JP2005314788A - Hot tool steel having excellent toughness and its production method - Google Patents
Hot tool steel having excellent toughness and its production method Download PDFInfo
- Publication number
- JP2005314788A JP2005314788A JP2004273831A JP2004273831A JP2005314788A JP 2005314788 A JP2005314788 A JP 2005314788A JP 2004273831 A JP2004273831 A JP 2004273831A JP 2004273831 A JP2004273831 A JP 2004273831A JP 2005314788 A JP2005314788 A JP 2005314788A
- Authority
- JP
- Japan
- Prior art keywords
- tool steel
- mass
- toughness
- hot
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
本発明は、プレス金型やダイカスト金型、押出工具といった多種の熱間工具に供して最適な、靭性を向上させた熱間工具鋼と、その製造方法に関するものである。 The present invention relates to a hot work tool steel with improved toughness that is optimal for various hot tools such as a press die, a die casting die, and an extrusion tool, and a method for producing the hot tool steel.
従来、熱間工具の分野には、例えばJIS鋼種であるSKD61系の合金工具鋼が用いられていた。 Conventionally, in the field of hot tools, for example, SKD61 series alloy tool steel which is a JIS steel type has been used.
さらに、合金工具鋼の靭性を改善することを目的として、改良することが提案されている。たとえば、不純物元素であるAlとNの含有量を低減することにより靭性を改善する手法が提案されており(特許文献1参照)、これは合金の成分組成のみを調整すればよいという点では優れたものである。
上述した特開平07−102342号に開示される手法は、靭性を向上させる一助として有効ではある。しかし、上記手法のような、合金組成のみの調整を意識して靭性の向上を図る場合には、同様の成分調整を行なった合金工具鋼であっても、それらの間には靭性値にばらつきが生じ、靭性の低いものも発現することを本発明者は知見した。このように従来の手法には、靭性の向上手段において不十分な点があり、依然として検討の余地がある。 The method disclosed in Japanese Patent Application Laid-Open No. 07-102342 described above is effective as an aid for improving toughness. However, in the case of improving toughness in consideration of adjustment of only the alloy composition as in the above method, even in the case of an alloy tool steel having the same component adjustment, the toughness value varies between them. The present inventor has found that low toughness is also manifested. As described above, the conventional methods have insufficient points in the means for improving toughness, and there is still room for examination.
本発明の目的は、従来の手法をも補って、さらに優れた靭性を具備した熱間工具鋼と、それを達成するために最適な製造方法を提供することである。 An object of the present invention is to provide a hot work tool steel having further excellent toughness, and an optimum manufacturing method for achieving the same, complementing conventional methods.
本発明者は、上記の靭性の低下要因について検討したところ、それが凝固時の成分偏析が強く残ることによって生じる、靭性が劣る部位の存在に起因することを知見した。つまり、諸特性の付与の上で成分組成が最適に調整された合金であっても、組織中に偏析が強く残るという問題は、特に優れた靭性の求められる熱間工具鋼の実用化にとっての大きな問題となる。 The present inventor examined the above-described factors for lowering the toughness, and found that it was caused by the existence of a site with inferior toughness caused by the strong segregation of components during solidification. In other words, the problem that segregation remains strongly in the structure even in an alloy whose component composition has been optimally adjusted to provide various properties is particularly important for the practical application of hot work tool steel that requires excellent toughness. It becomes a big problem.
そこで本発明者は、成分偏析によって靭性が劣るという問題を検討した。その結果、成分偏析を最適な度合い以内に制御した熱間工具鋼であれば根本的な靭性の劣化要因が排除されているから、靭性に多少の悪影響が懸念されるような元素種であっても他の諸特性の向上を優先して添加できるので、結果、適用域の広い熱間工具鋼として提供できる手段を確立した。そして、かつAlの含有量を所定の量以下に規定することを採用して、靭性を大きく改善できることを見いだし、本発明に到達した。 Therefore, the present inventor examined the problem that the toughness is inferior due to component segregation. As a result, in hot tool steels whose component segregation is controlled within an optimum degree, fundamental toughness deterioration factors are eliminated, so there is an element species that may have some adverse effects on toughness. As a result, we established a means that can provide hot tool steel with a wide application range. And it has been found that the toughness can be greatly improved by adopting that the Al content is regulated to a predetermined amount or less, and has reached the present invention.
すなわち本発明は、質量%で(1)C:0.2〜0.7%、Cr:0.5〜7.0%を含有する熱間工具鋼において、Alが0.04%以下に規制されかつ、基地組成のCrの偏析度合いが±0.2質量%以内であること、(2)上記の成分に好ましくはMoまたはWの1種あるいは2種を(Mo+1/2W)にて0.1〜6.0%含有し、基地組成の(Mo+1/2W)の偏析度合いが±0.08質量%以内であること、(3)上記(1)もしくは(2)のいずれかの成分に好ましくはV:3.0%以下を含有し、基地組成のVの偏析度合いが±0.07質量%以内であること、(4)上記(1)ないし(3)のいずれかの成分に好ましくはAlが0.015%以下に規制されていることを特徴とする靭性に優れた熱間工具鋼である。 That is, the present invention provides a hot tool steel containing (1) C: 0.2 to 0.7% and Cr: 0.5 to 7.0% by mass%, and Al is restricted to 0.04% or less. And the degree of segregation of Cr in the matrix composition is within ± 0.2% by mass, (2) Preferably, one or two of Mo or W is added to (Mo + 1 / 2W) in the above components. 1 to 6.0% contained, and the degree of segregation of the base composition (Mo + 1 / 2W) is within ± 0.08% by mass; (3) preferably for any of the above components (1) or (2) Preferably contains V: 3.0% or less, and the degree of segregation of V in the base composition is within ± 0.07% by mass, (4) preferably in any of the above components (1) to (3) It is a hot work tool steel excellent in toughness characterized by Al being restricted to 0.015% or less.
そしてさらに好ましくは、上記の熱間工具鋼に対して、その断面組織中に観察される最大径5μm以下の窒化アルミニウムが2500個/mm2以下(0個を含む)であることを特徴とする靭性に優れた熱間工具鋼である。 More preferably, the number of aluminum nitrides having a maximum diameter of 5 μm or less observed in the cross-sectional structure of the hot tool steel is 2500 pieces / mm 2 or less (including 0 pieces). Hot tool steel with excellent toughness.
そして、上記の本発明の熱間工具鋼を達成するために好ましい製造方法であって、再溶解法により得た、質量%で、C:0.2〜0.7%、Cr:0.5〜7.0%を含有し、Alが0.04%以下に規制された熱間工具鋼の鋼塊および/または該鋼塊を熱間加工した鋼片に、均質化熱処理を行なうことを特徴とする靭性に優れた熱間工具鋼の製造方法である。 And it is a manufacturing method preferable in order to achieve the hot tool steel of the present invention described above, and obtained by remelting method in mass%, C: 0.2 to 0.7%, Cr: 0.5 A homogenization heat treatment is performed on a steel ingot of hot tool steel containing ˜7.0% and Al regulated to 0.04% or less and / or a steel slab obtained by hot working the steel ingot. It is a manufacturing method of hot work tool steel excellent in toughness.
本発明によれば熱間工具鋼の靭性を飛躍的に改善することができ、多種熱間の用途・環境に適用が可能な熱間工具鋼の実用化にとって欠くことのできない技術となる。 According to the present invention, the toughness of hot tool steel can be drastically improved, and this is an indispensable technique for the practical application of hot tool steel that can be applied to various types of hot applications and environments.
上述したように、本発明の重要な特徴は成分の偏析度合いを制御しかつ、Alの含有量を規定することを採用したことにある。すなわち、成分偏析を所定度内に制御した熱間工具鋼とすることで根本的な靭性の劣化要因を排除して、その上で、さらなるAl量の規制を行なうことが靭性の大幅な改善に繋がること、しかもAlの規制による靭性向上作用については、そのメカニズムまでをも明確にしたことでAlの必要規制量までもが評価でき、製造コストの調整も可能である。 As described above, an important feature of the present invention resides in that the degree of segregation of components is controlled and the content of Al is defined. In other words, by using hot tool steel whose component segregation is controlled within a predetermined degree, the fundamental toughness deterioration factor is eliminated, and then further Al content control can greatly improve toughness. With regard to the toughness-improving effect by regulation of Al, it is possible to evaluate even the required regulation amount of Al by clarifying the mechanism, and the production cost can be adjusted.
最初に、本発明の根幹をなす成分の偏析度合いを規定する理由について説明する。靭性は熱間工具鋼にとっての重要特性の一つであり、基地の結晶粒が粗大になると靭性が劣化することから、結晶粒の成長抑制のために組織中に炭化物を形成させる。しかし、この炭化物の形成が粗大・多量になると、これは思わぬ靭性の劣化要因となる。これは、例えば造塊の段階で組織中に炭化物形成元素による中心偏析や逆V偏析などの成分変動の大きい偏析が起これば、その元素成分の濃化部では炭化物が粗大・多量に析出しやすくなり、これが靭性の劣化要因となり得るのである。よって、熱間工具鋼を対象とする本発明においては、合金成分中に必須に含まれる炭化物形成元素こその偏析を低減する必要がある。 First, the reason for prescribing the degree of segregation of the components that form the basis of the present invention will be described. Toughness is one of the important characteristics for hot work tool steel. Since the toughness deteriorates when the base crystal grains become coarse, carbides are formed in the structure to suppress the growth of crystal grains. However, when the formation of this carbide becomes coarse and large, this becomes an unexpected deterioration factor of toughness. For example, if segregation with large component fluctuations such as center segregation or reverse V segregation due to carbide forming elements occurs in the structure at the ingot forming stage, coarse and large amounts of carbides precipitate in the concentrated portion of the element components. It becomes easy and this can be a cause of deterioration of toughness. Therefore, in the present invention intended for hot tool steel, it is necessary to reduce segregation of the carbide-forming elements that are essentially contained in the alloy components.
Crは熱間工具鋼の炭化物形成元素として最も活用される元素である。よって、本発明では基地組成のCrの偏析度合いを規制することを必須とする。そして、Crに加えて、他の炭化物形成元素、例えばMo,W,Vといった元素も必要に応じ添加するのであれば、それら元素種の偏析度合いを規制することも好ましい。本発明では、上記それぞれの炭化物形成元素の偏析度合いについては後述の通りであるが、Crは±0.2質量%以内とし、MoおよびWはその量を(Mo+1/2W)で評価して±0.08質量%以内、Vであれば±0.07質量%以内であることが好ましい。 Cr is an element most utilized as a carbide forming element in hot tool steel. Therefore, in the present invention, it is essential to regulate the degree of segregation of the base composition Cr. In addition to Cr, if other carbide forming elements such as Mo, W, and V are added as necessary, it is also preferable to regulate the degree of segregation of these element species. In the present invention, the degree of segregation of each of the above carbide-forming elements is as described later, but Cr is within ± 0.2% by mass, and Mo and W are evaluated by (Mo + 1 / 2W). Within 0.08% by mass, V is preferably within ± 0.07% by mass.
ここで、偏析度合いを測定する一方法を以下に示す。例えば、X線マイクロアナライザー(EPMA)を用いて各元素について線分析を行い、チャート図を得る。図1に一例としてCrのチャート図を示す。図1において、その横軸は分析した試料の測定幅(mm)であり、縦軸がCrの濃度と定性的に対応しているので、チャート図上で値が高い領域と低い領域を狙って、それぞれの領域を独立に測定できるように直径100μm以下の電子線を用いて改めて定量分析を行なえば、線分析を行なった領域でのCrの上限濃度と下限濃度が得られる。そこで本発明では、この線分析の長さは、例えば図1の横軸0mmから0.4mmにかけて見られるような大きな周期の成分偏析の間隔よりも十分に長い測定幅を取ることで、あとは得られた上限濃度と下限濃度の差を求め、基地組成における偏析度合いとして認知することができる。 Here, one method for measuring the degree of segregation is shown below. For example, line analysis is performed on each element using an X-ray microanalyzer (EPMA) to obtain a chart. FIG. 1 shows a chart of Cr as an example. In FIG. 1, the horizontal axis represents the measurement width (mm) of the analyzed sample, and the vertical axis qualitatively corresponds to the Cr concentration. Therefore, aiming at the high and low values on the chart. If the quantitative analysis is performed again using an electron beam having a diameter of 100 μm or less so that each region can be measured independently, the upper limit concentration and the lower limit concentration of Cr in the region subjected to the line analysis can be obtained. Therefore, in the present invention, the length of this line analysis is set to be sufficiently longer than the interval of component segregation with a large period as seen from the horizontal axis 0 mm to 0.4 mm in FIG. The difference between the obtained upper limit concentration and the lower limit concentration can be obtained and recognized as the degree of segregation in the base composition.
例えばアーク炉等で溶解し、成分組成を調整した合金工具鋼の溶鋼を鋼塊に鋳造した普通造塊法の場合、通常、その鋳造組織中には中心偏析や逆V偏析などの成分変動の大きい偏析が起こる。そして成分の濃化部では、炭化物が粗大・多量に析出しやすくなっており、靭性が劣る要因となることは上述の通りである。本発明の熱間工具鋼は、例えば上記の造塊法のあとESR(エレクトロスラグ再溶解法)やVAR(真空アーク再溶解法)などの積層凝固による再溶解法を適用し、さらには再溶解後の鋼塊および/または該鋼塊を熱間加工した鋼片に対しては均質化熱処理、例えば1200℃以上、好ましくは1250℃以上からの適性条件による均質化熱処理を施すことで、下記のAl含有量の規制による効果もあいまって、その達成が可能となる。 For example, in the case of a normal ingot method in which a molten alloy tool steel melted in an arc furnace or the like and adjusted in composition is cast into a steel ingot, the component variation such as center segregation or reverse V segregation is usually present in the cast structure. Large segregation occurs. In the concentrated portion of the component, the carbide is likely to be coarsely and abundantly precipitated, and as described above, the toughness is inferior. For the hot tool steel of the present invention, for example, after the above ingot forming method, a remelting method such as ESR (electroslag remelting method) or VAR (vacuum arc remelting method) is applied and further remelted. The following steel ingot and / or a steel piece obtained by hot working the steel ingot are subjected to a homogenization heat treatment, for example, a homogenization heat treatment under suitable conditions from 1200 ° C. or higher, preferably 1250 ° C. or higher. Achieving this is also possible due to the effect of the regulation of the Al content.
なお、上記の均質化熱処理は、大気中であってもその雰囲気にはこだわらないが、素材の酸化等による滅失を抑制する上で、例えば不活性ガスや還元性ガス等の雰囲気を適用してもよい。また、素材の滅失を抑制する点でいえば、均質化熱処理は、素材体積に比して露出する表面積の少ない鋼塊状態で行なうことがよい。さらに、均質化熱処理を行なう際の昇温速度および冷却速度は、鋼塊・綱片のサイズに合わせて適正な条件を種々選定できる。 The above homogenization heat treatment is not particular about the atmosphere even in the air, but in order to suppress the loss due to oxidation of the material, for example, an atmosphere such as an inert gas or a reducing gas is applied. Also good. In terms of suppressing the loss of the material, the homogenization heat treatment is preferably performed in a steel ingot state with a small surface area exposed as compared to the material volume. Furthermore, various conditions suitable for the heating rate and cooling rate when performing the homogenization heat treatment can be selected in accordance with the size of the steel ingot / steel piece.
次に本発明のもう一つの根幹をなすAlの含有量を規定する理由について説明する。Al量を低減させることで熱間工具鋼の靭性が向上する理由は、靭性を劣化させる組織中の窒化アルミニウム(AlNで示す)の含有量が減少するからである。熱間工具鋼の靭性向上手段にAlやNを低減する手法が提案されていることは述べたが、本発明者は、このような靭性に影響を及ぼす直接的要因は個々の成分組成にあるのではなく、むしろAlNという介在物要素にこそ大きく依ることを知見した。つまり、組織中のAlN量さえ低減すれば靭性は向上するのであって、AlNの含有量を低減するためには、Al量もしくはN量のどちらかを低減するだけでよい。 Next, the reason for defining the content of Al, which is another basis of the present invention, will be described. The reason why the toughness of the hot work tool steel is improved by reducing the Al content is that the content of aluminum nitride (indicated by AlN) in the structure that deteriorates the toughness is reduced. Although it has been stated that a method for reducing Al and N has been proposed as a means for improving the toughness of hot tool steel, the present inventor lies in the individual component composition that directly affects such toughness. Rather, I found out that it depends largely on the inclusion element of AlN. That is, the toughness is improved if only the amount of AlN in the structure is reduced. In order to reduce the content of AlN, it is only necessary to reduce either the amount of Al or the amount of N.
しかし、N量を低減するには根本的に溶製の際の脱ガス工程を長時間化するなどの高コストの工程が必要になるのに対して、Al量を低減するにはAlの添加量を減らせばよいだけであり、脱酸剤としての効力もそれを補う廉価手段が多々あることから、非常に簡便であるため、本発明ではAlの含有量こそを規定することを採用した。そして、Crに代表される炭化物形成元素の偏析度合いを調整した熱間工具鋼であれば、鋼中のAlを0.04%以下にさえ規制することで、Nの極低減を要せずとも熱間工具鋼として十分な靭性を確保できることを見いだした。本発明であれば、Nまでの極低減は不要であり、例えば100ppmや150ppm以上、さらには200ppm以上のN量であっても、優れた靭性の向上効果が得られる。 However, in order to reduce the amount of N, a costly process such as a longer degassing step during melting is required, whereas in order to reduce the amount of Al, the addition of Al Since it is only necessary to reduce the amount, and since there are many inexpensive means for supplementing the effectiveness as a deoxidizer, it is very simple, and in the present invention, it is adopted that the content of Al is specified. And if it is hot tool steel which adjusted the segregation degree of the carbide formation element represented by Cr, even if it does not require the extreme reduction of N by restrict | limiting Al in steel to 0.04% or less. It has been found that sufficient toughness can be secured as a hot work tool steel. If it is this invention, the extreme reduction to N is unnecessary, and the improvement effect of the outstanding toughness will be acquired even if it is 100 ppm, 150 ppm or more, and also N amount of 200 ppm or more, for example.
ここで靭性の劣化要因である組織中のAlNについては、本発明では、まずはその低減を鋼中のAl量を規制することで行なっている。しかし、熱間工具鋼の靭性を大きく向上させるのであれば、やはり組織中のAlN量自体を下げることが有効である。本発明の熱間工具鋼の場合、好ましくはその断面組織中に観察される最大径5μm以下のAlNが2500個/mm2以下(0個を含む)である。 Here, with regard to AlN in the structure, which is a cause of deterioration of toughness, in the present invention, the reduction is first performed by regulating the amount of Al in the steel. However, if the toughness of the hot tool steel is greatly improved, it is also effective to reduce the AlN content itself in the structure. In the case of the hot tool steel of the present invention, preferably, AlN having a maximum diameter of 5 μm or less observed in the cross-sectional structure is 2500 pieces / mm 2 or less (including 0 pieces).
断面組織中に観察される窒化アルミニウム(AlN)の一評価法を以下に示す。例えば図2に示すのは、EPMAを用いて熱間工具鋼の断面組織を観察したときの、反射電子線像(a)と、その同部位のAlのマッピング像(b)である(×1000倍)。これらの両像は後述する実施例の供試材Cのものである。このAlのマッピング像(b)中では、Alが高い粒子は色が白い部位として確認されるが、この際、Nのマッピング像も同時に得て、そのAl粒子との位置の対応を確認すれば、それが窒化アルミニウムとして特定できる。そして、窒化アルミニウムとして特定できた粒子(色が白いもの全て)の個数を数え、その個数を観察視野の面積で割ればよい。なお、窒化アルミニウムの大きさについては反射電子線像を観察することとし、図2の反射電子線像(a)の示す個々の窒化アルミニウムの最大径が5μm以下であることがわかる。 One evaluation method of aluminum nitride (AlN) observed in the cross-sectional structure is shown below. For example, FIG. 2 shows a reflected electron beam image (a) and a mapping image (b) of Al at the same site when the cross-sectional structure of hot tool steel is observed using EPMA (× 1000). Times). Both of these images are of the sample material C of the examples described later. In this Al mapping image (b), particles with high Al are confirmed as white portions. At this time, an N mapping image is also obtained at the same time, and the correspondence with the position of the Al particles is confirmed. , It can be identified as aluminum nitride. Then, the number of particles (all white particles) that can be identified as aluminum nitride is counted, and the number is divided by the area of the observation field. In addition, about the magnitude | size of aluminum nitride, when a reflected electron beam image is observed, it turns out that the maximum diameter of each aluminum nitride which the reflected electron beam image (a) of FIG. 2 shows is 5 micrometers or less.
以下に、本発明の効果を最大限に活用するのに好ましい、熱間工具鋼の成分を限定した理由について、上述の要件も合わせ、詳細に説明する。 Hereinafter, the reason why the components of the hot work tool steel, which is preferable for maximizing the effects of the present invention, will be described in detail in conjunction with the above-described requirements.
・C:0.2〜0.7質量%
Cは、一部が基地中に固溶して強度を付与し、一部は炭化物を形成することで耐摩耗性や耐焼付き性を高める重要な元素であることから、本発明の対象を熱間工具とする場合には、特に本発明の有用性を向上させる。また、固溶した侵入型原子であるCは、CrなどのCと親和性の大きい置換型原子と共添加した場合、I(侵入型原子)−S(置換型原子)効果;溶質原子の引きずり抵抗として作用し高強度化する作用も期待される。ただし、含有量が0.2質量%未満では工具部材として十分な硬さ、耐摩耗性を確保できなくなる。他方、過度の添加は靭性や熱間強度の低下を招くため上限を0.7質量%とする。
-C: 0.2-0.7 mass%
C is an important element that increases the wear resistance and seizure resistance by partly forming a solid solution in the base to give strength and partly forming carbides. In the case of an interstitial tool, the utility of the present invention is particularly improved. Further, when C, which is a solid interstitial atom, is co-added with a substitution atom having a high affinity with C, such as Cr, I (interstitial atom) -S (substitution atom) effect; solute atom dragging The effect of increasing the strength by acting as a resistance is also expected. However, if the content is less than 0.2% by mass, sufficient hardness and wear resistance as a tool member cannot be secured. On the other hand, excessive addition causes a decrease in toughness and hot strength, so the upper limit is made 0.7 mass%.
・Cr:0.5〜7.0質量%
Crは焼入れ性を高めて、また、炭化物を形成して基地の強化や耐摩耗性を向上させる効果を有することから、本発明の対象を熱間工具とする場合には、特に本発明の有用性を向上させる元素であり、少なくとも0.5質量%添加する必要がある。ただし、過度の添加は焼入れ性や熱間強度の低下を招くため、上限を7.0質量%とする。
-Cr: 0.5-7.0 mass%
Since Cr has the effect of enhancing hardenability and forming carbides to improve the strengthening of the base and wear resistance, the present invention is particularly useful when the object of the present invention is a hot tool. It is an element that improves the properties, and it is necessary to add at least 0.5% by mass. However, excessive addition causes a decrease in hardenability and hot strength, so the upper limit is 7.0% by mass.
・基地組成のCrの偏析度合いが±0.2質量%以内
Crは、凝固の際に凝固偏析が起こると、Cr濃化部では炭化物の析出量が極端に多くなって靭性を大きく低下させる。この場合、鋼中のAl量やAlN量自体を上述のように規定しても靭性を改善できないことが懸念される。靭性に優れた熱間工具鋼を提案する本発明では、靭性に影響を与えるCrの偏析度合いを±0.2質量%以内(すなわち上限濃度と下限濃度の差で0〜0.4質量%)、好ましくは±0.1質量%以内(同0〜0.2質量%)とする。
The degree of segregation of the base composition Cr is within ± 0.2% by mass. When solidification segregation occurs during solidification of Cr, the amount of precipitated carbide is extremely increased in the Cr-concentrated portion, and the toughness is greatly reduced. In this case, there is a concern that the toughness cannot be improved even if the amount of Al or the amount of AlN in the steel itself is specified as described above. In the present invention that proposes a hot work tool steel with excellent toughness, the degree of segregation of Cr that affects toughness is within ± 0.2 mass% (that is, the difference between the upper limit concentration and the lower limit concentration is 0 to 0.4 mass%). , Preferably within ± 0.1% by mass (0 to 0.2% by mass).
・MoまたはWの1種あるいは2種を(Mo+1/2W):0.1〜6.0質量%
MoおよびWは、炭化物を形成して基地の強化や耐摩耗性を向上させる効果を有する。ただし、WはMoの約2倍の原子量であることからMo+1/2Wで規定する(当然、いずれか一方のみの添加としても良いし、双方を共添加することもできる)。そして、上記した作用の顕著な効果を期待する場合は、Mo+1/2Wを0.1質量%以上とすることが望ましい。ただし、Moおよび/またはWの過度の添加は炭化物量を増加させ、靭性の低下を招くため、Mo+1/2Wの上限を6.0質量%とするのが望ましい。
-1 type or 2 types of Mo or W (Mo + 1 / 2W): 0.1-6.0 mass%
Mo and W have the effect of forming carbides and improving the strengthening of the base and the wear resistance. However, since W has an atomic weight approximately twice that of Mo, it is defined by Mo + 1 / 2W (of course, either one may be added or both may be added together). And when the remarkable effect of an above-mentioned effect | action is anticipated, it is desirable to make Mo + 1 / 2W into 0.1 mass% or more. However, excessive addition of Mo and / or W increases the amount of carbide and leads to a decrease in toughness, so the upper limit of Mo + 1 / 2W is preferably 6.0% by mass.
・基地組成のMo+1/2Wの偏析度合いが±0.08質量%以内
MoおよびWは、凝固の際に凝固偏析が起こると、Moおよび/またはWの濃化部では炭化物の析出量が極端に多くなって靭性を大きく低下させる。よって、MoやWを添加するような場合では、Crと同様にその偏析度合いを調整することが望ましい。靭性に優れた熱間工具鋼を提案する本発明では、靭性に影響を与えるMo+1/2Wの偏析度合いを±0.08質量%以内(すなわち上限濃度と下限濃度の差で0〜0.16質量%)、さらには±0.035質量%以内(同0〜0.07質量%)とすることが好ましい。
The degree of segregation of the base composition Mo + 1 / 2W is within ± 0.08% by mass. When Mo and W solidify and segregate during solidification, the amount of precipitated carbide is extremely large in the Mo and / or W concentrated part. Increases and greatly reduces toughness. Therefore, in the case where Mo or W is added, it is desirable to adjust the degree of segregation similarly to Cr. In the present invention which proposes a hot work tool steel having excellent toughness, the segregation degree of Mo + 1 / 2W which affects toughness is within ± 0.08 mass% (that is, 0 to 0.16 mass by the difference between the upper limit concentration and the lower limit concentration). %), And more preferably within ± 0.035% by mass (0 to 0.07% by mass).
・V:3.0質量%以下
Vは、炭化物を形成し、基地の強化や耐摩耗性向上の効果を有する。また、微細な炭化物の形成により、結晶粒の微細化ひいては靭性の向上にも有効であるので、より顕著な効果を期待する場合は、含有量を0.1質量%以上とすることが望ましい。しかし他方では、過度に添加するとやはり靭性の低下を招くため、上限を3.0質量%とすることが望ましい。
V: 3.0% by mass or less V forms carbides and has the effect of strengthening the base and improving wear resistance. In addition, the formation of fine carbides is effective for the refinement of crystal grains and the improvement of toughness. Therefore, when a more remarkable effect is expected, the content is preferably 0.1% by mass or more. However, on the other hand, if added excessively, the toughness is also lowered, so the upper limit is desirably 3.0% by mass.
・基地組成のVの偏析度合いが±0.07質量%以内
Vは、凝固の際に凝固偏析が起こると、V濃化部では炭化物の析出量が極端に多くなって靭性を大きく低下させる。よって、MoやWに同様、Vを添加するような場合でも、Crと同様にその偏析度合いを調整することが望ましい。靭性に優れた熱間工具鋼を提案する本発明では、靭性に影響を与えるVの偏析度合いを±0.07質量%以内(すなわち上限濃度と下限濃度の差で0〜0.14質量%)、さらには±0.035質量%以内(同0〜0.07質量%)とすることが好ましい。
The degree of segregation of V in the base composition is within ± 0.07% by mass. When solidification segregation occurs during solidification, the precipitation amount of carbide is extremely increased in the V-concentrated portion, and the toughness is greatly reduced. Therefore, similarly to Mo and W, even when V is added, it is desirable to adjust the degree of segregation similarly to Cr. In the present invention which proposes a hot work tool steel excellent in toughness, the degree of segregation of V affecting toughness is within ± 0.07 mass% (that is, the difference between the upper limit concentration and the lower limit concentration is 0 to 0.14 mass%). Furthermore, it is preferable to be within ± 0.035% by mass (0 to 0.07% by mass).
・Al:0.04質量%以下
Alは、精錬時に脱酸元素として使用され、不可避的に含有されることが多い。しかし、多量に含有すると、それが不純物量の域であってもAlNを形成して、靭性を劣化させ、特にNの含有量が多い場合に顕著となる。上述の通り、基地組成の偏析度合いが調整され、靭性が改善されている本発明の熱間工具鋼の場合、Nの含有量が多くてもAlを0.04質量%以下に規制することで靭性の向上効果が十分に得られる。好ましくは0.025質量%以下、さらに好ましくは0.015質量%以下である。
-Al: 0.04 mass% or less Al is used as a deoxidizing element during refining and is often unavoidably contained. However, when it is contained in a large amount, even if it is in the region of the amount of impurities, AlN is formed and the toughness is deteriorated, particularly when the N content is high. As described above, in the case of the hot tool steel of the present invention in which the degree of segregation of the base composition is adjusted and the toughness is improved, even if the N content is large, Al is regulated to 0.04 mass% or less. The effect of improving toughness can be sufficiently obtained. Preferably it is 0.025 mass% or less, More preferably, it is 0.015 mass% or less.
なお、本発明の熱間工具鋼の成分組成は、上述の成分を含む以外には、例えば必要に応じてSi、Mn、Ni、Coなどを添加することができ、JISに記載されるような工具鋼組成の適用が可能である。 In addition, the component composition of the hot tool steel of the present invention can include, for example, Si, Mn, Ni, Co, etc. as necessary, other than the above-mentioned components, as described in JIS. Application of tool steel composition is possible.
・断面組織中に観察される最大径5μm以下のAlNが2500個/mm2以下(0個を含む)である
上述の通り、AlNは熱間工具鋼の靭性を劣化させるため、本発明にかかる靭性に優れた熱間工具鋼の断面組織中に観察される最大径5μm以下のAlNは2500個/mm2以下とすることが望ましい(0個を含む)。特に好ましくは500個/mm2以下である。
The number of AlN having a maximum diameter of 5 μm or less observed in the cross-sectional structure is 2500 / mm 2 or less (including 0). As described above, AlN deteriorates the toughness of hot tool steel, and therefore the present invention is applied. It is desirable that the AlN having a maximum diameter of 5 μm or less observed in the cross-sectional structure of the hot work tool steel having excellent toughness is 2500 pieces / mm 2 or less (including 0 pieces). Particularly preferably, it is 500 pieces / mm 2 or less.
表1に示した供試材A〜Cは、15トンのアーク溶解炉で一次溶解して造塊した電極を、ESRで再溶解して製造した鋼塊に、大気中1250℃以上での均質化熱処理を施したものである。この均質化熱処理は、供試材A〜Cの全てが本発明の偏析度合い内になる温度と時間等の一条件を設定した、同一の条件によるものである。そして、均質化熱処理後の鋼塊を分塊および熱間加工した焼鈍状態のものであって、供試材AおよびBは、本発明の偏析度合いおよびAlの含有量を満たした熱間工具鋼である。供試材Cは、本発明のAl規制域を越える比較鋼である。一方、本発明のAlの含有量を満たす供試材Dは、同様に一次溶解した後には、再溶解を行なわずに造塊した鋼塊に、供試材A〜Cに同条件の均質化熱処理と、続く分塊および熱間加工した焼鈍材である。供試材A〜Dの基本組成はSKD61に相当する。 The test materials A to C shown in Table 1 were homogenized at 1250 ° C. or higher in the atmosphere into an ingot produced by remelting an electrode obtained by primary melting in a 15-ton arc melting furnace and remelting with ESR. It has been subjected to chemical heat treatment. This homogenization heat treatment is based on the same conditions in which one condition such as temperature and time at which all of the test materials A to C are within the segregation degree of the present invention is set. The steel ingot after homogenization heat treatment is in an annealed state in which the steel ingot is ingot and hot worked, and the specimens A and B are hot tool steels that satisfy the segregation degree and the Al content of the present invention. It is. Specimen C is a comparative steel that exceeds the Al regulation range of the present invention. On the other hand, the test material D satisfying the Al content of the present invention is similarly homogenized under the same conditions as the test materials A to C into a steel ingot that has been agglomerated without remelting after primary melting. A heat treatment followed by a chunk and hot worked annealed material. The basic composition of the test materials A to D corresponds to SKD61.
最大径5μm以下の窒化アルミニウム(AlN)の個数は、既述の方法に従って、EPMAで観察した1000倍のAlマッピング像から測定した。なお、本製法で作製した場合、EPMAの反射電子線像による試料組織中には最大径5μmを超えるAlNは観察されなかった。そして、この反射電子線像では確認されるものの、特に微細な粒子については、その全てが本発明で規制する窒化アルミニウム(AlN)であるのかどうかを正確に分別することが困難であったことから、最大径0.5μm以上の粒子のみを測定した。それらの結果を、各元素における基地組成の偏析度合い(定量分析の際に用いた電子線の直径は100μm)と共に、表2に示す。 The number of aluminum nitrides (AlN) having a maximum diameter of 5 μm or less was measured from a 1000-fold Al mapping image observed with EPMA according to the method described above. In addition, when produced by this production method, AlN exceeding the maximum diameter of 5 μm was not observed in the sample structure by the reflected electron beam image of EPMA. And although it is confirmed in this reflected electron beam image, it was difficult to accurately determine whether or not all fine particles are aluminum nitride (AlN) regulated by the present invention. Only particles having a maximum diameter of 0.5 μm or more were measured. The results are shown in Table 2 together with the degree of segregation of the base composition in each element (the diameter of the electron beam used in the quantitative analysis is 100 μm).
そして、表1の供試材A〜Dを、焼入れ焼戻し処理をして硬さを43HRCに合わせたあと、2mmUノッチシャルピー衝撃試験片に加工した。表3はシャルピー衝撃試験結果である。 The specimens A to D shown in Table 1 were subjected to quenching and tempering to match the hardness to 43HRC, and then processed into 2 mm U notch Charpy impact test pieces. Table 3 shows the Charpy impact test results.
造塊工程に再溶解法を適用しなかった供試材Dは、その鋼塊に供試材A〜Cと同条件の均質化熱処理を適用したが、本発明の偏析度合いを満たさず、シャルピー衝撃値に劣るものであった。そして、本発明の偏析度合いを満たす中であっても、Al含有量が本発明の範囲外である供試材Cと比べて、本発明鋼である供試材AおよびBはシャルピー衝撃値が優れている。中でも、Al含有量が好ましい量まで低減され、組織中の窒化アルミニウム量も極低化されている供試材Bは、比較鋼Cのおよそ2倍もの衝撃値を示した。 In the specimen D for which the remelting method was not applied to the ingot forming process, the homogenized heat treatment under the same conditions as the specimens A to C was applied to the steel ingot, but the segregation degree of the present invention was not satisfied, and Charpy The impact value was inferior. And even in satisfying the degree of segregation of the present invention, compared with the test material C whose Al content is outside the scope of the present invention, the test materials A and B which are steels of the present invention have a Charpy impact value. Are better. Among them, the test material B in which the Al content was reduced to a preferable amount and the amount of aluminum nitride in the structure was extremely reduced showed an impact value approximately twice that of the comparative steel C.
本発明を適用して熱間工具鋼の靭性を向上させることによって、プレス金型やダイカスト金型、押出工具といった多種の熱間工具への適用はもちろんのこと、さらに使用負荷が大きい金型等の熱間工具部材にも適用できる。 By applying the present invention to improve the toughness of hot tool steel, it can be applied to various hot tools such as press dies, die casting dies and extrusion tools, as well as dies with a larger load. The present invention can also be applied to hot tool members.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004273831A JP4441907B2 (en) | 2003-09-29 | 2004-09-21 | Hot tool steel with excellent toughness and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003338125 | 2003-09-29 | ||
JP2004094661 | 2004-03-29 | ||
JP2004273831A JP4441907B2 (en) | 2003-09-29 | 2004-09-21 | Hot tool steel with excellent toughness and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005314788A true JP2005314788A (en) | 2005-11-10 |
JP4441907B2 JP4441907B2 (en) | 2010-03-31 |
Family
ID=35442508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004273831A Expired - Lifetime JP4441907B2 (en) | 2003-09-29 | 2004-09-21 | Hot tool steel with excellent toughness and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4441907B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102912236A (en) * | 2012-11-13 | 2013-02-06 | 北京科技大学 | High-performance and abrasion-resistant hot work die steel and technology for manufacturing same |
JP2021031695A (en) * | 2019-08-19 | 2021-03-01 | 山陽特殊製鋼株式会社 | Hot work-tool steel excellent in toughness |
-
2004
- 2004-09-21 JP JP2004273831A patent/JP4441907B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102912236A (en) * | 2012-11-13 | 2013-02-06 | 北京科技大学 | High-performance and abrasion-resistant hot work die steel and technology for manufacturing same |
JP2021031695A (en) * | 2019-08-19 | 2021-03-01 | 山陽特殊製鋼株式会社 | Hot work-tool steel excellent in toughness |
JP7305483B2 (en) | 2019-08-19 | 2023-07-10 | 山陽特殊製鋼株式会社 | Hot work tool steel with excellent toughness |
Also Published As
Publication number | Publication date |
---|---|
JP4441907B2 (en) | 2010-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4424503B2 (en) | Steel bar and wire rod | |
WO2008032816A1 (en) | Hot-working tool steel having excellent stiffness and high-temperature strength and method for production thereof | |
JP6925781B2 (en) | Hot tool steel with excellent high temperature strength and toughness | |
JP7305483B2 (en) | Hot work tool steel with excellent toughness | |
JP2007291444A (en) | Hot work tool steel with high toughness, and its manufacturing method | |
WO2012118053A1 (en) | Hot work tool steel having excellent toughness, and process of producing same | |
JP5212774B2 (en) | Hot tool steel excellent in toughness and high temperature strength and method for producing the same | |
JP4031068B2 (en) | High strength steel for bolts with excellent hydrogen embrittlement resistance | |
JP6156670B2 (en) | Hot tool and manufacturing method thereof | |
JP2000034538A (en) | Steel for machine structure excellent in machinability | |
JP3946684B2 (en) | Hot work tool steel | |
JP4441907B2 (en) | Hot tool steel with excellent toughness and method for producing the same | |
JP5212772B2 (en) | Hot work tool steel with excellent toughness and high temperature strength | |
JP2022130746A (en) | Non-heat-treated forged component and non-heat-treated forging steel | |
JP6776469B1 (en) | Duplex stainless steel and its manufacturing method | |
JP4339483B2 (en) | Steel for cold forging with excellent chip disposal | |
WO2022145064A1 (en) | Steel material | |
WO2021095831A1 (en) | Hot-work tool steel having exceptional high-temperature strength and toughness | |
JP2002146480A (en) | Wire rod/steel bar having excellent cold workability, and manufacturing method | |
JP7220750B1 (en) | Hot work tool steel with excellent high-temperature strength and toughness | |
WO2013146880A1 (en) | Steel material for friction welding, and method for producing same | |
JP6950071B2 (en) | Ni-Cr-Mo-Nb alloy | |
JP5907416B2 (en) | Method for producing hot work tool steel with excellent toughness | |
JP2004018879A (en) | Steel for cold forging superior in swarf treatment property | |
JP2004217947A (en) | HIGH STRENGTH AND LOW THERMAL EXPANSION Fe-Ni BASED ALLOY, AND SHADOW MASK |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070810 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090824 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090904 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091014 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20091014 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091218 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091231 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4441907 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130122 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140122 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |