JP3769918B2 - Coarse grain-resistant case-hardened steel, surface-hardened parts excellent in strength and toughness, and manufacturing method thereof - Google Patents

Coarse grain-resistant case-hardened steel, surface-hardened parts excellent in strength and toughness, and manufacturing method thereof Download PDF

Info

Publication number
JP3769918B2
JP3769918B2 JP00362198A JP362198A JP3769918B2 JP 3769918 B2 JP3769918 B2 JP 3769918B2 JP 00362198 A JP00362198 A JP 00362198A JP 362198 A JP362198 A JP 362198A JP 3769918 B2 JP3769918 B2 JP 3769918B2
Authority
JP
Japan
Prior art keywords
steel
hardened
toughness
strength
machinability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00362198A
Other languages
Japanese (ja)
Other versions
JPH11199969A (en
Inventor
八寿男 黒川
芳彦 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP00362198A priority Critical patent/JP3769918B2/en
Publication of JPH11199969A publication Critical patent/JPH11199969A/en
Application granted granted Critical
Publication of JP3769918B2 publication Critical patent/JP3769918B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、肌焼鋼材及び表面硬化部品と、その表面硬化部品の製造方法に関し、より詳しくは、被削性に優れた耐粗粒化肌焼鋼材並びに強度と靭性に優れた表面硬化部品及びその製造方法に関する。
【0002】
【従来の技術】
従来、自動車用や産業機械用などの各種機械構造部品、特に歯車を代表とする表面硬化部品は、肌焼鋼を素材として、これを熱間鍛造や冷間鍛造した後に切削加工して所望の形状に成形加工し、次いで、耐摩耗性や疲労強度を向上させる目的で部品表面に浸炭処理や浸炭窒化処理などの表面硬化処理を施してから使用に供されている。
【0003】
表面硬化部品の素材鋼となる機械構造用肌焼鋼としては、従来、JIS G 4106に規格された機械構造用マンガン鋼(SMn鋼)及びマンガンクロム鋼(SMnC鋼)、JIS G 4105に規格されたクロムモリブデン鋼(SCM鋼)、JIS G 4104に規格されたクロム鋼(SCr鋼)、JIS G 4103に規格されたニッケルクロムモリブデン鋼(SNCM鋼)、JIS G 4102に規格されたニッケルクロム鋼(SNC鋼)などが用いられてきた。
【0004】
しかし、前記のJIS規格鋼を母材として所定の部品形状に加工された鋼材の場合には、浸炭処理や浸炭窒化処理などの表面硬化処理時に900〜950℃の温度に加熱されると結晶粒の粗大化や異常粒成長(以下、結晶粒の粗大化と異常粒成長をまとめて「粗粒化」という)が生じ易い。このため、焼入れ時の歪発生や強度や靭性など材料特性の低下が生ずるという問題がある。
【0005】
このため、従来のJIS規格鋼に代わって、Nbを添加した鋼、例えば、特開昭60−21359号公報に記載のNb添加鋼などが浸炭部品の母材となる肌焼鋼として重用されてきた。こうした鋼は、Nbの添加によって析出した微細なNbCのピン止め効果を利用することで、浸炭処理や浸炭窒化処理などの表面硬化処理における加熱時のオーステナイト粒の粗粒化を防止しようとするものである。既に述べたように、従来の浸炭処理や浸炭窒化処理などの表面硬化処理は900〜950℃程度の温度で行われていたために、NbCのピン止め効果によって粗粒化を防止することが可能であった。しかしながら、単にNbを添加しただけの鋼の場合には鋼塊(ここでいう「鋼塊」にはJIS G 0203に規定されているように連鋳鋼片(鋳片)を含む)の表面性状が悪いという問題がある。したがって、鋼片や各種の鋼材に加工した後に疵が生じるので、疵の手入れをしなければならず、この疵手入れのために歩留まりが低下するとともにコストが嵩んでいた。
【0006】
更に近年、表面硬化処理の能率を大幅に向上させるために、所謂「プラズマ浸炭処理」など高温での表面硬化処理が採用されるようになってきた。この「プラズマ浸炭処理」は、1050℃もの高温で浸炭処理を行うものであり、こうした高温に加熱される場合には、前記の単にNbを添加しただけの鋼では粗粒化を防止することは不可能であった。すなわち、1050℃でのプラズマ浸炭処理時には、従来の900〜950℃程度の処理の場合には粗粒化防止に有効であったNbCが凝集・粗大化してしまい、ピン止め効果を十分に発揮することができないからである。
【0007】
そこで、例えば特開平4−176816号公報に記載されているような、Nbと、Ti及び/又はVとを複合添加した浸炭用鋼が提案されている。しかし、前記公報に記載されているような単に、Nbと、Ti及び/又はVとを複合添加しただけの浸炭用鋼の場合には、浸炭時に粗粒化が生じてしまう場合もあった。
【0008】
又、近年、機械構造部品の高強度化に伴って、熱間鍛造や冷間鍛造した後に所望の形状に成形するための切削加工のコストが嵩むという問題が生じている。このため、切削加工を容易にし、低コスト化を図るために被削性に優れた快削肌焼鋼に対する要求がますます大きくなっている。
【0009】
従来、被削性を高めるために、鋼にPb、Te、Bi、Ca及びSなどの快削元素を単独あるいは複合添加することが行われてきた。しかし、JIS規格鋼である機械構造用鋼や、前記した特開昭60−21359号公報に記載のNb添加鋼や、特開平4−176816号公報に記載されているような、Nbと、Ti及び/又はVとを複合添加した浸炭用鋼などに、単に上記の快削元素を添加しただけの場合には、所望の機械的性質、なかでも靭性を確保できないことが多い。
【0010】
鉄と鋼(vol.57(1971年)S484)には、脱酸調整快削鋼にTiを添加すれば被削性が高まる場合のあることが報告されている。しかし、Tiの多量の添加はTiNが多量に生成することもあって工具摩耗を増大させ、被削性の点からは好ましくないことも述べられている。例えば、C:0.45%、Si:0.29%、Mn:0.78%、P:0.017%、S:0.041%、Al:0.006%、N:0.0087%、Ti:0.228%、O:0.004%及びCa:0.001%を含有する鋼では却ってドリル寿命が低下して被削性が劣っている。このように、鋼に単にTiを添加するだけでは被削性は向上するものではない。
【0011】
【発明が解決しようとする課題】
本発明は上記現状に鑑みなされたもので、充分な強度−靭性バランスを有して、過酷な環境下での使用に充分耐え得る表面硬化部品及びその素材となる耐粗粒化肌焼鋼材と、その表面硬化部品の製造方法を提供することを目的とする。なかでも、本発明は、鋼材表面の温度が1050℃にも到るようなプラズマ浸炭処理を初めとする高い温度での表面硬化処理を受ける場合にも粗粒化を生ずることがなく、熱処理歪の小さい高強度・高靭性の表面硬化部品と、その素材となる鋼塊の表面性状が良好で且つ被削性にも優れた耐粗粒化肌焼鋼材及びその表面硬化部品の製造方法を提供することを目的とする。
【0012】
なお、本発明でいう「耐粗粒化鋼材」とは、「JIS G 0551の表1に示されるオーステナイト結晶粒度番号5以上の整細粒鋼材」のことを指す。
【0013】
【課題を解決するための手段】
本発明の要旨は、下記(1)に示す化学組成を有する被削性に優れた耐粗粒化肌焼鋼材、(2)に示す強度と靭性に優れた表面硬化部品及び(3)、(4)に示す強度と靭性に優れた表面硬化部品の製造方法にある。
【0014】
(1)重量%で、C:0.1〜0.3%、Si:0.01〜0.5%、Mn:0.6〜2.0%、P:0.03%以下、S:0.002〜0.2%、Nb:0.005〜0.10%、Ti:0.04〜1.0%、N:0.002〜0.008%、Cr:0〜2.0%、Mo:0〜1.0%、W:0〜1.0%、Al:0〜0.10%、残部はFe及び不可避不純物からなる化学組成で、鋼中のTi炭硫化物の最大直径が10μm以下で、且つ、その量が清浄度で0.05%以上である耐粗粒化肌焼鋼材。
【0015】
(2)素材が、上記(1)に記載の鋼材であって、表面硬化処理後にHv300以上の芯部硬度と20J/cm2 以上の衝撃値を有する表面硬化部品。
【0016】
(3)上記(1)に記載の鋼材を、表面硬化処理に先立って1150℃以上に加熱してから熱間鍛造することによる表面硬化部品の製造方法。
【0017】
(4)上記(1)に記載の鋼材を、分塊、圧延及び熱処理の少なくとも1つの工程を1150℃以上に加熱して行い、その後鍛造し、更に表面硬化処理することによる表面硬化部品の製造方法。
【0018】
以下、上記(1)〜(4)に記載のものを(1)〜(4)の発明ということがある。
【0019】
なお、本発明でいう「Ti炭硫化物」には単なるTi硫化物をも含むものとする。又、「(Tiの炭硫化物の)最大直径」とは「個々のTiの炭硫化物における最も長い径」のことを指す。Ti炭硫化物の清浄度は、光学顕微鏡の倍率を400倍として、JIS G 0555に規定された「鋼の非金属介在物の顕微鏡試験方法」によって60視野測定した値をいう。
【0020】
表面硬化処理後の芯部とは表面硬化されていない部分のことをいう。
【0021】
(4)の発明における鍛造は、熱間、温間、冷間のいずれかで行われるもの、又は、これらを組み合わせたものを指す。
【0022】
本発明者らは、プラズマ浸炭処理を初めとする高い温度での表面硬化処理時にも粗粒化を防止することができるように、1050℃でも成長・凝集せず微細に分散している析出物について調査・研究を行った。
【0023】
その結果、NbとTiを複合添加した鋼において、NbとTiの複合炭窒化物〔NbTi(CN)〕が1050℃でも成長・凝集せず、微細に分散している場合があることがわかった。
【0024】
そこで本発明者らは更に詳細な研究を続け、その結果、次の知見を得るに到った。
【0025】
(a)NbとTiを複合添加した鋼において、凝固時に析出する合金炭窒化物はNbC、TiC、NbN、TiN、Nb(CN)及びTi(CN)といった単独合金による炭化物、窒化物や炭窒化物ではなく、NbとTiの複合炭窒化物〔NbTi(CN)〕である。しかし、凝固時に析出した複合炭窒化物〔NbTi(CN)〕は粗大であるので、粗粒化防止のためのピン止め作用を有しない。
【0026】
(b)複合炭窒化物〔NbTi(CN)〕の固溶と加熱温度(T)の関係は以下のとおりである。
【0027】
(イ)T<1150℃の場合:上記の複合炭窒化物は鋼中で安定に存在する。
【0028】
(ロ)1150℃≦T≦1350℃の場合:上記の複合炭窒化物のNbだけが固溶し、Tiが濃化する。
【0029】
(ハ)1350℃<Tの場合:上記の複合炭窒化物は完全に固溶する(Tiも固溶する)。
【0030】
(c)表面硬化処理の前に素材鋼及び/又は表面硬化部品が1150℃以上の温度域に加熱されると、凝固時に析出した粗大な〔NbTi(CN)〕が固溶するとともに、その後の冷却過程、あるいは冷却後に行われる処理の加熱過程で〔NbTi(CN)〕が微細に再析出し、そのピン止め効果で表面硬化処理時の異常粒成長を防止することができる。なお、複合炭窒化物〔NbTi(CN)〕が完全に固溶しなくても、複合炭窒化物中のNbが優先的に固溶しさえすれば、その後の冷却過程、あるいは冷却後に行われる処理の加熱過程で〔NbTi(CN)〕が微細に再析出する。
【0031】
(d)表面硬化処理後、Hv300以上の芯部硬度と20J/cm2 以上の衝撃値を有すれば、その表面硬化部品は自動車や産業機械が使用される過酷な環境においても充分な耐久性を示す。
【0032】
(e)鋼に適正量のTiを添加し、鋼中の介在物制御として硫化物をTi炭硫化物に変え、更にTi炭硫化物を鋼材に微細に分散させれば、鋼材の被削性が飛躍的に向上する。
そこで、更に研究を続けた結果、下記の事項を見いだした。
【0033】
(f)Sとのバランスを考慮して鋼にTiを積極的に添加して行くと、鋼中にTi炭硫化物が形成される。
【0034】
(g)鋼中に上記のTi炭硫化物が生成すると、MnSの生成量が減少する。
【0035】
(h)鋼中のS含有量が同じ場合には、Ti炭硫化物はMnSよりも大きな被削性改善効果を有する。これは、Ti炭硫化物の融点がMnSのそれよりも低いため、切削加工時に工具のすくい面での潤滑作用が大きくなることに基づく。
【0036】
(i)Ti炭硫化物の効果を充分発揮させるためには、N含有量を低く制限することが重要である。これは、N含有量が多いとTiNとしてTiが固定されてしまい、Ti炭硫化物の生成が抑制されてしまうためである。
【0037】
(J)製鋼時に生成したTi炭硫化物は、通常の熱間加工のための加熱温度及びプラズマ浸炭処理を初めとする高温の表面硬化処理における1050℃程度の温度では基地に固溶しないし、凝集もしない。したがって、オーステナイト領域において所謂「ピン止め作用」が発揮されるので、オーステナイト粒の粗大化防止に有効である。
【0038】
(K)Ti炭硫化物によって被削性を高めるとともに大きな強度、特に、大きな疲労強度を確保するためには、Ti炭硫化物のサイズと、その清浄度で表される量(以下、単に「清浄度」という)を適正化しておくことが重要である。
【0039】
本発明は、上記の知見に基づいて完成されたものである。
【0040】
【発明の実施の形態】
以下、本発明の各要件について詳しく説明する。なお、化学成分の含有量の「%」は「重量%」を意味する。
【0041】
(A)素材鋼の化学組成
C:0.1〜0.3%
Cは、SとともにTiと結合してTiの炭硫化物を形成し、被削性を高める作用を有する。更に、Cは鋼の強度を確保するとともに複合炭窒化物〔NbTi(CN)〕を形成させるのにも有効な元素である。しかし、その含有量が0.1%未満では添加効果に乏しく、一方、0.3%を超えて含有させると鋼の靭性が低下することになるので、その含有量を0.1〜0.3%とした。
【0042】
Si:0.01〜0.5%
Siは、鋼の脱酸及び焼入れ性を高める作用を有する。更に、強度の向上及び高温での表面酸化の防止にも有効な元素である。しかし、その含有量が0.01%未満では所望の静的強度が確保できないことに加えて高温での表面の耐酸化性が劣化し、0.5%を超えると靭性の劣化を招くこととなる。したがって、Siの含有量を0.01〜0.5%とした。
【0043】
Mn:0.6〜2.0%
Mnは、鋼の焼入れ性を高めるとともに熱間延性を向上させる効果を有する。しかし、その含有量が0.6%未満では充分な焼入れ性が得られず、2.0%を超えて含有させると偏析を生じ、却って熱間延性が低下するようになる。したがって、Mnの含有量を0.6〜2.0%とした。
【0044】
P:0.03%以下
Pは、鋼の靭性を劣化させるとともに、冷間及び熱間での鍛造性を低下させてしまう。特に、その含有量が0.03%を超えると靭性及び冷間・熱間鍛造性の劣化が著しくなる。したがって、Pの含有量を0.03%以下とした。
【0045】
S :0.002〜0.2%
SはCとともにTiと結合してTiの炭硫化物を形成し、被削性を高める作用を有する。しかし、その含有量が0.002%未満では所望の効果が得られない。
【0046】
従来、快削鋼にSを添加する目的は、MnSを形成させて被削性を改善させることにあった。しかし、本発明者らの検討によると、上記のMnSの被削性向上作用は、切削時の切り屑と工具表面との潤滑性を高める機能に基づくことが判明した。しかもMnSは巨大化し、鋼材本体の地疵を大きくし、欠陥となる場合がある。本発明におけるSの被削性改善作用は、適正量のCとTiとの複合添加によってTiの炭硫化物を形成させることで初めて得られる。このためには、上記したように0.002%以上のSの含有量が必要である。一方、Sを0.2%を超えて含有させても被削性に与える効果に変化はないが、鋼中に粗大なMnSが再び生じるようになり、地疵等の問題が生じる。更に、熱間での加工性が著しく劣化し熱間での塑性加工が困難になるし、靭性が低下することもある。したがって、Sの含有量を0.002〜0.2%とした。Sの好ましい含有量は0.005〜0.1%である。
【0047】
Nb:0.005〜0.10%
Nbは、Tiとともに複合炭窒化物〔NbTi(CN)〕を形成し、鋼の結晶粒を微細にして靭性を高めるとともに、表面硬化処理のための加熱時の粗粒化を防止するのに有効な元素である。しかし、その含有量が0.005%未満では添加効果に乏しく、一方、0.10%を超えて含有させても結晶粒微細化の効果が飽和して経済性を損なうばかりであるし、変形抵抗が上昇して冷間鍛造性や熱間鍛造性が劣化するようにもなる。したがって、Nbの含有量を0.005〜0.10%とした。
【0048】
Ti:0.04〜1.0%
Tiは、C及びSと結合してTi炭硫化物を形成し、被削性を高める作用を有する。更に、Tiは、Nbとともに複合炭窒化物〔NbTi(CN)〕を形成し、鋼の結晶粒を微細にして靭性を向上させる作用も有する。複合炭窒化物〔NbTi(CN)〕は前記のTi炭硫化物とともに、表面硬化処理のための加熱時の粗粒化を防止するのに有効である。なお、Tiには、Nb添加鋼の鋼塊の表面性状を改善する作用もある。しかし、その含有量が0.04%未満では所望の効果が得られない。一方、1.0%を超えて含有させても、Ti炭硫化物による被削性改善効果が飽和してコストが嵩むばかりか、靭性及び熱間加工性が著しく劣化してしまう。したがって、Ti含有量を0.04〜1.0%とした。なお、良好な被削性と靭性を安定して得るためには、Tiの含有量を0.06〜0.8%とすることが好ましい。
【0049】
N :0.002〜0.008%
Nは、Nb、Ti及びCと結合して複合炭窒化物〔NbTi(CN)〕を形成し、鋼の結晶粒を微細化して靭性を向上させるとともに、表面硬化処理のための加熱時の粗粒化を防止するのに有効な元素である。しかし、その含有量が0.002%未満では添加効果に乏しい。一方、NはTiとの親和力が大きいために容易にTiと結合してTiNを形成し、Tiを固定してしまうので、Nを多量に含有する場合には前記したTi炭硫化物の被削性向上効果が充分に発揮できないこととなる。更に、粗大なTiNは靭性及び被削性を低下させてしまう。特に、N含有量が0.008%を超えると靭性及び被削性の低下が著しくなる。したがって、Nの含有量を0.002〜0.008%とした。なお、Ti炭硫化物の効果を高めるために、N含有量の上限は0.006%とすることが好ましい。
【0050】
Cr:0〜2.0%
Crは添加しなくても良い。添加すれば鋼の焼入れ性を向上させるとともに、浸炭処理などの表面硬化処理時にCと結合して複合炭化物を形成するので耐摩耗性を向上させる効果がある。この効果を確実に得るには、Crは0.05%以上の含有量とすることが好ましい。しかし、その含有量が2.0%を超えると靭性が劣化する。したがって、Cr含有量を0〜2.0%とした。
【0051】
Mo:0〜1.0%
Moは添加しなくても良い。添加すれば鋼の焼入れ性を向上させるとともに、表面硬化処理後の芯部硬度を上げる作用がある。この効果を確実に得るには、Moは0.05%以上の含有量とすることが望ましい。しかし、その含有量が1.0%を超えると、Ti炭硫化物を微細に分散させた場合においても被削性が大幅に劣化するようになる。したがって、Mo含有量を0〜1.0%とした。
【0052】
W:0〜1.0%
Wは添加しなくても良い。添加すれば鋼の焼入れ性を向上させるとともに、表面硬化処理後の芯部硬度を上げる作用がある。この効果を確実に得るには、Wは0.10%以上の含有量とすることが望ましい。しかし、その含有量が1.0%を超えると、Ti炭硫化物を微細に分散させた場合においても被削性が大幅に劣化するようになる。したがって、W含有量を0〜1.0%とした。
【0053】
Al:0〜0.10%
Alは添加しなくてもよい。添加すれば鋼の脱酸の安定化及び均質化を図る作用がある。この効果を確実に得るには、Alは0.005%以上の含有量とすることが望ましい。しかし、その含有量が0.10%を超えると前記効果が飽和することに加えて靭性が劣化するようになる。したがって、Alの含有量を0〜0.10%とした。なお、Ti炭硫化物のサイズと清浄度を所定の値とするためにはTiの酸化物が過剰に生成することを防ぐことが重要であるので、Si含有量が0.05%未満の場合には、少なくとも0.005%のAlを含有させることとするのが良い。
【0054】
上記の化学組成を有する素材鋼は、例えば熱間で分塊されて鋼片となり、次いで熱間で圧延された後、熱間あるいは冷間で鍛造され、必要に応じて焼準を施され、更に切削加工が施されて所定の表面硬化部品の形状に加工される。そして最終的に表面硬化処理を施されることとなる。
【0055】
(B)Ti炭硫化物のサイズと清浄度
上記の化学組成を有する鋼の被削性をTi炭硫化物によって高めるとともに大きな強度と良好な靭性をも確保するためには、Ti炭硫化物のサイズと清浄度を適正化しておくことが重要である。
【0056】
Ti炭硫化物の最大直径が10μmを超えると疲労強度や靭性が低下してしまう。なお、Ti炭硫化物の最大直径は7μm以下とすることが好ましい。このTi炭硫化物の最大直径が小さすぎると被削性向上効果が小さくなってしまうので、Ti炭硫化物の最大直径の下限値は0.5μm程度とすることが好ましい。
【0057】
最大直径が10μm以下のTi炭硫化物の量が清浄度で0.05%未満の場合には、Ti炭硫化物による被削性向上効果が発揮できない。前記の清浄度は0.08%以上とすることが好ましい。上記のTi炭硫化物の清浄度の値が大きすぎると疲労強度が低下する場合があるので、上記のTi炭硫化物の清浄度の上限値は2.0%程度とすることが好ましい。
【0058】
Ti炭硫化物のサイズと清浄度を前記の値とするためには、Tiの酸化物が過剰に生成することを防ぐことが重要である。このための製鋼法としては、例えば、Si及びAlで充分脱酸し、最後にTiを添加する方法がある。
【0059】
なお、Ti炭硫化物は、鋼材から採取した試験片を鏡面研磨し、その研磨面を被検面として倍率400倍以上で光学顕微鏡観察すれば、色と形状から容易に他の介在物と識別できる。すなわち、前記の条件で光学顕微鏡観察すれば、Ti炭硫化物の「色」は極めて薄い灰色で、「形状」はJISのB系介在物に相当する粒状(球状)として認められる。Ti炭硫化物の詳細判定は前記の被検面をEDX(エネルギ−分散型X線分析装置)などの分析機能を備えた電子顕微鏡で観察することによって行うこともできる。
【0060】
前記のTi炭硫化物の清浄度は、既に述べたように、光学顕微鏡の倍率を400倍として、JIS G 0555に規定された「鋼の非金属介在物の顕微鏡試験方法」によって60視野測定した値をいう。
【0061】
(C)熱間鍛造、分塊、圧延及び熱処理
本発明は、1050℃にも到る高温での表面硬化処理の加熱時に、複合炭窒化物〔NbTi(CN)〕を微細に析出させておき、そのピン止め効果により表面硬化処理時の粗粒化の発生を抑制しようとするものである。そして、表面硬化処理の加熱時に、複合炭窒化物〔NbTi(CN)〕を微細に析出させておくためには、溶製後の凝固時に粗大に析出した複合炭窒化物〔NbTi(CN)〕を、表面硬化処理の前段階で一旦鋼中に固溶させ、微細な〔NbTi(CN)〕析出の素地を作っておく必要がある。このためには、表面硬化処理の前工程で、一旦高温に加熱しておけばよい。
【0062】
既に述べたように、▲1▼NbとTiを複合添加した鋼において凝固時に析出する粗大な合金炭窒化物は、NbとTiの複合炭窒化物〔NbTi(CN)〕である。▲2▼複合炭窒化物〔NbTi(CN)〕の固溶と加熱温度(T)の関係については以下のとおりである。
【0063】
(イ)T<1150℃の場合:上記の複合炭窒化物は鋼中で安定に存在する。
【0064】
(ロ)1150℃≦T≦1350℃の場合:上記の複合炭窒化物のNbだけが固溶し、Tiが濃化する。
【0065】
(ハ)1350℃<Tの場合:上記の複合炭窒化物は完全に固溶する(Tiも固溶する)。
【0066】
したがって、本発明においては、微細に再析出した〔NbTi(CN)〕のピン止め作用を利用して粗粒化の発生を防止するために、表面硬化処理の前の工程で一旦1150℃以上に加熱する。
【0067】
そこで、表面硬化部品への加工工程に熱間鍛造が含まれる場合には、少なくともこの熱間鍛造における加熱温度を1150℃以上としてNbを固溶させれば良いことになる((3)の発明)。
【0068】
あるいは、既に述べた表面硬化処理の前工程のうち、熱間鍛造以外で「加熱」処理を伴うものは分塊、圧延及び所謂「熱処理」であるため、これら分塊、圧延及び熱処理の少なくとも1つの工程において加熱温度を1150℃以上とすれば良いことになる((4)の発明)。
【0069】
なお、本発明においては、微細に再析出した〔NbTi(CN)〕のピン止め作用を利用することに加えて、Ti炭硫化物のピン止め作用も利用して表面硬化処理時の異常粒成長の防止を図る。このTi炭硫化物は1350℃以下の温度では基地に固溶し難い。このため、上記した請求項3の発明及び同4の発明における加熱温度の上限は、Ti炭硫化物のピン止め作用を確保するために1350℃とするのが良い。加熱温度の上限を1350℃とすれば、加熱時の表面酸化を低減することもできる。
【0070】
なお、プラズマ浸炭処理を初めとする高い温度での表面硬化処理のための加熱時に、NbとTiの複合炭窒化物〔NbTi(CN)〕を微細に析出させておくためには、上記の加熱後の冷却速度は0.2℃/s以上とすることが望ましい。
【0071】
(D)表面硬化処理
本発明が対象とする表面硬化処理は、処理の能率を大幅に高めることができる「プラズマ浸炭処理」を初めとする高温での表面硬化処理である。この表面硬化処理は、所定の表面硬化部品の表面を硬化させ、製品として必要な耐摩耗性や疲労強度を確保するのに必要不可欠の処理である。この処理方法は特に規定されるものではなく、通常の方法で行えば良い。なお、当然のことながら、本発明は、表面硬化処理が900〜950℃の温度に加熱される従来の浸炭処理や浸炭窒化処理などの場合にも適用できる。
【0072】
(E)表面硬化処理後の表面硬化部品の芯部硬度と靭性
表面硬化部品が、自動車や産業機械が使用される過酷な環境においても充分な耐久性を発揮するためには、表面硬化処理後、Hv300以上の芯部硬度と20J/cm2 以上の衝撃値を有することが必要である。これらの一方及び/又は両方から外れる場合は表面硬化部品の実環境での耐久性は極めて劣化したものとなってしまう。したがって、表面硬化部品の芯部硬度はHv300以上、且つ、衝撃値は20J/cm2 以上とした。
【0073】
(F)焼戻し
低温で焼戻しを行うと表面硬度の大きな低下を伴うことなく靭性を改善できるので、本発明の表面硬化部品は、表面硬化処理の後に必要に応じて焼戻しを実施したものであっても良い。焼戻しをする場合は、表面硬度を確保するためにその温度を150〜200℃とするのが望ましい。
【0074】
【実施例】
(実施例1)
表1、表2に示す化学組成の鋼を通常の方法によって試験炉を用いて溶製した。なお、鋼Oを除いて、Ti酸化物の生成を防ぐために、Si及びAlで充分脱酸し種々の元素を添加した最後にTiを添加して、Ti炭硫化物のサイズと清浄度を調整するようにした。鋼OについてはSi及びAlで脱酸する際に同時にTiを添加した。
【0075】
表1、表2において、鋼A〜Hは化学組成が本発明で規定する範囲内にある本発明例の鋼、鋼I〜Sは成分のいずれかが本発明で規定する含有量の範囲から外れた比較例の鋼である。なお、比較例の鋼において、鋼Q、鋼R及び鋼SはそれぞれJISのSMn420鋼、SCr420鋼及びSCM420鋼に相当するものである。
【0076】
【表1】

Figure 0003769918
【0077】
【表2】
Figure 0003769918
【0078】
次いで、これらの鋼を1140℃に加熱した後に通常の方法によって鋼片とし、更に1100℃に加熱して、1100〜1000℃の温度で直径30mmの丸棒に熱間鍛造した。なお、鋼片に加工した後、一部のものについては表面の手入れを行った。この表面の手入れの有無を表1、表2に併せて示す。
【0079】
こうして得られた熱間鍛造後の丸棒からJIS G 0555の図1に則って試験片を採取し、鏡面研磨した幅が15mmで高さが20mmの被検面を、倍率が400倍の光学顕微鏡で60視野観察して、Ti炭硫化物を他の介在物と区分しながらその清浄度を測定した。Ti炭硫化物の最大直径も、倍率が400倍の光学顕微鏡で60視野観察して調査した。
【0080】
又、上記の熱間鍛造後の丸棒から8mm直径×12mm長さの粗粒化測定試験片を切り出し、この試験片を用いて下記の4条件の加工熱処理試験を行い、粗粒化の発生率を倍率100倍の光学顕微鏡で10視野観察して調査した。
【0081】
(条件1)真空中で、試験片を1100℃、1175℃及び1250℃の温度でそれぞれ15分間加熱した後、圧縮加工により30%の変形量を与えて常温(室温)まで1.0℃/sの冷却速度で冷却した。この後、1050℃×4hr(炭素ポテンシャル:0.8%)の浸炭処理を行った後油焼入した。
【0082】
(条件2)真空中で、試験片を1100℃で15分間加熱し、続いて圧縮加工により30%の変形量を与え、一旦常温まで2.0℃/sの冷却速度で冷却した。この後、更に、1100℃、1175℃及び1250℃の温度で15分間加熱した後、常温まで1.0℃/sの冷却速度で冷却した。次いで、1050℃×4hr(炭素ポテンシャル:0.8%)の浸炭処理を行った後油焼入した。
【0083】
(条件3)大気中で、試験片に常温で圧縮加工により30%の変形量を与えた。次いで、真空中で、1100℃、1175℃及び1250℃の温度でそれぞれ15分間加熱した後、常温まで1.0℃/sの冷却速度で冷却した。この後、1050℃×4hr(炭素ポテンシャル:0.8%)の浸炭処理を行った後油焼入した。
【0084】
(条件4)真空中で、試験片を1100℃、1175℃及び1250℃の温度でそれぞれ15分間加熱した後、一旦常温まで1.0℃/sの冷却速度で冷却した。次いで、真空中で1100℃で15分間加熱し、更に、圧縮加工により30%の変形量を与え、常温まで2.0℃/sの冷却速度で冷却した。この後、1050℃×4hr(炭素ポテンシャル:0.8%)の浸炭処理を行った後油焼入した。
【0085】
表3に、熱間鍛造後の丸棒におけるTi炭硫化物の清浄度及び最大直径の調査結果、並びに条件1〜4の加工熱処理試験を行った場合の粗粒化発生率の調査結果を示す。なお、粗粒化の発生率は100倍の倍率で10視野検鏡した場合の面積割合で表示した。
【0086】
【表3】
Figure 0003769918
【0087】
表3から、化学組成及び最大直径が10μm以下のTi炭硫化物の清浄度が本発明で規定する範囲内にある本発明例の鋼A〜Hを素材とするものと、比較例の鋼のうち鋼L及び鋼Oを素材とするものだけが本発明で規定した条件で加熱処理した場合に異常粒成長しないことが明らかである。
【0088】
(実施例2)
前記の実施例1で作製した鋼A〜Sの鋼片を1190℃に加熱してから、1190〜1000℃の温度で30mm直径の丸棒に熱間鍛造した。
【0089】
こうして得られた熱間鍛造後の丸棒から実施例1の場合と同様に、JIS G 0555の図1に則って試験片を採取し、鏡面研磨した幅が15mmで高さが20mmの被検面を、倍率が400倍の光学顕微鏡で60視野観察して、Ti炭硫化物を他の介在物と区分しながらその清浄度を測定した。Ti炭硫化物の最大直径も、倍率が400倍の光学顕微鏡で60視野観察して調査した。
【0090】
又、上記の熱間鍛造後の丸棒の中心部からJIS3号シャルピ−衝撃試験片を切り出し、表面硬化処理として1050℃×4hr(炭素ポテンシャル:0.8%)の浸炭処理を行った後油焼入れし、更に、160℃で焼戻しを行った。次いで、常温で衝撃試験を行うとともに試験片中心部すなわち芯部の硬度測定を行った。
【0091】
被削性評価のため、ドリル穿孔試験も実施した。すなわち、前記した熱間鍛造後の30mm直径の丸棒を25mmの長さに輪切りにしたものを用いて、R/2部(Rは丸棒の半径)についてその長さ方向に貫通孔をあけ、刃先摩損により穿孔不能となったときの貫通孔の個数を数え、被削性の評価を行った。穿孔条件は、JIS高速度工具鋼SKH51のφ5mmストレ−トシャンクドリルを使用し、水溶性の潤滑剤を用いて、送り0.15mm/rev、回転数980rpmで行った。
【0092】
表4に各種試験の結果を示す。
【0093】
【表4】
Figure 0003769918
【0094】
表4から、化学組成及び最大直径が10μm以下のTi炭硫化物の清浄度が本発明で規定する範囲内にある本発明例の鋼A〜Hを素材とするものはHv300以上の芯部硬度と20J/cm2 以上の衝撃値を有している。更に、被削性も良好なことが明らかである。したがって、これらの鋼を素材とする表面硬化部品は自動車や産業機械が使用される過酷な環境においても充分な耐久性を発揮できることになる。
【0095】
一方、前記実施例1において本発明で規定した条件で加熱処理した場合に異常粒成長しなかった比較例の鋼の鋼L及び鋼Oを素材とするものは、芯部硬度と衝撃値のいずれかが低く、表面硬化部品の実環境での耐久性は極めて劣化したものとなってしまう。
【0096】
又、比較例の鋼のうち最大直径が10μm以下のTi炭硫化物の量が清浄度で0.05%を下回る鋼O、並びにTiの含有量が本発明で規定する値を下回る鋼K、鋼N及び鋼P〜Sではドリル貫通孔の個数が100個に達せず被削性が劣っている。
【0097】
(実施例3)
前記の実施例1で作製した鋼A〜H、鋼L及び鋼Nの鋼片を1180℃で真空中の熱処理を行い、一旦常温まで0.25℃/sの冷却速度で冷却した。その後、1100℃に加熱してから、1100〜1000℃の温度で30mm直径の丸棒に熱間鍛造した。
【0098】
こうして得られた熱間鍛造後の丸棒から実施例1の場合と同様に、JIS G 0555の図1に則って試験片を採取し、鏡面研磨した幅が15mmで高さが20mmの被検面を、倍率が400倍の光学顕微鏡で60視野観察して、Ti炭硫化物を他の介在物と区分しながらその清浄度を測定した。Ti炭硫化物の最大直径も、倍率が400倍の光学顕微鏡で60視野観察して調査した。
【0099】
又、上記の熱間鍛造後の丸棒の中心部からJIS3号シャルピ−衝撃試験片を切り出し、表面硬化処理として1050℃×4hr(炭素ポテンシャル:0.8%)の浸炭処理を行った後油焼入れし、更に、170℃で焼戻しを行った。次いで、常温での衝撃試験とともに試験片中心部硬度すなわち芯部硬度の測定を行った。
【0100】
被削性評価のためのドリル穿孔試験も実施した。その試験片、試験方法及び評価方法は実施例2で述べたとおりである。
【0101】
表5に各種試験の結果を示す。
【0102】
【表5】
Figure 0003769918
【0103】
表5から、化学組成及び最大直径が10μm以下のTi炭硫化物の清浄度が本発明で規定する範囲内にある本発明例の鋼A〜Hを素材とするものはHv300以上の芯部硬度と20J/cm2 以上の衝撃値を有している。更に、被削性も良好なことが明らかである。したがって、これらの鋼を素材とする表面硬化部品は自動車や産業機械が使用される過酷な環境においても充分な耐久性を発揮できることになる。
【0104】
一方、前記実施例1において本発明で規定した条件で加熱処理した場合に粗粒化が生じなかった比較鋼の鋼L及び鋼Nを素材とするものは、芯部硬さと衝撃値のいずれかが低く、表面硬化部品の実環境での耐久性は極めて劣化したものとなってしまう。
【0105】
【発明の効果】
本発明による表面硬化部品は強度と靭性に優れ、粗粒化も生じないので、自動車や産業機械などの各種機械構造部品、特に歯車を代表とする表面硬化部品として利用することができる。本発明の耐粗粒化肌焼鋼材は被削性に優れるので、上記の表面硬化部品は、本発明の耐粗粒化肌焼鋼材を素材とし、これに本発明方法を適用することによって、比較的容易に製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a case-hardened steel material and a surface-hardened component, and a method for producing the surface-hardened component, and more specifically, a grain-resistant case-hardened steel material excellent in machinability and a surface-hardened component excellent in strength and toughness, and It relates to the manufacturing method.
[0002]
[Prior art]
Conventionally, various machine structural parts for automobiles and industrial machines, especially surface hardened parts such as gears, are made of case-hardened steel as a raw material, and then hot-forged or cold-forged and then processed by cutting. After being molded into a shape and then subjected to surface hardening treatment such as carburizing treatment or carbonitriding treatment on the surface of the component for the purpose of improving the wear resistance and fatigue strength, it is used.
[0003]
As case-hardening steel for machined structures, which is the material steel for surface-hardened parts, conventionally, manganese steel (SMn steel), manganese chromium steel (SMnC steel) and JIS G 4105, which are standardized in JIS G 4106. Chrome molybdenum steel (SCM steel), chrome steel (SCr steel) specified by JIS G 4104, nickel chrome molybdenum steel (SNCM steel) specified by JIS G 4103, nickel chrome steel (JIS G 4102) SNC steel) has been used.
[0004]
However, in the case of a steel material processed into a predetermined part shape using the above-mentioned JIS standard steel as a base material, when heated to a temperature of 900 to 950 ° C. during surface hardening treatment such as carburizing treatment or carbonitriding treatment, crystal grains And coarse grain growth (hereinafter, the coarsening of crystal grains and abnormal grain growth are collectively referred to as “coarse graining”). For this reason, there exists a problem that the material characteristics, such as generation | occurrence | production of the strain at the time of hardening and intensity | strength and toughness, arise.
[0005]
Therefore, instead of the conventional JIS standard steel, steel with Nb added, for example, Nb-added steel described in Japanese Patent Application Laid-Open No. 60-21359 has been used as a case-hardened steel as a base material for carburized parts. It was. Such steel is intended to prevent coarsening of austenite grains during heating in surface hardening treatments such as carburizing and carbonitriding by utilizing the pinning effect of fine NbC precipitated by the addition of Nb. It is. As already mentioned, surface hardening treatments such as conventional carburizing treatment and carbonitriding treatment were performed at a temperature of about 900 to 950 ° C., so that coarsening can be prevented by the pinning effect of NbC. there were. However, in the case of steel with only Nb added, the surface properties of the steel ingot (herein, “steel ingot” includes continuous cast steel pieces (slabs) as defined in JIS G 0203). There is a problem of being bad. Therefore, since wrinkles are generated after processing into a steel piece or various steel materials, the wrinkles must be cared for, and the yield is lowered and the cost is increased due to the caring for the wrinkles.
[0006]
Furthermore, in recent years, surface hardening treatments at high temperatures such as so-called “plasma carburizing treatment” have been adopted in order to greatly improve the efficiency of the surface hardening treatment. This “plasma carburizing treatment” is a carburizing treatment performed at a high temperature of 1050 ° C. When heated to such a high temperature, the above-described steel simply added with Nb can prevent coarsening. It was impossible. That is, at the time of plasma carburizing at 1050 ° C., NbC that has been effective in preventing coarsening in the case of the conventional processing at about 900 to 950 ° C. is agglomerated and coarsened, and the pinning effect is sufficiently exhibited. Because you can't.
[0007]
In view of this, for example, a steel for carburization in which Nb and Ti and / or V are added in combination has been proposed as described in JP-A-4-176816. However, in the case of carburizing steel in which Nb and Ti and / or V are simply added as described in the above publication, coarsening may occur during carburizing.
[0008]
In recent years, with the increase in strength of machine structural parts, there has been a problem that the cost of cutting for forming into a desired shape after hot forging or cold forging increases. For this reason, there is an increasing demand for a free-cutting case-hardened steel with excellent machinability in order to facilitate cutting and reduce costs.
[0009]
Conventionally, in order to improve machinability, free cutting elements such as Pb, Te, Bi, Ca and S have been added to steel alone or in combination. However, JIS standard steel for machine structural steel, Nb-added steel described in JP-A-60-21359 described above, Nb and Ti described in JP-A-4-176816, and the like. When the above-mentioned free-cutting elements are simply added to carburizing steel or the like in which V and / or V are added in combination, desired mechanical properties, in particular, toughness cannot be ensured in many cases.
[0010]
In iron and steel (vol. 57 (1971) S484), it has been reported that if Ti is added to a deoxidized adjusted free cutting steel, the machinability may be increased. However, it is also stated that the addition of a large amount of Ti increases tool wear due to the generation of a large amount of TiN, which is not preferable from the viewpoint of machinability. For example, C: 0.45%, Si: 0.29%, Mn: 0.78%, P: 0.017%, S: 0.041%, Al: 0.006%, N: 0.0087% In the steel containing Ti: 0.228%, O: 0.004% and Ca: 0.001%, the drill life is reduced and the machinability is inferior. Thus, machinability is not improved by simply adding Ti to steel.
[0011]
[Problems to be solved by the invention]
The present invention has been made in view of the above situation, and has a sufficient strength-toughness balance, a surface-hardened part that can sufficiently withstand use in a harsh environment, and a coarse-grained case-hardening steel material that is a raw material thereof. An object of the present invention is to provide a method for producing the surface-hardened component. In particular, the present invention does not cause coarsening even when subjected to surface hardening treatment at a high temperature such as plasma carburizing treatment where the temperature of the steel surface reaches 1050 ° C. Provides high-strength, high-toughness surface-hardened parts with small surface roughness, and a rough grain-hardened case-hardened steel material with excellent surface properties and excellent machinability, and a method for producing the surface-hardened parts. The purpose is to do.
[0012]
The “coarse grain resistant steel material” in the present invention refers to “fine grained steel material having an austenite grain size number of 5 or more shown in Table 1 of JIS G 0551”.
[0013]
[Means for Solving the Problems]
The gist of the present invention is a coarse-grained case-hardening steel material having a chemical composition shown in (1) below, excellent in machinability, a surface-hardened part excellent in strength and toughness shown in (2), and (3), ( It exists in the manufacturing method of the surface hardening component excellent in the intensity | strength and toughness shown to 4).
[0014]
(1) By weight, C: 0.1-0.3%, Si: 0.01-0.5%, Mn: 0.6-2.0%, P: 0.03% or less, S: 0.002 to 0.2%, Nb: 0.005 to 0.10%, Ti: 0.04 to 1.0%, N: 0.002 to 0.008%, Cr: 0 to 2.0% , Mo: 0 to 1.0%, W: 0 to 1.0%, Al: 0 to 0.10%, the balance is a chemical composition composed of Fe and inevitable impurities, and the maximum diameter of Ti carbon sulfide in steel Is 10 μm or less, and the amount thereof is 0.05% or more in terms of cleanliness.
[0015]
(2) The material is the steel material according to the above (1), and the core hardness of Hv300 or higher and 20 J / cm after the surface hardening treatment. 2 Surface-hardened parts having the above impact values.
[0016]
(3) A method for producing a surface-hardened component by hot forging the steel material according to (1) above to 1150 ° C. prior to the surface hardening treatment.
[0017]
(4) Production of surface hardened parts by heating the steel material according to (1) above by heating at least one step of lump, rolling and heat treatment to 1150 ° C or higher, then forging and further surface hardening treatment. Method.
[0018]
Hereinafter, the above (1) to (4) may be referred to as the inventions (1) to (4).
[0019]
The “Ti carbon sulfide” referred to in the present invention includes simple Ti sulfide. The “maximum diameter (of Ti carbosulfide)” refers to “the longest diameter of individual Ti carbosulfides”. The cleanliness of Ti carbosulfide is a value obtained by measuring 60 visual fields according to the “microscopic test method for non-metallic inclusions in steel” defined in JIS G 0555, with an optical microscope magnification of 400 times.
[0020]
The core portion after the surface hardening treatment refers to a portion that is not surface hardened.
[0021]
Forging in the invention of (4) refers to one that is performed either hot, warm, or cold, or a combination thereof.
[0022]
The present inventors have developed finely dispersed precipitates that do not grow or agglomerate even at 1050 ° C. so that coarsening can be prevented even during surface hardening treatment at a high temperature such as plasma carburizing treatment. Survey and research were conducted.
[0023]
As a result, it was found that Nb and Ti composite carbonitride [NbTi (CN)] does not grow and aggregate even at 1050 ° C and may be finely dispersed in steel with Nb and Ti added together. .
[0024]
Therefore, the present inventors have continued further detailed studies, and as a result, have obtained the following knowledge.
[0025]
(A) Alloy steel carbonitride that precipitates during solidification in steel with a composite addition of Nb and Ti is carbide, nitride or carbonitride by a single alloy such as NbC, TiC, NbN, TiN, Nb (CN) and Ti (CN). It is not a product, but a composite carbonitride of Nb and Ti [NbTi (CN)]. However, since the composite carbonitride [NbTi (CN)] precipitated during solidification is coarse, it does not have a pinning action for preventing coarsening.
[0026]
(B) The relationship between the solid solution of the composite carbonitride [NbTi (CN)] and the heating temperature (T) is as follows.
[0027]
(A) When T <1150 ° C .: The above composite carbonitride is stably present in steel.
[0028]
(B) In the case of 1150 ° C. ≦ T ≦ 1350 ° C .: Only the Nb of the above composite carbonitride dissolves and Ti is concentrated.
[0029]
(C) When 1350 ° C. <T: The composite carbonitride is completely dissolved (Ti is also dissolved).
[0030]
(C) When the material steel and / or the surface-hardened component is heated to a temperature range of 1150 ° C. or higher before the surface hardening treatment, coarse [NbTi (CN)] precipitated during solidification is dissolved, and thereafter [NbTi (CN)] is finely re-precipitated during the cooling process or the heating process performed after cooling, and the abnormal grain growth during the surface hardening process can be prevented by the pinning effect. In addition, even if the composite carbonitride [NbTi (CN)] is not completely dissolved, as long as the Nb in the composite carbonitride is preferentially dissolved, the subsequent cooling process or after cooling is performed. [NbTi (CN)] is finely re-deposited during the heating process.
[0031]
(D) After surface hardening treatment, core hardness of Hv300 or higher and 20 J / cm 2 When the impact value is as described above, the surface-hardened component exhibits sufficient durability even in a harsh environment where an automobile or industrial machine is used.
[0032]
(E) If an appropriate amount of Ti is added to the steel, the sulfide is changed to Ti carbon sulfide to control inclusions in the steel, and the Ti carbon sulfide is finely dispersed in the steel, the machinability of the steel Will improve dramatically.
Therefore, as a result of further research, the following items were found.
[0033]
(F) When Ti is actively added to the steel in consideration of the balance with S, Ti carbon sulfide is formed in the steel.
[0034]
(G) When the above Ti carbon sulfide is generated in the steel, the amount of MnS generated decreases.
[0035]
(H) When the S content in steel is the same, Ti carbon sulfide has a greater machinability improving effect than MnS. This is based on the fact that since the melting point of Ti carbosulfide is lower than that of MnS, the lubricating action on the rake face of the tool is increased during cutting.
[0036]
(I) In order to sufficiently exhibit the effects of Ti carbon sulfide, it is important to limit the N content low. This is because when the N content is large, Ti is fixed as TiN, and the production of Ti carbon sulfide is suppressed.
[0037]
(J) Ti carbon sulfide produced during steelmaking does not dissolve in the base at a heating temperature for normal hot working and a temperature of about 1050 ° C. in a high-temperature surface hardening treatment including a plasma carburizing treatment. Does not aggregate. Therefore, since the so-called “pinning action” is exhibited in the austenite region, it is effective in preventing the austenite grains from becoming coarse.
[0038]
(K) In order to increase machinability and ensure a large strength, particularly a large fatigue strength, with Ti carbon sulfide, the amount expressed by the size of Ti carbon sulfide and its cleanliness (hereinafter, simply “ It is important to optimize the "cleanliness").
[0039]
The present invention has been completed based on the above findings.
[0040]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, each requirement of the present invention will be described in detail. Note that “%” of the chemical component content means “% by weight”.
[0041]
(A) Chemical composition of steel
C: 0.1 to 0.3%
C combines with Ti together with S to form a Ti carbon sulfide, and has the effect of improving machinability. Furthermore, C is an element effective for securing the strength of the steel and for forming a composite carbonitride [NbTi (CN)]. However, if the content is less than 0.1%, the effect of addition is poor. On the other hand, if the content exceeds 0.3%, the toughness of the steel decreases, so the content is 0.1 to 0.00. 3%.
[0042]
Si: 0.01 to 0.5%
Si has the effect of enhancing the deoxidation and hardenability of steel. Furthermore, it is an element effective for improving strength and preventing surface oxidation at high temperatures. However, if the content is less than 0.01%, the desired static strength cannot be secured, and the oxidation resistance of the surface at a high temperature deteriorates. If the content exceeds 0.5%, the toughness deteriorates. Become. Therefore, the Si content is set to 0.01 to 0.5%.
[0043]
Mn: 0.6 to 2.0%
Mn has the effect of increasing the hardenability of steel and improving hot ductility. However, if the content is less than 0.6%, sufficient hardenability cannot be obtained. If the content exceeds 2.0%, segregation occurs, and the hot ductility decreases. Therefore, the Mn content is set to 0.6 to 2.0%.
[0044]
P: 0.03% or less
P deteriorates the toughness of steel and decreases the forgeability in cold and hot conditions. In particular, when the content exceeds 0.03%, the deterioration of toughness and cold / hot forgeability becomes remarkable. Therefore, the content of P is set to 0.03% or less.
[0045]
S: 0.002 to 0.2%
S combines with C together with Ti to form Ti carbon sulfide, and has the effect of improving machinability. However, if the content is less than 0.002%, the desired effect cannot be obtained.
[0046]
Conventionally, the purpose of adding S to free-cutting steel was to improve machinability by forming MnS. However, according to studies by the present inventors, it has been found that the above-described machinability improving effect of MnS is based on the function of improving the lubricity between chips and the tool surface during cutting. Moreover, MnS becomes enormous and the ground of the steel material body is enlarged, which may become a defect. The effect of improving the machinability of S in the present invention can be obtained for the first time by forming a carbonitride of Ti by a combined addition of an appropriate amount of C and Ti. For this purpose, as described above, an S content of 0.002% or more is necessary. On the other hand, even if S is contained in an amount exceeding 0.2%, there is no change in the effect on machinability, but coarse MnS is generated again in the steel, causing problems such as ground. Furthermore, hot workability is remarkably deteriorated, making hot plastic working difficult, and toughness may be lowered. Therefore, the content of S is set to 0.002 to 0.2%. A preferable content of S is 0.005 to 0.1%.
[0047]
Nb: 0.005 to 0.10%
Nb forms composite carbonitride [NbTi (CN)] together with Ti to make steel grains finer and increase toughness, and also effective in preventing coarsening during heating for surface hardening treatment Element. However, if the content is less than 0.005%, the effect of addition is poor. On the other hand, if the content exceeds 0.10%, the effect of refining the crystal grains is saturated and the economic efficiency is deteriorated. Resistance rises and cold forgeability and hot forgeability also deteriorate. Therefore, the Nb content is set to 0.005 to 0.10%.
[0048]
Ti: 0.04 to 1.0%
Ti combines with C and S to form Ti carbosulfide, and has the effect of improving machinability. Further, Ti forms a composite carbonitride [NbTi (CN)] together with Nb, and has the effect of improving the toughness by making the crystal grains of the steel finer. The composite carbonitride [NbTi (CN)] is effective in preventing coarsening during heating for the surface hardening treatment together with the Ti carbonitride. In addition, Ti also has the effect | action which improves the surface property of the steel ingot of Nb addition steel. However, if the content is less than 0.04%, the desired effect cannot be obtained. On the other hand, even if the content exceeds 1.0%, the machinability improving effect by Ti carbon sulfide is saturated and the cost is increased, and the toughness and hot workability are remarkably deteriorated. Therefore, the Ti content is set to 0.04 to 1.0%. In order to stably obtain good machinability and toughness, the Ti content is preferably 0.06 to 0.8%.
[0049]
N: 0.002 to 0.008%
N combines with Nb, Ti, and C to form a composite carbonitride [NbTi (CN)], refines the crystal grains of the steel to improve toughness, and increases the roughness during heating for surface hardening treatment. It is an effective element for preventing graining. However, if the content is less than 0.002%, the effect of addition is poor. On the other hand, since N has a high affinity with Ti, it easily binds to Ti to form TiN and fixes Ti. Therefore, when N is contained in a large amount, the above-described cutting of Ti carbon sulfide is performed. The effect of improving the properties cannot be sufficiently exhibited. Further, coarse TiN reduces toughness and machinability. In particular, when the N content exceeds 0.008%, the toughness and machinability deteriorate significantly. Therefore, the N content is set to 0.002 to 0.008%. In order to enhance the effect of Ti carbon sulfide, the upper limit of the N content is preferably 0.006%.
[0050]
Cr: 0 to 2.0%
It is not necessary to add Cr. If added, the hardenability of the steel is improved, and it has the effect of improving wear resistance because it combines with C to form a composite carbide during surface hardening treatment such as carburizing treatment. In order to reliably obtain this effect, the Cr content is preferably 0.05% or more. However, when the content exceeds 2.0%, the toughness deteriorates. Therefore, the Cr content is set to 0 to 2.0%.
[0051]
Mo: 0 to 1.0%
Mo may not be added. If added, the hardenability of the steel is improved and the core hardness after the surface hardening treatment is increased. In order to reliably obtain this effect, the Mo content is desirably 0.05% or more. However, if the content exceeds 1.0%, the machinability is greatly deteriorated even when Ti carbon sulfide is finely dispersed. Therefore, the Mo content is set to 0 to 1.0%.
[0052]
W: 0 to 1.0%
W may not be added. If added, the hardenability of the steel is improved and the core hardness after the surface hardening treatment is increased. In order to obtain this effect with certainty, W is desirably a content of 0.10% or more. However, if the content exceeds 1.0%, the machinability is greatly deteriorated even when Ti carbon sulfide is finely dispersed. Therefore, the W content is set to 0 to 1.0%.
[0053]
Al: 0 to 0.10%
Al need not be added. Addition has the effect of stabilizing and homogenizing the deoxidation of the steel. In order to reliably obtain this effect, the Al content is desirably 0.005% or more. However, if its content exceeds 0.10%, the effect is saturated and toughness deteriorates. Therefore, the Al content is set to 0 to 0.10%. In addition, in order to make the size and cleanliness of Ti carbosulfide have a predetermined value, it is important to prevent the Ti oxide from being generated excessively. Therefore, when the Si content is less than 0.05% It is preferable to contain at least 0.005% Al.
[0054]
The raw material steel having the above chemical composition is, for example, hot bunched into a steel slab, then rolled hot, then forged hot or cold, subjected to normalization as necessary, Further, a cutting process is performed to form a predetermined surface-hardened part. Finally, a surface hardening process is performed.
[0055]
(B) Size and cleanliness of Ti carbon sulfide
It is important to optimize the size and cleanliness of Ti carbosulfide in order to enhance the machinability of the steel having the above chemical composition by Ti carbosulfide and to ensure high strength and good toughness. It is.
[0056]
If the maximum diameter of Ti carbon sulfide exceeds 10 μm, fatigue strength and toughness will decrease. The maximum diameter of Ti carbon sulfide is preferably 7 μm or less. If the maximum diameter of the Ti carbon sulfide is too small, the effect of improving the machinability is reduced. Therefore, the lower limit value of the maximum diameter of the Ti carbon sulfide is preferably about 0.5 μm.
[0057]
When the amount of Ti carbon sulfide having a maximum diameter of 10 μm or less is less than 0.05% in terms of cleanliness, the machinability improvement effect by Ti carbon sulfide cannot be exhibited. The cleanliness is preferably 0.08% or more. If the cleanliness value of the Ti carbosulfide is too large, the fatigue strength may be lowered. Therefore, the upper limit value of the cleanliness of the Ti carbosulfide is preferably about 2.0%.
[0058]
In order to make the size and cleanliness of the Ti carbosulfide have the above values, it is important to prevent the Ti oxide from being excessively formed. As a steelmaking method for this purpose, for example, there is a method of sufficiently deoxidizing with Si and Al and finally adding Ti.
[0059]
Ti carbon sulfide is easily discriminated from other inclusions by color and shape when a specimen taken from a steel material is mirror-polished and observed with an optical microscope at a magnification of 400 times or more with the polished surface as a test surface. it can. That is, when observed under an optical microscope under the above conditions, the “color” of Ti carbon sulfide is recognized as a very light gray color, and the “shape” is recognized as a granular shape (spherical shape) corresponding to a JIS B-based inclusion. The detailed determination of Ti carbon sulfide can also be performed by observing the test surface with an electron microscope having an analysis function such as EDX (energy-dispersive X-ray analyzer).
[0060]
As described above, the cleanliness of the Ti carbosulfide was measured by 60 visual fields according to the “microscopic test method for non-metallic inclusions in steel” defined in JIS G 0555, with an optical microscope magnification of 400 times. Value.
[0061]
(C) Hot forging, splitting, rolling and heat treatment
In the present invention, the composite carbonitride [NbTi (CN)] is finely precipitated during heating of the surface hardening treatment at a high temperature as high as 1050 ° C., and the coarse particles during the surface hardening treatment are obtained by the pinning effect. It is intended to suppress the occurrence of crystallization. And, in order to deposit the composite carbonitride [NbTi (CN)] finely during the heating of the surface hardening treatment, the composite carbonitride [NbTi (CN)] that is coarsely precipitated during solidification after melting Must be dissolved in steel once before the surface hardening treatment to prepare a fine [NbTi (CN)] precipitation matrix. For this purpose, it may be heated to a high temperature once in the pre-process of the surface hardening treatment.
[0062]
As already described, (1) the coarse alloy carbonitride that precipitates during solidification in the steel in which Nb and Ti are added in combination is Nb and Ti composite carbonitride [NbTi (CN)]. (2) The relationship between the solid solution of the composite carbonitride [NbTi (CN)] and the heating temperature (T) is as follows.
[0063]
(A) When T <1150 ° C .: The above composite carbonitride is stably present in steel.
[0064]
(B) In the case of 1150 ° C. ≦ T ≦ 1350 ° C .: Only the Nb of the above composite carbonitride dissolves and Ti is concentrated.
[0065]
(C) When 1350 ° C. <T: The composite carbonitride is completely dissolved (Ti is also dissolved).
[0066]
Therefore, in the present invention, in order to prevent the occurrence of coarsening by utilizing the pinning action of finely reprecipitated [NbTi (CN)], the temperature is once higher than 1150 ° C. in the step before the surface hardening treatment. Heat.
[0067]
Therefore, in the case where hot forging is included in the processing step for the surface-hardened component, it is sufficient that at least the heating temperature in this hot forging is 1150 ° C. or higher so that Nb is dissolved (invention (3)). ).
[0068]
Alternatively, among the steps previously described for the surface hardening treatment, those that are accompanied by a “heating” treatment other than hot forging are agglomeration, rolling, and so-called “heat treatment”, and therefore at least one of these agglomeration, rolling, and heat treatment. In one step, the heating temperature may be 1150 ° C. or higher (invention (4)).
[0069]
In the present invention, in addition to utilizing the pinning action of finely reprecipitated [NbTi (CN)], the abnormal grain growth during the surface hardening treatment also utilizing the pinning action of Ti carbon sulfide. To prevent this. This Ti carbosulfide hardly dissolves in the base at a temperature of 1350 ° C. or lower. For this reason, the upper limit of the heating temperature in the above-described inventions of claim 3 and 4 is preferably 1350 ° C. in order to ensure the pinning action of Ti carbon sulfide. If the upper limit of the heating temperature is 1350 ° C., surface oxidation during heating can be reduced.
[0070]
In order to deposit Nb and Ti composite carbonitride [NbTi (CN)] finely at the time of heating for surface hardening treatment at a high temperature such as plasma carburizing treatment, the above heating is used. The subsequent cooling rate is preferably 0.2 ° C./s or more.
[0071]
(D) Surface hardening treatment
The surface hardening treatment targeted by the present invention is a surface hardening treatment at a high temperature such as “plasma carburizing treatment” which can greatly increase the efficiency of the treatment. This surface hardening treatment is an indispensable treatment for hardening the surface of a predetermined surface-hardened component and ensuring the wear resistance and fatigue strength necessary for the product. This processing method is not particularly defined, and may be performed by a normal method. Needless to say, the present invention can also be applied to the case of a conventional carburizing process or carbonitriding process in which the surface hardening process is heated to a temperature of 900 to 950 ° C.
[0072]
(E) Core hardness and toughness of surface-hardened parts after surface hardening treatment
In order for surface-hardened parts to exhibit sufficient durability even in harsh environments where automobiles and industrial machinery are used, after surface hardening treatment, core hardness of Hv300 or higher and 20 J / cm 2 It is necessary to have the above impact value. When it deviates from one and / or both of these, the durability of the surface-hardened component in the actual environment is extremely deteriorated. Therefore, the core hardness of the surface-hardened component is Hv300 or more, and the impact value is 20 J / cm. 2 That is all.
[0073]
(F) Tempering
When tempering at a low temperature, the toughness can be improved without significantly reducing the surface hardness. Therefore, the surface-hardened component of the present invention may be tempered as necessary after the surface hardening treatment. When tempering, the temperature is preferably 150 to 200 ° C. in order to ensure surface hardness.
[0074]
【Example】
Example 1
Steels having chemical compositions shown in Tables 1 and 2 were melted by a conventional method using a test furnace. In addition, except steel O, in order to prevent the formation of Ti oxide, Ti was added at the end of adding various elements after sufficiently deoxidizing with Si and Al to adjust the size and cleanliness of Ti carbon sulfide. I tried to do it. For steel O, Ti was simultaneously added when deoxidizing with Si and Al.
[0075]
In Tables 1 and 2, steels A to H are steels according to examples of the present invention whose chemical composition is within the range specified by the present invention, and steels I to S are from the range of contents specified by any of the components according to the present invention. It is steel of the comparative example which has come off. In the comparative steel, steel Q, steel R and steel S correspond to JIS SMn420 steel, SCr420 steel and SCM420 steel, respectively.
[0076]
[Table 1]
Figure 0003769918
[0077]
[Table 2]
Figure 0003769918
[0078]
Next, these steels were heated to 1140 ° C. and then made into steel slabs by an ordinary method, further heated to 1100 ° C., and hot forged into round bars with a diameter of 30 mm at a temperature of 1100 to 1000 ° C. In addition, after processing into a steel slab, the surface of a part of the products was treated. The presence or absence of this surface care is shown together in Tables 1 and 2.
[0079]
A test piece was collected from the round bar after hot forging obtained in this manner in accordance with FIG. 1 of JIS G 0555, and a mirror-polished test surface having a width of 15 mm and a height of 20 mm was obtained with an optical magnification of 400 times. The cleanliness was measured while observing 60 visual fields with a microscope and separating Ti carbon sulfide from other inclusions. The maximum diameter of the Ti carbon sulfide was also examined by observing 60 visual fields with an optical microscope having a magnification of 400 times.
[0080]
In addition, an 8 mm diameter × 12 mm length coarse graining measurement test piece was cut out from the round bar after hot forging, and the following four conditions of the heat treatment test were performed using this test piece to generate coarse graining. The rate was examined by observing 10 visual fields with an optical microscope having a magnification of 100 times.
[0081]
(Condition 1) After heating the test piece at a temperature of 1100 ° C., 1175 ° C. and 1250 ° C. for 15 minutes in a vacuum, a deformation amount of 30% is given by compression processing to 1.0 ° C./room temperature (room temperature). Cooled at a cooling rate of s. Thereafter, carburizing treatment at 1050 ° C. × 4 hr (carbon potential: 0.8%) was performed, followed by oil quenching.
[0082]
(Condition 2) In a vacuum, the test piece was heated at 1100 ° C. for 15 minutes, subsequently subjected to compression processing to give a deformation amount of 30%, and once cooled to room temperature at a cooling rate of 2.0 ° C./s. Then, after heating for 15 minutes at the temperature of 1100 degreeC, 1175 degreeC, and 1250 degreeC after this, it cooled with the cooling rate of 1.0 degreeC / s to normal temperature. Subsequently, carburizing treatment at 1050 ° C. × 4 hr (carbon potential: 0.8%) was performed, followed by oil quenching.
[0083]
(Condition 3) A 30% deformation amount was given to the test piece by compression at room temperature in the air. Subsequently, after heating for 15 minutes at the temperature of 1100 degreeC, 1175 degreeC, and 1250 degreeC in the vacuum, it cooled at normal temperature at the cooling rate of 1.0 degreeC / s. Thereafter, carburizing treatment at 1050 ° C. × 4 hr (carbon potential: 0.8%) was performed, followed by oil quenching.
[0084]
(Condition 4) In a vacuum, the test piece was heated at temperatures of 1100 ° C., 1175 ° C., and 1250 ° C. for 15 minutes, respectively, and then cooled to room temperature at a cooling rate of 1.0 ° C./s. Subsequently, it heated at 1100 degreeC in vacuum for 15 minutes, Furthermore, 30% of deformation amount was given by the compression process, and it cooled by the cooling rate of 2.0 degrees C / s to normal temperature. Thereafter, carburizing treatment at 1050 ° C. × 4 hr (carbon potential: 0.8%) was performed, followed by oil quenching.
[0085]
Table 3 shows the investigation results of the cleanliness and maximum diameter of Ti carbon sulfide in the round bar after hot forging, and the investigation results of the occurrence rate of coarsening when the thermomechanical test of conditions 1 to 4 is performed. . In addition, the incidence of coarsening was displayed as an area ratio when 10-field mirroring was performed at a magnification of 100 times.
[0086]
[Table 3]
Figure 0003769918
[0087]
From Table 3, the chemical composition and the cleanliness of Ti carbon sulfide having a maximum diameter of 10 μm or less are within the range defined by the present invention, and the steels A to H of the present invention example and the comparative steel Of these, it is clear that only those made of steel L and steel O do not grow abnormally when heat-treated under the conditions specified in the present invention.
[0088]
(Example 2)
The steel pieces of steel A to S produced in Example 1 were heated to 1190 ° C. and then hot forged into a 30 mm diameter round bar at a temperature of 1190 to 1000 ° C.
[0089]
In the same manner as in Example 1 from the round bar after hot forging obtained in this way, a test piece was sampled according to FIG. 1 of JIS G 0555 and mirror-polished and the width was 15 mm and the height was 20 mm. The surface was observed in 60 fields of view with an optical microscope having a magnification of 400 times, and the cleanness of the Ti carbon sulfide was measured while distinguishing it from other inclusions. The maximum diameter of the Ti carbon sulfide was also examined by observing 60 visual fields with an optical microscope having a magnification of 400 times.
[0090]
In addition, a JIS No. 3 Charpy impact test piece was cut out from the center of the round bar after hot forging and carburized at 1050 ° C. × 4 hr (carbon potential: 0.8%) as a surface hardening treatment. Quenching and further tempering at 160 ° C. Next, an impact test was performed at room temperature, and the hardness of the center part of the test piece, that is, the core part was measured.
[0091]
A drill drilling test was also conducted for machinability evaluation. That is, using a round bar having a diameter of 30 mm after hot forging as described above and having a length of 25 mm, a through hole is formed in the length direction of the R / 2 part (R is the radius of the round bar). The machinability was evaluated by counting the number of through holes when drilling was impossible due to abrasion of the blade edge. Drilling conditions were performed using a JIS high-speed tool steel SKH51 φ5 mm straight shank drill and using a water-soluble lubricant at a feed of 0.15 mm / rev and a rotation speed of 980 rpm.
[0092]
Table 4 shows the results of various tests.
[0093]
[Table 4]
Figure 0003769918
[0094]
From Table 4, the core hardness of Hv300 or more is that the steel A to H of the present invention example having the chemical composition and the cleanliness of Ti carbon sulfide having a maximum diameter of 10 μm or less is within the range defined by the present invention. And 20 J / cm 2 It has the above impact value. Furthermore, it is clear that the machinability is also good. Therefore, surface-hardened parts made of these steel materials can exhibit sufficient durability even in harsh environments where automobiles and industrial machines are used.
[0095]
On the other hand, when the heat treatment was performed under the conditions defined in the present invention in Example 1 and the steel L and steel O of the comparative example that did not grow abnormal grains, the core hardness and impact value were either The durability of the surface-hardened component in the actual environment is extremely deteriorated.
[0096]
Moreover, the steel O in which the amount of Ti carbon sulfide having a maximum diameter of 10 μm or less among the steels of the comparative examples is less than 0.05% in cleanliness, and the steel K in which the Ti content is less than the value specified in the present invention, Steel N and steels P to S have inferior machinability because the number of drill through holes does not reach 100.
[0097]
Example 3
The steel slabs of Steels A to H, Steel L and Steel N produced in Example 1 were heat-treated in vacuum at 1180 ° C. and once cooled to room temperature at a cooling rate of 0.25 ° C./s. Then, after heating to 1100 degreeC, it hot-forged to the 30-mm diameter round bar at the temperature of 1100-1000 degreeC.
[0098]
In the same manner as in Example 1 from the round bar after hot forging obtained in this way, a test piece was sampled according to FIG. 1 of JIS G 0555 and mirror-polished and the width was 15 mm and the height was 20 mm. The surface was observed in 60 fields of view with an optical microscope having a magnification of 400 times, and the cleanness of the Ti carbon sulfide was measured while distinguishing it from other inclusions. The maximum diameter of the Ti carbon sulfide was also examined by observing 60 visual fields with an optical microscope having a magnification of 400 times.
[0099]
In addition, a JIS No. 3 Charpy impact test piece was cut out from the center of the round bar after hot forging and carburized at 1050 ° C. × 4 hr (carbon potential: 0.8%) as a surface hardening treatment. Quenching and further tempering at 170 ° C. Subsequently, the center hardness of the test piece, that is, the core hardness was measured together with an impact test at normal temperature.
[0100]
A drill drill test for machinability evaluation was also conducted. The test piece, test method, and evaluation method are as described in Example 2.
[0101]
Table 5 shows the results of various tests.
[0102]
[Table 5]
Figure 0003769918
[0103]
From Table 5, the core hardness of Hv300 or higher is obtained from steels A to H of the present invention examples in which the chemical composition and the cleanness of Ti carbon sulfide having a maximum diameter of 10 μm or less are within the range specified by the present invention. And 20 J / cm 2 It has the above impact value. Furthermore, it is clear that the machinability is also good. Therefore, surface-hardened parts made of these steel materials can exhibit sufficient durability even in harsh environments where automobiles and industrial machines are used.
[0104]
On the other hand, when the heat treatment is performed under the conditions defined in the present invention in Example 1, the steel L and steel N, which are comparative steels that did not coarsen, are either core hardness or impact value. Therefore, the durability of the surface-hardened component in the actual environment is extremely deteriorated.
[0105]
【The invention's effect】
Since the surface-hardened component according to the present invention is excellent in strength and toughness and does not cause coarsening, it can be used as a surface-hardened component represented by various machine structural parts such as automobiles and industrial machines, particularly gears. Since the coarse-grained case-hardened steel material of the present invention is excellent in machinability, the above-mentioned surface-hardened component is made of the coarse-grained case-hardened steel material of the present invention as a raw material, and by applying the method of the present invention thereto, It can be manufactured relatively easily.

Claims (4)

重量%で、C:0.1〜0.3%、Si:0.01〜0.5%、Mn:0.6〜2.0%、P:0.03%以下、S:0.002〜0.2%、Nb:0.005〜0.10%、Ti:0.04〜1.0%、N:0.002〜0.008%、Cr:0〜2.0%、Mo:0〜1.0%、W:0〜1.0%、Al:0〜0.10%、残部はFe及び不可避不純物からなる化学組成で、鋼中のTi炭硫化物の最大直径が10μm以下で、且つ、その量が清浄度で0.05%以上であることを特徴とする被削性に優れた耐粗粒化肌焼鋼材。% By weight, C: 0.1 to 0.3%, Si: 0.01 to 0.5%, Mn: 0.6 to 2.0%, P: 0.03% or less, S: 0.002 -0.2%, Nb: 0.005-0.10%, Ti: 0.04-1.0%, N: 0.002-0.008%, Cr: 0-2.0%, Mo: 0 to 1.0%, W: 0 to 1.0%, Al: 0 to 0.10%, the balance is a chemical composition consisting of Fe and inevitable impurities, and the maximum diameter of Ti carbon sulfide in steel is 10 μm or less And the coarse grain-resistant case hardening steel material excellent in machinability characterized by the amount being 0.05% or more in terms of cleanliness. 素材が、請求項1に記載の鋼材であって、表面硬化処理後にHv300以上の芯部硬度と20J/cm2 以上の衝撃値を有することを特徴とする強度と靭性に優れた表面硬化部品。Material, a steel material according to claim 1, excellent surface curing component strength and toughness characterized by having a Hv300 or more core hardness and 20 J / cm 2 or more impact value after the surface hardening treatment. 請求項1に記載の鋼材を、表面硬化処理に先立って1150℃以上に加熱してから熱間鍛造することを特徴とする強度と靭性に優れた表面硬化部品の製造方法。A method for producing a surface-hardened component excellent in strength and toughness, characterized in that the steel material according to claim 1 is heated to 1150 ° C or higher prior to surface hardening treatment and then hot forged. 請求項1に記載の鋼材を、分塊、圧延及び熱処理の少なくとも1つの工程を1150℃以上に加熱して行い、その後鍛造し、更に表面硬化処理することを特徴とする強度と靭性に優れた表面硬化部品の製造方法。The steel material according to claim 1 is excellent in strength and toughness characterized by performing at least one step of lump, rolling and heat treatment by heating to 1150 ° C or higher, then forging and further surface hardening treatment. Manufacturing method for surface hardened parts.
JP00362198A 1998-01-12 1998-01-12 Coarse grain-resistant case-hardened steel, surface-hardened parts excellent in strength and toughness, and manufacturing method thereof Expired - Fee Related JP3769918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00362198A JP3769918B2 (en) 1998-01-12 1998-01-12 Coarse grain-resistant case-hardened steel, surface-hardened parts excellent in strength and toughness, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00362198A JP3769918B2 (en) 1998-01-12 1998-01-12 Coarse grain-resistant case-hardened steel, surface-hardened parts excellent in strength and toughness, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11199969A JPH11199969A (en) 1999-07-27
JP3769918B2 true JP3769918B2 (en) 2006-04-26

Family

ID=11562576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00362198A Expired - Fee Related JP3769918B2 (en) 1998-01-12 1998-01-12 Coarse grain-resistant case-hardened steel, surface-hardened parts excellent in strength and toughness, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3769918B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5447776B2 (en) * 2009-01-28 2014-03-19 Jfeスチール株式会社 Die quench steel plate with excellent hot punchability
JP6029949B2 (en) * 2012-11-22 2016-11-24 Jfe条鋼株式会社 Normalizing process after hot forging can be omitted, and a method for manufacturing case-hardened steel and parts excellent in high-temperature carburizing properties

Also Published As

Publication number Publication date
JPH11199969A (en) 1999-07-27

Similar Documents

Publication Publication Date Title
JP5350181B2 (en) Case-hardened steel with excellent grain coarsening prevention properties
WO1998023784A1 (en) Steel having excellent machinability and machined component
JP2001294972A (en) Steel for bearing
JP4964063B2 (en) Case-hardened steel with excellent cold forgeability and grain coarsening prevention properties and machine parts obtained therefrom
JP4502929B2 (en) Case hardening steel with excellent rolling fatigue characteristics and grain coarsening prevention characteristics
JP3489434B2 (en) High-strength free-cut non-heat treated steel
JP3416869B2 (en) Low ductility non-heat treated steel with excellent machinability
JP2000096185A (en) Steel for bearing
JP4413769B2 (en) Rolling bearing steel
JP2018197371A (en) Bearing steel and bearing component
JP3395642B2 (en) Coarse-grained case hardened steel material, surface-hardened part excellent in strength and toughness, and method for producing the same
JP3769918B2 (en) Coarse grain-resistant case-hardened steel, surface-hardened parts excellent in strength and toughness, and manufacturing method thereof
JP3489656B2 (en) High-strength, high-toughness tempered steel with excellent machinability
JP3644275B2 (en) Martensitic bainite-type non-tempered steel material excellent in machinability and manufacturing method thereof
JP3890724B2 (en) Ferritic / pearlite non-heat treated steel with excellent machinability
JP3879251B2 (en) Manufacturing method of surface hardened parts with excellent strength and toughness
JP3494271B2 (en) Free-cutting non-heat treated steel with excellent strength and toughness
JP3849296B2 (en) Method of manufacturing steel for nitrocarburizing and nitrocarburized component using the steel
JP3855418B2 (en) Method of manufacturing nitrocarburizing steel material and nitrocarburized component using the steel material
JP3236883B2 (en) Case hardening steel and method for manufacturing steel pipe using the same
JP3534146B2 (en) Non-heat treated steel excellent in fatigue resistance and method for producing the same
JP3489376B2 (en) High-strength, high-toughness free-cut non-heat treated steel
JP3472675B2 (en) High-strength free-cut non-heat treated steel
JP3426495B2 (en) Long-life bearing steel excellent in delayed fracture resistance and method of manufacturing the same
JP3075139B2 (en) Coarse-grained case hardened steel, surface-hardened parts excellent in strength and toughness, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees