JP6797465B2 - High hardness matrix highs with excellent toughness and high temperature strength - Google Patents

High hardness matrix highs with excellent toughness and high temperature strength Download PDF

Info

Publication number
JP6797465B2
JP6797465B2 JP2016136406A JP2016136406A JP6797465B2 JP 6797465 B2 JP6797465 B2 JP 6797465B2 JP 2016136406 A JP2016136406 A JP 2016136406A JP 2016136406 A JP2016136406 A JP 2016136406A JP 6797465 B2 JP6797465 B2 JP 6797465B2
Authority
JP
Japan
Prior art keywords
less
toughness
steel
hardness
highs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016136406A
Other languages
Japanese (ja)
Other versions
JP2018003146A (en
Inventor
祐太 島村
祐太 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2016136406A priority Critical patent/JP6797465B2/en
Publication of JP2018003146A publication Critical patent/JP2018003146A/en
Application granted granted Critical
Publication of JP6797465B2 publication Critical patent/JP6797465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Description

この発明は、冷間鍛造、温間鍛造、熱間鍛造、熱間押出、ダイカストなどの金型に好適なマトリクスハイスに関する。 The present invention relates to a matrix height suitable for dies such as cold forging, warm forging, hot forging, hot extrusion, and die casting.

硬度と耐摩耗性が得られるハイスとして、例えばJIS−SKH51があるが、MoやV、Wといった合金元素が多く添加されているため、凝固時に晶出し、均質化熱処理や焼入れ後も残存する一次炭化物(以下、粗大炭化物)が増加し、靭性が低下する傾向にあった。このハイスと同等の硬さを得つつ、靭性を高めたハイスとして、マトリクスハイスがある。マトリクスハイスは、JIS−SKH51などの高速度工具鋼の基地(マトリクス)組成を参考にし、MoやV、Wといった合金元素を低下させた成分系であり、高い強度と靭性を兼備した工具鋼であり、これらには、例えば、以下の従来技術1〜3が知られている。 For example, JIS-SKH51 is a high-speed sheet that can obtain hardness and wear resistance, but since a large amount of alloying elements such as Mo, V, and W are added, it crystallizes during solidification and remains after homogenization heat treatment or quenching. Carbides (hereinafter referred to as coarse carbides) tended to increase and toughness tended to decrease. Matrix highs are used as highs with increased toughness while obtaining hardness equivalent to that of highs. Matrix high-speed steel is a component system in which alloying elements such as Mo, V, and W are reduced with reference to the base (matrix) composition of high-speed tool steel such as JIS-SKH51, and is a tool steel with high strength and toughness. Yes, for example, the following prior arts 1 to 3 are known.

本願発明から見た課題を、従来技術として、公開の特許公報の技術からみてみると、製品寸法による特性バラツキの少ない合金高速度工具鋼であって、その実施例に示される成分として、CrやV量などの上限値の高い成分系のものが提案されている(例えば、特許文献1参照。)。しかしながら、この合金高速度工具鋼では、高温強度や靱性が低下するという問題があった。 Looking at the problems seen from the present invention from the viewpoint of the technology of the published patent publication as a conventional technique, it is an alloy high-speed tool steel having little variation in characteristics depending on the product dimensions, and Cr and Cr are used as components shown in the examples. A component system having a high upper limit value such as the amount of V has been proposed (see, for example, Patent Document 1). However, this alloy high-speed tool steel has a problem that high-temperature strength and toughness are lowered.

一方、高い靱性を有する高速度工具鋼で、靱性に対してマトリクス中に析出する炭化物の粒径や分布密度に関する検討がなされているものがある(例えば特許文献2参照。)。ところで、この高速度工具鋼に示される成分は、C量が極めて低く、冷間鍛造金型などの実用的な硬さ(62HRC以上の硬さ)が得られない問題がある。 On the other hand, some high-speed tool steels having high toughness have been studied for the particle size and distribution density of carbides precipitated in the matrix with respect to the toughness (see, for example, Patent Document 2). By the way, the component shown in this high-speed tool steel has an extremely low amount of C, and has a problem that a practical hardness (hardness of 62 HRC or more) such as a cold forging die cannot be obtained.

さらに、高温強度に優れたマトリクスハイスにおいて、実施例に示される成分では、主に、MoやW、Vの含有量が多いので、高温強度が得られる物が提案されている(例えば、特許文献3参照。)。しかし、このマトリクスハイスは、反面、凝固時に生成される粗大炭化物が残存して靱性が低下する問題がある。 Further, in the matrix highs having excellent high-temperature strength, the components shown in the examples mainly contain a large amount of Mo, W, and V, so that high-temperature strength can be obtained (for example, Patent Documents). See 3.). However, on the other hand, this matrix highs has a problem that coarse carbides generated during solidification remain and the toughness is lowered.

従来技術として、上記のような、靱性や高温強度が優れたマトリクスハイスが開発されているが、いずれも硬さ・靱性・高温強度の全ての特性を満足するものではない。 As a conventional technique, matrix highs having excellent toughness and high-temperature strength as described above have been developed, but none of them satisfy all the characteristics of hardness, toughness, and high-temperature strength.

特開2004−285444号公報Japanese Unexamined Patent Publication No. 2004-285444 特開2004−307963号公報Japanese Unexamined Patent Publication No. 2004-307963 特開2005−206913号公報Japanese Unexamined Patent Publication No. 2005-20913

本願発明が解決しようとする課題は、従来技術の問題であった、硬さ、高温強度及び靱性の全ての特性が優れたマトリクスハイスを提案することである。 The problem to be solved by the present invention is to propose a matrix highs having excellent hardness, high temperature strength and toughness, which have been problems of the prior art.

硬さや高温強度を増加させるためには、Cや炭化物形成元素であるCrやMo、Vを増加させればよいが、過剰な添加は、凝固時の粗大炭化物形成を促進し、靱性低下の要因となる。このことから、粗大炭化物の面積率に着目し、鋼塊に均質化処理を適用した後の粗大炭化物面積率と靱性の関係を明らかにし、さらに、この関係に基づいた合金元素添加量の最適化、すなわち、1、凝固時に発生する粗大炭化物の低減、2、均質化熱処理における粗大炭化物固溶促進の観点から、炭化物形成元素を調整し、硬さ・高温強度・靱性に優れたマトリクスハイスの成分範囲を見出した。 In order to increase the hardness and high-temperature strength, C and carbide-forming elements Cr, Mo, and V may be increased, but excessive addition promotes coarse carbide formation during solidification and causes a decrease in toughness. It becomes. From this, we focused on the area ratio of coarse carbides, clarified the relationship between the area ratio of coarse carbides and toughness after applying the homogenization treatment to the ingot, and further optimized the amount of alloying elements added based on this relationship. That is, 1. Carbide forming elements are adjusted from the viewpoint of reducing coarse carbides generated during solidification and promoting solid dissolution of coarse carbides in homogenization heat treatment, and the components of matrix high steel having excellent hardness, high temperature strength, and toughness. I found a range.

そこで、上記の課題を解決するための手段は、第1の手段では、質量%で、C:0.55〜0.75%、Si:0.50〜1.50%、Mn:0.10〜1.00%、Cr:3.00〜5.00%、Mo:2.00〜3.00%かつW:2.00%以下の範囲内で、2Mo+W:4.00〜6.00%、V:0.80〜1.30%、P:0.30%以下、S:0.01%以下、O:0.0050%、N:0.0300以下を含有し、残部がFe及び不可避不純物であり、鋼塊状態で内部に残存する炭化物で、円相当径で2.0μm以上のMX型または/およびM6X(XはCまたはN)型の面積率1μm2当り3.0%以下であり、該鋼塊の熱間鍛造後の鋼材の焼入焼戻後の硬さが62HRC以上であることを特徴とする優れた靱性および高強度を有するマトリクスハイスである。 Therefore, in the first means, the means for solving the above-mentioned problems are C: 0.55 to 0.75%, Si: 0.50 to 1.50%, Mn: 0.10. ~ 1.00%, Cr: 3.00 to 5.00%, Mo: 2.00 to 3.00% and W: 2.00% or less, 2Mo + W: 4.00 to 6.00% , V: 0.80 to 1.30%, P: 0.30% or less, S: 0.01% or less, O: 0.0050%, N: 0.0300 or less, and the balance is Fe and unavoidable. It is an impurity and is a carbide remaining inside in the steel ingot state. It is 3.0% per 1 μm 2 of MX type and / and M 6 X (X is C or N) type with a circle equivalent diameter of 2.0 μm or more. The following is a matrix highs having excellent toughness and high strength, characterized in that the hardness of the steel material after hot forging of the ingot after quenching and tempering is 62 HRC or more.

本願の発明は、硬さ、高温強度及び靱性の全ての特性の点で優れている冷間鍛造、温間鍛造、熱間鍛造、熱間押出、ダイカストなどの金型に好適なマトリクスハイスである。 The invention of the present application is a matrix height suitable for dies such as cold forging, warm forging, hot forging, hot extrusion, die casting, etc., which are excellent in all characteristics of hardness, high temperature strength and toughness. ..

発明を実施するための形態に先立って、本願発明の化学成分の限定理由を説明する。なお、化学成分の%は質量%である。 Prior to the embodiment for carrying out the invention, the reasons for limiting the chemical components of the present invention will be described. The% of the chemical component is mass%.

C:0.55〜075%
Cは、十分な焼入性や焼入焼戻硬さを確保し、炭化物を形成させることで耐摩耗性や高温強度を得るための元素である。しかし、Cの含有量が0.55%より少なすぎると、得られた鋼材に十分な硬さ、高温強度、耐摩耗性が得られない。一方、Cの含有量が0.75%より多すぎると、凝固時に、粗大炭化物の晶出量が増加するため、得られた鋼材の靱性が低下する。そこで、Cは0.55〜075%とし、好ましくは0.60〜0.70%とする。
C: 0.55 to 075%
C is an element for ensuring sufficient hardenability and quenching tempering hardness and forming carbides to obtain wear resistance and high temperature strength. However, if the C content is too less than 0.55%, sufficient hardness, high temperature strength, and wear resistance cannot be obtained for the obtained steel material. On the other hand, if the C content is more than 0.75%, the amount of coarse carbides crystallized increases during solidification, and the toughness of the obtained steel material decreases. Therefore, C is 0.55 to 075%, preferably 0.60 to 0.70%.

Si:0.50〜1.50%
Siは、製鋼での脱酸効果および焼入性の確保として必要な元素であり、Siが0.50%より少ないとこれらの効果が十分に得られない。一方、Siが1.50%より多すぎると、MX(XはCまたはN)型炭化物の固溶温度を上昇させるため、得られた鋼材の均質化熱処理の効果が小さくなり、靱性が低下する。そこで、Siは0.50〜1.50%とし、好ましくは0.75〜1.25%とする。
Si: 0.50 to 1.50%
Si is an element necessary for ensuring the deoxidizing effect and hardenability in steelmaking, and if Si is less than 0.50%, these effects cannot be sufficiently obtained. On the other hand, if the amount of Si is more than 1.50%, the solid solution temperature of the MX (X is C or N) type carbide is raised, so that the effect of the homogenized heat treatment of the obtained steel material is reduced and the toughness is lowered. .. Therefore, Si is set to 0.50 to 1.50%, preferably 0.75 to 1.25%.

Mn:0.10〜1.00%
Mnは、焼入性の確保に必要な元素であり、Mnが0.10%より少ないと、この硬化が十分に得られない。一方、Mnが1.00%より多い過剰添加は加工性を低下させる。そこで、Mnは0.10〜1.00%とする。
Mn: 0.10 to 1.00%
Mn is an element necessary for ensuring hardenability, and if Mn is less than 0.10%, this curing cannot be sufficiently obtained. On the other hand, excessive addition of Mn more than 1.00% lowers workability. Therefore, Mn is set to 0.10 to 1.00%.

Cr:3.00〜5.00%
Crは、焼入性を改善する元素で、3.00%未満では、焼入性が不足し、焼入冷却時にベイナイトなどの組織を生成し、靱性が低下する。一方、Crが多すぎると、焼入焼戻時にCr系の比較的微細な炭化物が多く析出する。この炭化物は高温で粗大化し易いため、高温環境での硬度低下が大きい。すなわちCrが多すぎると、高温強度や軟化抵抗性を低下させる。そこで、Crは3.00〜5.00%とし、好ましくは3.50〜4.50%とする。
Cr: 3.00 to 5.00%
Cr is an element that improves hardenability, and if it is less than 3.00%, the hardenability is insufficient, a structure such as bainite is formed during quenching cooling, and the toughness is lowered. On the other hand, if the amount of Cr is too large, a large amount of Cr-based relatively fine carbides are precipitated during quenching and tempering. Since this carbide tends to be coarsened at a high temperature, the hardness is greatly reduced in a high temperature environment. That is, if the amount of Cr is too large, the high temperature strength and softening resistance are lowered. Therefore, Cr is set to 3.00 to 5.00%, preferably 3.50 to 4.50%.

Mo:2.00〜3.00%、かつ、W:2.00以下の範囲内で、2Mo+W:4.00〜6.00%
MoとWは、焼入性と焼戻し時の二次硬化、耐摩耗性、高温強度および軟化抵抗性に寄与する元素であり、また、焼入時に未固溶となった微細な炭化物が結晶粒の粗大化を抑制する。しかし、これらの効果は、Moが2.00〜3.00%、かつ、Wが2.00以下の範囲内で、2Mo+Wが4.00〜6.00%より少ないと、得られない。一方、多すぎると、凝固時に、M6X(XはCまたはN)型の粗大炭化物の晶出量が増加し、また、炭化物自体の安定度も高くなり、均質化熱処理の効果が小さくなることで残存炭化物が増加し、これらの相乗効果により、靱性が低下する。そこで、Moが2.00〜3.00%、かつ、Wが2.00以下の範囲内で、2Mo+W:4.00〜6.00%とし、好ましくは、Moが2.4〜3.0%、かつ、Wが1.00%以下の範囲内で、2Mo+W:4.80〜6.00%とする。
Mo: 2.00 to 3.00% and W: 2.00 or less, 2Mo + W: 4.00 to 6.00%
Mo and W are elements that contribute to hardenability, secondary hardening during tempering, abrasion resistance, high-temperature strength, and softening resistance, and fine carbides that have become unsolidified during quenching are crystal grains. Suppresses the coarsening of. However, these effects cannot be obtained when Mo is 2.00 to 3.00% and W is 2.00 or less and 2Mo + W is less than 4.00 to 6.00%. On the other hand, if it is too large, the amount of crystallization of M 6 X (X is C or N) type coarse carbide increases during solidification, the stability of the carbide itself increases, and the effect of the homogenizing heat treatment decreases. As a result, residual carbides increase, and due to these synergistic effects, toughness decreases. Therefore, within the range where Mo is 2.00 to 3.00% and W is 2.00 or less, 2Mo + W: 4.00 to 6.00%, preferably Mo is 2.4 to 3.0. % And W is within the range of 1.00% or less, and 2Mo + W: 4.80 to 6.00%.

V:0.80〜1.30%
Vは、焼戻し時に微細で硬質なMX(XはCまたはN)型炭化物、窒化物、炭窒化物が析出し、高温強度や耐摩耗性に寄与する元素で、また、焼入時には未固溶となった微細な炭化物や炭窒化物が結晶粒の粗大化を抑制し、靭性の低下を抑制する。しかし、Vが0.80%より少ないとこれらの効果が得られない。一方、Vが1.30%より多すぎると、凝固時に、MX(XはCまたはN)型粗大炭化物の晶出量が増加し、また、炭化物自体の安定度も増加することから、均質化熱処理の効果が小さくなることで、残存炭化物が増加する。これらの相乗効果により、靱性が低下する。また、Vが1.30%より多すぎるとMC型炭化物として消費されるC量が多くなり、硬さが低下する。そこで、Vは0.80〜1.30%とし、好ましくは0.90〜1.20%とする。
V: 0.80-1.30%
V is an element that contributes to high temperature strength and abrasion resistance by precipitating fine and hard MX (X is C or N) type carbides, nitrides, and carbonitrides during tempering, and is unsolidified during quenching. The resulting fine carbides and carbonitrides suppress the coarsening of crystal grains and suppress the decrease in toughness. However, if V is less than 0.80%, these effects cannot be obtained. On the other hand, if V is more than 1.30%, the amount of crystallization of MX (X is C or N) type coarse carbide increases during solidification, and the stability of the carbide itself also increases. As the effect of the heat treatment decreases, the residual carbide increases. Due to these synergistic effects, toughness is reduced. Further, if V is more than 1.30%, the amount of C consumed as MC-type carbide increases and the hardness decreases. Therefore, V is set to 0.80 to 1.30%, preferably 0.90 to 1.20%.

P:0.030%以下
Pは、不純物元素であるが、結晶粒界へ偏析し、靭性を低下させる。そこで、Pは0.030%以下とする。
P: 0.030% or less P is an impurity element, but segregates at the grain boundaries and reduces toughness. Therefore, P is set to 0.030% or less.

S:0.010%以下
Sは、不純物元素であるが、硫化物を形成し、靭性および熱間加工性を低下させる。そこで、Sは0.01%以下とする。
S: 0.010% or less S is an impurity element, but forms sulfide and lowers toughness and hot workability. Therefore, S is set to 0.01% or less.

O:0.0050%以下
Oは、不純物元素であるが、酸化物を形成し、破壊の起点となり、靭性や疲労強度を低下させる。そこで、Oは0.0050%以下とする。
O: 0.0050% or less O is an impurity element, but it forms an oxide, becomes a starting point of fracture, and lowers toughness and fatigue strength. Therefore, O is set to 0.0050% or less.

N:0.0300%以下
Nは、不純物元素であるが、0.0300%より多すぎると、凝固過程で、MC型よりもより高温で安定なMN型窒化物が晶出し、靭性を阻害する。そこで、Nは0.0300%以下とする。
N: 0.0300% or less N is an impurity element, but if it is more than 0.0300%, MN-type nitride, which is more stable at a higher temperature than MC-type, crystallizes during the solidification process and inhibits toughness. .. Therefore, N is set to 0.0300% or less.

鋼塊状態で内部に残存する炭化物で、円相当径で2.0μm以上のMX型または/およびM6X(XはCまたはN)型の1μm2当り:3.0%以下
マトリクスハイスにおいて、粗大炭化物は破壊の起点となり易く、また、き裂の進展を助長し易いため、靱性の観点からできるだけ少ないことが望ましい。鋼塊状態で内部に残存する粗大炭化物に関して、円相当径で2.0μm以上のMX型または/およびM6X(XはCまたはN)型の1μm2当り3.0%以下であるとき、優れた靱性が得られた。よって、その面積率が1μm2当り3.0%以下とする。
Carbide remaining inside in the steel ingot state, with a diameter equivalent to a circle of 2.0 μm or more, MX type and / and M 6 X (X is C or N) type per 1 μm 2 : 3.0% or less In matrix highs. Coarse carbide tends to be a starting point of fracture and promotes crack growth, so it is desirable to reduce it as much as possible from the viewpoint of toughness. With respect to the coarse carbide remaining inside in the ingot state, when it is 3.0% or less per 1 μm 2 of MX type and / and M 6 X (X is C or N) type with a diameter equivalent to a circle of 2.0 μm or more. Excellent toughness was obtained. Therefore, the area ratio is set to 3.0% or less per 1 μm 2 .

熱間鍛造後の鋼材の焼入焼戻後の硬さ:62HRC以上
本願発明は、熱間や温間金型用途だけではなく、冷間鍛造用途も想定したマトリクスハイスに関する発明である。冷間鍛造用途では、金型の実用的は硬さは62HRC以上であることが望まれるため、熱間鍛造後の鋼材の焼入焼戻後の硬さが、62HRC以上とする。
Hardness after quenching and tempering of steel material after hot forging: 62 HRC or more The present invention relates to a matrix highs that is intended not only for hot and warm dies but also for cold forging. For cold forging applications, it is desirable that the practical hardness of the die is 62 HRC or more. Therefore, the hardness of the steel material after hot forging after quenching and tempering is 62 HRC or more.

ここで、本願の発明を実施するための形態について説明する。例えば次の(1)および(2)のような製造不法が適用できる。 Here, a mode for carrying out the invention of the present application will be described. For example, the following manufacturing illegalities such as (1) and (2) can be applied.

(1)本発明鋼の化学成分からなる1次溶解による鋳造材を真空アーク再溶解法(VAR)やエレクトロスラグ再溶解法(ESR)によって2次溶解して再凝固させる。この方法では、2次溶解により、再溶解後の凝固が短時間で行われるため、凝固偏析が起こりにくく、炭化物の局所的な凝集および偏析を抑えることが可能となる。 (1) A cast material composed of the chemical components of the steel of the present invention by primary melting is secondarily melted and resolidified by a vacuum arc remelting method (VAR) or an electroslag remelting method (ESR). In this method, since solidification after re-dissolution is performed in a short time by the secondary dissolution, solidification segregation is unlikely to occur, and local coagulation and segregation of carbides can be suppressed.

(2)上記の(1)の方法により溶解、再凝固させた鋼を、1150〜1250℃で10時間以上のソーキング処理を実施する製造方法である。この製造方法は、鋼中に析出した粗大な炭化物を適性範囲の大きさにコントロールするために最適の製造方法である。このソーキング処理は、焼入れ温度よりも高温で、かつ、融点よりも低い温度で実施する必要がある。ソーキング処理を適性に行えば、形成された粗大な炭化物を小さくし、さらに炭化物の量を少なくして均一に分散させることが可能である。なお、ソーキング処理する温度と時間は成分によって適性値が異なる。 (2) This is a manufacturing method in which the steel melted and resolidified by the method of (1) above is soaked at 1150 to 1250 ° C. for 10 hours or more. This manufacturing method is the most suitable manufacturing method for controlling the size of coarse carbides precipitated in steel to an appropriate range. This soaking process needs to be carried out at a temperature higher than the quenching temperature and lower than the melting point. Appropriate soaking treatment makes it possible to reduce the size of the formed coarse carbides and further reduce the amount of carbides to uniformly disperse them. The appropriate values for the temperature and time of the soaking process differ depending on the components.

以下に示される表1における鋼材の特性については、(2)に示されるソーキング処理を用いた製造方法を適用した。すなわち、表1に示す、本発明鋼の記号A、C、E、G、H、J〜Oの11種と比較鋼の記号1〜17種の成分組成である化学成分と残部Feおよび不可避不純物からなるインゴットを1トン真空溶解炉を用いて造塊し、この溶製により得られたインゴットに、1200℃で15時間のソーキング処理をした後に、鍛練成形比が凡そ6Sとなる直径140mmに熱間鍛造により鋼材を製造した。 For the characteristics of the steel materials in Table 1 shown below, the manufacturing method using the soaking treatment shown in (2) was applied. That is, the chemical components, the balance Fe, and the unavoidable impurities, which are the composition of 11 kinds of the symbols A, C, E, G, H, JO of the steel of the present invention and 1 to 17 kinds of the symbols of the comparative steel shown in Table 1. An ingot made of steel is ingot in a 1-ton vacuum melting furnace, and the ingot obtained by this melting is soaked at 1200 ° C. for 15 hours, and then heated to a diameter of 140 mm so that the forging ratio is about 6S. Steel was manufactured by interforging.

Figure 0006797465
Figure 0006797465

上記の熱間鍛造により得られた鋼材の本発明鋼の記号A、C、E、G、H、J〜Oの11種と比較鋼の記号1〜17種の炭化物面積率、焼入焼戻し材の最大硬さ、靱性および軟化抵抗性について、表2に示した。 11 types of symbols A, C, E, G, H, JO of the present invention steel and 10 types of comparative steel symbols 1 to 17 of the steel material obtained by the above hot forging, carbide area ratio, quenching and tempering material The maximum hardness, toughness and softening resistance of the steel are shown in Table 2.

Figure 0006797465
Figure 0006797465

表2における、*1)炭化物面積率
インゴットに1200℃で15時間以上のソーキング処理した後に、中心部のミクロ組織を撮影し、画面解析によって1μm2当りの炭化物面積率を(%)で算出した。本願発明のおける炭化物面積率は3.0%以下である。したがって、3.0%を超える比較例の炭化物面積率は下線で示した
In Table 2, * 1) Carbide area ratio After soaking the ingot at 1200 ° C. for 15 hours or more, the microstructure in the center was photographed, and the carbide area ratio per 1 μm 2 was calculated in (%) by screen analysis. .. The carbide area ratio in the present invention is 3.0% or less. Therefore, the carbide area ratio of the comparative example exceeding 3.0% is underlined.

*2)焼入焼戻硬さ
焼入れは、表2の各鋼材の中心部より割出した25mm×25mm×25mmのブロックを用いて試料とし、1140℃で10分間保持し、攪拌している50℃の油に投入することで実施した。焼戻しは、480〜620℃で60分保持後に空冷する操作を3回繰り返した。得られた各試料を中断し、この中断した面を測定面として、測定面の熱影響層および反対面の表面にあるスケール層を平面研磨機にて除去し、平行精度を高めた後、ロックウエル硬度計にて硬さ測定した。480〜620℃の焼戻しの間で得られた2次硬化のピークとなる硬さを最大硬化とした。62.0HRC以上であれば○とし、62.0HRC未満であれば×とし、その値を下線で示した。
* 2) Quenching Tempering hardness Quenching is performed by using a block of 25 mm × 25 mm × 25 mm indexed from the center of each steel material in Table 2 as a sample, holding at 1140 ° C. for 10 minutes, and stirring. It was carried out by putting it in oil at ℃. For tempering, the operation of holding at 480 to 620 ° C. for 60 minutes and then air cooling was repeated three times. Each of the obtained samples is interrupted, the interrupted surface is used as the measurement surface, the heat-affected zone of the measurement surface and the scale layer on the surface opposite to the measurement surface are removed by a flat surface grinder to improve the parallelism, and then the rock well. The hardness was measured with a hardness meter. The hardness at which the peak of the secondary curing was obtained during tempering at 480 to 620 ° C. was defined as the maximum curing. If it is 62.0 HRC or more, it is evaluated as ◯, if it is less than 62.0 HRC, it is evaluated as ×, and the value is underlined.

*3)靱性
靱性は、シャルピー衝撃試験により評価を実施した。各鋼材の中心部から各辺25mmのブロック状供試材を割出し、1140℃で焼入れを実施後、焼戻しを行うことで、58HRCに調質した後、10RCノッチシャルピーに加工した。シャルピー衝撃値が100.0J/cm2以上であるときは◎とし、80.0J/cm2以上で100.0J/cm2未満であるときは○とし、80.0J/cm2未満であるときは×とし、其の衝撃値を下線で示した。
* 3) Toughness Toughness was evaluated by the Charpy impact test. A block-shaped test material having a side of 25 mm was indexed from the center of each steel material, quenched at 1140 ° C., and then tempered to be tempered to 58 HRC and then processed into 10 RC notch Charpy. When the Charpy impact value is 100.0 J / cm 2 or more, it is marked with ⊚, when it is 80.0 J / cm 2 or more and less than 100.0 J / cm 2, it is marked with ○, and when it is less than 80.0 J / cm 2. Is x, and its impact value is underlined.

*4)高温強度
高温強度に関する評価として、軟化抵抗性を用いた。軟化抵抗性試験の方法を以下に示す。各鋼材の中心部から各辺25mmのブロック上供試材を割出し、1140℃で焼入れを実施後、焼戻しを行うことで、57〜59HRCに調質し、該供試材を600℃にて50時間保持し、これらの鋼材を空冷する。次いで、測定面の熱影響層および反対面の表面にあるスケール層を平面研磨機にて除去した後、平行精度を高めた後、ロックウエル硬度計にて測定し、初期硬さとの差、すなわち軟化量(ΔHRC)により評価した。評価は軟化量が12.0以下であるときは○とし12.0を超えたときは×とし、その軟化量の値を下線で示した。
* 4) High temperature strength Softening resistance was used as an evaluation of high temperature strength. The method of the softening resistance test is shown below. A test material on a block with a side of 25 mm is indexed from the center of each steel material, quenched at 1140 ° C., and then tempered to prepare the test material to 57 to 59 HRC, and the test material is tempered at 600 ° C. Hold for 50 hours and air cool these steels. Next, after removing the heat-affected zone on the measurement surface and the scale layer on the surface opposite to the measurement surface with a flat surface grinder, the parallel accuracy is improved, and then the measurement is performed with a Rockwell hardness tester, and the difference from the initial hardness, that is, softening. Evaluated by quantity (ΔHRC). The evaluation was evaluated as ◯ when the softening amount was 12.0 or less and × when it exceeded 12.0, and the value of the softening amount was underlined.

Claims (1)

質量%で、C:0.55〜0.75%、Si:0.50〜1.50%、Mn:0.10〜1.00%、Cr:3.00〜5.00%、Mo:2.00〜3.00%かつW:2.00%以下の範囲内で、2Mo+W:4.00〜6.00%、V:0.80〜1.30%、P:0.030%以下、S:0.01%以下、O:0.0050%、N:0.0300以下を含有し、残部がFe及び不可避不純物であり、内部に残存する炭化物で、円相当径で2.0μm以上のMX型または/およびM6X(XはCまたはN)型の面積率1μm2当り3.0%以下である鋼塊状態のマトリクスハイスであり、該鋼塊を鍛練成形比が6Sとなる直径である140mmに熱間鍛造後の鋼材を1140℃で10分間保持し、50℃の油に投入することで焼入れを実施後、480〜620℃で60分保持後に空冷する操作を3回繰り返すことで焼戻しを行ったときに得られる焼入焼戻し材の硬さが62HRC以上であることを特徴とする優れた靱性および高強度を有するマトリクスハイス。 By mass%, C: 0.55 to 0.75%, Si: 0.50 to 1.50%, Mn: 0.10 to 1.00%, Cr: 3.00 to 5.00%, Mo: Within the range of 2.00 to 3.00% and W: 2.00% or less, 2Mo + W: 4.00 to 6.00%, V: 0.80-1.30%, P: 0.030% or less , S: 0.01% or less, O: 0.0050%, N: 0.0300 or less, the balance is Fe and unavoidable impurities, and the carbide remaining inside is 2.0 μm or more in the equivalent circle diameter. MX type and / and M 6 X (X is C or N) type is a matrix highs in a steel ingot state with an area ratio of 3.0% or less per 1 μm 2 , and the forging ratio of the ingot is 6S. held for 10 minutes to 140mm in diameter steel after hot forging at 1140 ° C., after implementing Re quenching by pouring into 50 ° C. oil, the operation of air cooling after 60 min holding at 480-620 ° C. 3 matrix high-speed steel with excellent toughness and high strength, wherein a hardness of quenching and tempering material obtained when performing the Shi tempering by repeating times is not less than 62HRC.
JP2016136406A 2016-07-08 2016-07-08 High hardness matrix highs with excellent toughness and high temperature strength Active JP6797465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016136406A JP6797465B2 (en) 2016-07-08 2016-07-08 High hardness matrix highs with excellent toughness and high temperature strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016136406A JP6797465B2 (en) 2016-07-08 2016-07-08 High hardness matrix highs with excellent toughness and high temperature strength

Publications (2)

Publication Number Publication Date
JP2018003146A JP2018003146A (en) 2018-01-11
JP6797465B2 true JP6797465B2 (en) 2020-12-09

Family

ID=60947686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016136406A Active JP6797465B2 (en) 2016-07-08 2016-07-08 High hardness matrix highs with excellent toughness and high temperature strength

Country Status (1)

Country Link
JP (1) JP6797465B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7372774B2 (en) * 2019-07-24 2023-11-01 山陽特殊製鋼株式会社 high speed steel
CN110317930A (en) * 2019-07-30 2019-10-11 河源市兴达源模具有限公司 A kind of automobile die method for surface hardening
JP7262502B2 (en) * 2021-03-18 2023-04-21 山陽特殊製鋼株式会社 Cold work tool steel and tools and dies using the steel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338686B2 (en) * 1972-09-08 1978-10-17
JP2960496B2 (en) * 1989-12-12 1999-10-06 日立金属株式会社 Cold tool steel
CN105579604A (en) * 2013-09-27 2016-05-11 日立金属株式会社 High-speed-tool steel and method for producing same
JP6529234B2 (en) * 2014-09-22 2019-06-12 山陽特殊製鋼株式会社 High speed tool steel with high toughness and softening resistance

Also Published As

Publication number Publication date
JP2018003146A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
JP6925781B2 (en) Hot tool steel with excellent high temperature strength and toughness
JP6366326B2 (en) High toughness hot work tool steel and manufacturing method thereof
JP6581782B2 (en) High toughness hot work tool steel with excellent machinability and softening resistance
JP6529234B2 (en) High speed tool steel with high toughness and softening resistance
JP6190298B2 (en) High strength bolt steel and high strength bolts with excellent delayed fracture resistance
JP6797465B2 (en) High hardness matrix highs with excellent toughness and high temperature strength
JP6703385B2 (en) Steel with high hardness and excellent toughness
JP7305483B2 (en) Hot work tool steel with excellent toughness
JP2007291444A (en) Hot work tool steel with high toughness, and its manufacturing method
JP6798557B2 (en) steel
JP6620490B2 (en) Age-hardening steel
JP2005273012A (en) Rod parts for machine structure superior in fatigue characteristics, and manufacturing method therefor
TWI612155B (en) Cold working tool material and method for manufacturing cold working tool
JP5680461B2 (en) Hot work tool steel
JP3541844B1 (en) Hot-forged non-tempered steel bars
JP2008202078A (en) Hot-working die steel
JP6788520B2 (en) Hot tool steel with excellent toughness and softening resistance
JP6903507B2 (en) Hot tool steel with excellent hardenability and toughness
JP7149250B2 (en) Hot work tool steel with excellent high temperature strength and toughness
JPWO2019035401A1 (en) Steel with high hardness and excellent toughness
JP5688742B2 (en) Steel manufacturing method with excellent toughness and wear resistance
JP2015134945A (en) Carburizing steel
JP5043529B2 (en) Steel for plastic molding dies with excellent specularity
WO2014156327A1 (en) Martensite steel
JP7214313B2 (en) High toughness cold work tool steel with high wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201117

R150 Certificate of patent or registration of utility model

Ref document number: 6797465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250