JP3426495B2 - Long-life bearing steel excellent in delayed fracture resistance and method of manufacturing the same - Google Patents

Long-life bearing steel excellent in delayed fracture resistance and method of manufacturing the same

Info

Publication number
JP3426495B2
JP3426495B2 JP11593998A JP11593998A JP3426495B2 JP 3426495 B2 JP3426495 B2 JP 3426495B2 JP 11593998 A JP11593998 A JP 11593998A JP 11593998 A JP11593998 A JP 11593998A JP 3426495 B2 JP3426495 B2 JP 3426495B2
Authority
JP
Japan
Prior art keywords
steel
less
long
delayed fracture
fracture resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11593998A
Other languages
Japanese (ja)
Other versions
JPH11293403A (en
Inventor
一博 小林
修平 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP11593998A priority Critical patent/JP3426495B2/en
Publication of JPH11293403A publication Critical patent/JPH11293403A/en
Application granted granted Critical
Publication of JP3426495B2 publication Critical patent/JP3426495B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、軸受や直動軸等、
高硬度状態で使用され鋼材や熱処理、使用中の環境から
侵入してくる水素に起因する遅れ破壊に優れた抵抗性を
有する軸受鋼及びその製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a bearing, a linear motion shaft, and the like.
The present invention relates to a bearing steel which is used in a high hardness state and has excellent resistance to delayed fracture due to hydrogen invading from a steel material, heat treatment and an environment in use, and a method for producing the bearing steel.

【0002】[0002]

【従来の技術】遅れ破壊はボルト等、引張応力状態で使
用環境等から侵入する水素から発生し、調質硬さや合金
元素の調整等材料対策がとられることも多かったが、高
硬度の状態で使用される軸受などでは、遅れ破壊はあま
り問題にされなかった。しかし、最近熱処理や使用雰囲
気等から侵入する水素による早期破損が問題にされるよ
うになり、潤滑油の変更等が行われてはいるが、先に述
べたような材料は強度的にも引張強さが140〜150
kgf/mm2 硬さ換算で43〜45HRCに相当)といった
ところで、軸受等のような高荷重に耐えられるものでは
なく、耐遅れ破壊に優れた軸受材料からの対策が取られ
ることはなかった。
2. Description of the Related Art Delayed fracture is often generated from hydrogen invading from a use environment such as bolts in a tensile stress state, and it is often the case that materials such as temper hardness and adjustment of alloying elements are taken, but high hardness state. In the bearings used in, delayed fracture was not a problem. However, recently, early damage due to hydrogen invading from heat treatment and use atmosphere has become a problem, and although the lubricating oil has been changed, the above-mentioned materials have tensile strength. Strength is 140-150
(equivalent to 43 to 45 HRC in terms of kgf / mm 2 hardness), it cannot withstand a high load such as a bearing, and no measures have been taken from a bearing material excellent in delayed fracture resistance.

【0003】[0003]

【発明が解決しようとする課題】本発明は、このような
用途に適した長寿命でかつ耐遅れ破壊特性に優れた軸受
用鋼を提供しようとするものであり、化学成分の最適化
とそれを可能にする製造方法を開発することにある。
SUMMARY OF THE INVENTION The present invention is intended to provide a bearing steel which is suitable for such applications and has a long life and excellent delayed fracture resistance. It is to develop a manufacturing method that enables

【0004】[0004]

【課題を解決するための手段】発明者らは、軸受鋼にお
ける遅れ破壊挙動を鋭意研究するなかで、遅れ破壊の原
因となる鋼中の水素を微細なTi系析出物によりトラップ
させることにより、無効化させ遅れ破壊の抵抗性を上
げ、長寿命化が図られることを見出した。その場合、析
出物の粒子径は小さいほど水素をトラップする力が強
く、出来るだけ均一微細に分散を図ることが有効である
ことを見出した。しかし、添加量を上げるだけでは有効
な微細析出物は増加せず、粗大化して水素のトラップ力
が弱まり、また、応力集中元となり寿命特性等を逆に低
下させるようになり、添加量の最適化と鋼材を製造する
上での製造条件の最適化が必要であることが判った。
[Means for Solving the Problems] The inventors of the present invention have made intensive studies on the delayed fracture behavior in bearing steel, and by trapping hydrogen in the steel, which causes delayed fracture, with fine Ti-based precipitates, It was found that it can be invalidated to increase the resistance to delayed fracture and prolong the service life. In that case, it has been found that the smaller the particle size of the precipitate, the stronger the force for trapping hydrogen, and that it is effective to disperse the particles as uniformly and finely as possible. However, increasing the addition amount does not increase the effective fine precipitates, coarsens and weakens the hydrogen trapping force, and also becomes a source of stress concentration, which adversely reduces life characteristics and the like. It was found that the optimization of manufacturing conditions in order to produce steel and steel materials is necessary.

【0005】すなわち上記の目的を達成する発明の手段
は、請求項1の発明では、質量割合で、C:0.65〜
1.2%、Si:0.05〜0.50%、Mn:0.2
〜2.0%、T1:0.05〜0.20%、Al:0.
005〜0.50%、N:0.0120%以下、O:2
0ppm以下、望ましくは10ppm以下、を含有し、
残部Fe及び不可避不純物とからなり、大きさが平均で
70nm以下のTi炭化物、Ti炭窒化物を鋼中に微細
分散させた優れた遅れ破壊抵抗性を有する長寿命軸受用
鋼である。
That is, the means of the invention for achieving the above object is, in the invention of claim 1, a mass ratio of C: 0.65 to 0.65.
1.2%, Si: 0.05 to 0.50%, Mn: 0.2
.About.2.0%, T1: 0.05 to 0.20%, Al: 0.
005 to 0.50%, N: 0.0120% or less, O: 2
Contains 0 ppm or less, preferably 10 ppm or less,
It is a long-life bearing steel having excellent delayed fracture resistance in which Ti carbide and Ti carbonitride having an average size of 70 nm or less, which is composed of the balance Fe and unavoidable impurities, are finely dispersed in the steel.

【0006】請求項2の発明では、質量割合で、C:
0.65〜1.2%、Si:0.05〜0.50%、M
n:0.2〜2.0%、Ti:0.05〜0.20%、
Al:0.005〜0.050%、N:0.0120%
以下、O:20ppm以下、望ましくは10ppm以
下、を含有し、さらに、Ni:0.1〜2.0%、C
r:0.20〜2.0%、Mo:0.05〜1.0%の
中から選択した1種ないし2種以上を含有し、残部Fe
及び不可避不純物とからなり、大きさが平均で70nm
以下のTi炭化物、Ti炭窒化物を鋼中に微細分散させ
た優れた遅れ破壊抵抗性を有する長寿命軸受用鋼であ
る。
According to the second aspect of the invention, the mass ratio of C:
0.65 to 1.2%, Si: 0.05 to 0.50%, M
n: 0.2 to 2.0%, Ti: 0.05 to 0.20%,
Al: 0.005-0.050%, N: 0.0120%
Hereinafter, O: 20 ppm or less, preferably 10 ppm or less is contained, and further Ni: 0.1 to 2.0%, C
r: 0.20 to 2.0%, Mo: 0.05 to 1.0%, and one or more selected from the balance Fe.
And unavoidable impurities, the average size is 70 nm
It is a long-life bearing steel having excellent delayed fracture resistance in which the following Ti carbide and Ti carbonitride are finely dispersed in the steel.

【0007】請求項3の発明では、請求項1又は請求項
2の手段の長寿命軸受用鋼において、さらに合金成分と
して、質量割合でB:0.0005〜0.0050%含
有し、残部Fe及び不可避不純物とからなり、大きさ
平均で70nm以下のTi炭化物、Ti炭窒化物を鋼中
に微細分散させたことを特徴とする優れた遅れ破壊抵抗
性を有する長寿命軸受用鋼である。
According to the invention of claim 3, in the long-life bearing steel according to the means of claim 1 or 2, B: 0.0005 to 0.0050% by mass is further contained as an alloy component, and the balance Fe. and consists inevitable impurities, the size
It is a long-life bearing steel having excellent delayed fracture resistance, characterized in that Ti carbide and Ti carbonitride having an average of 70 nm or less are finely dispersed in the steel.

【0008】請求項4の発明では、質量割合で、C:
0.65〜1.2%、Si:0.05〜0.50%、M
n:0.2〜2.0%、Ti:0.05〜0.20%、
Al:0.005〜0.050%、N:0.0120%
以下、O:20ppm以下、望ましくは10ppm以
下、を含有し、残部Fe及び不可避不純物とからなる鋼
材を1200〜1350℃の温度範囲に加熱・圧延し、
さらに同じ温度ないし800〜1050℃の温度で所定
の鋼材ないし部品に圧延ないし鍛造することにより、後
の熱処理工程で大きさが平均で70nm以下のTi炭化
物、Ti炭窒化物を鋼中に微細分散させることにより優
れた遅れ破壊抵抗性を有する長寿命軸受用鋼を製造する
方法である。
According to the invention of claim 4, in a mass ratio, C:
0.65 to 1.2%, Si: 0.05 to 0.50%, M
n: 0.2 to 2.0%, Ti: 0.05 to 0.20%,
Al: 0.005-0.050%, N: 0.0120%
Hereinafter, a steel material containing O: 20 ppm or less, preferably 10 ppm or less, and the balance Fe and unavoidable impurities is heated and rolled to a temperature range of 1200 to 1350 ° C.,
Further, by rolling or forging into a predetermined steel material or component at the same temperature or a temperature of 800 to 1050 ° C, Ti carbide and Ti carbonitride having an average size of 70 nm or less are finely dispersed in the steel in the subsequent heat treatment step. Is a method for producing long-life bearing steel having excellent delayed fracture resistance.

【0009】請求項5の発明では、質量割合で、C:
0.65〜1.2%、Si:0.05〜0.50%、M
n:0.2〜2.0%、Ti:0.05〜0.20%、
Al:0.005〜0.050%、N:0.0120%
以下、O:20ppm以下、望ましくは10ppm以
下、を含有し、さらに、Ni:0.1〜2.0%、C
r:0.20〜2.0%、Mo:0.05〜1.0%の
中から選択した1種ないし2種以上を含有し、残部Fe
及び不可避不純物とからなる鋼材を1200〜1350
℃の温度範囲に加熱・圧延し、さらに同じ温度ないし8
00〜1050℃の温度で所定の鋼材ないし部品に圧延
ないし鍛造することにより、後の熱処理工程で大きさ
平均で70nm以下のTi炭化物、Ti炭窒化物を鋼中
に微細分散させることにより優れた遅れ破壊抵抗性を有
する長寿命軸受用鋼を製造する方法である。
According to the invention of claim 5, in a mass ratio, C:
0.65 to 1.2%, Si: 0.05 to 0.50%, M
n: 0.2 to 2.0%, Ti: 0.05 to 0.20%,
Al: 0.005-0.050%, N: 0.0120%
Hereinafter, O: 20 ppm or less, preferably 10 ppm or less is contained, and further Ni: 0.1 to 2.0%, C
r: 0.20 to 2.0%, Mo: 0.05 to 1.0%, and one or more selected from the balance Fe.
And a steel material consisting of inevitable impurities from 1200 to 1350
Heating and rolling in the temperature range of ℃, and the same temperature or 8
By rolling or forging to a predetermined steel or component at a temperature of 00-1,050 ° C., a heat treatment step the size of the later
It is a method for producing a long-life bearing steel having excellent delayed fracture resistance by finely dispersing Ti carbide and Ti carbonitride having an average of 70 nm or less in the steel.

【0010】請求項6の発明では、請求項4又は請求項
5の手段の長寿命軸受用鋼の製造方法における鋼材の合
金成分に、さらに質量割合でB:0.0005〜0.0
050%含有し、残部Fe及び不可避不純物とからなる
鋼材を1200〜1350℃の温度範囲に加熱・圧延
し、さらに同じ温度ないし800〜1050℃の温度で
所定の鋼材ないし部品に圧延ないし鍛造することによ
り、後の熱処理工程で大きさが平均で70nm以下のT
i炭化物、Ti炭窒化物を鋼中に微細分散させたことを
特徴とする優れた遅れ破壊抵抗性を有する長寿命軸受用
鋼の製造方法である。
[0010] In the present invention of claim 6, the alloy components of the steel material in the production process of steel long life bearing means according to claim 4 or claim 5, further at a mass ratio B: 0.0005-0.0
Heating and rolling a steel material containing 050% and the balance Fe and unavoidable impurities in a temperature range of 1200 to 1350 ° C, and further rolling or forging into a predetermined steel material or component at the same temperature or 800 to 1050 ° C. As a result, in the subsequent heat treatment step, T having an average size of 70 nm or less
A method for producing a long-life bearing steel having excellent delayed fracture resistance, characterized in that i carbide and Ti carbonitride are finely dispersed in the steel.

【0011】[0011]

【発明の実施の形態】この発明の実施の形態を実施例を
通じて記載する。この発明を実施するに当っての限定理
由について、まず、化学成分(以下、「質量割合」で示
す。)の限定理由について述べる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described through examples. Regarding the reasons for limiting the present invention, first, the reasons for limiting the chemical components (hereinafter referred to as “ mass ratio”) will be described.

【0012】C:0.65〜1.2%について、Cは軸
受として必要な硬さを付与する元素であるが、0.65
%未満では軸受としての必要な硬さHRC59以上が得
られないことが有り、下限を0.65%とする。また、
1.2%を超えると凝固時に巨大炭化物や粗大なTi炭
窒化物が晶出しやすくなり、後工程でもその影響を取り
除くことが出来なくなるため、上限を1.2%とする。
Regarding C: 0.65 to 1.2%, C is an element that imparts hardness necessary for a bearing, but 0.65
If it is less than%, the hardness HRC59 or more required as a bearing may not be obtained, so the lower limit is made 0.65%. Also,
If it exceeds 1.2%, large carbides and coarse Ti carbonitrides are likely to crystallize during solidification, and the effect cannot be removed even in the subsequent step, so the upper limit is made 1.2%.

【0013】Si:0.05〜0.50%について、S
iは脱酸剤や焼入性向上のために添加されるが、0.0
5%未満では脱酸効果が十分でなく、0.50%を超え
ると加工性が低下するため、下限を0.05%、上限を
0.50%とする。
Si: 0.05 to 0.50%, S
i is added to improve the deoxidizer and hardenability, but 0.0
If it is less than 5%, the deoxidizing effect is not sufficient, and if it exceeds 0.50%, the workability deteriorates, so the lower limit is made 0.05% and the upper limit is made 0.50%.

【0014】Mn:0.2〜2.0%について、Mnも
Siと同様、脱酸材や焼入性向上のために添加される
が、0.20%未満では焼入性が不足し、2.0%を超
えると著しく加工性が低下するため、下限を0.20
%、上限を2.0%とする。
Regarding Mn: 0.2 to 2.0%, Mn is also added to improve the deoxidizing agent and hardenability, like Si, but if it is less than 0.20%, the hardenability is insufficient. If it exceeds 2.0%, the workability is remarkably reduced, so the lower limit is 0.20.
%, And the upper limit is 2.0%.

【0015】Ti:0.05〜0.20%について、T
iはTi炭化物やTi炭窒化物として鋼中に微細分散す
ることによって、結晶粒度の微細化が図られ、マトリッ
クス強化により疲労特性、寿命特性の向上が図られる。
また、微細なTi炭化物やTi炭窒化物は、水素のトラ
ップサイトとして作用するため、水素の有害性を低下さ
せる。0.05%未満ではその効果が十分でなく、ま
た、0.20%を超えるとTi炭化物やTi炭窒化物が
粗大化して十分な効果を示さなくなるため、下限を0.
05%、上限を0.20%とする。
For Ti: 0.05 to 0.20%, T
By finely dispersing i as Ti carbide or Ti carbonitride in the steel, the grain size can be made finer and the matrix strengthening can improve the fatigue characteristics and life characteristics.
Further, fine Ti carbide or Ti carbonitride acts as a hydrogen trap site, and thus reduces the harmfulness of hydrogen. If it is less than 0.05%, the effect is not sufficient, and if it exceeds 0.20%, Ti carbide and Ti carbonitride are coarsened and no sufficient effect is exhibited, so the lower limit is set to 0.
05% and the upper limit is 0.20%.

【0016】Al:0.005〜0.050%につい
て、Alは脱酸剤として添加するが、0.005%未満
ではその効果が無く、また、0.050%を超えるとア
ルミナ系酸化物が増加して疲労強度や加工性を低下させ
るため、下限を0.005%、上限を0.050%とす
る。
Al: About 0.005 to 0.050%, Al is added as a deoxidizing agent, but if it is less than 0.005%, it has no effect, and if it exceeds 0.050%, alumina-based oxide is formed. In order to increase the fatigue strength and workability, the lower limit is made 0.005% and the upper limit is made 0.050%.

【0017】N:0.0120%以下について、Nは量
が多くなると粗大なTi窒化物、Ti炭窒化物として析
出するようになるため出来るだけ少ないほうが望まし
い。製造条件との関係から上限を0.0120%とす
る。
N: 0.0120% or less, it is desirable that the amount of N be as small as possible, because if the amount is large, N will be precipitated as coarse Ti nitride or Ti carbonitride. The upper limit is set to 0.0120% in consideration of the manufacturing conditions.

【0018】O:20ppm以下について、Oは酸化物
系介在物として鋼中に存在し水素のトラップサイトとし
ての役割も考えられるが、むしろ粗大な析出物として、
疲労強度低下の役割が大きく、出来るだけ少ないほうが
望ましい。このため上限を20ppm、望ましくは10
ppmとする。
O: 20 ppm or less, O is present in the steel as an oxide inclusion and may be considered to function as a hydrogen trap site, but rather as a coarse precipitate,
The role of reducing fatigue strength is large, and it is desirable that it be as small as possible. Therefore, the upper limit is 20 ppm, preferably 10
ppm.

【0019】上記の成分の他に本発明鋼では、Ni、C
r、Moを単独あるいは複合して含有させることが出来
る。これらの作用は以下の通りである。
In addition to the above components, in the steel of the present invention, Ni, C
r and Mo can be contained alone or in combination. These actions are as follows.

【0020】Ni:0.1〜2.0%について、Niは
焼入性を向上させ、疲労強度、靱性等を向上させる。
0.1%未満ではその効果が十分でなく、2.0%を超
えると素材の軟化が困難になり加工性が著しく低下する
ため上限を2.0%とする。
Ni: About 0.1 to 2.0%, Ni improves hardenability and improves fatigue strength, toughness and the like.
If it is less than 0.1%, the effect is not sufficient, and if it exceeds 2.0%, it becomes difficult to soften the material and the workability is significantly reduced, so the upper limit is made 2.0%.

【0021】Cr:0.20〜2.0%について、Cr
は焼入性や炭化物の球状化性を向上させ、疲労強度、靱
性等を向上させる。0.2%未満ではその効果が十分で
はなく、2.0%を超えると素材の軟化が困難になり加
工性が著しく低下するため上限を2.0%とする。
Cr: About 0.20 to 2.0%, Cr
Improves hardenability and spheroidization of carbides, and improves fatigue strength and toughness. If it is less than 0.2%, the effect is not sufficient, and if it exceeds 2.0%, it becomes difficult to soften the material and the workability is remarkably lowered, so the upper limit is made 2.0%.

【0022】Mo:0.05〜1.0%について、Mo
は焼入性を向上させ、疲労強度、靱性等を向上させる。
0.05%未満ではその効果が十分ではなく、1.0%
を超えると素材の軟化が困難になり加工性が著しく低下
し、また上記の効果も飽和しコスト的にも不利になるた
め上限を1.0%とする。
Mo: About 0.05 to 1.0%, Mo
Improves hardenability and improves fatigue strength and toughness.
If less than 0.05%, the effect is not sufficient, 1.0%
If it exceeds, the softening of the material becomes difficult and the workability is significantly lowered. Further, the above effect is saturated and it becomes disadvantageous in terms of cost, so the upper limit is made 1.0%.

【0023】さらに上記の成分の他に本発明鋼では、B
を含有させることが出来る。この作用は以下の通りであ
る。
Further, in addition to the above components, in the steel of the present invention, B
Can be included. This action is as follows.

【0024】B:0.0005〜0.0050%につい
て、Bは高周波焼入れ性を改善する元素として添加す
る。0.0005%未満ではその効果が十分ではなく、
0.0050%を超えると熱間加工性を低下させるよう
になるため上限を0.0050%とする。
B: About 0.0005 to 0.0050%, B is added as an element for improving induction hardenability. If less than 0.0005%, the effect is not sufficient,
If it exceeds 0.0050%, the hot workability is deteriorated, so the upper limit is made 0.0050%.

【0025】上記の化学成分の鋼材を下記の条件で製造
した場合に、最も効果的な微細Ti系析出物が得られ、
優れた遅れ破壊特性と長寿命性を示すようになる。
When a steel material having the above chemical composition is produced under the following conditions, the most effective fine Ti-based precipitate is obtained,
It exhibits excellent delayed fracture characteristics and long life.

【0026】すなわち、上記の成分範囲に溶製した鋼を
鋼片ないし鋼材に圧延する場合に、1200〜1350
℃の温度範囲に加熱・圧延し、さらに同じ温度範囲ない
し更に低い800〜1050℃の温度範囲で所定の寸法
の鋼材に圧延ないし部品に鍛造することにより、後の焼
なましないし焼入焼戻し熱処理後でも、大きさが平均で
70nm以下のTi炭化物、Ti炭窒化物を鋼中に微細
分散させることが出来、優れた遅れ破壊抵抗性を有する
長寿命軸受用鋼の製造方法を得ることが出来る。
That is, when the steel melted in the above composition range is rolled into a billet or a steel material, 1200 to 1350
By heating / rolling to a temperature range of ℃, and then rolling or forging into a steel material of a predetermined size in the same temperature range or a lower temperature range of 800 to 1050 ° C, the subsequent heat treatment without tempering and tempering is performed. Even after that, Ti carbide and Ti carbonitride having an average size of 70 nm or less can be finely dispersed in the steel, and a method for producing a long-life bearing steel having excellent delayed fracture resistance can be obtained. .

【実施例】表1に示す化学成分の供試材を100kg真
空溶解炉で溶製し、1200〜1350℃の温度範囲
で、また、一部は同じ温度範囲及び800〜1050℃
の温度範囲で、さらに鍛伸して65mmφおよび30m
mφに仕上げた。さらに焼ならし、球状化焼なまし後試
験片に加工し、焼入焼戻しを施して最終使用状態にし
た。
[Examples] Sample materials having the chemical components shown in Table 1 were melted in a 100 kg vacuum melting furnace, and the temperature range was 1200 to 1350 ° C, and some were in the same temperature range and 800 to 1050 ° C.
65mmφ and 30m in the temperature range of
Finished to mφ. Furthermore, after normalizing and spheroidizing annealing, it was processed into a test piece and subjected to quenching and tempering to obtain a final use state.

【0027】得られた鋼材につき、通常の清浄潤滑下と
0.5%の純水を含んだ潤滑下(水素侵入環境下)にお
けるスラスト寿命特性(試験片サイズ:60mm×40
mm×5mm)ならびに耐遅れ破壊性の目安として5%
塩酸浸漬による耐水素割れ感受性試験を行なった。
Thrust life characteristics (test piece size: 60 mm × 40) of the obtained steel material under normal clean lubrication and lubrication containing 0.5% pure water (under hydrogen infiltration environment)
mm x 5 mm) and 5% as a standard for delayed fracture resistance
A hydrogen cracking resistance susceptibility test by immersion in hydrochloric acid was performed.

【0028】[0028]

【表1】 [Table 1]

【0029】表2に各供試材ごとの製造条件と析出物粒
子サイズおよび特性試験結果を示す。なお、製造条件で
圧延温度を2条件記入しているものは、2回に分けて鍛
伸を行なったものである。
Table 2 shows the production conditions, the precipitate particle size, and the characteristic test results for each test material. In the manufacturing conditions, two rolling temperatures are entered, and forging is performed twice.

【0030】[0030]

【表2】 [Table 2]

【0031】また、図1にスラスト寿命試験機の構造を
模式的に示し、表3に試験条件を示し、図2に水素割れ
感受性試験に用いた試験片の形状を示す。図1におい
て、1は試験片保持枠、2はスラスト試験片(60φ×
5〜10mm)、3は保持器、4は3/8インチ(9.
525mmφ)の鋼球、5は上部レース(#5130ス
ラスト軸受けレース)、6は回転軸(1200r.p.
m.)、7は潤滑油(#60スピンドル油)である。
FIG. 1 schematically shows the structure of the thrust life tester, Table 3 shows the test conditions, and FIG. 2 shows the shape of the test piece used for the hydrogen cracking susceptibility test. In FIG. 1, 1 is a test piece holding frame, 2 is a thrust test piece (60φ ×
5 to 10 mm), 3 is a retainer, 4 is 3/8 inch (9.
(525mmφ) steel ball, 5 upper race (# 5130 thrust bearing race), 6 rotating shaft (1200r.p.
m.) and 7 are lubricating oils (# 60 spindle oil).

【0032】[0032]

【表3】 [Table 3]

【0033】表2より、本発明鋼は水素侵入環境下での
寿命特性の低下が少なく、また、耐水素割れに対して高
い抵抗性を示し、遅れ破壊特性に優れていることが判
る。
It can be seen from Table 2 that the steels of the present invention show little deterioration in life characteristics in a hydrogen invading environment, show high resistance to hydrogen cracking resistance, and have excellent delayed fracture characteristics.

【0034】[0034]

【発明の効果】以上説明したように、本発明は、Tiの効
果的添加と製造条件の最適化により、優れた遅れ破壊抵
抗性を有する長寿命軸受用鋼を提供することができる優
れた効果を有する。
As described above, the present invention can provide a long-life bearing steel having excellent delayed fracture resistance by effectively adding Ti and optimizing manufacturing conditions. Have.

【図面の簡単な説明】[Brief description of drawings]

【図1】スラスト寿命試験機の構造を模式的に示す図で
ある。
FIG. 1 is a diagram schematically showing the structure of a thrust life tester.

【図2】水素割れ感受性試験の試験片形状を示す図であ
る。
FIG. 2 is a diagram showing a test piece shape of a hydrogen cracking susceptibility test.

【符号の説明】[Explanation of symbols]

1 試験片保持枠 2 スラスト試験片 3 保持器 4 3/8インチ鋼球 5 上部レース 6 回転軸 7 潤滑油 1 Test piece holding frame 2 Thrust test piece 3 cage 4 3/8 inch steel ball 5 upper race 6 rotation axes 7 Lubricating oil

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 C21D 8/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) C22C 38/00 C21D 8/00

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 質量割合で、C:0.65〜1.2%、
Si:0.05〜0.50%、Mn:0.2〜2.0
%、Ti:0.05〜0.20%、Al:0.005〜
0.50%、N:0.0120%以下、O:20ppm
以下を含有し、残部Fe及び不可避不純物とからなり、
大きさが平均で70nm以下のTi炭化物、Ti炭窒化
物を鋼中に微細分散させたことを特徴とする優れた遅れ
破壊抵抗性を有する長寿命軸受用鋼。
1. A mass ratio of C: 0.65 to 1.2%,
Si: 0.05 to 0.50%, Mn: 0.2 to 2.0
%, Ti: 0.05 to 0.20%, Al: 0.005 to
0.50%, N: 0.0120% or less, O: 20 ppm
Containing the following, consisting of the balance Fe and unavoidable impurities,
A long-life bearing steel having excellent delayed fracture resistance, characterized in that Ti carbide and Ti carbonitride having an average size of 70 nm or less are finely dispersed in the steel.
【請求項2】 質量割合で、C:0.65〜1.2%、
Si:0.05〜0.50%、Mn:0.2〜2.0
%、Ti:0.05〜0.20%、Al:0.005〜
0.050%、N:0.0120%以下、O:20pp
m以下を含有し、さらに、Ni:0.1〜2.0%、C
r:0.20〜2.0%、Mo:0.05〜1.0%の
中から選択した1種ないし2種以上を含有し、残部Fe
及び不可避不純物とからなり、大きさが平均で70nm
以下のTi炭化物、Ti炭窒化物を鋼中に微細分散させ
たことを特徴とする優れた遅れ破壊抵抗性を有する長寿
命軸受用鋼。
2. A mass ratio of C: 0.65 to 1.2%,
Si: 0.05 to 0.50%, Mn: 0.2 to 2.0
%, Ti: 0.05 to 0.20%, Al: 0.005 to
0.050%, N: 0.0120% or less, O: 20pp
m or less, and further Ni: 0.1 to 2.0%, C
r: 0.20 to 2.0%, Mo: 0.05 to 1.0%, and one or more selected from the balance Fe.
And unavoidable impurities, the average size is 70 nm
A long-life bearing steel having excellent delayed fracture resistance, characterized in that the following Ti carbide and Ti carbonitride are finely dispersed in the steel.
【請求項3】 請求項1又は請求項2記載の長寿命軸受
用鋼において、さらに合金成分として、質量割合でB:
0.0005〜0.0050%含有し、残部Fe及び不
可避不純物とからなり、大きさが平均で70nm以下の
Ti炭化物、Ti炭窒化物を鋼中に微細分散させたこと
を特徴とする優れた遅れ破壊抵抗性を有する長寿命軸受
用鋼。
3. The long-life bearing steel according to claim 1 or 2, further comprising B as a mass ratio as an alloy component:
0.0005 to 0.0050% content, consisting of balance Fe and unavoidable impurities, Ti carbide and Ti carbonitride having an average size of 70 nm or less are finely dispersed in steel, which is excellent. Long-life bearing steel with delayed fracture resistance.
【請求項4】 質量割合で、C:0.65〜1.2%、
Si:0.05〜0.50%、Mn:0.2〜2.0
%、Ti:0.05〜0.20%、Al:0.005〜
0.050%、N:0.0120%以下、O:20pp
m以下を含有し、残部Fe及び不可避不純物とからなる
鋼材を1200〜1350℃の温度範囲に加熱・圧延
し、さらに同じ温度ないし800〜1050℃の温度で
所定の鋼材ないし部品に圧延ないし鍛造することによ
り、後の熱処理工程で大きさが平均で70nm以下のT
i炭化物、Ti炭窒化物を鋼中に微細分散させたことを
特徴とする優れた遅れ破壊抵抗性を有する長寿命軸受用
鋼の製造方法。
4. A mass ratio of C: 0.65 to 1.2%,
Si: 0.05 to 0.50%, Mn: 0.2 to 2.0
%, Ti: 0.05 to 0.20%, Al: 0.005 to
0.050%, N: 0.0120% or less, O: 20pp
A steel material containing m or less and consisting of balance Fe and unavoidable impurities is heated and rolled in a temperature range of 1200 to 1350 ° C., and further rolled or forged into a predetermined steel material or component at the same temperature or 800 to 1050 ° C. As a result, in the subsequent heat treatment step, T having an average size of 70 nm or less is obtained.
A method for producing a long-life bearing steel having excellent delayed fracture resistance, characterized in that i carbide and Ti carbonitride are finely dispersed in the steel.
【請求項5】 質量割合で、C:0.65〜1.2%、
Si:0.05〜0.50%、Mn:0.2〜2.0
%、Ti:0.05〜0.20%、Al:0.005〜
0.050%、N:0.0120%以下、O:20pp
m以下を含有し、さらに、Ni:0.1〜2.0%、C
r:0.20〜2.0%、Mo:0.05〜1.0%の
中から選択した1種ないし2種以上を含有し、残部Fe
及び不可避不純物とからなる鋼材を1200〜1350
℃の温度範囲に加熱・圧延し、さらに同じ温度ないし8
00〜1050℃の温度で所定の鋼材ないし部品に圧延
ないし鍛造することにより、後の熱処理工程で大きさ
平均で70nm以下のTi炭化物、Ti炭窒化物を鋼中
に微細分散させたことを特徴とする優れた遅れ破壊抵抗
性を有する長寿命軸受用鋼の製造方法。
5. A mass ratio of C: 0.65 to 1.2%,
Si: 0.05 to 0.50%, Mn: 0.2 to 2.0
%, Ti: 0.05 to 0.20%, Al: 0.005 to
0.050%, N: 0.0120% or less, O: 20pp
m or less, and further Ni: 0.1 to 2.0%, C
r: 0.20 to 2.0%, Mo: 0.05 to 1.0%, and one or more selected from the balance Fe.
And a steel material consisting of inevitable impurities from 1200 to 1350
Heating and rolling in the temperature range of ℃, and the same temperature or 8
By rolling or forging to a predetermined steel or component at a temperature of 00-1,050 ° C., a heat treatment step the size of the later
A method for producing a long-life bearing steel having excellent delayed fracture resistance, characterized in that Ti carbide and Ti carbonitride having an average of 70 nm or less are finely dispersed in the steel.
【請求項6】 請求項4又は請求項5記載の長寿命軸受
用鋼の製造方法における鋼材の合金成分に、さらに質量
割合でB:0.0005〜0.0050%含有し、残部
Fe及び不可避不純物とからなる鋼材を1200〜13
50℃の温度範囲に加熱・圧延し、さらに同じ温度ない
し800〜1050℃の温度で所定の鋼材ないし部品に
圧延ないし鍛造することにより、後の熱処理工程で大き
が平均で70nm以下のTi炭化物、Ti炭窒化物を
鋼中に微細分散させたことを特徴とする優れた遅れ破壊
抵抗性を有する長寿命軸受用鋼の製造方法。
6. The alloy component of the steel material in the method for producing a long-life bearing steel according to claim 4 or 5, further containing B: 0.0005 to 0.0050% in a mass ratio, A steel material composed of the balance Fe and unavoidable impurities is set to 1200 to 13
By heating and rolling in a temperature range of 50 ° C, and further rolling or forging into a predetermined steel material or part at the same temperature or a temperature of 800 to 1050 ° C, Ti carbide having an average size of 70 nm or less in the subsequent heat treatment step. A method for manufacturing a long-life bearing steel having excellent delayed fracture resistance, characterized in that Ti carbonitride is finely dispersed in the steel.
JP11593998A 1998-04-09 1998-04-09 Long-life bearing steel excellent in delayed fracture resistance and method of manufacturing the same Expired - Fee Related JP3426495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11593998A JP3426495B2 (en) 1998-04-09 1998-04-09 Long-life bearing steel excellent in delayed fracture resistance and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11593998A JP3426495B2 (en) 1998-04-09 1998-04-09 Long-life bearing steel excellent in delayed fracture resistance and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH11293403A JPH11293403A (en) 1999-10-26
JP3426495B2 true JP3426495B2 (en) 2003-07-14

Family

ID=14674928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11593998A Expired - Fee Related JP3426495B2 (en) 1998-04-09 1998-04-09 Long-life bearing steel excellent in delayed fracture resistance and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3426495B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010188834A (en) * 2009-02-17 2010-09-02 Jtekt Corp Wheel bearing device
CN102639736B (en) * 2009-11-30 2013-11-27 杰富意钢铁株式会社 Bearing steel
WO2011065593A1 (en) * 2009-11-30 2011-06-03 Jfeスチール株式会社 Ingot for bearing, and process for producing bearing steel
JP6023493B2 (en) * 2012-07-25 2016-11-09 Ntn株式会社 Method of manufacturing bearing ring, bearing ring and rolling bearing

Also Published As

Publication number Publication date
JPH11293403A (en) 1999-10-26

Similar Documents

Publication Publication Date Title
JP3764715B2 (en) Steel wire for high-strength cold forming spring and its manufacturing method
JP6461360B2 (en) Spring steel wire and spring
JP5350181B2 (en) Case-hardened steel with excellent grain coarsening prevention properties
JP5760453B2 (en) Carburized material
CN109790602B (en) Steel
JP3713975B2 (en) Steel for bearing
JP3565960B2 (en) Bearing steel, bearings and rolling bearings
JP6620490B2 (en) Age-hardening steel
JP4073860B2 (en) Manufacturing method of carburized steel with excellent coarsening resistance after high-temperature carburizing
JP4502126B2 (en) Steel for machine structure
JP4631618B2 (en) Manufacturing method of steel parts for bearings with excellent fatigue characteristics
JP5600502B2 (en) Steel for bolts, bolts and methods for producing bolts
JP5707938B2 (en) Case-hardened steel with excellent cold workability and carburizing material with high fatigue strength
JP3426495B2 (en) Long-life bearing steel excellent in delayed fracture resistance and method of manufacturing the same
JP7223997B2 (en) Steel with high hardness and excellent toughness
JP3490293B2 (en) Cold forging steel excellent in crystal grain coarsening prevention property and delayed fracture resistance, and its manufacturing method
JP5672740B2 (en) Manufacturing method of high fatigue strength case hardening steel
JP4807949B2 (en) Rolled steel bar for case hardening with excellent high-temperature carburizing characteristics
JP2841468B2 (en) Bearing steel for cold working
JPH0853735A (en) Steel for bearing
JPH1143737A (en) Cold forging steel excellent in grain coarsening preventing property and cold forgeability, and its production
JP3426496B2 (en) High strength long life carburizing steel excellent in delayed fracture resistance and method of manufacturing the same
JP4006857B2 (en) Cold forging steel for induction hardening, machine structural parts and manufacturing method thereof
JP4056709B2 (en) Carburizing steel
JP3769918B2 (en) Coarse grain-resistant case-hardened steel, surface-hardened parts excellent in strength and toughness, and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees