JP2015193867A - high toughness hot work tool steel - Google Patents

high toughness hot work tool steel Download PDF

Info

Publication number
JP2015193867A
JP2015193867A JP2014071259A JP2014071259A JP2015193867A JP 2015193867 A JP2015193867 A JP 2015193867A JP 2014071259 A JP2014071259 A JP 2014071259A JP 2014071259 A JP2014071259 A JP 2014071259A JP 2015193867 A JP2015193867 A JP 2015193867A
Authority
JP
Japan
Prior art keywords
toughness
steel
less
heat treatment
homogenization heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014071259A
Other languages
Japanese (ja)
Other versions
JP6366326B2 (en
Inventor
前田 雅人
Masahito Maeda
雅人 前田
幸生 舘
Yukio Tate
幸生 舘
中間 一夫
Kazuo Nakama
一夫 中間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2014071259A priority Critical patent/JP6366326B2/en
Publication of JP2015193867A publication Critical patent/JP2015193867A/en
Application granted granted Critical
Publication of JP6366326B2 publication Critical patent/JP6366326B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a hot work tool steel excellent in toughness by reducing the amount of crystallization carbide during solidification which is harmful to toughness by controlling contents of Ti and N as impurities, and reducing area percentage of carbonitride existing in a steel product with an appropriate homogenization heat treatment.SOLUTION: There is provided a high toughness hot work tool steel containing, by mass%, C of 0.30 to 0.55%, Si of 0.1 to 1.2%, Mn of 0.2 to 1.5%, Ni of 0.1 to 2.0%, Cr of 1.5 to 6.0%, one or two kind of Mo and W with Mo+1/2 W of 0.1 to 2.5%, one or two of V and Nb with V+1/2 Nb of 0.2 to 1.0%, Al of 0.03% or less and the balance Fe with inevitable impurities, N and Ti as inevitable impurities satisfying N≤0.0150%, Ti≤0.005%, and [N]×[Ti]≤3×10(Formula 1).

Description

この発明は、熱間鍛造、鋳造またはダイカストなどの金型用の熱間工具鋼に関する。   The present invention relates to a hot tool steel for a die such as hot forging, casting or die casting.

従来、熱間鍛造、鋳造またはダイカストなどの金型用の熱間工具鋼としては、JIS G 4404 のSKD61、SKD6、SKTなどのほか、3Cr−3Mo系鋼、セミハイス系鋼などが使用されている。しかし、近年は複数の部品に分かれていたものを、生産効率の向上を狙って一体に製造することが多くなり、従来の鋼種では、早期にヒートクラックの発生や大割れが起こるようになっており、より高強度、高靱性を有する熱間工具鋼が求められている。   Conventionally, as hot tool steel for dies such as hot forging, casting or die casting, JIS G 4404 SKD61, SKD6, SKT, etc., 3Cr-3Mo steel, semi-high steel, etc. are used. . However, in recent years, products that have been divided into multiple parts are often manufactured as a single unit with the aim of improving production efficiency. With conventional steel types, heat cracks and large cracks occur at an early stage. Therefore, there is a demand for hot tool steel having higher strength and higher toughness.

例えば、この熱間工具用の鋼材料としては、重量%で、C:0.3〜0.4%、Mn:0.2〜0.8%、Cr:4〜6%、Mo:1.8〜3%、V:0.4〜0.6%、残部鉄および不可避金属不純物および不可避非金属不純物からなる熱間加工工具用の鋼材で、これらの鋼材は、1000〜1080℃におけるオーステナイト化および550〜650℃における焼戻しによって45HRC超の硬度を得ることができる鋼材が発明として開示されている(例えば、特許文献1参照。)。ところで、この特許文献1には窒素とチタンの低減が凝固時に生成するMX系晶出物を軽減することで鋼材の靭性低下が抑えられることが述べられている。しかしながら、窒素とチタンを規定値以下にするだけでは不十分であり、靱性の向上が得られない場合がある。なお、上記のMXは、MがV、Tiであり、XはCおよび/またはNを表す。   For example, as a steel material for this hot tool, C: 0.3-0.4%, Mn: 0.2-0.8%, Cr: 4-6%, Mo: 1. 8 to 3%, V: 0.4 to 0.6%, steel materials for hot working tools composed of the remaining iron and inevitable metal impurities and inevitable non-metal impurities. These steel materials are austenitized at 1000 to 1080 ° C. Further, a steel material capable of obtaining a hardness exceeding 45 HRC by tempering at 550 to 650 ° C. has been disclosed as an invention (see, for example, Patent Document 1). By the way, this Patent Document 1 states that the reduction of nitrogen and titanium reduces the toughness of the steel material by reducing the MX-based crystallized product generated during solidification. However, it is not sufficient to make nitrogen and titanium below the specified value, and toughness may not be improved. In the above MX, M represents V and Ti, and X represents C and / or N.

また、質量%で、C:0.2〜0.7%、Cr:0.5〜7.0%、MoまたはWの1種または2種を(Mo+1/2W)にて、0.1〜6.0%、V:3.0%以下を含有する、JISに記載される成分組成の熱間加工具において、Alが0.04%以下に記載されかつ、基地組成のCrの偏析度合いが±0.2質量%以内、(Mo+1/2W)の偏析度合いが±0.08質量%以内、Vの偏析度合いが±007質量%以内であり、断面組織中に観察される最大径5μm以下の窒化アルミニウムが2500個/mm2以下(0個を含む)である靱性に優れた熱間工具鋼の発明が開示されている(例えば、特許文献2参照。)。しかし、この提案では、基地組成のC、Mo、Vの偏析度合いの規定、およびAlの低減による窒化アルミニウムの抑制により高靱性が得られるとされているが、凝固時の偏析による晶出炭窒化物については考慮されておらず、また原材料等に含まれる製品に混入するTiを考慮しないと窒化物量の抑制は不十分であり、またソーキングの効果も得られにくくなるため、高い靱性が得られない場合がある。 Further, in terms of mass%, C: 0.2 to 0.7%, Cr: 0.5 to 7.0%, one or two of Mo or W at (Mo + 1 / 2W), 0.1 to In the hot working tool of the component composition described in JIS containing 6.0%, V: 3.0% or less, Al is described in 0.04% or less, and the segregation degree of the base composition Cr is Within ± 0.2% by mass, the degree of segregation of (Mo + 1 / 2W) is within ± 0.08% by mass, the degree of segregation of V is within ± 007% by mass, and the maximum diameter observed in the cross-sectional structure is 5 μm or less. An invention of a hot work tool steel excellent in toughness in which aluminum nitride is 2500 pieces / mm 2 or less (including 0 pieces) is disclosed (for example, see Patent Document 2). However, in this proposal, it is said that high toughness can be obtained by prescribing the degree of segregation of the base composition C, Mo, V, and suppressing aluminum nitride by reducing Al, but crystallization carbonitriding by segregation during solidification The material is not taken into account, and if the Ti contained in the product contained in the raw materials is not taken into account, the amount of nitride is not sufficiently controlled, and it becomes difficult to obtain the soaking effect, so high toughness is obtained. There may not be.

特許第4516211号公報Japanese Patent No. 4516211 特許第4441907号公報Japanese Patent No. 4441907

本発明が解決しようとする課題は、不純物としてのTiとNの含有量を制御することで、靱性に有害な凝固時の晶出炭化物の形成量を低減し、また、適正な均質化熱処理を加えるなどにより、鋼材製品に残存する晶出物である炭窒化物の面積率を一定値以下に減少させることで、極めて優れた靱性を有する熱間工具鋼を提供することである。   The problem to be solved by the present invention is to control the contents of Ti and N as impurities, thereby reducing the amount of crystallized carbides formed during solidification harmful to toughness, and performing appropriate homogenization heat treatment It is intended to provide a hot tool steel having extremely excellent toughness by reducing the area ratio of carbonitride, which is a crystallized product remaining in a steel product product, to a certain value or less by adding it.

上記の課題を解決するための手段は、第1の手段では、質量%で、C:0.30〜0.55%、Si:0.1〜1.2%、Mn:0.2〜1.5%、Ni:0.1〜2.0%、Cr:1.5〜6.0%を含有し、さらにMoおよびWのいずれか1種または2種からなり、Mo+1/2W:0.1〜2.5%を含有し、さらにVおよびNbのいずれか1種または2種からなり、V+1/2Nb:0.2〜1.0%を含有し、さらにAl:0.03%以下を含有し、残部Feおよび不可避的不純物からなる鋼であり、この不可避的不純物としてのNおよびTiは、N≦0.0150%、Ti≦0.005%を満たし、かつ、[N]×[Ti]≦3×10-5…(式1)を満たし、JIS規定の鍛練成形比:4s以上に鍛伸して焼なまし状態とした場合の鋼材の断面組織中における、5μm以上の長さを有する炭窒化物の面積率が0.4%以下であることを特徴とする高靱性熱間工具鋼である。 Means for solving the above-mentioned problems are, in the first means, mass%, C: 0.30 to 0.55%, Si: 0.1 to 1.2%, Mn: 0.2 to 1 0.5%, Ni: 0.1-2.0%, Cr: 1.5-6.0%, and further comprising any one or two of Mo and W, Mo + 1 / 2W: 0.0. 1 to 2.5%, further comprising any one or two of V and Nb, V + 1 / 2Nb: 0.2 to 1.0%, and Al: 0.03% or less And N and Ti as the inevitable impurities satisfy N ≦ 0.0150%, Ti ≦ 0.005%, and [N] × [Ti ] ≦ 3 × 10 -5 ... satisfy the equation (1), wrought molding ratio specified by JIS: If you and forging to annealed state above 4s In cross-section in the tissue of the steel material is a high tenacity hot work tool steel, wherein the area ratio of carbo-nitride having a length more than 5μm is 0.4% or less.

第2の手段では、質量%で、C:0.30〜0.55%、Si:0.1〜1.2%、Mn:0.2〜1.5%、Ni:0.1〜2.0%、Cr:1.5〜6.0%を含有し、さらにMoおよびWのいずれか1種または2種からなり、Mo+1/2W:0.1〜2.5%を含有し、さらにVおよびNbのいずれか1種または2種からなり、V+1/2Nb:0.2〜1.0%を含有し、さらにAl:0.03%以下を含有し、残部Feおよび不可避的不純物からなる鋼であり、この不可避的不純物としてのNおよびTiは、N≦0.0150%、Ti≦0.005%を満たし、かつ、[N]×[Ti]≦3×10-5…(式1)を満たし、JIS規定の鍛練成形比:4s以上に鍛伸して焼なまし状態とした場合の鋼材の断面組織中における、5μm以上の長さを有する炭窒化物の面積率が0.4%以下であり、鋳造したままの鋼塊を1200〜1300℃の温度範囲内で、かつ、1334−73×[C]−12[Si]−均質化熱処理温度(℃)>0を満たす温度で均質化熱処理を行うことを特徴とする高靱性熱間工具鋼である。 In the second means, in mass%, C: 0.30 to 0.55%, Si: 0.1 to 1.2%, Mn: 0.2 to 1.5%, Ni: 0.1 to 2 0.0%, Cr: 1.5 to 6.0%, further comprising any one or two of Mo and W, Mo + 1 / 2W: 0.1 to 2.5%, It consists of any one or two of V and Nb, contains V + 1 / 2Nb: 0.2-1.0%, further contains Al: 0.03% or less, and consists of the balance Fe and inevitable impurities. N and Ti as inevitable impurities satisfy N ≦ 0.0150%, Ti ≦ 0.005%, and [N] × [Ti] ≦ 3 × 10 −5 (Formula 1 ) Forging and forming ratio specified by JIS: 5 μm in the cross-sectional structure of steel when forged to 4 s or more and annealed. The area ratio of the carbonitride having the above length is 0.4% or less, and the as-cast steel ingot is within a temperature range of 1200 to 1300 ° C. and 1334-73 × [C] -12 [ Si] —a high toughness hot tool steel characterized by performing a homogenization heat treatment at a temperature satisfying a homogenization heat treatment temperature (° C.)> 0.

本願の請求項に係る発明は、上記の手段としたことで、晶出物である炭窒化物の面積率が0.4%以下であり、均質化熱処理温度を行ったときに、偏析部で溶融層が発生したことによるボイドの発生が無く、且つ、粗大な一次炭化物が無い、衝撃値が40J/cm2以上となる、優れた靱性を有する熱間工具鋼が得られる。 The invention according to the claims of the present application is the above means, so that the area ratio of the carbonitride which is a crystallized substance is 0.4% or less, and when the homogenization heat treatment temperature is performed, A hot work tool steel having excellent toughness having no void due to the occurrence of a molten layer, no coarse primary carbide, and an impact value of 40 J / cm 2 or more is obtained.

本願発明における化学成分の含有量および構成要素について、以下に説明する。なお、%は質量%である。   The chemical component content and components in the present invention will be described below. In addition,% is the mass%.

C:0.30〜0.55%
Cは、十分な焼入れ性を確保し、炭化物を形成させることで鋼の硬度、耐摩耗性および強度を得るために必要な元素で、また焼入れ時のオーステナイト粒の粗大化を抑制する元素である。Cが0.30%より低すぎると、十分な強度および耐摩耗性が得られない。一方、Cが0.55%より多すぎると、凝固偏析を助長し、粗大炭化物の晶出や、ソーキング時に溶融層の発生が生じやすくなり、靱性を阻害する。そこで、Cは0.30〜0.55%とし、望ましくは、0.30〜0.50%とする。
C: 0.30 to 0.55%
C is an element necessary for ensuring sufficient hardenability and forming carbides to obtain the hardness, wear resistance and strength of steel, and is an element which suppresses the austenite grain coarsening during quenching. . If C is lower than 0.30%, sufficient strength and wear resistance cannot be obtained. On the other hand, when C is more than 0.55%, solidification segregation is promoted, and crystallization of coarse carbides or generation of a molten layer is likely to occur during soaking, thereby inhibiting toughness. Therefore, C is 0.30 to 0.55%, preferably 0.30 to 0.50%.

Si:0.1〜1.2%
Siは、製鋼での脱酸効果、焼入性確保として必要な元素である。Siが0.1%未満であると、これらの効果を発揮しない。一方、Siが1.2%より多すぎると靱性を低下させ、また、熱間工具鋼として重要な物性値である熱伝導率を低下させる。そこで、Siは0.1〜1.2%とし、望ましくは、0.2〜1.1%とする。
Si: 0.1-1.2%
Si is an element necessary for ensuring the deoxidation effect and hardenability in steelmaking. If Si is less than 0.1%, these effects are not exhibited. On the other hand, if the Si content is more than 1.2%, the toughness is reduced, and the thermal conductivity, which is an important physical property value for hot tool steel, is reduced. Therefore, Si is set to 0.1 to 1.2%, preferably 0.2 to 1.1%.

Mn:0.2〜1.5%
Mnは、製鋼での脱酸効果、焼入性の確保として必要な元素である。Mnが0.2%未満ではこれらの効果を十分に得られない。一方、Mnが1.5%を超えると靱性および被削性を低下させる。そこで、Mnは0.2〜1.5%とし、望ましくは、0.3〜1.2%とする。
Mn: 0.2 to 1.5%
Mn is an element necessary for ensuring the deoxidation effect and hardenability in steelmaking. If Mn is less than 0.2%, these effects cannot be obtained sufficiently. On the other hand, when Mn exceeds 1.5%, toughness and machinability are lowered. Therefore, Mn is set to 0.2 to 1.5%, preferably 0.3 to 1.2%.

Ni:0.1〜2.0%
Niは、焼入性、靱性を向上する元素である。Niが0.1%未満では、これらの効果が得られない。一方、Niが2.0%より多すぎても特性向上が殆どなく、また、A1変態点を低下させて耐熱性を劣化させ、被削性も悪化する。そこでNiは0.1〜2.0%とし、望ましくは、0.1〜1.5%とする。
Ni: 0.1 to 2.0%
Ni is an element that improves hardenability and toughness. If Ni is less than 0.1%, these effects cannot be obtained. On the other hand, even if Ni is more than 2.0%, there is almost no improvement in characteristics, and the A 1 transformation point is lowered to deteriorate the heat resistance, and the machinability is also deteriorated. Therefore, Ni is set to 0.1 to 2.0%, preferably 0.1 to 1.5%.

Cr:1.5〜6.0%
Crは、焼入性を改善し、耐摩耗性の向上に有効な元素である。しかし、Crが1.5%未満ではこれらの効果は十分に得られない。一方、Crが6.0%より多すぎると、焼入焼き戻し時にCr系の炭化物が多量に形成され、靱性、高温強度および軟化抵抗性を低下させる。そこで、Crは1.5〜6.0%とし、望ましくは、1.5〜5.5%とする。
Cr: 1.5-6.0%
Cr is an element that improves hardenability and is effective in improving wear resistance. However, when Cr is less than 1.5%, these effects cannot be obtained sufficiently. On the other hand, if the Cr content is more than 6.0%, a large amount of Cr-based carbides are formed during quenching and tempering, and the toughness, high-temperature strength and softening resistance are lowered. Therefore, Cr is 1.5 to 6.0%, preferably 1.5 to 5.5%.

Mo+1/2W:0.1〜2.5%
MoまたはWは、焼入性と二次硬化および耐摩耗性に寄与する析出炭化物を得るために必要な元素である。さらに、MoまたはWは、焼入れ時に未固溶となった微細な炭化物が結晶粒の粗大化を抑制する効果を有する。しかし、MoまたはWの1種あるいは2種からなるMo+1/2Wが0.1%より少ないと、上記の効果が得られない。一方、MoまたはWの1種あるいは2種からなるMo+1/2Wは過剰に添加してもその効果は飽和するばかりか、炭化物が粗大凝集することにより靱性を低下させ、また、コスト高となる。そこで、Mo+1/2Wは0.1〜2.5%とし、望ましくは、0.3〜2.2%とする。
Mo + 1 / 2W: 0.1-2.5%
Mo or W is an element necessary for obtaining precipitated carbides that contribute to hardenability, secondary hardening, and wear resistance. Furthermore, Mo or W has the effect that the fine carbide which became insoluble at the time of quenching suppresses the coarsening of crystal grains. However, if Mo + 1 / 2W composed of one or two of Mo or W is less than 0.1%, the above effect cannot be obtained. On the other hand, even if Mo + 1 / 2W composed of one or two of Mo or W is added in excess, the effect is saturated, and the toughness is reduced due to coarse aggregation of carbides, and the cost is increased. Therefore, Mo + 1 / 2W is set to 0.1 to 2.5%, preferably 0.3 to 2.2%.

V+1/2Nb:0.2〜1.0%
VまたはNbは、焼戻し時に微細で硬質な炭化物、炭窒化物を析出し、強度や耐摩耗性に寄与する元素である。また、VまたはNbは、焼入れ時には微細な炭化物や微細な炭窒化物が結晶粒の粗大化を抑制し、靱性の低下を抑制する。しかし、VまたはNbの1種あるいは2種からなるV+1/2Nbが0.2%より少ないと、上記の効果が得られない。一方、VまたはNbの1種あるいは2種からなるV+1/2Nbは多すぎると、凝固時に粗大な晶出物を生成し、靱性を阻害する。そこで、V+1/2Nbは0.2〜1.0%とし、望ましくは、0.2〜0.8%とする。
V + 1 / 2Nb: 0.2-1.0%
V or Nb is an element that precipitates fine and hard carbides and carbonitrides during tempering and contributes to strength and wear resistance. In addition, V or Nb suppresses coarsening of crystal grains and suppresses a decrease in toughness during quenching because of fine carbides and fine carbonitrides. However, if V + 1 / 2Nb composed of one or two of V and Nb is less than 0.2%, the above effect cannot be obtained. On the other hand, when there is too much V + 1 / 2Nb which consists of 1 type or 2 types of V or Nb, the coarse crystallized substance will be produced | generated at the time of solidification and toughness will be inhibited. Therefore, V + 1 / 2Nb is set to 0.2 to 1.0%, preferably 0.2 to 0.8%.

Al:0.03%以下
Alは、0.03%より多いと、酸化物や窒化物が多くなり、割れ起点となりやすく、鋼の疲労強度、靱性が低下する。そこで、Alは0.03%以下とし、望ましくは、0.02%以下とする。
Al: 0.03% or less When Al is more than 0.03%, oxides and nitrides are increased, which tends to be the starting point of cracking, and the fatigue strength and toughness of the steel are reduced. Therefore, Al is set to 0.03% or less, preferably 0.02% or less.

不可避的不純物としてのNおよびTi:N≦0.0150%、Ti≦0.005%、かつ、[N]×[Ti]≦3×10-5…(式1)を満足する。
不可避的不純物としてのNおよびTiは、N≦0.0150%、Ti≦0.005%であって、かつ、[N]×[Ti]≦3×10-5…(式1)を満足するときは、凝固時の晶出物生成を抑制する。しかし、[N]×[Ti]が3×10-5を超えると、晶出物が固溶しにくくなり鋼材中の炭窒化物が粗大になりやすい。そこで、不可避的不純物としてのNおよびTiはN≦0.0150%、Ti≦0.005%、かつ、[N]×[Ti]≦3×10-5…(式1)を満足するものとする。
N and Ti as inevitable impurities: N ≦ 0.0150%, Ti ≦ 0.005%, and [N] × [Ti] ≦ 3 × 10 −5 (Formula 1) are satisfied.
N and Ti as inevitable impurities satisfy N ≦ 0.0150%, Ti ≦ 0.005%, and satisfy [N] × [Ti] ≦ 3 × 10 −5 (Formula 1). In some cases, the generation of crystallized products during solidification is suppressed. However, when [N] × [Ti] exceeds 3 × 10 −5 , the crystallized product is difficult to dissolve, and the carbonitride in the steel material tends to be coarse. Therefore, N and Ti as unavoidable impurities satisfy N ≦ 0.0150%, Ti ≦ 0.005%, and [N] × [Ti] ≦ 3 × 10 −5 (Formula 1). To do.

JIS規格の鍛練成形比:4s以上に鍛伸した焼なまし状態の鋼材の断面組織中における5μm以上の長さを有する炭窒化物の面積率:0.4%以下
JIS規格の鍛練成形比を4s以上に鍛伸した焼なまし状態の鋼材の断面組織中における5μm以上の長さを有する炭窒化物の面積率が0.4%より増えると、炭窒化物への応力集中で発生した割れが炭窒化物に沿って進展して近傍の炭化窒化物につながり易くなり、靱性が低下する。そこで、鍛練成形比を4s以上に鍛伸した焼なまし状態の鋼材の断面組織中における5μm以上の長さを有する炭窒化物の面積率は0.4%以下とする。
JIS standard forging ratio: Area ratio of carbonitride having a length of 5 μm or more in the cross-sectional structure of an annealed steel material forged to 4 s or more: 0.4% or less JIS standard forging ratio Cracks generated by stress concentration on carbonitride when the area ratio of carbonitride having a length of 5 μm or more in the cross-sectional structure of the annealed steel material forged to 4 s or more exceeds 0.4% Advances along the carbonitride and becomes easy to connect to a nearby carbonitride, resulting in a decrease in toughness. Therefore, the area ratio of carbonitride having a length of 5 μm or more in the cross-sectional structure of the annealed steel material forged to a forging forming ratio of 4 s or more is set to 0.4% or less.

鋳造したままの鋼塊:1200〜1300℃の範囲で、かつ、1334−73×[C]−12[Si]−で均質化熱処理温度(℃)>0を満たす温度で均質化熱処理を行う
鋳造したままの鋼塊は、均質化熱処理が1200℃未満で行われると、晶出物の固溶および固溶元素の拡散が不十分になる。一方、鋳造したままの鋼塊は、1334−73×[C]−12[Si]−均質化熱処理温度(℃)≦0、若しくは均質化熱処理が1300℃を超えて行われると、偏析部で溶融層が発生し、一次炭化物の粗大化、靱性の低下や熱間加工性の悪化が起きる。そこで、鋳造したままの鋼塊は1200〜1300℃の範囲で、かつ、1334−73×[C]−12[Si]−均質化熱処理温度(℃)>0を満たす温度で均質化熱処理する。
Ingot as cast: Perform homogenization heat treatment at a temperature satisfying the homogenization heat treatment temperature (° C.)> 0 with 1334-73 × [C] -12 [Si] − in the range of 1200 to 1300 ° C. Casting If the steel ingot as it is is subjected to a homogenization heat treatment at a temperature lower than 1200 ° C., the solid solution of the crystallized product and the diffusion of the solid solution element become insufficient. On the other hand, as-cast steel ingot is 1334-73 × [C] -12 [Si] -homogenization heat treatment temperature (° C.) ≦ 0, or when the homogenization heat treatment is performed above 1300 ° C. A molten layer is generated, resulting in coarsening of primary carbides, deterioration of toughness and deterioration of hot workability. Therefore, the as-cast steel ingot is subjected to homogenization heat treatment at a temperature satisfying the range of 1200 to 1300 ° C and satisfying 1334-73 × [C] -12 [Si] -homogenization heat treatment temperature (° C)> 0.

ここで、本発明の実施の形態について述べることとする。
先ず、質量%で示す、表1の本発明例および比較例に挙げた化学成分を含有し、残部がFeと不可避不純物からなる組成の鋼を、1ton真空溶解炉を用いて溶製した後、インゴットに造塊した。これらのインゴットを表2に設定した均質化熱処理温度で12時間保持して均質化熱処理を施した後、鍛錬成形比が凡そ6Sとなる直径160mm(すなわち、直径960mmのものを直径160mm)に熱間鍛造して鋼材を製造した。なお、本発明では、上記の真空溶解炉の他に、ESR(エレクトロスラグ再溶解)法、あるいは、VAR(真空アーク再溶解)法による二次溶解を行ってもよい。
Here, an embodiment of the present invention will be described.
First, after melting the steel of the composition containing the chemical components listed in Table 1 of the present invention and the comparative example shown in Table 1 with the balance consisting of Fe and inevitable impurities using a 1 ton vacuum melting furnace, The ingot was agglomerated. These ingots were held at the homogenization heat treatment temperature set in Table 2 for 12 hours and subjected to the homogenization heat treatment. Steel material was manufactured by forging. In the present invention, in addition to the above-described vacuum melting furnace, secondary melting may be performed by ESR (electroslag remelting) method or VAR (vacuum arc remelting) method.

Figure 2015193867
Figure 2015193867

上記で製造した各鋼材の中周部すなわち半径40mmの部分より割出して得た60mm角の立方体を用い、880〜1030℃の焼入れ温度にて30分間均熱保持した後、撹拌している50℃の油に投入して油冷して焼入れをした。   Using the 60 mm square cube obtained by indexing from the middle part of each steel material produced above, that is, the part having a radius of 40 mm, stirring is carried out for 30 minutes at a quenching temperature of 880 to 1030 ° C., followed by stirring 50 It was put into oil at 0 ° C. and quenched by oil cooling.

Figure 2015193867
Figure 2015193867

さらに、これらの試験片は、500℃以上の焼戻し温度で焼戻しを行い、熱間工具鋼で主に使用される44〜46HRCに調質した。得られた鋼材の靱性は、シャルピー衝撃試験により破壊に要したエネルギーで評価した。これらに用いた試験片は、直径160mm鍛造材の中心部の垂直方向から採取し、JIS Z 2242に規定する深さ2mmのUノッチを圧延方向に垂直となる面に加工したものである。靭性の良し悪しの判断には、一般的に熱間工具鋼に最低20J/cm2必要とされていることから、その2倍の40J/cm2以上の衝撃値が得られるか否かで判断した。 Further, these test pieces were tempered at a tempering temperature of 500 ° C. or higher, and tempered to 44 to 46 HRC mainly used in hot tool steel. The toughness of the obtained steel material was evaluated by the energy required for destruction by the Charpy impact test. The test pieces used for these were taken from the vertical direction of the central part of the forged material having a diameter of 160 mm, and a U-notch having a depth of 2 mm defined in JIS Z 2242 was processed into a surface perpendicular to the rolling direction. The toughness of the good or bad determination, typically because it is a minimum 20 J / cm 2 required for hot tool steel, judged by whether 40 J / cm 2 or more impact value twice to obtain did.

炭窒化物である晶出物量は、直径160mmの鍛造材の中心部より、圧延方向に平行な面にて10mm角で長さが16mmの試験片を採取し、観察により計測した。すなわち、試験片を最終バフ研磨にて鏡面研磨仕上げをした後、光学顕微鏡にて400倍で観察を行い、炭窒化物の晶出物が多い箇所を30視野選択し、炭窒化物である晶出物の面積率を算出して炭窒化物面積率(%)として晶出物量を示した。   The amount of crystallized material, which is carbonitride, was measured by observing a 10 mm square test piece having a length of 16 mm on a surface parallel to the rolling direction from the center of a forged material having a diameter of 160 mm. In other words, after the specimen was mirror-polished by final buffing, the specimen was observed at 400 times with an optical microscope, and 30 fields of view where there were many carbonitride crystallized substances were selected. The area ratio of the deposit was calculated and the amount of crystallized substance was shown as the carbonitride area ratio (%).

既に記載したように、本発明の実施の形態における表1の、質量%で示す化学成分からなる、本発明例のNo.1〜16および比較例のNo.17〜31につき、さらに説明すると、本発明の請求項1および請求項2に係る発明の不可避的不純物として、質量%で、N≦0.0150%およびTi≦0.005%であり、かつ、[N]×[Ti]≦3×10-5…(1)式を満足し、さらに表2の、4s以上に鍛伸した焼なまし状態の鋼材の断面組織中において、5μm以上の長さを有する炭窒化物の面積率は0.4%以下であり、さらに請求項2に係る発明は、これの要件に加えて、均質化熱処理温度1200〜1300℃の範囲内で、且つ、1334−73×[C]−12[Si]−で均質化熱処理温度(℃)>0を満たす温度で均質化熱処理するものである。これらは溶融層の有無、および(T方向の)衝撃値40J/cm2以上の値について、表2で示されている。なお、上記の[N]および[Ti]はそれぞれNおよびTiの質量%を示している。 As already described, No. of the example of the present invention consisting of the chemical components indicated by mass% in Table 1 in the embodiment of the present invention. 1-16 and Comparative Example No. 17 to 31 will be further described. As inevitable impurities of the invention according to claim 1 and claim 2 of the present invention, mass%, N ≦ 0.0150% and Ti ≦ 0.005%, and [N] × [Ti] ≦ 3 × 10 −5 (1) The length of 5 μm or more in the cross-sectional structure of the annealed steel material that has been forged to 4 s or more in Table 2 is satisfied. The carbon nitride having an area ratio of 0.4% or less is further included, and in addition to this requirement, the invention according to claim 2 includes a homogenization heat treatment temperature in the range of 1200 to 1300 ° C. and 1334- The homogenization heat treatment is performed at a temperature satisfying the homogenization heat treatment temperature (° C.)> 0 with 73 × [C] -12 [Si] −. These are shown in Table 2 for the presence or absence of a molten layer and the impact value (in the T direction) of 40 J / cm 2 or more. In addition, said [N] and [Ti] have shown the mass% of N and Ti, respectively.

表2に示す本発明例のNo.1〜No.16は、炭窒化物の面積率はいずれも0.4%以下であり、均質化熱処理温度も1200〜1300℃で、且つ、1334−73×[C]−12[Si]−で均質化熱処理温度(℃)>0を満たしており、溶融層の発生もなく、衝撃値(T方向)も40J/cm2以上で靱性も高く○である。   No. of the example of the present invention shown in Table 2. 1-No. No. 16 has a carbonitride area ratio of 0.4% or less, a homogenization heat treatment temperature of 1200 to 1300 ° C., and 1334-73 × [C] -12 [Si] —. Temperature (° C.)> 0 is satisfied, no molten layer is generated, the impact value (T direction) is 40 J / cm 2 or more, and the toughness is high.

一方、表2に示す比較例の、No.17は均質化熱処理をしないことで、No.18はNが0.015%より多いことで、No.28は表1に示すようにTiが0.005%より多いことで、長さ5μm以上の炭窒化物が鋼在中に多く存在し、それぞれ衝撃値(T方向の)が40J/cm2未満で靱性が低く×である。 On the other hand, in the comparative example shown in Table 2, No. No. 17 does not undergo homogenization heat treatment. No. 18 has N higher than 0.015%. No. 28 has a Ti content of more than 0.005% as shown in Table 1, and many carbonitrides with a length of 5 μm or more are present in the steel, and the impact value (T direction) is less than 40 J / cm 2. The toughness is low and x.

比較例のNo.19、およびNo.20は、焼入性が悪く、靱性が低く×である。   Comparative Example No. 19, and no. No. 20 has poor hardenability and low toughness.

比較例のNo.21、およびNo.24は、析出炭化物が少なく、焼入れ加熱時に結晶粒の粗大化が抑制できず、靱性が低く×である。   Comparative Example No. 21, and no. No. 24 has a small amount of precipitated carbides, cannot suppress the coarsening of crystal grains during quenching heating, and has low toughness.

比較例のNo.22、No.23およびNo.26は、均質化熱処理後も粗大な晶出炭化物が多くなり、また、偏析が著しいため、靱性が低く×である。   Comparative Example No. 22, no. 23 and no. No. 26 is low in toughness because of a large amount of coarse crystallized carbide even after the homogenization heat treatment, and segregation is remarkable, and X.

比較例のNo.25は、酸化物、窒化物生成量が多くなり過ぎて、靱性が不足して×である。   Comparative Example No. No. 25 is x because oxides and nitrides are generated too much and toughness is insufficient.

比較例のNo.27は、Mnが2.2%と1.5%より多すぎ基地の脆化が起こり、十分な靱性が得られず×である。   Comparative Example No. In No. 27, Mn is 2.2%, which is too much than 1.5%, and brittleness of the base occurs, and sufficient toughness cannot be obtained.

比較例のNo.29は、Cが0.65%と0.55%より多く、1334−73×[C]−12[Si]−均質化熱処理温度(℃)≦0であるため、均質化熱処理時に偏析部で溶融層が発生して一次炭化物が粗大化し、また、偏析も著しいため靱性が不足して×である。   Comparative Example No. 29, C is 0.65%, more than 0.55%, and 1334-73 × [C] -12 [Si] -homogenization heat treatment temperature (° C.) ≦ 0. The melted layer is generated, the primary carbide is coarsened, and segregation is also remarkable, so that the toughness is insufficient, and x.

比較例のNo.30は、均質化熱処理温度が1150℃と1200℃より低いため、偏析部での晶出物の固溶が十分には進まず、靱性が不十分になり×である。   Comparative Example No. No. 30 is x because the homogenization heat treatment temperature is lower than 1150 ° C. and 1200 ° C., so that the solid solution of the crystallized product in the segregation part does not sufficiently progress and the toughness becomes insufficient.

比較例のNo.31は、均質化熱処理温度が1320℃と1300℃より高く、1334−73×[C]−12[Si]−均質化熱処理温度(℃)≦0であるため、均質化熱処理時に偏析部で溶融層が発生して一次炭化物が粗大化し、靱性が不足して×である。   Comparative Example No. No. 31 has a homogenization heat treatment temperature of 1320 ° C. and higher than 1300 ° C., and 1334-73 × [C] -12 [Si] −homogenization heat treatment temperature (° C.) ≦ 0. A layer is generated, the primary carbide becomes coarse, and the toughness is insufficient.

Claims (2)

質量%で、C:0.30〜0.55%、Si:0.1〜1.2%、Mn:0.2〜1.5%、Ni:0.1〜2.0%、Cr:1.5〜6.0%を含有し、さらにMoおよびWのいずれか1種または2種からなり、Mo+1/2W:0.1〜2.5%を含有し、さらにVおよびNbのいずれか1種または2種からなり、V+1/2Nb:0.2〜1.0%を含有し、さらにAl:0.03%以下を含有し、残部Feおよび不可避的不純物からなる鋼であって、この不可避的不純物としてのNおよびTiは、N≦0.0150%、Ti≦0.005%で、かつ、[N]×[Ti]≦3×10-5を満たし、さらにJIS規定の鍛練成形比で4s以上に鍛伸した鋼材を焼なましした状態で鋼材の断面に長さが5μm以上である炭窒化物が面積率で0.4%以下であることを特徴とする高靱性熱間工具鋼。 In mass%, C: 0.30 to 0.55%, Si: 0.1 to 1.2%, Mn: 0.2 to 1.5%, Ni: 0.1 to 2.0%, Cr: 1.5 to 6.0%, further comprising any one or two of Mo and W, Mo + 1 / 2W: 0.1 to 2.5%, and either V or Nb It consists of one or two kinds, V + 1 / 2Nb: 0.2 to 1.0%, further containing Al: 0.03% or less, the balance Fe and unavoidable impurities steel, N and Ti as unavoidable impurities satisfy N ≦ 0.0150%, Ti ≦ 0.005%, satisfy [N] × [Ti] ≦ 3 × 10 −5 , and have a JIS-specified forging ratio. In the state where the steel material forged for 4 s or more was annealed, the carbon nitride having a length of 5 μm or more in the cross section of the steel material was an area ratio of 0. % High tenacity hot work tool steel which is characterized in that less. 質量%で、C:0.30〜0.55%、Si:0.1〜1.2%、Mn:0.2〜1.5%、Ni:0.1〜2.0%、Cr:1.5〜6.0%を含有し、さらにMoおよびWのいずれか1種または2種からなり、Mo+1/2W:0.1〜2.5%を含有し、さらにVおよびNbのいずれか1種または2種からなり、V+1/2Nb:0.2〜1.0%を含有し、さらにAl:0.03%以下を含有し、残部Feおよび不可避的不純物からなる鋼であって、この不可避的不純物としてのNおよびTiは、N≦0.0150%、Ti≦0.005%で、かつ、[N]×[Ti]≦3×10-5を満たし、さらにJIS規定の鍛練成形比で4s以上に鍛伸した鋼材を焼なましした状態で鋼材の断面に長さが5μm以上である炭窒化物が面積率で0.4%以下であり、鋳造したままの鋼塊を1200〜1300℃の温度範囲内の範囲で、かつ、1334−73×[C]−12[Si]−均質化熱処理温度(℃)>0を満たす温度で均質化熱処理を行うことを特徴とする高靱性熱間工具鋼。 In mass%, C: 0.30 to 0.55%, Si: 0.1 to 1.2%, Mn: 0.2 to 1.5%, Ni: 0.1 to 2.0%, Cr: 1.5 to 6.0%, further comprising any one or two of Mo and W, Mo + 1 / 2W: 0.1 to 2.5%, and either V or Nb It consists of one or two kinds, V + 1 / 2Nb: 0.2 to 1.0%, further containing Al: 0.03% or less, the balance Fe and unavoidable impurities steel, N and Ti as unavoidable impurities satisfy N ≦ 0.0150%, Ti ≦ 0.005%, satisfy [N] × [Ti] ≦ 3 × 10 −5 , and have a JIS-specified forging ratio. In the state where the steel material forged for 4 s or more was annealed, the carbon nitride having a length of 5 μm or more in the cross section of the steel material was an area ratio of 0. %, And the ingot as cast is in a temperature range of 1200 to 1300 ° C. and satisfies 1334-73 × [C] -12 [Si] -homogenization heat treatment temperature (° C.)> 0. High toughness hot work tool steel characterized by homogenization heat treatment at temperature.
JP2014071259A 2014-03-31 2014-03-31 High toughness hot work tool steel and manufacturing method thereof Active JP6366326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014071259A JP6366326B2 (en) 2014-03-31 2014-03-31 High toughness hot work tool steel and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014071259A JP6366326B2 (en) 2014-03-31 2014-03-31 High toughness hot work tool steel and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015193867A true JP2015193867A (en) 2015-11-05
JP6366326B2 JP6366326B2 (en) 2018-08-01

Family

ID=54433162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014071259A Active JP6366326B2 (en) 2014-03-31 2014-03-31 High toughness hot work tool steel and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6366326B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017155306A (en) * 2016-03-03 2017-09-07 山陽特殊製鋼株式会社 Hot tool steel having excellent high temperature strength and toughness
CN108085587A (en) * 2016-11-21 2018-05-29 斗山重工业建设有限公司 The outstanding long-life die casting hot die steel of high-temperature heat-conductive and its manufacturing method
KR101904307B1 (en) 2016-12-22 2018-10-04 주식회사 포스코 Steel sheet for tool and method of manufacturing for the same
JP2019504197A (en) * 2015-12-22 2019-02-14 ウッデホルムズ アーベー Hot work tool steel
EA031666B1 (en) * 2016-10-25 2019-02-28 Белорусский Национальный Технический Университет Tool steel
JP2019183187A (en) * 2018-04-02 2019-10-24 大同特殊鋼株式会社 Steel for mold and mold
CN110993040A (en) * 2019-11-28 2020-04-10 太原科技大学 Method for determining critical value of 30Cr2Ni4MoV steel converted from casting state to forging state
WO2020192617A1 (en) * 2019-03-26 2020-10-01 江苏润孚机械轧辊制造有限公司 Method for producing silicon steel cold-rolling work rolls from ordinary forged steel roll blanks

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003226939A (en) * 2002-02-05 2003-08-15 Nippon Koshuha Steel Co Ltd Hot tool steel
JP2006504868A (en) * 2002-06-13 2006-02-09 ウッデホルム トウリング アクテイエボラーグ Molding tool for steel and plastic materials made of this steel
JP2006104519A (en) * 2004-10-05 2006-04-20 Daido Steel Co Ltd High toughness hot tool steel and its production method
JP2013087322A (en) * 2011-10-18 2013-05-13 Sanyo Special Steel Co Ltd Hot die steel
JP2013213255A (en) * 2012-04-02 2013-10-17 Sanyo Special Steel Co Ltd Hot working die steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003226939A (en) * 2002-02-05 2003-08-15 Nippon Koshuha Steel Co Ltd Hot tool steel
JP2006504868A (en) * 2002-06-13 2006-02-09 ウッデホルム トウリング アクテイエボラーグ Molding tool for steel and plastic materials made of this steel
JP2006104519A (en) * 2004-10-05 2006-04-20 Daido Steel Co Ltd High toughness hot tool steel and its production method
JP2013087322A (en) * 2011-10-18 2013-05-13 Sanyo Special Steel Co Ltd Hot die steel
JP2013213255A (en) * 2012-04-02 2013-10-17 Sanyo Special Steel Co Ltd Hot working die steel

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11131012B2 (en) 2015-12-22 2021-09-28 Uddeholms Ab Hot work tool steel
JP2019504197A (en) * 2015-12-22 2019-02-14 ウッデホルムズ アーベー Hot work tool steel
JP7045315B2 (en) 2015-12-22 2022-03-31 ウッデホルムズ アーベー Hot tool steel
JP2017155306A (en) * 2016-03-03 2017-09-07 山陽特殊製鋼株式会社 Hot tool steel having excellent high temperature strength and toughness
EA031666B1 (en) * 2016-10-25 2019-02-28 Белорусский Национальный Технический Университет Tool steel
CN108085587A (en) * 2016-11-21 2018-05-29 斗山重工业建设有限公司 The outstanding long-life die casting hot die steel of high-temperature heat-conductive and its manufacturing method
JP2018083980A (en) * 2016-11-21 2018-05-31 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド Hot die steel used for die casting having an excellent thermal conductivity at high temperature and a long life, and manufacturing method thereof
KR101904307B1 (en) 2016-12-22 2018-10-04 주식회사 포스코 Steel sheet for tool and method of manufacturing for the same
JP2019183187A (en) * 2018-04-02 2019-10-24 大同特殊鋼株式会社 Steel for mold and mold
US11319621B2 (en) 2018-04-02 2022-05-03 Daido Steel Co., Ltd. Steel for mold, and mold
JP7144717B2 (en) 2018-04-02 2022-09-30 大同特殊鋼株式会社 Mold steel and mold
WO2020192617A1 (en) * 2019-03-26 2020-10-01 江苏润孚机械轧辊制造有限公司 Method for producing silicon steel cold-rolling work rolls from ordinary forged steel roll blanks
CN110993040A (en) * 2019-11-28 2020-04-10 太原科技大学 Method for determining critical value of 30Cr2Ni4MoV steel converted from casting state to forging state
CN110993040B (en) * 2019-11-28 2023-03-14 太原科技大学 Method for determining critical value of 30Cr2Ni4MoV steel converted from cast state to forged state

Also Published As

Publication number Publication date
JP6366326B2 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
JP6366326B2 (en) High toughness hot work tool steel and manufacturing method thereof
JP7045315B2 (en) Hot tool steel
JP6032881B2 (en) Hot mold steel
AU2013302197B2 (en) Method for producing molten steel having high wear resistance and steel having said characteristics
CN108220815B (en) Hot work die steel with high heat resistance and high impact toughness for hot forging and preparation method thereof
WO2018182480A1 (en) Hot work tool steel
AU2018412622A1 (en) Austenitic wear-resistant steel plate
JP2013213255A (en) Hot working die steel
CN111479945A (en) Wear-resistant steel having excellent hardness and impact toughness and method for manufacturing same
JP2017155306A (en) Hot tool steel having excellent high temperature strength and toughness
JP5815946B2 (en) Hardening method of steel
JP2014009396A (en) Cold tool steel having high hardness and high toughness
US20120055288A1 (en) Method of Making a High Strength, High Toughness, Fatigue Resistant, Precipitation Hardenable Stainless Steel and Product Made Therefrom
JP6529234B2 (en) High speed tool steel with high toughness and softening resistance
JP2013521411A (en) Tool steel for extrusion
JP6797465B2 (en) High hardness matrix highs with excellent toughness and high temperature strength
JP5680461B2 (en) Hot work tool steel
WO2018056884A1 (en) Hot work tool steel
JP6903507B2 (en) Hot tool steel with excellent hardenability and toughness
JP2008144211A (en) V-containing non-heat treated steel
JP2015134945A (en) Carburizing steel
JP2018131654A (en) Hot work tool steel having excellent toughness and softening resistance
JP7214313B2 (en) High toughness cold work tool steel with high wear resistance
CN109415793B (en) Steel for tool holder
JP6195727B2 (en) Cast iron castings and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180703

R150 Certificate of patent or registration of utility model

Ref document number: 6366326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250