JP4031068B2 - High strength steel for bolts with excellent hydrogen embrittlement resistance - Google Patents

High strength steel for bolts with excellent hydrogen embrittlement resistance Download PDF

Info

Publication number
JP4031068B2
JP4031068B2 JP16798796A JP16798796A JP4031068B2 JP 4031068 B2 JP4031068 B2 JP 4031068B2 JP 16798796 A JP16798796 A JP 16798796A JP 16798796 A JP16798796 A JP 16798796A JP 4031068 B2 JP4031068 B2 JP 4031068B2
Authority
JP
Japan
Prior art keywords
less
steel
excluding
compounds
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16798796A
Other languages
Japanese (ja)
Other versions
JPH1017985A (en
Inventor
裕一 並村
豊文 長谷川
浩 家口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP16798796A priority Critical patent/JP4031068B2/en
Publication of JPH1017985A publication Critical patent/JPH1017985A/en
Application granted granted Critical
Publication of JP4031068B2 publication Critical patent/JP4031068B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐水素脆化特性が優れることによって耐遅れ破壊特性が改善された高強度鋼及びその製造方法に関するものである。
【0002】
【従来の技術および発明が解決しようとする課題】
鉄鋼材料に応力が与えられてからある時間を経過した後に発生する遅れ破壊の原因については、種々の要因が複雑に絡み合っていると考えられるので、その原因を特定することは難しい。しかし一般的には、水素脆化現象が関与しているという点で共通の認識が持たれている。一方、水素脆化現象を左右する因子としては、焼もどし温度、組織、材料硬さ、結晶粒度、各種合金元素の影響等が一応認められているものの、水素脆化の防止手段が確立されている訳ではなく、種々の方法が試行錯誤的に提案されているに過ぎないのが実状である。
【0003】
また、特開昭60−114551、特開平2−267243、特開平3−243745などには、各種の主要な合金元素を調整することにより、引張強さが140kgf/mm2 以上でも耐遅れ破壊性の優れた高強度ボルト用鋼とすることが開示されている。しかし遅れ破壊が発生する危険を完全に払拭し得ている訳ではなく、それらの適用範囲は限定されている。
【0004】
【課題を解決するための手段】
そこで本発明者らは、従来の高強度鋼について、鋼中の各種化合物と耐水素脆化特性の関係を詳細に調査した。その結果、微細化合物の量と遅れ破壊特性との間には良好な相関が見られること、及び極めて微細な化合物に注目してその数を規定すれば遅れ破壊の発生を真に防止できること等を見出した。つまり遅れ破壊特性を劣化させる原因の一つとしては、鋼中を動き回る水素(拡散性水素)が悪影響を及ぼしていることが挙げられるが、この拡散性水素を低減するには、鋼中に種々の化合物を積極的に析出させて該化合物により水素をトラップすることが有効である。このとき、どんな大きさの化合物でも水素のトラップ能力を発揮する様であるが、本発明者らの研究によれば、水素のトラップ能力は小さい化合物の方が優れていることが明らかになった。即ち今まで全く注目されていなかった50nm以下の微細な化合物は、50nmより大きいものに比べて耐遅れ破壊性の改善に対して極めて有効であり、その数を多くすることにより始めて遅れ破壊発生の防止効果が顕著なものとなるのである。特に合金鋼の焼入焼もどし材の場合は、焼入れ後、高温焼もどしをすることにより微細な合金系化合物が数多く析出し、遅れ破壊改善に効果を発揮する。
【0005】
すなわち本発明は、C:0.20〜0.60%(特に0.30〜0.60%)を含有する鋼において、大きさが50nm以下である微細化合物の総数を20個/(500nm)2 以上と定めたのである。それらの化合物としては、Mo系化合物、V系化合物、或はMo,Ti,Vより選択される2種以上の金属を含む複合化合物が示され(特に複合化合物が示され)、これらの微細化合物の存在によって、よりすぐれた耐水素脆化特性を有する高強度鋼となる。
【0006】
上記の要件を満たす本発明の高強度鋼の成分としては、鋼中に、
Mo:2.00%以下(0%を含まない)
Ti:0.20%以下(0%を含まない)
V :0.20%以下(0%を含まない)
よりなる群から選択される1種以上を含有するものであることが推奨され、更に好ましくは、他の成分として、
Cr:2.00%以下(0%を含まない)
Al:0.05%以下(0%を含まない)
Nb:0.20%以下(0%を含まない)
W :0.20%以下(0%を含まない)
B :0.003%以下(0%を含まない)
よりなる群から選択される1種以上、及び/又は、更に他の成分として
N :0.001〜0.010%
O :0.005%以下(0%を含まない)
S :0.025%以下(0%を含まない)
よりなる群から選択される1種以上を含有するものであることが推奨される。
【0007】
【発明の実施の形態】
次に本発明の構成について更に詳細に説明する。
▲1▼大きさが50nm以下である微細化合物の総数が、20個/(500nm)2以上であるという要件:
耐遅れ破壊性を劣化させる原因としては、前述の様に鋼中で動き回る水素(拡散性水素)が悪影響を及ぼしていることが挙げられる。この拡散性水素を低減するには、鋼中に微細な化合物を数多く析出させることにより、水素のトラップ能力を高めることが必要である。更に、これらの化合物は鋼材自体の靭性を高め、水素に対する抵抗力を高める効果がある。特に微細な化合物(大きさが50nm以下)の総数が20個/(500nm)2 以上である場合、耐水素脆性の改善効果を顕著に発揮することを見出した。更に、好ましくは30個/(500nm)2以上である。
【0008】
尚これらより大きい化合物について述べると以下の通りである。
▲1▼’大きさが300nm以上の化合物
焼入焼もどし処理前に球状化焼鈍などの軟化工程が入っている場合において、焼入加熱が不十分であると、球状化組織の粗大な化合物が残留することがある。これらの化合物の大きさは300nm以上の大きさであり、これらの化合物が多いと、後記表5に示す通り、鋼の靭性が低下し、遅れ破壊強度を低下させる傾向にある。これらの大きさの化合物はなるべく低減することが望ましい。
【0009】
▲1▼”大きさが50〜300nmの化合物
これらの大きさの析出物は、Fe3 C(セメンタイト)系および合金系の析出物(Mo2 C,Cr73 等)に分けられる。Fe3 C系と合金系の析出物では水素トラップ効果に大きな差はないが、化合物の量としてFe3 C系化合物の方が圧倒的に多い。しかるにFe3 C系化合物は、粒界などに板状に析出する場合があり、粒界強度をかえって低下させ遅れ破壊強度を低下させる場合がある。
【0010】
尚このレベルの大きさの化合物については、遅れ破壊強度との相関は後記表6に示す通り不明確であり、これらの量を規定しても、水素脆化を防止することができない。
【0011】
なお、化合物の大きさの測定方法は実施例にて説明する。
▲2▼化合物の種類:
鋼中に微細な化合物として効率良く析出し、且つ高い水素トラップ能力を発揮し得る化合物としては、合金系化合物が挙げられ、特にMo系化合物、Ti系化合物、V系化合物、およびMo,Ti,Vより選ばれる2種以上の金属を含む複合化合物等である場合は、耐水素脆化特性の改善に特に優れた効果を発揮することが分かった。更にこれらの化合物は、オーステナイト結晶粒の粗大化防止に有効であり、鋼の強度、靭性を改善するのにも有効である。
【0012】
▲3▼本発明鋼を構成する重要な化学成分:
▲3▼−1 Mo:2.00%以下、Ti:0.20%以下、V:0.20%以下よりなる群から選択される1種以上
これらの元素は、鋼中に微細な化合物を効率良く析出させるために有効な元素であり、Mo系化合物、Ti系化合物、V系化合物、およびMo,Ti,Vより選択される2種以上の金属を含む複合化合物等を析出させるのに必要な元素である。更にこれらの元素は、焼入性の向上に有効な元素で、鋼材の強度・靭性改善に効果を発揮する。
【0013】
Moの効果は、約2.00%で飽和するばかりでなく、それを超えて添加すると、変形抵抗の増大により圧造工具寿命の低下をもたらす。またTiやVが0.20%を超えて添加されると、巨大な窒化物や炭化物を生じ、靭性が低下する。従って、Mo:2.00%以下、Ti:0.20%以下、V:0.20%以下と定めた。尚、それぞれの好ましい上限含有量は、Mo:1.5%以下、Ti:0.15%以下、V:0.15%以下であり、より好ましくは、Mo:1.05%以下、Ti:0.1%以下、V:0.1%以下である。一方それぞれの好ましい下限含有量は、Mo:0.3%以上、Ti:0.01%以上、V:0.15%以上であり、より好ましくは、Mo:0.6%以上、Ti:0.02%以上、V:0.02%以上である。
【0014】
▲3▼−2 Cr:2.00%以下、Al:0.05%以下、Nb:0.20%以下、W:0.20%以下、B:0.003%以下よりなる群から選択される1種以上
これらの元素もまた、鋼中に微細な化合物を効率良く析出させる上で有効な元素であり、更にこれらの元素を含む化合物は、オーステイナイト結晶粒の粗大化防止作用も示すので、鋼の強度及び靭性を改善する上で有効である。更にCrは、耐食性の向上に寄与して耐水素脆性を高める作用も発揮し、またBは粒界に集散して鋼の焼入れ性を高める。
【0015】
Crの効果は約2.0%で飽和し、Al、Nb、W、Bは、多量に添加すると巨大な窒化物や炭化物を生じ、靭性が低下する。従ってCr:2.00%以下、Al:0.05%以下、Nb:0.20%以下、W:0.20%以下、B:0.003%以下と定めた。尚、夫々の好ましい上限含有量は、Cr:1.5%以下、Al:0.045%以下、Nb:0.15%以下、W:0.15%以下、B:0.0025%以下であり、より好ましくは、Cr:1.05%以下、Al:0.04%以下、Nb:0.1%以下、W:0.1%以下、B:0.0020%以下である。一方好ましい下限含有量は、Cr:0.3%以上、Al:0.01%以上、Nb:0.01%以上、W:0.01%以上、B:0.0005%以上であり、より好ましくは、Cr:0.5%以上、Al:0.02%以上、Nb:0.02%以上、W:0.02%以上、B:0.001%以上である。
【0016】
▲3▼−3 C:0.10〜0.60%、N:0.001〜0.010%、O:0.005%以下、S:0.025%以下
これらの元素は鋼中に化合物を析出させるのに必要な元素であり、炭化物、窒化物、酸化物、硫化物を生成させる。
Cは、炭化物を形成するとともに、高強度鋼として必要な引張強さを確保する上で欠くことのできない元素であり、0.10%以上含有する必要がある。一方0.60%を超えるCは、炭化物の粗大化を招くとともに、靭性低下を招いて耐遅れ破壊性を劣化させる。よってCの含有量は0.10〜0.60%と定めた。尚好ましい下限C量は、0.20%であり、更に好ましい下限C量は0.30%である。一方好ましい上限C量は、0.45%であり、更に好ましい上限C量は0.40%である。
【0017】
Nは、窒化物を形成し、結晶粒の微細化ひいては耐遅れ破壊性の向上に好影響を与え、これらの効果を得るには0.001%以上の添加が必要である。一方N量が0.010%を超えると固溶N量が増大し、耐遅れ破壊性に有害となる。よってNの含有量は、0.001〜0.010%と定めた。尚好ましい下限N量は0.002%であり、更に好ましい下限N量は0.004%である。好ましい上限N量は0.007%であり、更に好ましい上限N量は0.006%である。
【0018】
Oは、酸化物を形成し、鋼中に微細分散させる。しかしO量が0.005%を超えると粗大な酸化物が析出し、靭性低下を招いて耐遅れ破壊性を劣化させる。よって、Oの含有量は0.005%以下と定めた。尚、好ましいO量は、0.003%以下であり、更に好ましいO量は0.001%以下である。
【0019】
Sは、硫化物を形成し、鋼中に微細分散させる。しかし、S量が0.025%を超えると粗大なMnSなどを形成して応力集中箇所となり、耐遅れ破壊性を劣化させる。よって、Sの含有量は0.025%以下と定めた。尚、好ましいS量は、0.010%以下であり、更に好ましいO量は0.005%以下である。
なお、本発明鋼には製造上、不可避的不純物が含まれ得るが、それらは本発明の効果を損なわない限度で許容される。
また鋼材の製造条件を下記の様に調整してやれば、上記有用化合物を効率良く微細析出させることができ、耐水素脆化特性に優れた高強度鋼が得られやすい。
【0020】
即ちその条件として好ましいのは、鋼材を製造する際の凝固過程における冷却速度を規定することである。即ち、凝固過程(1500℃から1300℃への冷却中)において、10℃/分以上の速さで冷却することにより、粗大な化合物の析出が抑制され、微細な化合物が多く析出する。より好ましい冷却速度は20℃/分以上であり、更に、好ましい冷却速度は30℃/分以上である。
次に本発明の実施例を示す。
【0021】
【実施例】
表1に示す成分組成の鋼材を150kg真空溶解炉にて溶製し、150kgのインゴットに鋳造し冷却した。また一部、凝固過程の冷却速度を変化させるため、50〜150kgのインゴットに鋳造し、一部保温しながら冷却した。その後25mmφに鍛造し、1200℃×30分の容体化処理を施した後、焼ならし処理し、引張強度が約1000〜2000N/mm2 になるように最終熱処理を施した。
【0022】
【表1】

Figure 0004031068
【0023】
得られた鋼材について、化合物の数を測定するとともに、引張強さおよび遅れ破壊強度を測定し、後記の表2〜6に示す結果を得た。尚、化合物測定および、遅れ破壊強度の測定は下記の方法によって測定した。
【0024】
<化合物数の測定>
▲1▼:通常の抽出レプリカ法により抽出した化合物を、走査型電子顕微鏡(TEM)にて、加速電圧200KV、15万倍の写真撮影をする。
【0025】
▲2▼:500nm×500nm(15万倍で75mm×75mm)の視野の中で観察される50nm以下の微細な化合物を数える。図2,図3,図4の各上側には撮影した写真の一例(一辺の長さは500nm)を示し、各下側には、その視野及び化合物の大きさを忠実に転写し、その数(何れも図から明らかな様に50nm以下の大きさ)を数えたところ、図2では36個、図3では24個、図4では10個であった。更に図4,図5には、EDXにより組成分析した結果を併せて示す。図4は析出物組成がMo−Ti−V複合の場合、図5は析出物組成がMo−Ti−V−Cr−Al複合の場合を夫々示す。
【0026】
図5の析出物の組成は主にMo−Ti−V系の複合化合物であり、図6の析出物の組成は主にMo−Ti−V−Cr−Al系の複合化合物である。但し、Cuのピークが高いのは測定に当たってサンプルを固定する際に、Cuメッシュを使用したためである。
【0027】
▲3▼:写真撮影は1サンプルにつき、任意の5箇所とし、測定した5箇所の平均値を化合物の総数と定義し、○○個/(500nm)2 で表わす。
【0028】
<遅れ破壊強度の測定>
ループ型定歪み遅れ破壊試験機を用いて、図1に示す遅れ破壊試験片を水中で応力負荷し100時間の遅れ破壊強さを測定した。結果は表2、表3、表4に示す通りであり、微細化合物の数が多い鋼で種は、いずれも高い遅れ破壊強さを示している。
【0029】
【表2】
Figure 0004031068
【0030】
【表3】
Figure 0004031068
【0031】
【表4】
Figure 0004031068
【0032】
【表5】
Figure 0004031068
【0033】
【表6】
Figure 0004031068
【0034】
表2,3,4に示す様に、微細化合物は50nm以下の化合物が特に有効であるが、特に表2に示す様に、30nm以下、更に10nm以下と小さくなるほど耐遅れ破壊特性の改善に有効であることが分かる。一方50nm以上の大きさの化合物については、50〜300nmの大きさの化合物は表6に示す様に耐遅れ破壊特性の良否との間に良好な相関を見出すことはできず、300nm以上化合物については、表5に示す様にその数を減少させることが耐遅れ破壊特性の向上に有効で有ることが分かる。この様に化合物の大きさ(及び数)と耐遅れ破壊特性との間の相関については、極めて特異な様相を示すものであることが本発明によって明らかとなった。
一方50nm以下の化合物を多く微細析出させる手段としては、表4に示す様に、凝固速度を制御することが有効であることが分かった。
【0035】
【発明の効果】
本発明は以上の様に構成されており、1200N/mm2 レベル以上で且つ耐水素脆化特性に優れた高強度ボルト鋼が提供されることとなった。
【図面の簡単な説明】
【図1】 遅れ破壊強度測定に用いた試験片の寸法、形状を示す図である。
【図2】 化合物の大きさ及び数の測定例を示す顕微鏡写真(TEM像)及び当該写真から読み取ることのできる析出物表示図である[析出物は36個/(500nm)2 ]。
【図3】 化合物の大きさ及び数の測定例を示す顕微鏡写真(TEM像)及び当該写真から読み取ることのできる析出物表示図である[析出物は24個/(500nm)2 ]。
【図4】 化合物の大きさ及び数の測定例を示す顕微鏡写真(TEM像)及び当該写真から読み取ることのできる析出物表示図である[析出物は10個/(500nm)2 ]。
【図5】 図2中の1について、EDXによる化合物組成を分析して得たスペクトル像の一例を示す写真である(析出物組成:Mo−Ti−V複合)。
【図6】 図2中の2について、EDXによる化合物組成を分析して得たスペクトル像の一例を示す写真である(析出物組成:Mo−Ti−V−Cr−Al複合)。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength steel having improved delayed fracture resistance due to excellent hydrogen embrittlement resistance and a method for producing the same.
[0002]
[Background Art and Problems to be Solved by the Invention]
Regarding the cause of delayed fracture that occurs after a certain period of time has passed since the stress is applied to the steel material, it is considered that various factors are intertwined in a complicated manner, so it is difficult to identify the cause. However, in general, there is a common recognition that hydrogen embrittlement is involved. On the other hand, as factors affecting the hydrogen embrittlement phenomenon, the effects of tempering temperature, structure, material hardness, crystal grain size, various alloy elements, etc. have been recognized for some time, but measures to prevent hydrogen embrittlement have been established. In fact, various methods have been proposed only by trial and error.
[0003]
Further, JP-A-60-114551, JP-A-2-267243, JP-A-3-243745 and the like disclose delayed fracture resistance even when the tensile strength is 140 kgf / mm 2 or more by adjusting various main alloy elements. It is disclosed that it is excellent in steel for high-strength bolts. However, it does not completely eliminate the risk of delayed fracture, and their scope of application is limited.
[0004]
[Means for Solving the Problems]
Therefore, the present inventors investigated in detail the relationship between various compounds in the steel and the hydrogen embrittlement resistance of the conventional high-strength steel. As a result, there is a good correlation between the amount of the fine compound and the delayed fracture characteristics, and the fact that the number of fine compounds is focused on and the number of the fine compounds is prescribed, the occurrence of delayed fracture can be truly prevented. I found it. In other words, one of the causes for the deterioration of delayed fracture characteristics is that hydrogen (diffusible hydrogen) moving around in steel has an adverse effect. To reduce this diffusible hydrogen, It is effective to actively precipitate the compound and trap hydrogen with the compound. At this time, it seems that any size compound can exert the hydrogen trapping ability, but according to the study by the present inventors, it has been clarified that the compound having a small hydrogen trapping ability is superior. . In other words, fine compounds of 50 nm or less, which have not been attracting attention until now, are extremely effective in improving delayed fracture resistance as compared with those having a size of more than 50 nm. The prevention effect becomes remarkable. Particularly in the case of quenching and tempering of alloy steel, high temperature tempering after quenching causes many fine alloy-based compounds to precipitate, which is effective in improving delayed fracture.
[0005]
That is, according to the present invention, in the steel containing C: 0.20 to 0.60% (particularly 0.30 to 0.60%), the total number of fine compounds having a size of 50 nm or less is 20 / (500 nm). It was set as 2 or more. These compounds include Mo compounds , V compounds, or composite compounds containing two or more metals selected from Mo, Ti, and V (particularly, composite compounds are shown), and these fine compounds. Due to the presence of this, it becomes a high strength steel having better hydrogen embrittlement resistance.
[0006]
As a component of the high-strength steel of the present invention that satisfies the above requirements,
Mo: 2.00% or less (excluding 0%)
Ti: 0.20% or less (excluding 0%)
V: 0.20% or less (excluding 0%)
It is recommended to contain one or more selected from the group consisting of, more preferably as other components,
Cr: 2.00% or less (excluding 0%)
Al: 0.05% or less (excluding 0%)
Nb: 0.20% or less (excluding 0%)
W: 0.20% or less (excluding 0%)
B: 0.003% or less (excluding 0%)
As one or more selected from the group consisting of :
N: 0.001 to 0.010%
O: 0.005% or less (excluding 0%)
S: 0.025% or less (excluding 0%)
It is recommended to contain at least one selected from the group consisting of:
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Next, the configuration of the present invention will be described in more detail.
(1) The requirement that the total number of fine compounds having a size of 50 nm or less is 20 / (500 nm) 2 or more:
As described above, the reason why the delayed fracture resistance is deteriorated is that hydrogen (diffusible hydrogen) moving around in steel has an adverse effect. In order to reduce this diffusible hydrogen, it is necessary to increase the hydrogen trapping ability by precipitating many fine compounds in the steel. Furthermore, these compounds have the effect of increasing the toughness of the steel material itself and increasing the resistance to hydrogen. It has been found that particularly when the total number of fine compounds (size is 50 nm or less) is 20 / (500 nm) 2 or more, the effect of improving hydrogen embrittlement resistance is remarkably exhibited. Further, it is preferably 30 / (500 nm) 2 or more.
[0008]
The compounds larger than these are as follows.
(1) When a softening process such as spheroidizing annealing is included before the compound quenching and tempering treatment with a size of 300 nm or more, if the quenching heating is insufficient, a coarse compound with a spheroidized structure is formed. May remain. The size of these compounds is 300 nm or more, and when these compounds are large, the toughness of the steel decreases and the delayed fracture strength tends to decrease as shown in Table 5 below. It is desirable to reduce these size compounds as much as possible.
[0009]
(1) Compound having a size of 50 to 300 nm Precipitates of these sizes are classified into Fe 3 C (cementite) -based and alloy-based precipitates (Mo 2 C, Cr 7 C 3, etc.). 3 is not large difference in hydrogen trapping effect in C-based and precipitates of the alloy system, the vast majority towards Fe 3 C compound as the amount of the compound. However Fe 3 C based compound, a plate etc. grain boundary In some cases, the grain boundary strength may be reduced and delayed fracture strength may be reduced.
[0010]
For a compound of this level, the correlation with delayed fracture strength is unclear as shown in Table 6 below, and even if these amounts are specified, hydrogen embrittlement cannot be prevented.
[0011]
In addition, the measuring method of the magnitude | size of a compound is demonstrated in an Example.
(2) Compound types:
Examples of the compound that efficiently precipitates as a fine compound in steel and can exhibit a high hydrogen trapping ability include alloy compounds, and in particular, Mo compounds, Ti compounds, V compounds, and Mo, Ti, In the case of a composite compound containing two or more kinds of metals selected from V, it was found that a particularly excellent effect was exhibited in improving the hydrogen embrittlement resistance. Furthermore, these compounds are effective for preventing coarsening of austenite crystal grains and are effective for improving the strength and toughness of steel.
[0012]
(3) Important chemical components constituting the steel of the present invention:
(3) -1 One or more selected from the group consisting of Mo: 2.00% or less, Ti: 0.20% or less, and V: 0.20% or less. These elements contain fine compounds in the steel. It is an element effective for efficient precipitation, and is necessary for precipitating Mo compounds, Ti compounds, V compounds, and complex compounds containing two or more metals selected from Mo, Ti, and V. Element. Furthermore, these elements are effective elements for improving hardenability, and are effective in improving the strength and toughness of steel materials.
[0013]
The effect of Mo not only saturates at about 2.00%, but addition beyond that leads to a reduction in the tool life due to increased deformation resistance. If Ti or V is added in an amount exceeding 0.20%, huge nitrides and carbides are generated, and the toughness is lowered. Therefore, it was determined that Mo: 2.00% or less, Ti: 0.20% or less, and V: 0.20% or less. In addition, each preferable upper limit content is Mo: 1.5% or less, Ti: 0.15% or less, V: 0.15% or less, More preferably, Mo: 1.05% or less, Ti: 0.1% or less, V: 0.1% or less. On the other hand, the preferred lower limit contents are Mo: 0.3% or more, Ti: 0.01% or more, V: 0.15% or more, and more preferably Mo: 0.6% or more, Ti: 0. 0.02% or more, V: 0.02% or more.
[0014]
(3) -2 Cr: 2.00% or less, Al: 0.05% or less, Nb: 0.20% or less, W: 0.20% or less, B: 0.003% or less One or more of these elements are also effective elements for efficiently precipitating fine compounds in steel, and the compounds containing these elements also have an effect of preventing coarsening of austenite crystal grains. Therefore, it is effective in improving the strength and toughness of steel. Further, Cr contributes to the improvement of corrosion resistance and exhibits an effect of increasing hydrogen embrittlement resistance, and B is concentrated at the grain boundaries to enhance the hardenability of the steel.
[0015]
The effect of Cr is saturated at about 2.0%, and when Al, Nb, W, and B are added in a large amount, huge nitrides and carbides are formed and the toughness is lowered. Therefore, Cr: 2.00% or less, Al: 0.05% or less, Nb: 0.20% or less, W: 0.20% or less, B: 0.003% or less. In addition, each preferable upper limit content is Cr: 1.5% or less, Al: 0.045% or less, Nb: 0.15% or less, W: 0.15% or less, B: 0.0025% or less. More preferably, Cr: 1.05% or less, Al: 0.04% or less, Nb: 0.1% or less, W: 0.1% or less, B: 0.0020% or less. On the other hand, preferable lower limit contents are Cr: 0.3% or more, Al: 0.01% or more, Nb: 0.01% or more, W: 0.01% or more, B: 0.0005% or more, and more Preferably, Cr: 0.5% or more, Al: 0.02% or more, Nb: 0.02% or more, W: 0.02% or more, B: 0.001% or more.
[0016]
(3) -3 C: 0.10 to 0.60%, N: 0.001 to 0.010%, O: 0.005% or less, S: 0.025% or less These elements are compounds in steel. Is an element necessary for precipitating, and forms carbides, nitrides, oxides, and sulfides.
C is an element indispensable for forming carbides and securing the tensile strength necessary for high-strength steel, and needs to be contained in an amount of 0.10% or more. On the other hand, C exceeding 0.60% invites coarsening of the carbide and also causes a decrease in toughness and deteriorates delayed fracture resistance. Therefore, the C content is determined to be 0.10 to 0.60%. A preferable lower limit C amount is 0.20%, and a more preferable lower limit C amount is 0.30%. On the other hand, a preferable upper limit C amount is 0.45%, and a more preferable upper limit C amount is 0.40%.
[0017]
N forms nitrides and has a positive influence on the refinement of crystal grains and thus on the improvement of delayed fracture resistance. To obtain these effects, 0.001% or more must be added. On the other hand, when the N content exceeds 0.010%, the solid solution N content increases, which is harmful to delayed fracture resistance. Therefore, the N content is determined to be 0.001 to 0.010%. A preferable lower limit N amount is 0.002%, and a more preferable lower limit N amount is 0.004%. A preferable upper limit N amount is 0.007%, and a more preferable upper limit N amount is 0.006%.
[0018]
O forms an oxide and is finely dispersed in the steel. However, if the amount of O exceeds 0.005%, a coarse oxide precipitates, causing a decrease in toughness and deteriorating delayed fracture resistance. Therefore, the content of O is set to 0.005% or less. In addition, a preferable amount of O is 0.003% or less, and a more preferable amount of O is 0.001% or less.
[0019]
S forms sulfides and is finely dispersed in the steel. However, if the amount of S exceeds 0.025%, coarse MnS or the like is formed, resulting in a stress-concentrated portion, which deteriorates delayed fracture resistance. Therefore, the content of S is determined to be 0.025% or less. A preferable amount of S is 0.010% or less, and a more preferable amount of O is 0.005% or less.
In addition, although inevitable impurities may be included in the steel of the present invention in production, they are allowed as long as the effects of the present invention are not impaired.
Moreover, if the manufacturing conditions of the steel material are adjusted as described below, the useful compounds can be efficiently finely precipitated, and a high-strength steel excellent in hydrogen embrittlement resistance can be easily obtained.
[0020]
That is, it is preferable to define the cooling rate in the solidification process when manufacturing the steel material. That is, in the solidification process (during cooling from 1500 ° C. to 1300 ° C.), by cooling at a rate of 10 ° C./min or more, precipitation of coarse compounds is suppressed, and many fine compounds are precipitated. A more preferable cooling rate is 20 ° C./min or more, and a more preferable cooling rate is 30 ° C./min or more.
Next, examples of the present invention will be described.
[0021]
【Example】
Steel materials having the composition shown in Table 1 were melted in a 150 kg vacuum melting furnace, cast into a 150 kg ingot, and cooled. Further, in order to change the cooling rate of the solidification process in part, it was cast into an ingot of 50 to 150 kg and cooled while keeping part of the temperature. Thereafter, forging to 25 mmφ was performed, and after a 1200 ° C. × 30 minute volumeification treatment, normalization treatment was performed, and final heat treatment was performed so that the tensile strength was about 1000 to 2000 N / mm 2 .
[0022]
[Table 1]
Figure 0004031068
[0023]
About the obtained steel materials, while measuring the number of compounds, the tensile strength and delayed fracture strength were measured, and the results shown in Tables 2 to 6 below were obtained. The compound and the delayed fracture strength were measured by the following methods.
[0024]
<Measurement of the number of compounds>
(1): A compound extracted by a normal extraction replica method is photographed with a scanning electron microscope (TEM) at an acceleration voltage of 200 KV and 150,000 times.
[0025]
{Circle around (2)} Count fine compounds of 50 nm or less observed in a field of view of 500 nm × 500 nm (150,000 × 75 mm × 75 mm). Each of the upper side of FIGS. 2, 3 and 4 shows an example of a photograph taken (the length of one side is 500 nm). Each lower side faithfully transfers the field of view and the size of the compound. (As is apparent from the figure, the size was 50 nm or less), the number was 36 in FIG. 2, 24 in FIG. 3, and 10 in FIG. Further, FIGS. 4 and 5 also show the results of composition analysis by EDX. FIG. 4 shows the case where the precipitate composition is a Mo—Ti—V composite, and FIG. 5 shows the case where the precipitate composition is a Mo—Ti—V—Cr—Al composite.
[0026]
The composition of the precipitate in FIG. 5 is mainly a Mo—Ti—V composite compound, and the composition of the precipitate in FIG. 6 is mainly a Mo—Ti—V—Cr—Al composite compound. However, the reason why the peak of Cu is high is that a Cu mesh was used when fixing the sample during measurement.
[0027]
{Circle around (3)} Photographing was performed at an arbitrary five points per sample, and the average value of the five points measured was defined as the total number of compounds, and expressed as ◯ / (500 nm) 2 .
[0028]
<Measurement of delayed fracture strength>
Using a loop type constant strain delayed fracture tester, the delayed fracture test piece shown in FIG. 1 was stressed in water and the delayed fracture strength for 100 hours was measured. The results are as shown in Table 2, Table 3, and Table 4, and the steel is a steel with a large number of fine compounds, and the seeds show high delayed fracture strength.
[0029]
[Table 2]
Figure 0004031068
[0030]
[Table 3]
Figure 0004031068
[0031]
[Table 4]
Figure 0004031068
[0032]
[Table 5]
Figure 0004031068
[0033]
[Table 6]
Figure 0004031068
[0034]
As shown in Tables 2, 3, and 4, fine compounds with 50 nm or less are particularly effective. However, as shown in Table 2, 30 nm or less, and further with 10 nm or less, the more effective in improving delayed fracture resistance. It turns out that it is. On the other hand, with respect to compounds having a size of 50 nm or more, compounds having a size of 50 to 300 nm cannot find a good correlation with the quality of delayed fracture resistance as shown in Table 6. As shown in Table 5, it can be seen that reducing the number is effective in improving the delayed fracture resistance. As described above, the present invention has revealed that the correlation between the size (and number) of the compound and the delayed fracture resistance shows a very specific aspect.
On the other hand, as shown in Table 4, it was found that controlling the coagulation rate is effective as a means for finely depositing a large amount of compounds of 50 nm or less.
[0035]
【The invention's effect】
The present invention is configured as described above, and a high-strength bolt steel having a level of 1200 N / mm 2 or more and excellent hydrogen embrittlement resistance is provided.
[Brief description of the drawings]
FIG. 1 is a diagram showing the size and shape of a test piece used for delayed fracture strength measurement.
FIG. 2 is a micrograph (TEM image) showing measurement examples of the size and number of compounds and a display diagram of precipitates that can be read from the photograph [36 precipitates / (500 nm) 2 ].
FIG. 3 is a micrograph (TEM image) showing measurement examples of the size and number of compounds and a display diagram of precipitates that can be read from the photograph [24 precipitates / (500 nm) 2 ].
FIG. 4 is a micrograph (TEM image) showing measurement examples of the size and number of compounds and a display diagram of precipitates that can be read from the photograph [10 precipitates / (500 nm) 2 ].
FIG. 5 is a photograph showing an example of a spectrum image obtained by analyzing the compound composition by EDX for 1 in FIG. 2 (precipitate composition: Mo—Ti—V composite).
6 is a photograph showing an example of a spectrum image obtained by analyzing the compound composition by EDX for 2 in FIG. 2 (precipitate composition: Mo—Ti—V—Cr—Al composite).

Claims (4)

C,Si,Mn,N,O,S,Cr,Alを含有し、
C :0.30〜0.60%(質量%の意味。以下同じ)、
N :0.001〜0.010%、
O :0.005%以下(0%を含まない)、
S :0.025%以下(0%を含まない)、
Cr:0.14〜2.00%、
Al:0.05%以下(0%を含まない)と、
ボルト用鋼として通常量のMnとSiを含有し、
更に、
Mo:2.00%以下(0%を含まない)、
Ti:0.20%以下(0%を含まない)および
V :0.20%以下(0%を含まない)よりなる群から選択される2種以上を含有し、
残部がFeおよび不可避不純物からなる鋼であって、
Mo,Ti,Vより選択される2種以上の金属を含む複合化合物であり、且つ大きさ:50nm以下のものが、鋼中に20個/(500nm)2以上存在することを特徴とする引張強さが1200N/mm2以上の耐水素脆化特性に優れた高強度ボルト用鋼。
Containing C, Si, Mn, N, O, S, Cr, Al,
C: 0.30 to 0.60% (meaning mass%, the same shall apply hereinafter)
N: 0.001 to 0.010%,
O: 0.005% or less (excluding 0%),
S: 0.025% or less (excluding 0%),
Cr: 0.14 to 2.00 %,
Al: 0.05% or less (excluding 0%);
Contains normal amounts of Mn and Si as bolt steel,
Furthermore,
Mo: 2.00% or less (excluding 0%),
Containing two or more selected from the group consisting of Ti: 0.20% or less (not including 0%) and V: 0.20% or less (not including 0%);
The balance is steel composed of Fe and inevitable impurities,
A composite compound containing two or more metals selected from Mo, Ti, and V and having a size of 50 nm or less is present in steel at 20 pieces / (500 nm) 2 or more. Steel for high-strength bolts with excellent hydrogen embrittlement resistance with a strength of 1200 N / mm 2 or more.
C,Si,Mn,N,O,S,Cr,Alを含有し、
C :0.30〜0.60%(但し、Cが0.33%の場合を除く)、
N :0.001〜0.010%、
O :0.005%以下(0%を含まない)、
S :0.025%以下(0%を含まない)、
Cr:0.14〜2.00%、
Al:0.05%以下(0%を含まない)と、
ボルト用鋼として通常量のMnとSiを含有し、
更に、
Mo:2.00%以下(0%を含まない)および
V :0.20%以下(0%を含まない)よりなる群から選択される1種以上を含有し、
残部がFeおよび不可避不純物からなる鋼であって、
Mo系化合物、V系化合物のいずれかである大きさ:50nm以下の化合物が、鋼中に20個/(500nm)2以上存在することを特徴とする引張強さが1200N/mm2以上の耐水素脆化特性に優れた高強度ボルト用鋼。
Containing C, Si, Mn, N, O, S, Cr, Al,
C: 0.30 to 0.60% (except when C is 0.33%),
N: 0.001 to 0.010%,
O: 0.005% or less (excluding 0%),
S: 0.025% or less (excluding 0%),
Cr: 0.14 to 2.00 %,
Al: 0.05% or less (excluding 0%);
Contains normal amounts of Mn and Si as bolt steel,
Furthermore,
Containing one or more selected from the group consisting of Mo: 2.00% or less (excluding 0%) and V: 0.20% or less (not including 0%),
The balance is steel composed of Fe and inevitable impurities,
The size of either a Mo-based compound or a V-based compound: a compound having a size of 50 nm or less is present in steel at 20 pieces / (500 nm) 2 or more, and has a tensile strength of 1200 N / mm 2 or more. High strength steel for bolts with excellent hydrogen embrittlement characteristics.
鋼がTi:0.20%以下(0%を含まない)を含有するものである請求項2に記載の高強度ボルト用鋼。The steel for high-strength bolts according to claim 2, wherein the steel contains Ti: 0.20% or less (not including 0%). 鋼が、更に他の成分として、
Nb:0.20%以下(0%を含まない)
W :0.20%以下(0%を含まない)
B :0.003%以下(0%を含まない)よりなる群から選択される1種以上を含有するものである請求項1〜3のいずれかに記載の高強度ボルト用鋼。
Steel is still another component,
Nb: 0.20% or less (excluding 0%)
W: 0.20% or less (excluding 0%)
The steel for high-strength bolts according to any one of claims 1 to 3, which contains at least one selected from the group consisting of B: 0.003% or less (excluding 0%).
JP16798796A 1996-06-27 1996-06-27 High strength steel for bolts with excellent hydrogen embrittlement resistance Expired - Fee Related JP4031068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16798796A JP4031068B2 (en) 1996-06-27 1996-06-27 High strength steel for bolts with excellent hydrogen embrittlement resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16798796A JP4031068B2 (en) 1996-06-27 1996-06-27 High strength steel for bolts with excellent hydrogen embrittlement resistance

Publications (2)

Publication Number Publication Date
JPH1017985A JPH1017985A (en) 1998-01-20
JP4031068B2 true JP4031068B2 (en) 2008-01-09

Family

ID=15859710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16798796A Expired - Fee Related JP4031068B2 (en) 1996-06-27 1996-06-27 High strength steel for bolts with excellent hydrogen embrittlement resistance

Country Status (1)

Country Link
JP (1) JP4031068B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051513A1 (en) 2011-10-07 2013-04-11 株式会社神戸製鋼所 Steel wire for bolt, bolt, and manufacturing processes therefor
WO2013105344A1 (en) 2012-01-11 2013-07-18 株式会社神戸製鋼所 Steel for bolts, bolt, and method for producing bolt

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3426496B2 (en) * 1998-04-09 2003-07-14 山陽特殊製鋼株式会社 High strength long life carburizing steel excellent in delayed fracture resistance and method of manufacturing the same
DE602004020058D1 (en) * 2003-02-20 2009-04-30 Nippon Steel Corp HIGH STRENGTH STEEL PRODUCT WITH EXCELLENT RESISTANCE TO HYDROGEN INJURY
JP4705525B2 (en) * 2005-06-24 2011-06-22 新日本製鐵株式会社 High strength bolt joint
JP4485424B2 (en) * 2005-07-22 2010-06-23 新日本製鐵株式会社 Manufacturing method of high-strength bolts with excellent delayed fracture resistance
JP4593510B2 (en) * 2006-03-31 2010-12-08 新日本製鐵株式会社 High strength bearing joint parts excellent in delayed fracture resistance, manufacturing method thereof, and steel for high strength bearing joint parts
JP6159209B2 (en) * 2013-09-25 2017-07-05 株式会社神戸製鋼所 High strength steel for bolts with excellent delayed fracture resistance and bolt formability, and method for producing bolts
JP6422176B2 (en) * 2014-08-29 2018-11-14 日産自動車株式会社 Steel for high-strength bolts and high-strength bolts
JP6267618B2 (en) * 2014-09-30 2018-01-24 株式会社神戸製鋼所 Bolt steel and bolts
JP6288471B2 (en) * 2015-06-09 2018-03-07 Jfeスチール株式会社 Steel sheet with excellent delayed fracture resistance with a tensile strength of 1180 MPa or more
CA3077926C (en) * 2015-09-17 2021-10-26 Jfe Steel Corporation Steel structure for hydrogen gas with excellent hydrogen embrittlement resistance in high pressure hydrogen gas and method of producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051513A1 (en) 2011-10-07 2013-04-11 株式会社神戸製鋼所 Steel wire for bolt, bolt, and manufacturing processes therefor
US9835194B2 (en) 2011-10-07 2017-12-05 Kobe Steel, Ltd. Steel wire for bolt, bolt, and manufacturing processes therefor
WO2013105344A1 (en) 2012-01-11 2013-07-18 株式会社神戸製鋼所 Steel for bolts, bolt, and method for producing bolt
US9695488B2 (en) 2012-01-11 2017-07-04 Kobe Steel, Ltd. Steel for bolt use, bolt, and method for manufacturing bolt

Also Published As

Publication number Publication date
JPH1017985A (en) 1998-01-20

Similar Documents

Publication Publication Date Title
JP3577411B2 (en) High toughness spring steel
JP5200332B2 (en) Brake disc with high resistance to temper softening
JP4008391B2 (en) High strength steel with excellent hydrogen embrittlement resistance and method for producing the same
JP4031068B2 (en) High strength steel for bolts with excellent hydrogen embrittlement resistance
JP2004285444A (en) Low-alloy high-speed tool steel showing stable toughness
WO2008032816A1 (en) Hot-working tool steel having excellent stiffness and high-temperature strength and method for production thereof
JP2006104519A (en) High toughness hot tool steel and its production method
JP3485805B2 (en) Hot forged non-heat treated steel having high fatigue limit ratio and method for producing the same
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JP3754658B2 (en) High strength bolt excellent in delayed fracture resistance and method for producing the same
JP2909089B2 (en) Maraging steel and manufacturing method thereof
JP3443285B2 (en) Hot rolled steel for cold forging with excellent crystal grain coarsening prevention properties and cold forgeability, and method for producing the same
JP7149250B2 (en) Hot work tool steel with excellent high temperature strength and toughness
JP3286119B2 (en) Aluminum alloy foil and method for producing the same
JPS5845360A (en) Low alloy steel with temper embrittlement resistance
JP3236756B2 (en) B-containing steel excellent in workability and strength and method for producing forged part made of the B-containing steel
JP3999333B2 (en) Method for preventing delayed fracture of high strength steel
JP3426495B2 (en) Long-life bearing steel excellent in delayed fracture resistance and method of manufacturing the same
JPH05171373A (en) Powder high speed tool steel
JP4268825B2 (en) Hot rolled non-heat treated steel bar and manufacturing method thereof
JP3878051B2 (en) Manufacturing method of carburizing steel products with excellent grain size characteristics and machinability
JP3999334B2 (en) Method for preventing delayed fracture of high strength steel
EP0676482A1 (en) Low decarburization spring steel
JP2004217947A (en) HIGH STRENGTH AND LOW THERMAL EXPANSION Fe-Ni BASED ALLOY, AND SHADOW MASK
JP2004018879A (en) Steel for cold forging superior in swarf treatment property

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061013

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070119

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070307

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070330

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070717

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees