, S is 0.005% or less, N is 0.0
A steel having a chemical composition of 15% or less is quenched to a hardness H such that a hardness index K represented by the following formula is 0.2 or more and 0.95 or less, and after tempering, the steel is shaped into a tool. A method for manufacturing a hot working tool by machining. K = (H−H2) / (H1−H2) formula where H1: Vickers hardness when quenched with water after heating to austenite temperature H2: After heating to austenite temperature, then gradually to room temperature Vickers hardness when cooled
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000026056A JP2001158937A (en) | 1999-09-22 | 2000-02-03 | Tool steel for hot working, method for manufacturing the same, and method for manufacturing tool for hot working |
US09/664,766 US6478898B1 (en) | 1999-09-22 | 2000-09-19 | Method of producing tool steels |
EP00308357A EP1087030B9 (en) | 1999-09-22 | 2000-09-22 | Method of producing tool steel and tool |
DE60021670T DE60021670T2 (en) | 1999-09-22 | 2000-09-22 | Method for producing a tool steel and tool |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26904299 | 1999-09-22 | ||
JP11-269042 | 1999-09-22 | ||
JP2000026056A JP2001158937A (en) | 1999-09-22 | 2000-02-03 | Tool steel for hot working, method for manufacturing the same, and method for manufacturing tool for hot working |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001158937A true JP2001158937A (en) | 2001-06-12 |
Family
ID=26548588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000026056A Pending JP2001158937A (en) | 1999-09-22 | 2000-02-03 | Tool steel for hot working, method for manufacturing the same, and method for manufacturing tool for hot working |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001158937A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009116933A1 (en) * | 2008-03-18 | 2009-09-24 | Uddeholm Tooling Aktiebolag | Steel, process for the manufacture of a steel blank and process for the manufacture of a component of the steel |
JP2011195917A (en) * | 2010-03-23 | 2011-10-06 | Sanyo Special Steel Co Ltd | Hot work tool steel excellent in toughness |
JP5002081B1 (en) * | 2012-02-29 | 2012-08-15 | 株式会社 山一ハガネ | Mold manufacturing method and mold |
JP2013213255A (en) * | 2012-04-02 | 2013-10-17 | Sanyo Special Steel Co Ltd | Hot working die steel |
JP2014512456A (en) * | 2011-03-04 | 2014-05-22 | ウッデホルムス アーベー | Hot working tool steel and method for producing hot working tool steel |
JP2019505674A (en) * | 2015-12-24 | 2019-02-28 | ロバルマ, ソシエダッド アノニマRovalma, S.A. | Long-term durable high performance steel for structural, mechanical and tool applications |
JP2019085633A (en) * | 2017-11-10 | 2019-06-06 | 山陽特殊製鋼株式会社 | Hot work tool steel having excellent thermal conductivity |
CN114574769A (en) * | 2021-11-19 | 2022-06-03 | 日照市质量检验检测研究院 | Rare earth hot work die steel and preparation method thereof |
CN117286405A (en) * | 2023-09-18 | 2023-12-26 | 常熟市龙特耐磨球有限公司 | High-hardness forged wear-resistant steel ball and preparation method thereof |
-
2000
- 2000-02-03 JP JP2000026056A patent/JP2001158937A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101612087B1 (en) | 2008-03-18 | 2016-04-12 | 우데홀름스 악티에보라그 | Steel, process for the manufacture of a steel blank and process for the manufacture of a component of the steel |
WO2009116933A1 (en) * | 2008-03-18 | 2009-09-24 | Uddeholm Tooling Aktiebolag | Steel, process for the manufacture of a steel blank and process for the manufacture of a component of the steel |
EP2252717A4 (en) * | 2008-03-18 | 2014-10-01 | Uddeholms Ab | Steel, process for the manufacture of a steel blank and process for the manufacture of a component of the steel |
US8562761B2 (en) | 2008-03-18 | 2013-10-22 | Uddeholms Ab | Steel |
JP2011195917A (en) * | 2010-03-23 | 2011-10-06 | Sanyo Special Steel Co Ltd | Hot work tool steel excellent in toughness |
JP2014512456A (en) * | 2011-03-04 | 2014-05-22 | ウッデホルムス アーベー | Hot working tool steel and method for producing hot working tool steel |
WO2013128533A1 (en) * | 2012-02-29 | 2013-09-06 | 株式会社 山一ハガネ | Die manufacturing method and die |
JP5002081B1 (en) * | 2012-02-29 | 2012-08-15 | 株式会社 山一ハガネ | Mold manufacturing method and mold |
JP2013213255A (en) * | 2012-04-02 | 2013-10-17 | Sanyo Special Steel Co Ltd | Hot working die steel |
JP2019505674A (en) * | 2015-12-24 | 2019-02-28 | ロバルマ, ソシエダッド アノニマRovalma, S.A. | Long-term durable high performance steel for structural, mechanical and tool applications |
JP2019085633A (en) * | 2017-11-10 | 2019-06-06 | 山陽特殊製鋼株式会社 | Hot work tool steel having excellent thermal conductivity |
JP7083242B2 (en) | 2017-11-10 | 2022-06-10 | 山陽特殊製鋼株式会社 | Hot tool steel with excellent thermal conductivity |
CN114574769A (en) * | 2021-11-19 | 2022-06-03 | 日照市质量检验检测研究院 | Rare earth hot work die steel and preparation method thereof |
CN117286405A (en) * | 2023-09-18 | 2023-12-26 | 常熟市龙特耐磨球有限公司 | High-hardness forged wear-resistant steel ball and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102738290B1 (en) | Hot working die steel, heat treatment method thereof and hot working die | |
JP6432070B2 (en) | Hot die steel for long-life die casting excellent in high-temperature thermal conductivity and method for producing the same | |
CA2969200C (en) | Thick-walled high-toughness high-strength steel plate and method for manufacturing the same | |
JP5076683B2 (en) | High toughness high speed tool steel | |
JP5929963B2 (en) | Hardening method of steel | |
US6478898B1 (en) | Method of producing tool steels | |
US5648044A (en) | Graphite steel for machine structural use exhibiting excellent free cutting characteristic, cold forging characteristic and post-hardening/tempering fatigue resistance | |
US5478523A (en) | Graphitic steel compositions | |
KR101330756B1 (en) | Low-specific gravity steel for forging having excellent machinability | |
JP5727400B2 (en) | Steel for plastic mold and method for producing the same | |
JP7172275B2 (en) | Hot stamping die steel, hot stamping die and manufacturing method thereof | |
JP2001158937A (en) | Tool steel for hot working, method for manufacturing the same, and method for manufacturing tool for hot working | |
JP4123618B2 (en) | Hot work tool steel with excellent high temperature strength and toughness | |
CN115279932B (en) | Steel for hot working die, and method for producing same | |
JP2001089826A (en) | Hot tool steel with excellent wear resistance | |
JP2010163648A (en) | Cold work die steel and die | |
KR20020001933A (en) | A low alloyed high speed tool steel for hot and warm working having good toughness and high strength and manufacture method thereof | |
JP2022130746A (en) | Non-heat-treated forged component and non-heat-treated forging steel | |
JP7229827B2 (en) | Manufacturing method of high carbon steel sheet | |
WO2012172185A1 (en) | Method for manufacturing a medium carbon steel product and a hot rolled medium carbon steel product | |
JP5061455B2 (en) | Hot die tool steel for aluminum die casting with reduced cracking from water-cooled holes | |
JP3191008B2 (en) | Hot tool steel | |
JPH11269603A (en) | Hot tool steel with excellent machinability and tool life | |
JP7540437B2 (en) | Steel for hot stamping dies, hot stamping dies and their manufacturing method | |
JP4513551B2 (en) | Billet manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061018 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081022 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081118 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090407 |