JP7305483B2 - Hot work tool steel with excellent toughness - Google Patents

Hot work tool steel with excellent toughness Download PDF

Info

Publication number
JP7305483B2
JP7305483B2 JP2019149874A JP2019149874A JP7305483B2 JP 7305483 B2 JP7305483 B2 JP 7305483B2 JP 2019149874 A JP2019149874 A JP 2019149874A JP 2019149874 A JP2019149874 A JP 2019149874A JP 7305483 B2 JP7305483 B2 JP 7305483B2
Authority
JP
Japan
Prior art keywords
steel
less
change
toughness
work tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019149874A
Other languages
Japanese (ja)
Other versions
JP2021031695A (en
Inventor
雅人 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2019149874A priority Critical patent/JP7305483B2/en
Publication of JP2021031695A publication Critical patent/JP2021031695A/en
Application granted granted Critical
Publication of JP7305483B2 publication Critical patent/JP7305483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、熱間鍛造、熱間押出、ダイカストその他の鋳造などに用いる熱間金型用鋼に好適な熱間工具鋼に関する。 The present invention relates to hot work tool steel suitable for hot work die steel used in hot forging, hot extrusion, die casting and other castings.

熱間工具は、高温の被加工材や硬質な被加工材と接触しながら使用されるため、熱疲労や衝撃に耐えうる強度と靭性を兼ね備えている必要がある。そのため、従来、熱間工具の分野においては、例えばJIS G4404の鋼種であるSKD61系の合金工具鋼が用いられている。
しかしながら、Vが多いので、粗大な炭窒化物が形成されることで靭性、加工性が悪化しやすい。
Since hot tools are used while being in contact with high-temperature workpieces or hard workpieces, they must have both strength and toughness to withstand thermal fatigue and impact. Therefore, in the field of hot work tools, for example, SKD61 series alloy tool steel, which is a steel grade of JIS G4404, has been used.
However, since the amount of V is large, coarse carbonitrides are formed, which tends to deteriorate toughness and workability.

また、SKD61の構成元素のバランスを見直した高靭性で高強度な熱間工具鋼が提案されている(例えば、特許文献1参照。)。 Further, a high-toughness and high-strength hot work tool steel has been proposed by reconsidering the balance of constituent elements of SKD61 (see, for example, Patent Document 1).

また、添加量を見直すことに加えて、多種の不純物の含有量を規制管理した、靱性に優れた熱間工具鋼が提案されている(例えば、特許文献2参照。)。 Further, in addition to reviewing the amount of addition, hot work tool steel with excellent toughness has been proposed in which the content of various impurities is regulated (see, for example, Patent Document 2).

さらに、合金成分範囲の限定と、Cr,Mo,W,Vといった成分の偏析度合いを限定することで、靭性に優れる熱間工具鋼が提案されている(例えば、特許文献3参照。)。 Further, a hot work tool steel with excellent toughness has been proposed by limiting the range of alloying elements and limiting the degree of segregation of elements such as Cr, Mo, W, and V (see, for example, Patent Document 3).

しかしながら、これらの特許文献に提案されている熱間工具鋼であっても、十分な靭性の向上が得られるとは限らず、規定された範囲であっても特性にばらつきが生じる場合があった。 However, even with the hot work tool steels proposed in these patent documents, sufficient improvement in toughness cannot always be obtained, and there have been cases where variations in properties occur even within the specified range. .

特開2013-087322号公報JP 2013-087322 A 特開1988-203744号公報JP-A-1988-203744 特開2005-314788号公報Japanese Patent Application Laid-Open No. 2005-314788

本発明が解決しようとする課題は、特性の安定した高靭性の熱間工具鋼を提供することである。 The problem to be solved by the present invention is to provide a hot work tool steel with stable properties and high toughness.

そこで、上述の課題を解決するために、本願の発明者は鋭意に研究開発を進めたところ、熱間工具鋼において、高靭性を阻害している要因には、炭化物形成元素の偏析度合いに加えて、これ以外にも、固溶強化に関わる元素の偏析や、さらには元素が偏析している幅などが、靭性の低下に影響していることを見出して、本発明に至った。 Therefore, in order to solve the above-mentioned problems, the inventors of the present application have made intensive research and development. In addition to this, the inventors have found that the segregation of elements involved in solid-solution strengthening, the width of the segregation of the elements, and the like also affect the decrease in toughness, leading to the present invention.

上記の課題を解決するための本発明の手段は、第1の手段では、質量%で、C:0.30~0.42%、Si:0.15~1.00%、Mn:0.20~0.50%、Cr:4.50~6.00%、Mo:1.00~2.20%、V:0.30~0.60%、P:0.03%以下、S:0.01%以下、N:130ppm以下、O:20ppm以下を含有し、残部Feおよび不可避不純物からなる鋼であり、
この鋼の粗大炭化物の晶出し易さを表す指標をS’とするとき、
S’=([C]-0.2)×(2[Cr]+3[Mo]+6[V])のS’の値が3.1以下であって、
この鋼の160μm×1000μm中におけるC、Mn、Cr、Mo、Vの各元素の成分量の最大値と最小値の差は、
max-Cmin:0.25%以下、
Mnmax-Mnmin:0.25%以下、
Crmax-Crmin:1.25%以下、
Momax-Momin:1.20%以下、
max-Vmin:0.30%以下であり、
さらに、この鋼の偏析部の1μm当たりのC、Mn、Cr、Mo、Vの各元素成分の変化度合いの値は、
変化:0.0025%/μm以内、
Mn変化:0.0030%/μm以内、
Cr変化:0.125%/μm以内、
Mo変化:0.105%/μm以内、
変化:0.0025%/μm以内であること、
を特徴とする靭性に優れた熱間工具鋼である。
The means of the present invention for solving the above problems is, in the first means, C: 0.30 to 0.42%, Si: 0.15 to 1.00%, Mn: 0.00% by mass %. 20-0.50%, Cr: 4.50-6.00%, Mo: 1.00-2.20%, V: 0.30-0.60%, P: 0.03% or less, S: A steel containing 0.01% or less, N: 130 ppm or less, O: 20 ppm or less, and the balance being Fe and inevitable impurities,
When the index representing the ease of crystallization of coarse carbides in this steel is S',
S' = ([C] - 0.2) × (2 [Cr] + 3 [Mo] + 6 [V]) S' value is 3.1 or less,
The difference between the maximum and minimum amounts of the elements C, Mn, Cr, Mo, and V in 160 μm×1000 μm of this steel is
Cmax - Cmin : 0.25% or less,
Mnmax - Mnmin : 0.25% or less,
Crmax - Crmin : 1.25% or less,
Momax - Momin : 1.20% or less,
V max −V min : 0.30% or less,
Furthermore, the value of the degree of change of each element component of C, Mn, Cr, Mo, and V per 1 μm of the segregation part of this steel is
C change : within 0.0025%/μm,
Mn change : within 0.0030%/μm,
Cr change : within 0.125%/μm,
Mo change : within 0.105%/μm,
V change : within 0.0025%/μm,
It is a hot work tool steel with excellent toughness characterized by

JIS G4404記載の鋼種であるSKD61の焼戻し硬さが45HRCのとき、シャルピー衝撃値が20/cm2であるのに比して、本願の第1の手段では、30J/cm2以上のシャルピー衝撃値が得られるなど、本願の発明の手段によると、靭性に優れた熱間工具鋼が安定して得られる。 When SKD61, which is a steel grade described in JIS G4404, has a tempering hardness of 45 HRC, the Charpy impact value is 20/cm 2 . According to the means of the invention of the present application, hot work tool steel excellent in toughness can be stably obtained.

ピクラール腐食後に観察面にみられる偏析帯の例を示す写真である。It is a photograph showing an example of segregation bands seen on the observed surface after picral corrosion. 偏析部の1μm当りのC、Mn、Cr、Mo、Vの各元素成分の変化度合いを求める方法をグラフ化して説明したイメージ図である。FIG. 3 is an image diagram illustrating a method of obtaining the degree of change of each elemental component of C, Mn, Cr, Mo, and V per 1 μm of a segregation part by graphing it.

本発明を実施するための形態の説明に先立って、まず、本願の請求項に係る熱間工具鋼の発明の化学成分の限定理由、並びにこの鋼のS’の値、C、Mn、Cr、Mo、Vの各元素の成分量の最大値と最小値の差、および、鋼の偏析部の1μm当たりのC、Mn、Cr、Mo、Vの各元素の変化度合いについて規定している理由を順次説明する。
なお、各化学成分における%は質量%のことである。
Prior to the description of the mode for carrying out the present invention, first, the reason for limiting the chemical composition of the invention of the hot work tool steel according to the claims of the present application, the value of S' of this steel, C, Mn, Cr, The reason why the difference between the maximum and minimum values of the component amounts of each element of Mo and V and the degree of change of each element of C, Mn, Cr, Mo and V per 1 μm of the segregation part of the steel are specified. I will explain in order.
In addition, % in each chemical component means % by mass.

C:0.30~0.42%
Cは、硬質炭化物を形成し、硬さ、耐摩耗性を向上させるとともに、焼入性を高める元素である。このためには、Cは0.30%以上が必要である。しかし、Cは0.42%より多く含まれると、鋼中に粗大な炭化物を形成して靭性および加工性を悪化させる。そこで、Cは0.30~0.42%とし、望ましくは0.32~0.40%とする。
C: 0.30-0.42%
C is an element that forms hard carbides, improves hardness and wear resistance, and enhances hardenability. For this purpose, C needs to be 0.30% or more. However, if the C content exceeds 0.42%, it forms coarse carbides in the steel, degrading toughness and workability. Therefore, C is 0.30 to 0.42%, preferably 0.32 to 0.40%.

Si:0.15~1.00%
Siは、脱酸剤として添加され、基地の硬さおよび焼入性を高める元素である。このためには、Siは0.15%以上が必要である。しかし、Siは1.00%より多く含まれると、鋼のマトリックスを脆化させ、靭性および加工性を悪化させる。そこで、Siは0.15~1.00%とする。
Si: 0.15-1.00%
Si is an element that is added as a deoxidizing agent and increases the hardness and hardenability of the matrix. For this purpose, Si needs to be 0.15% or more. However, if Si is included in an amount exceeding 1.00%, the steel matrix becomes embrittled, and toughness and workability deteriorate. Therefore, Si should be 0.15 to 1.00%.

Mn:0.20~0.50%
Mnは、脱酸剤として添加され、焼入性を高める元素である。このためには、Mnは0.20%以上が必要である。しかし、Mnは0.50%より多く含有されると、鋼のマトリックスを脆化させ、靭性を悪化させる。そこで、Mnは0.20~0.50%とする。
Mn: 0.20-0.50%
Mn is an element added as a deoxidizing agent to improve hardenability. For this purpose, Mn must be 0.20% or more. However, when the Mn content exceeds 0.50%, it embrittles the steel matrix and deteriorates toughness. Therefore, Mn is set to 0.20 to 0.50%.

Cr:4.50~6.00%
Crは、硬質炭化物を形成し、硬さ、耐摩耗性を向上させるとともに、焼入性を高める元素である。このためには、Crは4.50%以上が必要である。しかし、Crは6.00%より多く含まれると、鋼中に粗大な炭化物を形成して靭性および加工性を悪化させる。そこで、Crは4.50~6.00%とする。
Cr: 4.50-6.00%
Cr is an element that forms hard carbides, improves hardness and wear resistance, and enhances hardenability. For this purpose, Cr must be 4.50% or more. However, if the Cr content exceeds 6.00%, it forms coarse carbides in the steel, degrading toughness and workability. Therefore, Cr is set to 4.50 to 6.00%.

Mo:1.00~2.20%
Moは、硬質炭化物を形成し、硬さ、耐摩耗性を向上させるとともに、焼入性、焼戻し軟化抵抗性を高める元素である。このためには、Moは1.00%以上が必要である。しかし、Moは2.20%より多く含まれると、鋼中に粗大な炭化物を形成して靭性および加工性を悪化させる。そこで、Moは1.00~2.20%とする。
Mo: 1.00-2.20%
Mo is an element that forms hard carbides, improves hardness and wear resistance, and enhances hardenability and temper softening resistance. For this purpose, Mo needs to be 1.00% or more. However, when the Mo content exceeds 2.20%, coarse carbides are formed in the steel to deteriorate toughness and workability. Therefore, Mo is set to 1.00 to 2.20%.

V:0.30~0.60%
Vは、硬質炭化物を形成し、硬さ、耐摩耗性、焼入性を向上させるとともに、焼入時の結晶粒の粗大化を抑制する効果があり、靭性の向上に寄与する元素である。このためには、Vは0.30%以上が必要である。しかし、Vは0.60%より多く含有されると粗大な炭窒化物を形成し、靭性および加工性を悪化させる。そこで、Vは0.30~0.60%とする。
V: 0.30-0.60%
V is an element that forms hard carbides, improves hardness, wear resistance, and hardenability, has the effect of suppressing coarsening of crystal grains during hardening, and contributes to the improvement of toughness. For this purpose, V needs to be 0.30% or more. However, if the V content is more than 0.60%, it forms coarse carbonitrides and deteriorates toughness and workability. Therefore, V is set to 0.30 to 0.60%.

P:≦0.03%
Pは、靭性を低下させるため、一般には低減することが望ましい元素であるが、不可避的に含有される元素である。そこで、Pは0.03%を許容限度とする。
P: ≤ 0.03%
P is an element that is generally desirably reduced because it lowers the toughness, but it is an element that is unavoidably contained. Therefore, the allowable limit for P is 0.03%.

S:≦0.01%
Sは、Mnと共にMnSを形成して、靭性を低下させるため、低減することが望ましい元素である。そこで、Sは0.01%以下とする。
S: ≤ 0.01%
S is an element that should be reduced because it forms MnS together with Mn and lowers the toughness. Therefore, S is set to 0.01% or less.

N:≦130ppm
Nは、粗大な窒化物や炭窒化物を形成して、靭性および加工性を悪化させる元素である。そこで、Nは130ppm以下とする。
N: ≤ 130ppm
N is an element that forms coarse nitrides and carbonitrides and deteriorates toughness and workability. Therefore, N is set to 130 ppm or less.

O:≦20ppm
Oは、鋼中で酸化物系介在物を形成して、靭性を低下させる元素である。そこで、Oは20ppm以下とする。
O: ≤20ppm
O is an element that forms oxide-based inclusions in steel and lowers toughness. Therefore, O is set to 20 ppm or less.

粗大炭化物の晶出し易さを表す指標 S’の値:3.1以下,すなわち、S'=([C]-0.2)×(2[Cr]+3[Mo]+6[V])であり、S’:≦3.1
S’は、粗大炭化物の晶出し易さを表す指標である。鋼の合金成分のC、Cr、Mo、およびVを調整して、S’の値を3.1以下にすることで、粗大炭化物の形成が起こり難くなるので、高靭性の鋼を得ることができる。
そこで、S’=([C]-0.2)×(2[Cr]+3[Mo]+6[V])≦3.1とする。
The index S' value representing the ease of crystallization of coarse carbide: 3.1 or less, that is, S' = ([C] - 0.2) x (2 [Cr] + 3 [Mo] + 6 [V]) Yes, S': ≤ 3.1
S' is an index representing the easiness of crystallization of coarse carbides. By adjusting C, Cr, Mo, and V, which are the alloying components of the steel, so that the value of S' is 3.1 or less, the formation of coarse carbides becomes difficult, so a steel with high toughness can be obtained. can.
Therefore, S′=([C]−0.2)×(2[Cr]+3[Mo]+6[V])≦3.1.

鋼の160μm×1000μm中におけるC、Mn、Cr、Mo、Vの各元素の成分量の最大値と最小値の差について
本発明の鋼の160μm×1000μm中におけるC、Mn、Cr、Mo、Vの各元素の成分量の最大値と最小値の差は、質量%で、
max-Cmin:0.25%以下、
Mnmax-Mnmin:0.25%以下、
Crmax-Crmin:1.25%以下、
Momax-Momin:1.20%以下、
max-Vmin:0.30%以下である。
160μm×1000μmの領域において、鋼中のC、Mn、Cr、Mo、Vの各元素の成分量の最大値と最小値の差が大きいと、成分が濃い箇所で粗大炭化物が晶出し易く、また成分の濃い箇所と薄い箇所とで、焼入性の差や、固溶元素による強化度合いの差が生じる。そのため、熱処理後の組織や強度が不均一となり易く、靭性やその他の特性の低下を招く原因となる。
しかし、C、Mn、Cr、Mo、Vの各元素の偏析度合い(成分幅)を小さく限定することで、粗大炭化物や組織の不均一さが解消されて、靭性の低下が起こらなくなる。
そこで、160μm×1000μm中の鋼中のC、Mn、Cr、Mo、Vの各元素の成分量の最大値と最小値の差は、質量%で、Cmax-Cmin:0.25%以下、Mnmax-Mnmin:0.25%以下、Crmax-Crmin:1.25%以下、Momax-Momin:1.20%以下、Vmax-Vmin:0.30%以下とする。
Regarding the difference between the maximum and minimum values of the component amounts of C, Mn, Cr, Mo, and V in 160 μm×1000 μm of steel C, Mn, Cr, Mo, and V in 160 μm×1000 μm of steel of the present invention The difference between the maximum and minimum component amounts of each element in is mass%,
Cmax - Cmin : 0.25% or less,
Mnmax - Mnmin : 0.25% or less,
Crmax - Crmin : 1.25% or less,
Momax - Momin : 1.20% or less,
V max -V min : 0.30% or less.
In a region of 160 μm × 1000 μm, if the difference between the maximum and minimum values of the component amounts of each element of C, Mn, Cr, Mo, and V in the steel is large, coarse carbides are likely to crystallize at locations where the components are rich. Differences in hardenability and differences in the degree of strengthening due to solute elements occur between areas with high concentrations and areas with low concentrations. Therefore, the structure and strength after heat treatment tend to be non-uniform, which causes deterioration in toughness and other properties.
However, by limiting the segregation degree (component width) of each element of C, Mn, Cr, Mo, and V to a small value, coarse carbides and non-uniformity of the structure are eliminated, and the deterioration of toughness does not occur.
Therefore, the difference between the maximum and minimum amounts of the elements C, Mn, Cr, Mo, and V in the steel of 160 μm × 1000 μm is, in mass%, C max −C min : 0.25% or less. , Mn max -Mn min : 0.25% or less, Cr max -Cr min : 1.25% or less, Mo max -Mo min : 1.20% or less, V max -V min : 0.30% or less .

ところで、成分組成を調整した合金工具鋼の溶鋼を造塊したままでは、その鋳造組織中には中心偏析や逆V偏析などの偏析が起きているため、一般には、これらの偏析度合いを小さく限定することは困難である。
しかしながら、本発明の熱間工具鋼では、例えば上記の造塊の後、ESR(エレクトロスラグ再溶解法)による再溶解を適用したり、鋼塊および/または該鋼塊を熱間加工した鋼片に対して、1150℃以上、好ましくは1200℃以上の適性条件により均質化熱処理を施したりすることによって、各元素の成分量の最大値と最小値の差を小さく限定することが達成可能である。
By the way, when molten steel of alloy tool steel with an adjusted chemical composition is cast as it is, segregation such as center segregation and inverse V segregation occurs in the casting structure. It is difficult to
However, in the hot work tool steel of the present invention, for example, after the above ingot making, remelting by ESR (electroslag remelting method) is applied, steel ingots and/or steel slabs obtained by hot working the steel ingots. However, by performing homogenization heat treatment under suitable conditions of 1150 ° C. or higher, preferably 1200 ° C. or higher, it is possible to limit the difference between the maximum and minimum values of the amount of each element to a small value. .

鋼の偏析部の1μm当たりのC、Mn、Cr、Mo、Vの各元素成分の変化度合いの値は、C変化:0.0025%/μm以内、Mn変化:0.0030%/μm以内、Cr変化:0.125%/μm以内、Mo変化:0.105%/μm以内、V変化:0.0025%/μm以内であること
鋼中の成分の濃い箇所と薄い箇所との間における元素量が急激に変化すると、それに伴いミクロ的な下での急激な強度の不均一さが鋼材内に生じ、靭性の低下を招くこととなる。そこで、偏析部の1μm当りの鋼中のC、Mn、Cr、Mo、Vの各元素の成分の変化度合いの値は、質量%で、Cの変化度合いであるC変化が0.0025%/μm以内であること、Mnの変化度合いであるMn変化が0.0030%/μm以内であること、Crの変化度合いであるCr変化が0.125%/μm以内であること、Moの変化度合いであるMo変化が0.105%/μm以内であること、Vの変化度合いであるV変化が0.0025%/μm以内であること、とする。
The degree of change in each elemental component of C, Mn, Cr, Mo, and V per 1 μm of the segregation part of the steel is C change : within 0.0025%/μm, Mn change : within 0.0030%/μm, Cr change : within 0.125%/μm, Mo change : within 0.105%/μm, V change : within 0.0025%/μm A sudden change in the amount causes sudden non-uniformity in strength at the microscopic level in the steel material, resulting in a decrease in toughness. Therefore, the value of the degree of change in the composition of each element of C, Mn, Cr, Mo, and V in the steel per 1 μm of the segregation part is mass%, and the C change , which is the degree of change of C, is 0.0025%/ Mn change, which is the degree of change in Mn, is within 0.0030%/µm, Cr change , which is the degree of change in Cr, is within 0.125%/µm, Mo change degree The change in Mo is within 0.105%/μm, and the change in V, which is the degree of change in V, is within 0.0025%/μm.

次いで、本発明を実施するための形態について、以下に説明する。
表1に示す各No.の化学成分とその残部のFeおよび不可避不純物とで100%の鋼組成を構成する発明鋼と比較鋼である各供試材において、各No.の発明鋼と比較鋼の供試材のそれぞれ100kgを、真空誘導溶解炉にて溶製し、次いで1200℃で48時間の均熱化処理をした後、角50mmへと鍛錬成形比4sで鍛伸した。さらに、これを870℃に2時間保持して焼なました後、10℃/hrの冷却速度で常温まで冷却した。
Then, the form for implementing this invention is demonstrated below.
Each No. shown in Table 1. and the remaining Fe and unavoidable impurities constitute 100% of the steel composition. 100 kg each of the test materials of the invention steel and the comparative steel were melted in a vacuum induction melting furnace, then soaked at 1200 ° C. for 48 hours, and then forged to a square of 50 mm at a forging ratio of 4 s. stretched. Further, this was held at 870° C. for 2 hours and annealed, and then cooled to room temperature at a cooling rate of 10° C./hr.

なお、表1の比較鋼のNo.34~38については、上に示す工程のうち、均熱化処理工程を省略して作製した。 In addition, No. of comparative steel in Table 1. 34 to 38 were produced by omitting the soaking treatment step among the steps shown above.

ここに鍛錬成形比とは、鋼塊の横断面の断面積Aと、その鋼塊を熱間加工して断面積が減少した横断面の断面積aとの比であるA/aで表される値のことである。 Here, the forging ratio is expressed by A/a, which is the ratio of the cross-sectional area A of the steel ingot to the cross-sectional area a of the cross-sectional area reduced by hot working the steel ingot. value.

以下の表1に、これらの各供試材の化学成分および粗大炭化物の晶出し易さを表すS' 値を示す。 Table 1 below shows the chemical composition of each test material and the S' value representing the susceptibility to crystallization of coarse carbides.

Figure 0007305483000001
Figure 0007305483000001

160μm×1000μmの鋼中におけるC、Mn、Cr、Mo、Vの各元素の成分量の最大値と最小値の差は、次のようにして求める。まず、鍛伸材の中央部から15mm×15mm×15mmの組織観察用試料を採取し、圧延方向の面をピクラール腐食にて組織の現出を行った後、腐食が濃い場所である図1に示すような偏析帯の位置を確認した。そして観察面内の偏析帯の中で一番太い偏析帯を選び、その偏析帯を横切るように160μm×1000μmの範囲の面を決定して、印をつけた。
なお、160μm×1000μmの範囲は直径5μm以上の炭化物やMnSを含まない箇所とした。その印をつけた面を鏡面まで研磨した後、EPMA(電子線マイクロアナライザー)を用いて160μm×1000μmの範囲中のC、Mn、Cr、Mo、Vの各元素の最大と最小の元素量(質量%)を求めた。Cであれば最大値Cmaxと、最小値Cminとの差分からCの元素量の差が求まるので、これをCmax-Cminとする。各元素について元素量の差を求め、160μm×1000μm中のC、Mn、Cr、Mo、Vの各元素の成分量の最大値と最小値の差として、表2に示した。
The difference between the maximum and minimum amounts of the elements C, Mn, Cr, Mo, and V in the steel of 160 μm×1000 μm is obtained as follows. First, a 15 mm × 15 mm × 15 mm sample for structure observation was taken from the central part of the forged material, and the surface in the rolling direction was subjected to picral corrosion to reveal the structure. The positions of the segregation bands as shown were confirmed. Then, the thickest segregation zone was selected from among the segregation zones in the observation plane, and a plane in the range of 160 μm×1000 μm was determined and marked so as to cross the segregation zone.
Note that the range of 160 μm×1000 μm was defined as a portion that did not contain carbides with a diameter of 5 μm or more and MnS. After polishing the marked surface to a mirror surface, an EPMA (electron probe microanalyzer) was used to measure the maximum and minimum elemental amounts (C, Mn, Cr, Mo, and V) within an area of 160 μm×1000 μm. mass %) was obtained. In the case of C, the difference in the elemental amount of C can be obtained from the difference between the maximum value Cmax and the minimum value Cmin , so this is defined as Cmax - Cmin . The difference in the amount of each element was obtained and shown in Table 2 as the difference between the maximum and minimum amounts of each element of C, Mn, Cr, Mo and V in 160 μm×1000 μm.

偏析部の1μm当たりのC、Mn、Cr、Mo、Vの各元素成分の変化度合いは、以下のようにして求める。まず、成分量の最大値と最小値の差を測定した試料を用意し、160μm×1000μmの測定範囲内において、160μm幅の中央部を1000μmに渡りEPMAを用いて、C、Mn、Cr、Mo、Vの各元素の線分析を行った。その測定結果から、各元素毎に、図2に示すような一番成分変化の大きい箇所を決定し、それらの箇所における「偏析部の1μm当たりの変化度合い」を表2に示した。 The degree of change of each element component of C, Mn, Cr, Mo, and V per 1 μm of the segregation portion is obtained as follows. First, a sample was prepared by measuring the difference between the maximum value and the minimum value of the component amount, and within a measurement range of 160 μm × 1000 μm, the central part of the 160 μm width was measured over 1000 μm using EPMA, and C, Mn, Cr, Mo , and V were analyzed. From the measurement results, for each element, the locations where the composition changes the most were determined as shown in FIG.

靭性は、以下のようにして測定した。まず鍛伸材を70mmに切断し、これを1030℃に加熱して空冷する焼入れ処理をした後、次いで、550~650℃に加熱して空冷する焼戻処理を2回以上行なって、45HRCに調質した。その調質材の中心部から10mm×10mm×55mmの試験片を鋼材の圧延方向に試験片の長手方向が来るように割出して、2mmUノッチシャルピー衝撃試験片を作製した。こうして作製された2mmUノッチシャルピー衝撃試験片を用いて、室温でシャルピー衝撃試験を行った。
このシャルピー衝撃試験をJIS鋼種であるSKD61に対して実施すると、焼戻し硬さが45HRCのとき20J/mm2の衝撃値が得られるので、一般的な鋼との対比の基準とすることができる。本願発明では、SKD61よりも優れた30J/mm2より高い衝撃値が得られれば、本発明の優れた靱性を備えるものと評価しうることから○とし、30J/mm2よりも低ければ、靱性に劣るものとして×として、表2に評価結果を示した。
Toughness was measured as follows. First, the forged material is cut to 70 mm, and after being quenched by heating to 1030 ° C. and air cooling, it is then tempered twice or more by heating to 550 to 650 ° C. and air cooling to 45 HRC. tempered. A 10 mm × 10 mm × 55 mm test piece was indexed from the center of the tempered material so that the longitudinal direction of the test piece was aligned with the rolling direction of the steel material to prepare a 2 mm U-notch Charpy impact test piece. A Charpy impact test was performed at room temperature using the 2 mm U notch Charpy impact test piece thus produced.
When this Charpy impact test is performed on SKD61, which is a JIS steel type, an impact value of 20 J/mm 2 is obtained when the temper hardness is 45 HRC, so it can be used as a standard for comparison with general steel. In the present invention, if an impact value higher than 30 J/mm 2 which is superior to SKD61 is obtained, it can be evaluated as having the excellent toughness of the present invention, so it is evaluated as ○, and if it is lower than 30 J/mm 2 , toughness The evaluation results are shown in Table 2, with x indicating inferior to the above.

Figure 0007305483000002
Figure 0007305483000002

表2に示すように、本発明鋼No.1~21は、いずれもシャルピー衝撃値が30J/mm2以上あり、靱性に優れ、○の評価を得た。
他方、比較鋼No.22~29は、表1に下線で示す元素が本発明の規定する範囲よりも多く含有されたものであって、表2に示すようにシャルピー衝撃値が低く、靭性が悪いものとなった。
比較鋼No.30は、Vの含有量が少ないものであるところ、結晶粒の粗大化が招来されたことから、表2におけるシャルピー衝撃値が低く、靱性が悪いものとなった。
比較鋼No.31,32は、N,Oの含有による介在物が多く、表2におけるシャルピー衝撃値が低く、靱性が悪いものとなった。
比較例No.33は、粗大炭化物の晶出し易さを表す指標S’の値が高く、粗大炭化物が晶出したことで、表2におけるシャルピー衝撃値が低くなり、靱性が悪いものとなった。
比較例No.34~38は、各元素の成分量の最大値と最小値の差が大きく、成分が濃い箇所で粗大炭化物が晶出し易く、また成分の濃い箇所と薄い箇所とで、焼入性の差や、固溶元素による強化度合いの差が生じている。そこで、熱処理後の組織や強度が不均一となり、表2におけるシャルピー衝撃値が低く、靱性が悪いものとなった。
比較例No.39~43は、偏析部の1μm当たりでの各元素成分の変化度合いが大きかったので、急激な強度の不均一さが鋼材内に生じた結果、表2におけるシャルピー衝撃値が低く、靱性が悪いものとなった。
As shown in Table 2, the present invention steel No. All of Nos. 1 to 21 had a Charpy impact value of 30 J/mm 2 or more, excellent toughness, and were evaluated as ◯.
On the other hand, comparative steel No. In Nos. 22 to 29, the underlined elements in Table 1 were contained in a larger amount than the range defined by the present invention, and as shown in Table 2, the Charpy impact value was low and the toughness was poor.
Comparative steel no. In No. 30, although the V content was small, coarsening of the crystal grains was caused, so the Charpy impact value in Table 2 was low and the toughness was poor.
Comparative steel no. In Nos. 31 and 32, there were many inclusions due to the inclusion of N and O, the Charpy impact value in Table 2 was low, and the toughness was poor.
Comparative example no. In No. 33, the value of the index S′ representing the ease of crystallization of coarse carbides was high, and the crystallization of coarse carbides resulted in a low Charpy impact value in Table 2 and poor toughness.
Comparative example no. In Nos. 34 to 38, the difference between the maximum value and the minimum value of the component amount of each element is large, coarse carbides are likely to crystallize at locations with high concentrations, and there is a difference in hardenability between locations with high concentrations and locations with low concentrations. , there is a difference in the degree of strengthening due to solid solution elements. Therefore, the structure and strength after the heat treatment became uneven, the Charpy impact value in Table 2 was low, and the toughness was poor.
Comparative example no. In 39 to 43, the degree of change in each elemental component per 1 μm of the segregation part was large, and as a result of sudden non-uniformity in strength occurred in the steel material, the Charpy impact value in Table 2 was low and toughness was poor. became a thing.

1 偏析帯
2 成分変化の大きい箇所
1 Segregation zone 2 Location with large change in composition

Claims (1)

質量%で、
C:0.30~0.42%、
Si:0.15~1.00%、
Mn:0.20~0.50%、
Cr:4.50~6.00%、
Mo:1.00~2.20%、
V:0.30~0.60%、
P:0.03%以下、
S:0.01%以下、
N:130ppm以下、
O:20ppm以下を含有し、
残部Feおよび不可避不純物からなる鋼であり、
この鋼の粗大炭化物の晶出し易さを表す指標をS’とするとき、
S’=([C]-0.2)×(2[Cr]+3[Mo]+6[V])のS’の値が3.1以下であって、
この鋼の160μm×1000μm中におけるC、Mn、Cr、Mo、Vの各元素の成分量の最大値と最小値の差は、質量%で
max-Cmin:0.25%以下、
Mnmax-Mnmin:0.25%以下、
Crmax-Crmin:1.25%以下、
Momax-Momin:1.20%以下、
max-Vmin:0.30%以下であり、
さらに、この鋼の偏析部の1μm当たりのC、Mn、Cr、Mo、Vの各元素成分の変化度合いの値は、質量%で
変化:0.0025%/μm以内、
Mn変化:0.0030%/μm以内、
Cr変化:0.125%/μm以内、
Mo変化:0.105%/μm以内、
変化:0.0025%/μm以内であること、
を特徴とする靭性に優れた熱間工具鋼。
in % by mass,
C: 0.30 to 0.42%,
Si: 0.15 to 1.00%,
Mn: 0.20-0.50%,
Cr: 4.50-6.00%,
Mo: 1.00-2.20%,
V: 0.30 to 0.60%,
P: 0.03% or less,
S: 0.01% or less,
N: 130 ppm or less,
O: contains 20 ppm or less,
A steel consisting of the balance Fe and inevitable impurities,
When the index representing the ease of crystallization of coarse carbides in this steel is S',
S' = ([C] - 0.2) × (2 [Cr] + 3 [Mo] + 6 [V]) S' value is 3.1 or less,
The difference between the maximum and minimum amounts of the elements C, Mn, Cr, Mo, and V in 160 μm×1000 μm of this steel is C max −C min : 0.25% or less in mass %,
Mnmax - Mnmin : 0.25% or less,
Crmax - Crmin : 1.25% or less,
Momax - Momin : 1.20% or less,
V max −V min : 0.30% or less,
Furthermore, the degree of change of each element component of C, Mn, Cr, Mo, and V per 1 μm of the segregation part of this steel is C change : within 0.0025%/μm in mass %,
Mn change : within 0.0030%/μm,
Cr change : within 0.125%/μm,
Mo change : within 0.105%/μm,
V change : within 0.0025%/μm;
Hot work tool steel with excellent toughness characterized by
JP2019149874A 2019-08-19 2019-08-19 Hot work tool steel with excellent toughness Active JP7305483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019149874A JP7305483B2 (en) 2019-08-19 2019-08-19 Hot work tool steel with excellent toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019149874A JP7305483B2 (en) 2019-08-19 2019-08-19 Hot work tool steel with excellent toughness

Publications (2)

Publication Number Publication Date
JP2021031695A JP2021031695A (en) 2021-03-01
JP7305483B2 true JP7305483B2 (en) 2023-07-10

Family

ID=74675491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019149874A Active JP7305483B2 (en) 2019-08-19 2019-08-19 Hot work tool steel with excellent toughness

Country Status (1)

Country Link
JP (1) JP7305483B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6946586B1 (en) * 2021-03-10 2021-10-06 日本高周波鋼業株式会社 Hot tool steel
CN114134412B (en) * 2021-11-08 2023-07-14 内蒙古北方重工业集团有限公司 Method for refining grain uniform structure of hot working die steel
CN116377330B (en) * 2023-04-08 2024-02-09 浙江通特重型锻造有限公司 Hot work die steel and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314788A (en) 2003-09-29 2005-11-10 Hitachi Metals Ltd Hot tool steel having excellent toughness and its production method
JP2006104519A (en) 2004-10-05 2006-04-20 Daido Steel Co Ltd High toughness hot tool steel and its production method
JP2009242819A (en) 2008-03-28 2009-10-22 Daido Steel Co Ltd Steel, steel for die and die using the same
JP2017155306A (en) 2016-03-03 2017-09-07 山陽特殊製鋼株式会社 Hot tool steel having excellent high temperature strength and toughness
WO2018182480A1 (en) 2017-03-29 2018-10-04 Uddeholms Ab Hot work tool steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314788A (en) 2003-09-29 2005-11-10 Hitachi Metals Ltd Hot tool steel having excellent toughness and its production method
JP2006104519A (en) 2004-10-05 2006-04-20 Daido Steel Co Ltd High toughness hot tool steel and its production method
JP2009242819A (en) 2008-03-28 2009-10-22 Daido Steel Co Ltd Steel, steel for die and die using the same
JP2017155306A (en) 2016-03-03 2017-09-07 山陽特殊製鋼株式会社 Hot tool steel having excellent high temperature strength and toughness
WO2018182480A1 (en) 2017-03-29 2018-10-04 Uddeholms Ab Hot work tool steel

Also Published As

Publication number Publication date
JP2021031695A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
JP7305483B2 (en) Hot work tool steel with excellent toughness
JP6925781B2 (en) Hot tool steel with excellent high temperature strength and toughness
KR20190028782A (en) High frequency quenching steel
KR20190028781A (en) High frequency quenching steel
JP7048820B2 (en) Centrifugal casting composite roll for rolling and its manufacturing method
CN107709594B (en) Bolt
KR20190028757A (en) High frequency quenching steel
KR20190028492A (en) High frequency quenching steel
JP6798557B2 (en) steel
WO2012118053A1 (en) Hot work tool steel having excellent toughness, and process of producing same
JP2636816B2 (en) Alloy tool steel
JP6797465B2 (en) High hardness matrix highs with excellent toughness and high temperature strength
JP2834654B2 (en) High toughness hot work tool steel
KR20210134010A (en) Composite roll for centrifugal casting and its manufacturing method
JP2005336553A (en) Hot tool steel
JP6903507B2 (en) Hot tool steel with excellent hardenability and toughness
JP6788520B2 (en) Hot tool steel with excellent toughness and softening resistance
JP7149250B2 (en) Hot work tool steel with excellent high temperature strength and toughness
WO2017094487A1 (en) High-strength bolt
JP7214313B2 (en) High toughness cold work tool steel with high wear resistance
JP3579558B2 (en) Bearing steel with excellent resistance to fire cracking
JPH08325673A (en) Composite roll for rolling excellent in wear resistance, surface roughening resistance and the like
JP7220750B1 (en) Hot work tool steel with excellent high-temperature strength and toughness
JP6249100B2 (en) Rolled steel bar for machine structure and manufacturing method thereof
JP2000345290A (en) Hot roll for copper and copper alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230628

R150 Certificate of patent or registration of utility model

Ref document number: 7305483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150