JP4008391B2 - High strength steel with excellent hydrogen embrittlement resistance and method for producing the same - Google Patents

High strength steel with excellent hydrogen embrittlement resistance and method for producing the same Download PDF

Info

Publication number
JP4008391B2
JP4008391B2 JP2003273162A JP2003273162A JP4008391B2 JP 4008391 B2 JP4008391 B2 JP 4008391B2 JP 2003273162 A JP2003273162 A JP 2003273162A JP 2003273162 A JP2003273162 A JP 2003273162A JP 4008391 B2 JP4008391 B2 JP 4008391B2
Authority
JP
Japan
Prior art keywords
hydrogen
temperature
less
amount
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003273162A
Other languages
Japanese (ja)
Other versions
JP2005029870A (en
Inventor
武広 土田
浩 家口
護 長尾
隆之 坪田
武典 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003273162A priority Critical patent/JP4008391B2/en
Publication of JP2005029870A publication Critical patent/JP2005029870A/en
Application granted granted Critical
Publication of JP4008391B2 publication Critical patent/JP4008391B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、疲労寿命や遅れ破壊の原因の一つである水素脆化に対して優れた耐水素脆化特性を備えた高強度鋼およびその製造方法に関する。   The present invention relates to a high-strength steel having excellent hydrogen embrittlement resistance against hydrogen embrittlement, which is one of the causes of fatigue life and delayed fracture, and a method for producing the same.

自動車、航空機、各種産業機械等に使用される高強度ばねや高強度ボルト等に要求される特性として疲労強度や耐遅れ破壊特性がある。これらの特性は、特に水素が材料中に侵入するような環境で使用されると著しく劣化する。このような特性の劣化は水素脆化と呼ばれる。水素脆化は、鋼中に侵入した水素がマクロ的には部材の応力集中部に、ミクロ的には結晶粒界などの破壊の起点となりやすい金属組織の場所に集まって材質を脆化させる現象である。このため、それらの素材として用いられる高強度鋼の材料特性として耐水素脆化特性に優れることが重要である。   Fatigue strength and delayed fracture resistance are properties required for high-strength springs and high-strength bolts used in automobiles, aircraft, various industrial machines, and the like. These properties are significantly degraded, especially when used in an environment where hydrogen penetrates into the material. Such deterioration of characteristics is called hydrogen embrittlement. Hydrogen embrittlement is a phenomenon in which hydrogen that has penetrated into steel gathers at a stress-concentrated part of the member macroscopically and at a location of a metal structure that tends to be the starting point of fracture such as a grain boundary microscopically. It is. For this reason, it is important to be excellent in hydrogen embrittlement resistance as a material characteristic of high-strength steels used as those materials.

耐水素脆性を改善するために、鋼中に侵入した水素を補足(トラップ)し、鋼中における水素の拡散を阻止するという考え方は従来からあり、例えば下記の技術が知られている。   In order to improve hydrogen embrittlement resistance, there has been a conventional idea of capturing (trapping) hydrogen that has penetrated into steel and preventing diffusion of hydrogen in the steel. For example, the following techniques are known.

特許文献1(特開2001−288539号公報)には、高強度ばね用鋼として、所定の水素脱離のための活性化エネルギーを備え、かつ所定量の水素トラップ容量を有する、V,Mo,Ti,Nb,Zrの1種または2種以上を含有する酸化物、炭化物、窒化物、あるいは複合析出物からなる水素トラップサイトを有する鋼、あるいは昇温水素分析において150℃〜600℃の温度域で放出ピークが得られ、かつ所定の放出水素量を有する鋼が記載されている。   In Patent Document 1 (Japanese Patent Laid-Open No. 2001-288539), as high-strength spring steel, V, Mo, which has activation energy for a predetermined hydrogen desorption and has a predetermined amount of hydrogen trap capacity. Steel having hydrogen trap sites made of oxides, carbides, nitrides, or composite precipitates containing one or more of Ti, Nb, and Zr, or a temperature range of 150 ° C. to 600 ° C. in temperature rising hydrogen analysis Describes a steel that has a release peak and has a predetermined amount of released hydrogen.

また、特許文献2(特開平10−17985号公報)には、50nm以下のMo系化合物、Ti系化合物、V系化合物、ならびにそれらの複合化合物のいずれかが鋼中に20個/(500nm)2以上存在することを特徴とする耐水素脆化特性に優れた高強度鋼が提案されている。 Patent Document 2 (Japanese Patent Laid-Open No. 10-17985) discloses that any one of Mo-based compounds, Ti-based compounds, V-based compounds, and composite compounds of 50 nm or less in the steel is 20 / (500 nm). A high-strength steel excellent in hydrogen embrittlement resistance, characterized by having two or more, has been proposed.

なお、関連技術として、特許文献3(特開平5−214484号公報)には、C:0.3〜0.5%、Si:1.0〜3.0%、Mn:0.5〜1.5%、P:0.025以下、S:0.03%以下、Ni:0.1〜2.0%、Cr:0.5〜1.0%、Mo:0.1〜0.5%、V:0.1〜0.5%、選択元素としてAl:0.01〜0.03%、残部Feおよび不純物よりなり、粗大酸化物系介在物の個数を規制した高強度ばね用鋼が開示されている。なお、この技術は疲労破壊の起点となる大形酸化物の量を規制することによって疲労強度の向上を図ったものであり(段落番号0030)、耐水素脆化特性の改善技術ではない。   As related technologies, Patent Document 3 (Japanese Patent Laid-Open No. 5-214484) includes C: 0.3 to 0.5%, Si: 1.0 to 3.0%, and Mn: 0.5 to 1. 0.5%, P: 0.025 or less, S: 0.03% or less, Ni: 0.1-2.0%, Cr: 0.5-1.0%, Mo: 0.1-0.5 %, V: 0.1 to 0.5%, Al as selective element: 0.01 to 0.03%, balance Fe and impurities, and high strength spring steel in which the number of coarse oxide inclusions is regulated Is disclosed. This technique is intended to improve the fatigue strength by regulating the amount of large oxide that becomes the starting point of fatigue fracture (paragraph 0030), and is not a technique for improving hydrogen embrittlement resistance.

特開2001−288539号公報(特許請求の範囲)JP 2001-288539 A (Claims) 特開平10−17985号公報(特許請求の範囲)Japanese Patent Laid-Open No. 10-17985 (Claims) 特開平5−214484号公報(特許請求の範囲)JP-A-5-214484 (Claims)

上記特許文献により、鋼中に水素のトラップサイトして働く酸化物、炭化物、窒化物等を析出させておくことにより、鋼中に侵入した水素(遊離水素)を固定することができ、これによって耐水素脆化特性をある程度改善することができた。   According to the above patent document, by precipitating oxides, carbides, nitrides, etc., acting as hydrogen trap sites in the steel, hydrogen (free hydrogen) that has penetrated into the steel can be fixed. The hydrogen embrittlement resistance could be improved to some extent.

しかし、近年、部材の軽量化、小型化が益々求められ、鋼材の強度の向上がより求められるようになっており、これに伴って部材の疲労寿命や耐遅れ破壊特性の向上がより一層求められるようになってきている。このため、耐水素脆化特性についても従来より優れた特性が強く要望されている。   However, in recent years, there has been an increasing demand for weight reduction and downsizing of members, and there has been a further demand for improved strength of steel materials. Along with this, further improvements in the fatigue life and delayed fracture resistance of members are further required. It is getting to be. For this reason, as for the hydrogen embrittlement resistance, there is a strong demand for characteristics superior to those of the prior art.

本発明はかかる要求に鑑みなされたもんで、従来より優れた耐水素脆化特性を有する高強度鋼およびその製造方法を提供することを目的とする。   The present invention has been made in view of such demands, and an object of the present invention is to provide a high-strength steel having hydrogen embrittlement resistance superior to that of the prior art and a method for producing the same.

本発明者は、耐水素脆化特性の向上を図るべく、水素のトラップサイトとして働く析出物の種類、粒径について鋭意研究したところ、析出物には必ずしも水素トラップサイトして有効でないものがあり、またその粒径は必ずしも微粒子であればよいという訳ではなく、組成(種類)や粒径によって水素の捕捉が弱いトラップサイトと強いトラップサイトとがあることを見出した。そして、これらの組成、粒径の異なるトラップサイトの組み合わせを最適化することによって相乗効果を期待することができ、耐水素脆化特性の向上に極めて有効であることを知見した。また、トラップサイトとして機能する析出物の水素捕捉能力の強弱は、水素をチャージした鋼を昇温分析することによって得られる水素放出挙動において低温域および高温域にて放出される水素量がそれぞれピークを持つことが確認された。本発明はかかる知見を基になされたものである。   In order to improve the hydrogen embrittlement resistance, the present inventors diligently studied the kind and particle size of precipitates acting as hydrogen trap sites, and some precipitates are not necessarily effective as hydrogen trap sites. Moreover, the particle size is not necessarily fine, and it has been found that there are trap sites with weak trapping and strong trap sites depending on the composition (type) and particle size. It was also found that a synergistic effect can be expected by optimizing the combination of trap sites having different compositions and particle sizes, and is extremely effective for improving the hydrogen embrittlement resistance. In addition, the hydrogen trapping ability of the precipitate functioning as a trap site is based on the peak of the amount of hydrogen released at low and high temperatures in the hydrogen release behavior obtained by temperature analysis of steel charged with hydrogen. Confirmed to have. The present invention has been made based on such knowledge.

すなわち、本発明の耐水素脆化特性に優れた高強度鋼は、mass%で、C:0.3〜0.7%、Si:0.1〜3.0%、Mn:0.01〜1.8%、P:0.01%以下、S:0.01%以下、Cr:0.2〜1.8%、Ti:0.004〜0.20%、N:0.0010〜0.0080%を含有するとともに、V:0.03〜1.0%、Mo:0.01〜1.0%のうちの1種または2種を含有し、残部がFeおよび不純物からなり、析出物として炭化物、窒化物、炭窒化物を含み、引張強さが1300MPa以上の高強度鋼であって、10mm×10mm×厚さ2mmの試験片を陰極として、室温の0.1MのNaOHと0.05Mのチオ尿素との混合水溶液中で、0.1mA/cm2 の電流密度で24時間通電する陰極チャージを実施した直後に、試験片を昇温速度12℃/分で加熱しながら放出される水素量を逐次測定して得られた水素量について、室温〜350℃までに放出される低温域放出水素量H1が1.0〜10mass ppmであり、350℃〜800℃までに放出される高温域放出水素量H2が0.3〜5mass ppmであって、前記陰極チャージを実施後さらに80℃の大気中で24時間放置した後に測定された低温域放出水素量H3と前記H1との比H3/H1が0.05以上であり、かつ前記陰極チャージを実施後さらに80℃の大気中で24時間放置した後に測定された高温域放出水素量H4と前記H2との比H4/H2が0.8以上とされたものである。
That is, the high-strength steel excellent in hydrogen embrittlement resistance of the present invention is mass%, C: 0.3 to 0.7%, Si: 0.1 to 3.0%, Mn: 0.01 to 1.8%, P: 0.01% or less, S: 0.01% or less, Cr: 0.2 to 1.8%, Ti: 0.004 to 0.20%, N: 0.0010 to 0 .0080%, V: 0.03 to 1.0%, Mo: 0.01 to 1.0% of one or two of them, the balance being Fe and impurities, A high strength steel including carbide, nitride, carbonitride as a product and having a tensile strength of 1300 MPa or more, and using a test piece of 10 mm × 10 mm × 2 mm in thickness as a cathode, 0.1 M NaOH at room temperature and 0 in a mixed aqueous solution of thiourea .05M, conducted cathode charge to be energized for 24 hours at a current density of 0.1 mA / cm 2 Immediately after that, with respect to the amount of hydrogen obtained by sequentially measuring the amount of hydrogen released while heating the test piece at a heating rate of 12 ° C./min, the low-temperature region released hydrogen amount H1 released from room temperature to 350 ° C. is 1.0 to 10 mass ppm, and the amount of hydrogen H2 released in the high temperature range from 350 ° C. to 800 ° C. is 0.3 to 5 mass ppm. Measured after the ratio H3 / H1 of the low-temperature region released hydrogen amount H3 and the H1 measured after standing for a period of time is 0.05 or more, and after standing in the atmosphere at 80 ° C. for 24 hours after the cathodic charging. The ratio H4 / H2 between the H2 released hydrogen amount H4 and the H2 is 0.8 or more.

また、本発明の他の高強度鋼は、mass%で、C:0.3〜0.7%、Si:0.1〜3.0%、Mn:0.01〜1.8%、P:0.01%以下、S:0.01%以下、Cr:0.2〜1.8%、Ti:0.004〜0.20%、N:0.0010〜0.0080%を含有するとともに、V:0.03〜1.0%、Mo:0.01〜1.0%のうちの1種または2種を含有し、残部がFeおよび不純物からなり、析出物として炭化物、窒化物、炭窒化物を含み、引張強さが1300MPa以上の高強度鋼であって、前記析出物からFe系炭化物、Fe−Cr系炭化物を除く炭化物、窒化物、炭窒化物のうち、粒径10nm以下のものを20個/(500nm)2 以上含有し、粒径30nm以上のものを10個/(500nm)2 以上含有し、かつ粒径30nm以上の前記析出物中のTiの平均含有量が30mass%以上であり、粒経10nm以下の前記析出物中のTiの平均含有量が30mass%未満とされたものである。
Moreover, the other high strength steel of this invention is mass%, C: 0.3-0.7%, Si: 0.1-3.0%, Mn: 0.01-1.8%, P : 0.01% or less, S: 0.01% or less, Cr: 0.2 to 1.8%, Ti: 0.004 to 0.20%, N: 0.0010 to 0.0080% In addition, V: 0.03 to 1.0%, Mo: contain one or two of 0.01 to 1.0%, the balance consists of Fe and impurities, and carbides and nitrides as precipitates , A high-strength steel containing carbonitride and having a tensile strength of 1300 MPa or more, and a particle size of 10 nm among carbides, nitrides, and carbonitrides excluding Fe-based carbides and Fe-Cr-based carbides from the precipitates. the following: containing 20 / (500 nm) 2 or more, more than a particle size 30nm containing 10 / (500 nm) 2 or more, or Average content of Ti in the precipitates or grain size 30nm is not less than 30 mass%, in which the average content of Ti in the precipitates following Tsubukei 10nm is less than 30 mass%.

前記本発明鋼の合金成分としては、前記基本成分のほか、さらに、(1) Zr:0.03〜1.0%、Nb:0.03〜1.0%、Al:0.001〜0.1%のうち1種または2種以上、(2) Cu:0.02〜0.5%、Ni:0.02〜2.0%のうち1種または2種の各群の元素を単独で、あるいは複合して添加することができる。
As the alloy components of the steel of the present invention , in addition to the basic components, (1) Zr: 0.03 to 1.0%, Nb: 0.03 to 1.0%, Al: 0.001 to 0 .1% or more of 1%, (2) Cu: 0.02 to 0.5%, Ni: 0.02 to 2.0% of one or two elements of each group alone Or in combination.

また、本発明の高強度鋼の製造方法は、前記成分を有する鋼を溶製し、溶製した鋼を鋳造し、得られた鋳造片を熱間圧延し、その後熱延材に焼き入れ、焼き戻しを施す高強度鋼の製造方法であって、前記鋳造に際し、凝固時における1500℃〜1400℃の温度域を20℃/分以上で、かつ1400℃〜1200℃の温度域を5℃/分以上、30℃/分以下の平均冷却速度で冷却し、前記熱間圧延に際し、得られた鋳造片を1000℃〜1250℃に加熱し、圧延終了温度を900℃以上として熱間圧延し、圧延終了温度から700℃までの温度域を100℃/分以上の平均冷却速度で冷却し、さらに700℃〜400℃までの温度域を50℃/分以下の平均冷却速度に制限して冷却し、前記焼き入れ焼き戻しに際し、室温から600℃/分以上の加熱速度で840℃〜1100℃の温度に加熱し、840℃以上の温度に加熱される時間が2秒〜120秒になるように速やかに焼入れし、さらに600℃/分以上の加熱速度で400℃〜600℃の温度に加熱し、400℃以上に加熱される時間が2秒〜120秒になるように速やかに冷却するものである。   Further, in the method for producing high-strength steel of the present invention, the steel having the above components is melted, the melted steel is cast, the obtained cast piece is hot-rolled, and then quenched into a hot-rolled material, A method for producing a high-strength steel to be tempered, in the casting, a temperature range of 1500 ° C. to 1400 ° C. during solidification is 20 ° C./min or more, and a temperature range of 1400 ° C. to 1200 ° C. is 5 ° C. / Min., Cooled at an average cooling rate of 30 ° C./min or less, and during the hot rolling, the obtained cast piece was heated to 1000 ° C. to 1250 ° C., and hot-rolled at a rolling end temperature of 900 ° C. or higher, The temperature range from the rolling end temperature to 700 ° C is cooled at an average cooling rate of 100 ° C / min or higher, and the temperature range from 700 ° C to 400 ° C is limited to an average cooling rate of 50 ° C / min or lower to be cooled. In the case of the quenching and tempering, from room temperature to 600 ° C / Heat to a temperature of 840 ° C. to 1100 ° C. at the above heating rate, rapidly quench so that the time to be heated to a temperature of 840 ° C. or higher is 2 to 120 seconds, and further a heating rate of 600 ° C./min or higher. Is heated to a temperature of 400 ° C. to 600 ° C. and rapidly cooled so that the time of heating to 400 ° C. or higher is 2 seconds to 120 seconds.

また、本発明の高強度鋼の他の製造方法は、前記成分を有する鋼を溶製し、溶製した鋼を鋳造し、得られた鋳造片を熱間圧延し、その後熱延材に焼き入れ、焼き戻しを施す高強度鋼の製造方法であって、前記鋳造に際し、凝固時における1500℃〜1400℃の温度域を20℃/分以上で、かつ1400℃〜1200℃の温度域を5℃/分以上、30℃/分以下の平均冷却速度で冷却し、前記焼き入れ焼き戻しに際し、焼き入れ温度Tqを840℃<Tq<1300℃、かつTq>9500/{6.72−log([%V][%C])}−400℃としてTqから焼き入れし、その後に500℃以上の温度に5分以上加熱して焼き戻すものである。   Another method for producing the high-strength steel of the present invention is to melt a steel having the above components, cast the melted steel, hot-roll the obtained cast piece, and then bak it on a hot-rolled material. A method for producing high-strength steel that is tempered and tempered. In the casting, a temperature range of 1500 ° C. to 1400 ° C. during solidification is 20 ° C./min or more, and a temperature range of 1400 ° C. to 1200 ° C. is 5 In the quenching and tempering, the quenching temperature Tq is 840 ° C <Tq <1300 ° C and Tq> 9500 / {6.72-log ( [% V] [% C])}-400 ° C., quenched from Tq, and then tempered by heating to a temperature of 500 ° C. or higher for 5 minutes or longer.

本発明の高強度鋼によれば、所定の成分の下、水素捕捉作用の弱いトラップサイトと強いトラップサイトとを効果的に組み合わせて、水素チャージ直後および80℃24hr放置後の昇温分析にて得られる低温域放出水素量、高温域放出水素量およびこれらの所定比を規定し、またこれらのトラップサイトとなる析出物の大きさと個数、およびそれらの析出物に含まれるTi平均含有量を規定したので、高強度でありながら、優れた耐水素脆化特性を有する。また、本発明の製造方法によれば、前記高強度鋼を工業的に容易に製造することができる。
According to the high-strength steel of the present invention, in a temperature rising analysis immediately after hydrogen charging and after leaving at 80 ° C. for 24 hours, an effective combination of a trap site with a weak hydrogen trapping action and a strong trap site under a predetermined component . Defines the amount of low-temperature region released hydrogen, the amount of high-temperature region released hydrogen, and a predetermined ratio thereof, and defines the size and number of precipitates that become trap sites, and the average Ti content contained in these precipitates. Therefore, it has excellent hydrogen embrittlement resistance while having high strength. Moreover, according to the manufacturing method of this invention, the said high strength steel can be manufactured industrially easily .

従来技術(例えば、特許文献1)では、水素昇温脱離分析を行った際、150℃〜350℃の温度域で放出水素量がピークを持つことのみに着目して耐水素脆化特性の改善を企図していたが、本発明では、水素を捕捉する析出物によっては、室温から350℃までの低温域のみならず350℃から800℃までの高温域において放出水素量がピークを持つことにも着目し、この高温域で放出水素量がピークを持つことが水素脆性を抑制するために重要な役割を有することを見出した。すなわち、低温域でピークを持つ放出水素量は、析出物に比較的弱くトラップされた状態から脱離する水素によるものであり、一方高温域でピークを持つ放出水素量は、比較的強くトラップされた状態から脱離する水素によるものである。水素捕捉の弱いトラップサイトと強いトラップサイトとが相互にその長所を生かしながら短所を補い合うように、両トラップサイトを組み合わせることによって優れた耐水素脆性を発揮させることができる。   In the prior art (for example, Patent Document 1), when hydrogen thermal desorption analysis is performed, the hydrogen embrittlement resistance characteristics are focused only on that the amount of released hydrogen has a peak in a temperature range of 150 ° C. to 350 ° C. In the present invention, depending on the precipitate that captures hydrogen, the amount of released hydrogen has a peak not only in the low temperature range from room temperature to 350 ° C but also in the high temperature range from 350 ° C to 800 ° C. Attention was also paid to the fact that the peak of the released hydrogen amount in this high temperature region has an important role in suppressing hydrogen embrittlement. In other words, the amount of released hydrogen having a peak in the low temperature range is due to hydrogen desorbed from a relatively weak trapped state in the precipitate, while the amount of released hydrogen having a peak in the high temperature range is trapped relatively strongly. This is due to hydrogen desorbed from the state. By combining the two trap sites so that the weak trap site and the strong trap site compensate for each other while taking advantage of each other, excellent hydrogen embrittlement resistance can be exhibited.

水素捕捉の弱いトラップサイトと強いトラップサイトの特徴は発明者の研究によると次のようである。比較的弱いトラップサイトは整合析出した微細な析出物であるため数多く鋼中に分布させることが容易であり、侵入してきた水素を素早くトラップし、水素脆化を抑制する。もっとも、そのトラップカが弱いために、水素の濃度勾配や温度上昇などを駆動力として水素の拡散が起こり、部材中の水素量や応力状態によってはこの水素が遅れ破壊を引き起こす場合がある。一方、強いトラップサイトは非整合析出した比較的大きなサイズのTi系析出物であり、鋼中に数多く分布させることが難しいため、侵入してきた水素を速やかにトラップすることは難しいものの、一旦トラップした水素は部材の通常の使用状態では拡散することが困難であるため、より安定的に水素脆化を防止することができる。   According to the inventor's research, the characteristics of the trap site with weak hydrogen capture and the strong trap site are as follows. Relatively weak trap sites are fine precipitates that are coherently precipitated, and therefore can be easily distributed in many steels, quickly trapping invading hydrogen and suppressing hydrogen embrittlement. However, since the trap is weak, hydrogen is diffused by using a hydrogen concentration gradient or temperature rise as a driving force, and this hydrogen may cause delayed fracture depending on the amount of hydrogen in the member and the stress state. On the other hand, strong trap sites are relatively large size Ti-based precipitates that are inconsistently precipitated, and it is difficult to distribute a large number of them in the steel. Since hydrogen is difficult to diffuse in a normal use state of the member, hydrogen embrittlement can be more stably prevented.

本発明では、これらの水素捕捉の弱いトラップサイトと強いトラップサイトとを組み合わせることによって、水素脆化を効果的に抑制したものである。その最適な組み合わせの状態を知るためには、実際に水素を鋼中に侵入させて弱いトラップサイトと強いトラップサイトに捕捉された水素が、時間の経過とともにどのように変化(放出)するかを調べた。弱いトラップサイトで捕捉された水素が水素脆性に悪影響を及ぼさないためには、ゆっくりと拡散して減っていくことが望ましく、一方強いトラップサイトで捕捉された水素は変化しないことが望ましい。したがって低温域で放出水素量のピークを持つ低温域放出水素量と、高温域で放出水素量のピークを持つ高温域放出水素量が時間の経過とともにどの程度変化するかを規定することによって、効果的に水素脆性を抑制することができる。   In the present invention, hydrogen embrittlement is effectively suppressed by combining these trap sites with weak hydrogen capture and strong trap sites. In order to know the state of the optimal combination, how hydrogen actually enters the steel and trapped in the weak trap site and the strong trap site changes (releases) over time. Examined. In order for hydrogen trapped at weak trap sites not to adversely affect hydrogen embrittlement, it is desirable to slowly diffuse and decrease, while hydrogen trapped at strong trap sites should not change. Therefore, it is possible to achieve an effect by defining how much the amount of low-temperature released hydrogen with a peak of released hydrogen in a low-temperature region and how much the amount of high-temperature released hydrogen with a peak of released hydrogen in a high-temperature region changes over time. In particular, hydrogen embrittlement can be suppressed.

具体的には、10mm×10mm×厚さ2mmの試験片を陰極として、室温の0.1MのNaOHと0.05Mのチオ尿素との混合水溶液中で、0.1mA/cm2 の電流密度で24時間通電する陰極チャージを実施した直後に、試験片を加熱しながら放出される水素量を逐次測定し、室温〜350℃までに放出される低温域放出水素量H1、350℃〜800℃までに放出される高温域放出水素量H2を求めた。また、経時変化の状態を知るために、陰極チャージを実施後さらに80℃の大気中で24時間放置した後の低温域放出水素量H3および高温域放出水素量H4を求め、H1、H2およびH3/H1、H4/H2の各値を耐水素脆化特性向上の観点から最適値を決定した。なお、低温域を室温から350℃までの領域とし、高温域を350℃から800℃としてのは、後述の実施例から明らかなように350℃を境として各領域で放出水素量にピークが観察されるからである。 Specifically, using a test piece of 10 mm × 10 mm × 2 mm in thickness as a cathode, in a mixed aqueous solution of 0.1 M NaOH and 0.05 M thiourea at room temperature at a current density of 0.1 mA / cm 2. Immediately after carrying out the cathode charging for 24 hours, the amount of hydrogen released while heating the test piece is sequentially measured, and the amount of released hydrogen H1 released from room temperature to 350 ° C., from 350 ° C. to 800 ° C. The amount of hydrogen H2 released in the high temperature range was calculated. Further, in order to know the state of change with time, the amount of hydrogen released at low temperature H3 and the amount of hydrogen released at high temperature H4 after standing for 24 hours in the atmosphere at 80 ° C. after the cathode charge were obtained, and H1, H2 and H3 The optimum values of / H1 and H4 / H2 were determined from the viewpoint of improving hydrogen embrittlement resistance. The low temperature range is from room temperature to 350 ° C., and the high temperature range is from 350 ° C. to 800 ° C. As is clear from the examples described later, a peak is observed in the amount of released hydrogen at each boundary from 350 ° C. Because it is done.

前記H1は、比較的弱くトラップされた水素量を示し、H1に寄与するトラップサイトは母材に整合析出した例えばMoやVの析出物であるため、析出物を多量に分散させることが容易であり、H1としてある程度の量を確保することは耐水素脆化特性の改善に有効である。一方、多すぎると水素割れの起点となる結晶粒界の水素も増えるようになるため、逆に水素脆化特性が低下する。このため、H1を1.0〜10mass ppmとする。   H1 indicates the amount of hydrogen trapped relatively weakly, and the trap sites contributing to H1 are precipitates of, for example, Mo and V that are coherently precipitated in the base material, so that it is easy to disperse the precipitates in large quantities. Therefore, securing a certain amount of H1 is effective in improving the hydrogen embrittlement resistance. On the other hand, if the amount is too large, the hydrogen at the crystal grain boundary, which is the starting point of hydrogen cracking, increases, so that the hydrogen embrittlement characteristics deteriorate. For this reason, H1 shall be 1.0-10 mass ppm.

前記H2は、比較的強くトラップされた水素量を示し、これが一定量以上であることは、強いトラップサイトが十分に存在することを意味し、水素脆化の防止に寄与する。しかし、多すぎるとやはり結晶粒界の水素も増えるのでよくない。このため、H2を0.3〜5mass ppmとする。   The H2 indicates the amount of hydrogen trapped relatively strongly, and if it is a certain amount or more, it means that there are sufficient strong trap sites and contributes to prevention of hydrogen embrittlement. However, too much is not good because the hydrogen at the grain boundaries also increases. For this reason, H2 shall be 0.3-5 mass ppm.

またH3/H1は、チャージされた水素が低温でも鋼中を拡散して放出されることを示す指標であり、H3が0.05×H1未満まで減ってしまうと、後述の実施例から明らかなように、弱いトラップサイトによる水素捕捉効果が小さ過ぎ、全体として水素脆化が顕在化するようになる。このためH3/H1を0.05以上に規定する。上限は特に規定しないが、通常は0.6以下程度となる場合が多い。   H3 / H1 is an index indicating that charged hydrogen is diffused and released in steel even at a low temperature. When H3 is reduced to less than 0.05 × H1, it is clear from the examples described later. Thus, the hydrogen trapping effect by the weak trap site is too small, and hydrogen embrittlement becomes apparent as a whole. For this reason, H3 / H1 is specified to be 0.05 or more. Although the upper limit is not particularly defined, it is usually about 0.6 or less in many cases.

また、H4/H2は、1に近いほど強いトラップサイトは時間が経過しても変化しないことを示し、実施例から明らかなように0.80未満では、一旦トラップされた水素の放出が過多となり、やはり全体として水素脆化が顕在化するようになる。このためH4/H2を0.80以上に規定する。   Further, H4 / H2 indicates that the closer to 1, the stronger the trap site does not change over time, and as is clear from the examples, if it is less than 0.80, the release of hydrogen once trapped becomes excessive. As a whole, hydrogen embrittlement becomes apparent. For this reason, H4 / H2 is specified to be 0.80 or more.

本発明者の研究によると、酸化物のほか、Fe系炭化物、Fe−Cr系炭化物は水素トラップとしての効果がないか、過小であるため、前記水素放出特性に寄与しないことがわかった。また、水素捕捉の弱いトラップサイトは、例えばVやMoの炭化物が母材と整合析出して生成した、粒径10nm以下の微細な析出物であることがわかった。このため、これらの析出物を多量に分散させることが可能である。一方、強いトラップサイトは、VやMoの炭化物の析出では得られず、Tiを含有する析出物に限定され、しかも母材と整合析出した微細なものでは、弱いトラップサイトとなってしまうため、粒径30nm以上とある程度大形化して非整合析に析出したTi系の析出物であることがわかった。
そして、前記水素の放出特性を実現するには、後述の実施例から明らかなように、Fe系炭化物、Fe−Cr系炭化物を除く炭化物、窒化物、炭窒化物のうち、粒径10nm以下のものを20個/(500nm)2 以上含有し、粒径30nm以上のものを10個/(500nm)2 以上含有することが必要である。さらに、前記粒径10nm以下の析出物はVやMoなどの非Ti系析出物であることが好ましいので、それらの析出物におけるTiの平均含有量を30mass%未満とし、一方前記粒径30nm以上の析出物はTi系析出物であることが必要であるので、それらの析出物におけるTiの平均含有量を30mass%以上とする。なお、前記析出物のサイズ(粒径)および個数の測定方法、Tiの平均含有量の計算方法は実施例において説明する。
According to the inventor's research, it has been found that, in addition to oxides, Fe-based carbides and Fe-Cr-based carbides are not effective as hydrogen traps or are too small to contribute to the hydrogen release characteristics. In addition, it was found that the trap site with weak hydrogen trapping is a fine precipitate having a particle size of 10 nm or less, which is generated by, for example, co-precipitation of V or Mo carbide with the base material. For this reason, it is possible to disperse these precipitates in large quantities. On the other hand, strong trap sites cannot be obtained by precipitation of carbides of V and Mo, but are limited to precipitates containing Ti, and fine ones that are aligned with the base material are weak trap sites. It was found that this was a Ti-based precipitate which was enlarged to some extent with a particle size of 30 nm or more and precipitated in inconsistent precipitation.
And in order to implement | achieve the discharge | release characteristic of the said hydrogen, as evident from the below-mentioned Example, among carbide | carbonized_materials, nitride, and carbonitride except Fe type carbide and Fe-Cr type carbide, the particle size is 10 nm or less. It is necessary to contain 20 / (500 nm) 2 or more, and 10 / (500 nm) 2 or more of particles having a particle size of 30 nm or more. Furthermore, since the precipitate having a particle size of 10 nm or less is preferably a non-Ti precipitate such as V or Mo, the average content of Ti in the precipitate is less than 30 mass%, while the particle size is 30 nm or more. Therefore, the average content of Ti in these precipitates is 30 mass% or more. The method for measuring the size (particle size) and number of the precipitates and the method for calculating the average content of Ti will be described in Examples.

本発明の耐水素脆化特性に優れた高強度鋼の組成は、焼き入れ、焼き戻し後の引張強さが1300MPa以上、好ましくは1500MPa以上になるように適宜成分調整されるが、1300MPa以上の引張強さが得られ、上記水素放出特性およびトラップサイトとして有効な炭化物、窒化物および炭窒化物を生成し易い鋼成分およびその限定理由(単位mass%)について以下詳細に説明する。   The composition of the high-strength steel excellent in hydrogen embrittlement resistance of the present invention is appropriately adjusted so that the tensile strength after quenching and tempering is 1300 MPa or more, preferably 1500 MPa or more. The steel components that can provide tensile strength and can easily generate carbides, nitrides, and carbonitrides that are effective as hydrogen release characteristics and trap sites, and the reasons for their limitation (unit mass%) will be described in detail below.

C:0.3〜0.7%
CはFe、Ti、V、Mo、Zr等とともに炭化物、炭窒化物を形成し、高強度鋼としての強度と耐水素脆化特性を決める重要な働きを有するが、0.3%未満では強度が不十分となり、0.7%を越えると炭化物が粗大化し、靭性も低下するので、C量の下限を0.3%、上限を0.7%とした。
C: 0.3 to 0.7%
C forms carbides and carbonitrides together with Fe, Ti, V, Mo, Zr, etc., and has an important function to determine the strength and hydrogen embrittlement resistance as a high-strength steel, but less than 0.3% When the content exceeds 0.7%, the carbides become coarse and the toughness also decreases. Therefore, the lower limit of the C content is set to 0.3% and the upper limit is set to 0.7%.

Si:0.1〜3.0%
Siは脱酸元素として働くほか、Fe中に固溶して強度を向上させる効果があるが、0.1%未満では効果が現れず、3.0%を越えると加工性が低下する。このためSi量の下限を0.1%、上限を3.0%とした。
Si: 0.1-3.0%
In addition to acting as a deoxidizing element, Si has an effect of improving the strength by solid solution in Fe, but if it is less than 0.1%, no effect appears, and if it exceeds 3.0%, the workability decreases. For this reason, the lower limit of Si amount was set to 0.1%, and the upper limit was set to 3.0%.

Mn:0.01〜1.8%
Mnは鋼を脆化させるSと結合してSを無害化する他、鋼の焼き入れ性を上げて高強度化に寄与するが、0.01%未満ではこれらの効果が現れず、1.8%を越えると逆に靭性が低下するので、Mn量の下限を0.01%、上限を1.8%とした。
Mn: 0.01 to 1.8%
Mn combines with S, which causes embrittlement of the steel to make S harmless, and also increases the hardenability of the steel and contributes to high strength. However, if it is less than 0.01%, these effects do not appear. If it exceeds 8%, the toughness is conversely reduced, so the lower limit of the amount of Mn is set to 0.01% and the upper limit is set to 1.8%.

P:0.01%以下
Pは鋼を脆化させ、高強度鋼ではその影響が大きいため少ない程よい。特に1200MPa以上の高強度鋼においても実用上悪影響が出ない範囲として0.01%以下とした。
P: 0.01% or less P is more preferable as it causes embrittlement of the steel, and high strength steel has a large effect. In particular, even in a high-strength steel of 1200 MPa or more, the range of 0.01% or less was set as a range where no practical adverse effect occurs.

S:0.01%以下
SもPと同様に脆化元素であるため、少ない程よく、0.01%以下に止める。
S: 0.01% or less Since S is also an embrittlement element like P, the smaller the content, the better.

Cr:0.2〜1.8%
Crは鋼の強度を向上するために必須の元素であるが、0.2%未満ではその効果が不十分で、1.8%を越えると靭性が低下するので、Cr量の下限を0.2%、上限を1.8%とした。
Cr: 0.2 to 1.8%
Cr is an essential element for improving the strength of the steel. However, if it is less than 0.2%, its effect is insufficient, and if it exceeds 1.8%, the toughness decreases. The upper limit was 2% and 1.8%.

Ti:0.004〜0.20
TiはCやNと結合して炭窒化物を形成し、水素トラップサイトとなって、そのサイズ等を制御すれば耐水素脆化特性を改善する効果を発揮する。しかし0.004%未満ではその効果が得られず、0.20%以上では粗大過ぎる炭窒化物を形成して靭性を低下させる。このため、Ti量の下限を0.004%、好ましくは0.02%とし、その上限を0.20%、好ましくは0.1%とする。
Ti: 0.004 to 0.20 %
Ti combines with C and N to form carbonitrides to form hydrogen trap sites, and exerts the effect of improving hydrogen embrittlement resistance if the size and the like are controlled. However, if it is less than 0.004 %, the effect cannot be obtained, and if it is 0.20 % or more, too coarse carbonitride is formed to lower toughness. For this reason, the lower limit of the Ti amount is 0.004 %, preferably 0.02%, and the upper limit is 0.20 %, preferably 0.1%.

N:0.0010〜0.0080%
NはTi、V、Alなどとともに炭窒化物や窒化物を形成し、水素トラップサイトや結晶粒径微細化のためのピン止め粒子として働く。しかし、0.0010%未満では、その効果が過小であり、一方0.0080%を越えると粗大な窒化物が生成して、所望の水素トラップ効果を有する析出物の個数が減ってしまうため、N量の下限を0.0010%、上限を0.0080%とする。
N: 0.0010 to 0.0080%
N forms carbonitrides and nitrides together with Ti, V, Al, etc., and functions as pinning particles for hydrogen trap sites and crystal grain size refinement. However, if it is less than 0.0010%, the effect is too small. On the other hand, if it exceeds 0.0080%, coarse nitrides are generated, and the number of precipitates having a desired hydrogen trap effect is reduced. The lower limit of the N amount is 0.0010%, and the upper limit is 0.0080%.

V:0.03〜1.0%、Mo:0.01〜1.0%の内の1種または2種
Vは微細な炭化物を形成して水素トラップサイトとして働くが、0.03%未満ではその効果が現れず、1.0%を越えると粗大な炭化物が出来やすくなって効果が不十分となる。このため、V量の下限を0.03%、より好ましくは0.1%とし、その上限を1.0%、より望ましくは0.5%とする。
V: 0.03 to 1.0%, Mo: one or two of 0.01 to 1.0% V forms fine carbides and acts as a hydrogen trap site, but less than 0.03% However, the effect does not appear, and if it exceeds 1.0%, coarse carbides are easily formed and the effect becomes insufficient. For this reason, the lower limit of the V amount is 0.03%, more preferably 0.1%, and the upper limit is 1.0%, more preferably 0.5%.

Moも微細な炭化物を形成して水素トラップサイトとして働くが、0.03%未満ではその効果が現れず、1.0%を越えると粗大な炭化物が出来やすくなって効果が不十分となる。このため、Mo量の下限を0.03%、より好ましくは0.1%とし、その上限を1.0%、より好ましくは0.6%とする。   Mo also forms fine carbides and works as a hydrogen trap site. However, if it is less than 0.03%, the effect does not appear, and if it exceeds 1.0%, coarse carbides are easily formed and the effect becomes insufficient. For this reason, the lower limit of the Mo amount is 0.03%, more preferably 0.1%, and the upper limit is 1.0%, more preferably 0.6%.

本発明鋼は以上の基本成分のほか、残部Feおよび不純物によって形成されるが、上記基本成分の作用、効果を損なわず、さらに特性を向上させる元素の添加を妨げるものではない。例えば、(1) 下記範囲のZr、Nb、Alのいずれか1種または2種以上、および/または(2) 下記範囲のCu、Niのいずれか1種または2種を添加することができる。   In addition to the basic components described above, the steel of the present invention is formed by the remaining Fe and impurities, but does not impair the action and effect of the basic components and does not hinder the addition of elements that improve the characteristics. For example, (1) any one or more of Zr, Nb, and Al in the following ranges, and / or (2) any one or two of Cu, Ni in the following ranges can be added.

Zr:0.03〜1.0%
Zrは微細な炭化物を形成して水素トラップサイトとして働くが、0.03%未満ではその効果が現れず、1.0%を越えても効果が飽和してコスト高となるため、Zr量の下限を0.03%、上限を1.0%とする。
Zr: 0.03 to 1.0%
Zr forms fine carbides and acts as a hydrogen trap site. However, if it is less than 0.03%, the effect does not appear, and if it exceeds 1.0%, the effect is saturated and the cost is increased. The lower limit is 0.03%, and the upper limit is 1.0%.

Nb:0.03〜1.0%
Nbは炭窒化物を形成して結晶粒微細化効果があるが、0.03%未満では効果が現れず、1.0%を越えても粗大な炭化物が増えて効果が飽和する。このため、Nb量の下限を0.03%、上限を1.0%とする。
Nb: 0.03-1.0%
Nb forms carbonitrides and has a crystal grain refining effect. However, if it is less than 0.03%, no effect appears, and if it exceeds 1.0%, coarse carbides increase and the effect is saturated. For this reason, the lower limit of the Nb amount is 0.03%, and the upper limit is 1.0%.

Al:0.001〜0.1%
Alは脱酸元素として働くほか、Nと結合して析出物を形成し、鋼の結晶粒径微細化に効果があるので添加してもよいが、0.001%未満では効果が見られず、0.1%を越えるとアルミナ系酸化物が多量に生成して疲労特性を低下させる。このため、Al量の下限を0.001%、上限を0.1%とする。
Al: 0.001 to 0.1%
Al acts as a deoxidizing element and also forms a precipitate by combining with N, and may be added because it is effective in refining the crystal grain size of steel. However, if it is less than 0.001%, no effect is seen. If it exceeds 0.1%, a large amount of alumina-based oxides are formed and the fatigue characteristics are deteriorated. For this reason, the lower limit of the Al amount is 0.001%, and the upper limit is 0.1%.

Cu:0.02〜0.5%
Cuは耐食性を改善する効果があるので添加してもよいが、0.02%未満では効果が見られず、0.5%を越えると熱間加工性が低下して圧延時に問題となるため、Cu量の下限を0.02%、上限を0.5%とする。
Cu: 0.02 to 0.5%
Since Cu has an effect of improving the corrosion resistance, it may be added. However, if less than 0.02%, no effect is seen, and if over 0.5%, hot workability deteriorates and a problem occurs during rolling. The lower limit of Cu content is 0.02%, and the upper limit is 0.5%.

Ni:0.02〜2.0%
Niも耐食性を改善する効果があるので添加してもよいが0.02%以下では効果が見られず、2.0%を越えると焼き入れ焼き戻ししたときに残留オーステナイトの生成量が増えて組織の均質性が低下するため、Ni量の下限を0.02%、上限を2.0%とする。
Ni: 0.02 to 2.0%
Ni also has the effect of improving the corrosion resistance, so it may be added, but if 0.02% or less, no effect is seen, and if it exceeds 2.0%, the amount of retained austenite generated increases when tempered and tempered. Since the homogeneity of the structure is lowered, the lower limit of Ni content is 0.02%, and the upper limit is 2.0%.

次に、本発明鋼として、上記成分を有する高強度鋼圧延材の製造方法について説明する。
本発明鋼は、上記成分の鋼を溶製し、溶製した鋼を鋳造し、得られた鋳造片を熱間圧延し、その後熱延材に焼き入れ、焼き戻しを施すことによって製造される。なお、圧延は、板圧延でもよく、線材圧延でもよく、目的とする鋼材の断面形状に応じて圧延形状は適宜決定することができる。
Next, the manufacturing method of the high strength steel rolling material which has the said component as this invention steel is demonstrated.
The steel of the present invention is produced by melting the steel of the above components, casting the molten steel, hot rolling the obtained cast piece, and subsequently quenching and tempering the hot rolled material. . The rolling may be plate rolling or wire rolling, and the rolling shape can be appropriately determined according to the cross-sectional shape of the target steel material.

前記鋼の鋳造に際し、凝固時における1500℃〜1400℃の温度域を20℃/分以上、好ましくは25℃/分以上で、かつ1400℃〜1200℃の温度域を5℃/分以上、30℃/分以下、好ましくは20℃/分以下、より好ましくは10℃/分以下あるいは10℃/分未満の平均冷却速度で冷却する。Tiを含有する鋼ではTiの炭化物、窒化物、炭窒化物(以下、単に炭窒化物と記載する場合がある。)の大部分が凝固時の1500℃から1200℃への冷却中に生成するが、生成する温度によってTi炭窒化物のサイズが異なる。1500℃〜1400℃の温度域では100nmを越える粗大なTi炭窒化物が生成しやすいので、この温度域を20℃/分以上の速い冷却速度で冷却して粗大炭窒化物の生成を抑制するとともに、1400℃〜1200℃の温度域を30℃/分以下の適度な平均速度(好ましくは1500℃〜1400℃の温度域における平均冷却速度より低い平均冷却速度)で冷却することによって、30nm〜100nm、好ましくは30nm〜50nm程度のTi炭窒化物が多く生成するようになる。すなわち、1500℃〜1400℃の温度域を20℃/分未満の遅い冷却速度で冷却すると粗大な炭窒化物が生成して個数が激減し、30nm以上の炭窒化物個数を10個/500nm2 以上とすることが困難になる。また、1400℃〜1200℃の温度域を5℃/分より遅い冷却速度で冷却しても、やはり100nmを越える粗大な炭窒化物が生成し、30nm以上の炭窒化物の個数が減少する。一方、1400℃〜1200℃の温度域を30℃/分より速い冷却速度で冷却すると、過度に微細な炭窒化物の量が増加するか、炭窒化物が生成しないうちに冷却が完了してしまう。このため、上記のように1500℃〜1400℃の温度域および1400℃〜1200℃の温度域を所定の平均冷却速度で冷却する。なお、従来、この種の高強度鋼の鋳造後の冷却速度は、1500℃から1200℃まで平均で4〜8℃/分程度であり、特に温度域によって冷却速度の制御は行われていない。 In casting the steel, the temperature range of 1500 ° C. to 1400 ° C. during solidification is 20 ° C./min or more, preferably 25 ° C./min or more, and the temperature range of 1400 ° C. to 1200 ° C. is 5 ° C./min or more, 30 It is cooled at an average cooling rate of not more than 10 ° C / min, preferably not more than 20 ° C / min, more preferably not more than 10 ° C / min or less than 10 ° C / min. In steels containing Ti, most of Ti carbides, nitrides and carbonitrides (hereinafter sometimes simply referred to as carbonitrides) are produced during cooling from 1500 ° C. to 1200 ° C. during solidification. However, the size of Ti carbonitride varies depending on the temperature at which it is produced. In the temperature range of 1500 ° C. to 1400 ° C., coarse Ti carbonitride exceeding 100 nm is likely to be formed. Therefore, this temperature range is cooled at a fast cooling rate of 20 ° C./min or more to suppress the formation of coarse carbonitride. In addition, by cooling the temperature range of 1400 ° C. to 1200 ° C. at a moderate average rate of 30 ° C./min or less (preferably an average cooling rate lower than the average cooling rate in the temperature range of 1500 ° C. to 1400 ° C.), 30 nm to A large amount of Ti carbonitride of about 100 nm, preferably about 30 nm to 50 nm is produced. That is, when a temperature range of 1500 ° C. to 1400 ° C. is cooled at a slow cooling rate of less than 20 ° C./min, coarse carbonitrides are generated and the number is drastically reduced, and the number of carbonitrides of 30 nm or more is 10/500 nm 2. It becomes difficult to do it above. Further, even when the temperature range of 1400 ° C. to 1200 ° C. is cooled at a cooling rate slower than 5 ° C./min, coarse carbonitride exceeding 100 nm is generated, and the number of carbonitrides of 30 nm or more is reduced. On the other hand, when the temperature range of 1400 ° C. to 1200 ° C. is cooled at a cooling rate faster than 30 ° C./min, the amount of excessively fine carbonitride increases or the cooling is completed before carbonitride is formed. End up. For this reason, as described above, the temperature range of 1500 ° C. to 1400 ° C. and the temperature range of 1400 ° C. to 1200 ° C. are cooled at a predetermined average cooling rate. Conventionally, the cooling rate after casting of this type of high-strength steel is about 4 to 8 ° C./min on average from 1500 ° C. to 1200 ° C., and the cooling rate is not particularly controlled by the temperature range.

鋳造後、熱間圧延に際し、炭窒化物形成元素を固溶させるため、鋳造片を1000℃から1250℃に加熱する。その後熱間圧延されるが、圧延時の冷却中に、V、Moの微細炭窒化物を析出させるため、冷却速度を以下のようにコントロールする。圧延終了温度から700℃までの平均冷却速度が100℃/分以下では、700℃までの高温で炭窒化物が析出するために10nm以下の微細な析出物が過少になるので、100℃/分以上として速やかに冷却する。炭窒化物は700℃〜400℃の温度域で析出した場合には微細な析出物となり易い。10nm以下の微細析出物の量を確保するため、この温度範囲の平均冷却速度を50℃/分以下、望ましくは30℃/分以下に規定する。圧延終了温度(仕上圧延終了温度)は、900℃未満では圧延割れが発生しやすくなるので900℃以上とする。圧延終了温度の上限は特に限定されないが、加熱温度によって自ずと決まり、通常、1200℃程度以下でよい。   After casting, the cast piece is heated from 1000 ° C. to 1250 ° C. in order to dissolve carbonitride-forming elements during hot rolling. Thereafter, hot rolling is performed, but the cooling rate is controlled as follows in order to precipitate fine carbonitrides of V and Mo during cooling during rolling. When the average cooling rate from the rolling finish temperature to 700 ° C. is 100 ° C./min or less, carbonitride precipitates at a high temperature up to 700 ° C., and therefore fine precipitates of 10 nm or less become too small. Cool quickly as above. Carbonitride tends to be a fine precipitate when it is deposited in a temperature range of 700 ° C to 400 ° C. In order to ensure the amount of fine precipitates of 10 nm or less, the average cooling rate in this temperature range is regulated to 50 ° C./min or less, desirably 30 ° C./min or less. The rolling end temperature (finish rolling end temperature) is 900 ° C. or higher because rolling cracks are likely to occur when the temperature is less than 900 ° C. The upper limit of the rolling end temperature is not particularly limited, but is naturally determined by the heating temperature, and is usually about 1200 ° C. or lower.

熱間圧延後、熱延材は焼き入れ、焼き戻しされるが、焼き入れでは焼き入れ温度Tq(γ化温度)が840℃以上、保持時間が2秒以上となるように加熱しないと焼き入れが不十分となり、マルテンサイト主体の組織が得られない。また、焼き入れ温度が1100℃を越えたり、加熱時間が120秒を越えると、せっかく粒径が制御された析出物のうち20nm以下の微細なものが再固溶してしまうか、粗大化してしまうため、840℃以上、1100℃以下の温度域に加熱し、840℃以上の温度に加熱される時間が2秒以上、120秒以下になるようにして、速やかに焼入れる。また、前記焼き入れ温度への昇温速度が遅いと、高温領域でやはり析出物の再固溶や粗大化が生じるので、昇温速度を600℃/分以上とする。   After hot rolling, the hot-rolled material is quenched and tempered, but in quenching, it is quenched unless heated so that the quenching temperature Tq (gammaization temperature) is 840 ° C. or more and the holding time is 2 seconds or more. Is insufficient, and a martensite-based organization cannot be obtained. Further, when the quenching temperature exceeds 1100 ° C. or the heating time exceeds 120 seconds, fine precipitates of 20 nm or less among the precipitates whose particle size is controlled are either re-dissolved or coarsened. Therefore, it is heated to a temperature range of 840 ° C. or higher and 1100 ° C. or lower, and quenched rapidly so that the time for heating to a temperature of 840 ° C. or higher is 2 seconds or longer and 120 seconds or shorter. In addition, if the rate of temperature rise to the quenching temperature is slow, reprecipitation and coarsening of precipitates occur in the high temperature region, so the rate of temperature rise is set to 600 ° C./min or more.

また、焼き戻し温度が400℃未満では鋼が硬すぎて靭性が低下し、600℃超では軟らかくなりすぎて十分な強度が得られないようになるので、加熱温度(焼き戻し温度)は400℃以上、600℃以下とする。また、加熱時間が短すぎると靭性が低下し、長すぎると十分な強度が得られないので、400℃以上に過熱される時間が2秒以上、120秒以下とすし、その後速やかに冷却する。また、焼き戻し温度への昇温速度が遅いと高温領域での滞留時間が長くなるのでやはり強度低下を招来する。このため、昇温速度は600℃/分以上とする。焼き戻し後の冷却速度は特に限定されないが、好ましくは300℃/分以上で冷却するのがよい。   Further, if the tempering temperature is less than 400 ° C, the steel is too hard and the toughness is lowered, and if it exceeds 600 ° C, it becomes too soft and sufficient strength cannot be obtained, so the heating temperature (tempering temperature) is 400 ° C. The temperature is 600 ° C. or lower. Further, if the heating time is too short, the toughness is lowered, and if it is too long, sufficient strength cannot be obtained. Therefore, the time for heating to 400 ° C. or higher is set to 2 seconds or more and 120 seconds or less, and then cooled quickly. Further, if the rate of temperature increase to the tempering temperature is slow, the residence time in the high temperature region becomes long, so that the strength is also lowered. For this reason, the temperature rising rate is set to 600 ° C./min or more. The cooling rate after tempering is not particularly limited, but the cooling rate is preferably 300 ° C./min or more.

上記製造条件は熱間圧延工程で微細炭窒化物の析出を制御しようとするものであるが、下記のように焼き入れ、焼き戻し工程で微細析出物の生成を制御することができる。この場合、焼き入れ工程前の熱間圧延やその後の冷却条件は特に制限されず、常法に従えばよい。また、熱間圧延後に適宜の塑性加工、例えば伸線を施してもよい。なお、30〜100nmのTi系炭化物は、上記のとおり凝固時における1500℃〜1400℃および1400℃〜1200℃の温度域を所定の平均冷却速度で冷却することによって確保される。   The production conditions described above are intended to control the precipitation of fine carbonitrides in the hot rolling process, but the production of fine precipitates can be controlled in the quenching and tempering processes as described below. In this case, the hot rolling before the quenching process and the subsequent cooling conditions are not particularly limited, and may be performed in accordance with an ordinary method. Moreover, you may give an appropriate plastic processing after a hot rolling, for example, wire drawing. In addition, 30-100 nm Ti type carbide | carbonized_material is ensured by cooling the 1500 degreeC-1400 degreeC and the 1400 degreeC-1200 degreeC temperature range at the time of solidification at the predetermined | prescribed average cooling rate as above-mentioned.

焼き入れ、焼き戻し工程で析出物の生成を制御するには、焼き入れ、焼き戻し時に合金炭化物を再固溶、再析出させて微細な析出物を得るように、条件を選定すればよい。すなわち、V、Moの炭化物がある程度以上再固溶する条件で焼き入れて、微細な炭化物が析出する温度で焼戻せばよい。Moの炭化物は比較的低温で再固溶することが知られているので、焼き入れ温度Tqは少なくとも840℃以上とする。一方、Tqが1300℃を越えると、粒径の大きいTi系析出物が再固溶するようになるので、1300℃以下に押さえる必要がある。   In order to control the formation of precipitates in the quenching and tempering steps, the conditions may be selected so that the alloy carbides are re-dissolved and reprecipitated during quenching and tempering to obtain fine precipitates. That is, quenching is performed under conditions where the carbides of V and Mo are re-dissolved to some extent, and tempering is performed at a temperature at which fine carbides are precipitated. Since it is known that Mo carbide is re-dissolved at a relatively low temperature, the quenching temperature Tq is at least 840 ° C. or higher. On the other hand, if Tq exceeds 1300 ° C., Ti-based precipitates having a large particle size will be re-dissolved, so it is necessary to keep the temperature below 1300 ° C.

また、VとZrの炭化物もある程度固溶できる温度に加熱して焼き入れることが必要である。Vの炭化物が固溶できる温度は、成田、小山の報告(神戸製鋼技報、67(1966)、179)による溶解度積の式(9500=T{6.72−log([%V][%C])}、T:絶対温度)を用いれば計算することができるが、本発明者の研究により実用的には溶解度積の式によって算出される温度(完全に固溶する温度)よりも127℃低い温度以上に設定することで十分な量の炭化物が固溶することがわかった。このため、焼き入れ温度Tqは840℃<Tq<1300℃を前提として、かつ下記式を満足するように設定する。なお、溶解度積の式によって求められる温度は絶対温度なので、下記式では、127+273=400を引いて℃に換算している。
Tq>9500/{6.72−log([%V][%C])}−400℃
Also, it is necessary to heat and quench the carbides of V and Zr to a temperature at which they can be dissolved to some extent. The temperature at which the carbide of V can be dissolved is the solubility product equation (9500 = T {6.72−log ([% V] [%]) reported by Narita and Oyama (Kobe Steel Technical Report, 67 (1966), 179). C])}, T: absolute temperature) can be calculated, but it is 127 from the temperature calculated by the solubility product formula (temperature at which the solid solution is completely dissolved). It was found that a sufficient amount of carbide was dissolved by setting the temperature to be lower than the temperature. For this reason, the quenching temperature Tq is set on the premise of 840 ° C. <Tq <1300 ° C. and so as to satisfy the following equation. In addition, since the temperature calculated | required by the formula of a solubility product is absolute temperature, in the following formula, 127 + 273 = 400 is subtracted and converted into ° C.
Tq> 9500 / {6.72-log ([% V] [% C])}-400 ° C.

焼き戻しは靭性の確保とともに、焼き入れ時に固溶させた合金元素の炭窒化物を析出させるために行われる。焼き戻し温度は500℃未満、5分未満では微細な炭化物の析出が起こらないので500℃以上、5分以上とする。上限は強度の低下を招来しない範囲で適宜設定すればよいが、所望の引張強さに応じて、通常600℃程度以下、10分程度以下とすればよい。また、焼き戻し温度に加熱保持後の冷却速度は、特に制限されない。   Tempering is performed in order to ensure toughness and to precipitate carbonitrides of alloy elements that have been dissolved during quenching. When the tempering temperature is less than 500 ° C. and less than 5 minutes, fine carbides do not precipitate, so the temperature is set to 500 ° C. or more and 5 minutes or more. The upper limit may be set as appropriate within a range that does not cause a decrease in strength, but it is usually about 600 ° C. or less and about 10 minutes or less depending on the desired tensile strength. Moreover, the cooling rate after heating and holding at the tempering temperature is not particularly limited.

次に実施例を挙げて本発明をより具体的に説明するが、本発明はかかる実施例によって限定的に解釈されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this invention is not limitedly interpreted by this Example.

表1に示す成分の鋼を高周波誘導真空溶解炉を用いて溶製し、約30kgの鋳造片(インゴット)を作製した。鋳造後の冷却速度を表2に示す。前記冷却速度は鋳型の形状、保温等を組み合わせて制御した。その後、鋳造片を1200℃に加熱して、厚さ6mmに熱間圧延した。熱間圧延における圧延終了温度および圧延後の冷却速度(圧延終了温度〜700℃まで、700℃〜400℃までの各冷却速度)を表2、表3に併せて示す。これらの冷却速度は、風冷、保温等を組み合わせて制御した。   Steels having the components shown in Table 1 were melted using a high-frequency induction vacuum melting furnace to produce a cast piece (ingot) of about 30 kg. Table 2 shows the cooling rate after casting. The cooling rate was controlled by combining the shape of the mold, heat retention and the like. Thereafter, the cast piece was heated to 1200 ° C. and hot-rolled to a thickness of 6 mm. Tables 2 and 3 also show the rolling end temperature in hot rolling and the cooling rate after rolling (from each rolling end temperature to 700 ° C. and each cooling rate from 700 ° C. to 400 ° C.). These cooling rates were controlled by combining air cooling, heat retention, and the like.

圧延材から厚さ2.2mm×幅11mm×長さ120mmの板を削り出し、表2、表3に示した焼き入れ条件のとおり、通電加熱によって所定時間加熱保持した後、ガス急冷した。その後、同表に示す焼き戻し温度に所定時間加熱保持した後、空冷した。焼き戻し後の鋼板の硬さはヴィッカース硬さで500〜650程度であった。また、焼き戻し後の鋼板の引張強さを引張試験によって測定したところ、1300〜2000MPa程度であった。   A plate having a thickness of 2.2 mm, a width of 11 mm, and a length of 120 mm was cut out from the rolled material, and, according to the quenching conditions shown in Tables 2 and 3, heated and held for a predetermined time by energization heating, and then rapidly cooled by gas. Then, after heating and holding at the tempering temperature shown in the same table for a predetermined time, it was air-cooled. The hardness of the steel plate after tempering was about 500 to 650 in terms of Vickers hardness. Moreover, when the tensile strength of the steel plate after tempering was measured by a tensile test, it was about 1300 to 2000 MPa.

Figure 0004008391
Figure 0004008391

Figure 0004008391
Figure 0004008391

Figure 0004008391
Figure 0004008391

焼き入れ、焼き戻し後の鋼板から、10mm×10mm×厚さ2mmの水素分析用試験片および厚さ1.5mm×幅10mm×長さ65mmの4点曲げ陰極チャージ試験片を削り出し、水素分析、耐水素脆化特性を調べた。   From the steel plate after quenching and tempering, a hydrogen analysis test piece of 10 mm × 10 mm × 2 mm thickness and a 4-point bending cathode charge test piece of 1.5 mm thickness × 10 mm width × 65 mm length were cut out for hydrogen analysis. The hydrogen embrittlement resistance was investigated.

水素分析は以下の要領により実施した。水素分析用試験片を陰極として室温の0.1MのNaOHと0.05Mチオ尿素との混合水溶液中で、0.1mA/cm2 の電流密度で48時間通電する陰極チャージを実施し、実施直後にAPI−MS(大気圧イオン化質量分析装置、東日本セミコンダクターテクノロジ社製、UG−240APN)を用いて試験片を室温から800℃まで12℃/min で加熱しながら放出される水素量(mass ppm)を逐次測定し、室温から350℃までに放出された低温域放出水素量H1、350℃から800℃までに放出された高温域水素量H2を求めた。また、同条件で水素をチャージした後に80℃の大気中で24時間放置した後、同様に水素分析を実施して低温域放出水素量H3、350℃から800℃までに放出された高温域水素量H4を求め、H3/H1、H4/H2の値を求めた。API−MSによって測定された水素放出特性の一例(試料No. 8)を図1に示す。図1は横軸が温度を示しているが、経過時間としては1℃当たり0.2秒(60秒/12℃=0.2秒/℃)であり、放出水素量は低温域、高温域において温度軸と曲線とで囲まれたの面積として求めることができる。 The hydrogen analysis was performed as follows. Immediately after the cathode charge was conducted by energizing the specimen for hydrogen analysis for 48 hours at a current density of 0.1 mA / cm 2 in a mixed aqueous solution of 0.1 M NaOH and 0.05 M thiourea at room temperature. The amount of hydrogen released while heating the specimen from room temperature to 800 ° C. at 12 ° C./min using API-MS (atmospheric pressure ionization mass spectrometer, manufactured by East Japan Semiconductor Technology, Inc., UG-240APN) (mass ppm) Were measured sequentially, and the amount of hydrogen H1 released from the room temperature to 350 ° C. and the amount of hydrogen H2 released from 350 ° C. to 800 ° C. were determined. In addition, after hydrogen was charged under the same conditions and left in the atmosphere at 80 ° C. for 24 hours, the hydrogen analysis was performed in the same manner, and the amount of released hydrogen H3 was high temperature hydrogen released from 350 ° C. to 800 ° C. The amount H4 was determined, and the values of H3 / H1 and H4 / H2 were determined. An example of hydrogen release characteristics (sample No. 8) measured by API-MS is shown in FIG. In FIG. 1, the horizontal axis indicates the temperature, but the elapsed time is 0.2 seconds per 1 ° C. (60 seconds / 12 ° C. = 0.2 seconds / ° C.), and the amount of released hydrogen is in the low temperature range and high temperature range. The area enclosed by the temperature axis and the curve can be obtained.

耐水素脆化特性は、以下の要領にて4点曲げ陰極チャージ寿命試験を行い、破断するまでの時間を測定し、これによって評価した。図2に示すように、試験片Sを支持枠1と押し上げ台2との間に対称に配置された4つの支点3を介して両端突出はり状にセットし、押し上げ台2を支持枠1側へ押し上げて、試験片に1400MPaの最大応力を与えた状態で、0.5mol/L硫酸および0.01mol/LのKSCN(チオシアン酸カリウム)の混合溶液中で、試験片を陰極とし、陽極に白金電極を用いて、陰極電位−700mVを負荷して試験片中に水素を添加し、電位付与後に破断するまでの時間を測定した。   The hydrogen embrittlement resistance was evaluated by conducting a four-point bending cathode charge life test in the following manner, measuring the time until fracture, and measuring the time. As shown in FIG. 2, the test piece S is set in a protruding shape at both ends via four fulcrums 3 arranged symmetrically between the support frame 1 and the push-up stand 2, and the push-up stand 2 is placed on the support frame 1 side. In a state where a maximum stress of 1400 MPa was applied to the test piece, the test piece was used as a cathode in a mixed solution of 0.5 mol / L sulfuric acid and 0.01 mol / L KSCN (potassium thiocyanate). Using a platinum electrode, a cathode potential of −700 mV was applied, hydrogen was added to the test piece, and the time until breaking after applying the potential was measured.

また、焼き入れ、焼き戻し後の鋼板から組織観察用試験片を採取し、抽出レプリカ法によりTEM(透過型電子顕微鏡)を用いて15万倍で500nm×500nmの視野をそれぞれ5視野ずつ観察し、炭化物(但し、Fe系炭化物、Fe−Cr系炭化物を除く。)、窒化物および炭窒化物によって形成された所定サイズの生成化合物(晶出物および析出物)の個数をカウントして平均値を求めた。詳しくは、15万倍の各視野において観察される生成化合物は、いずれもほぼ球状であるので、直径10nm以下と30nm以上のものについて全てEDX(エネルギー分散型検出装置)を用いて分析し、それぞれTiの平均含有量を含む平均組成を求め、所定の炭化物、窒化物、炭窒化物であるか否かを判定し、これらの炭窒化物の直径10nm以下と30nm以上のものについて平均個数を求めた。これらの測定結果を表4に併せて示す。なお、同表中、「析出物個数」には晶出物個数を含む。   In addition, specimens for microstructure observation were collected from the steel plates after quenching and tempering, and 5 fields of 500 nm × 500 nm were observed at 150,000 times each using a TEM (transmission electron microscope) by the extraction replica method. , Count the number of carbides (excluding Fe-based carbides and Fe-Cr-based carbides), nitrides and carbonitride-generated products of a given size (crystallized products and precipitates) and average Asked. Specifically, since the product compounds observed in each field of view of 150,000 times are almost spherical, all those having a diameter of 10 nm or less and 30 nm or more were analyzed using an EDX (energy dispersive detection device). The average composition including the average content of Ti is determined, whether or not the carbon is a predetermined carbide, nitride, or carbonitride is determined, and the average number of these carbonitrides having a diameter of 10 nm or less and 30 nm or more is determined. It was. These measurement results are also shown in Table 4. In the table, “the number of precipitates” includes the number of crystallized substances.

Figure 0004008391
Figure 0004008391

表4より、発明例の試料No. 1〜4、7〜10、13、14はいずれも本発明に係る基本成分を満足し、製造条件も適正であるので、水素チャージ後の水素分析結果は本発明条件を満足するものであり、4点曲げ陰極チャージ寿命試験結果も全て1000秒以上であり、優れた耐水素脆化特性を示している。一方、製造条件が適正であるものの、試料No. 5はTi添加量が少なく、No. 6はTi添加量が多すぎ、No. 11はV量が少なすぎ、No. 12はV量が多すぎ、No. 15はMo量が多すぎるため、水素分析結果が本発明条件を満足せず、また析出物サイズも本発明範囲から外れ、耐水素脆化特性が劣っている。また、試料No. 16〜21(発明例)はV、Moに加えて、適量のAl、Zr、Nb、Cu、Niを添加したものであり、いずれも優れた耐水素脆化特性を示している。   From Table 4, Sample Nos. 1-4, 7-10, 13, and 14 of the invention examples all satisfy the basic components according to the present invention, and the production conditions are also appropriate. The conditions of the present invention are satisfied, and the results of the 4-point bending cathode charge life test are all 1000 seconds or more, indicating excellent hydrogen embrittlement resistance. On the other hand, although the manufacturing conditions are appropriate, Sample No. 5 has a small amount of Ti, No. 6 has a large amount of Ti, No. 11 has a small amount of V, and No. 12 has a large amount of V. No. 15 has too much Mo, so the hydrogen analysis result does not satisfy the conditions of the present invention, and the precipitate size is also out of the scope of the present invention, resulting in poor hydrogen embrittlement resistance. Sample Nos. 16 to 21 (invention examples) are obtained by adding appropriate amounts of Al, Zr, Nb, Cu, and Ni in addition to V and Mo, and all show excellent hydrogen embrittlement resistance. Yes.

一方、試料No. No. 22〜33は、全て発明成分を有するものであるが、No. 22〜25は特に凝固時の冷却速度を変化させ、その他は適正な製造条件の下で製造したものである。No. 22(比較例)は1500℃〜1400℃の温度域での冷却速度が遅く、かつ1400℃〜1200℃の温度域での冷却速度が速すぎるため、Ti系の炭化物が粗大化して、30nm以上の析出物の個数が減少し、水素分析結果もH2の水素量が不足し、耐水素脆化特性が劣化している。また、試料No. 26〜28は、特に圧延後の700℃〜400℃の冷却速度を変化させたものである。No. 28(比較例)は冷却速度が速すぎるため、10nm以下の微細炭化物の析出が不十分となり、水素分析結果もH1の水素量が過少となったため、耐水素脆化特性が劣化が著しい。また、試料No. 29は、特に圧延終了後700℃までの冷却速度が遅すぎるため、Vを多く含む炭化物が粗大に析出してしまい、10nm以下の析出物量が不足し、水素分析結果もH1の水素量が過少となったため、耐水素脆化特性が劣化している。また、試料No. 30は、特に焼き入れ時加熱時間が長すぎて微細な炭化物が再固溶してしまったため、10nm以下の析出物量が不足し、水素分析結果もH1の水素量が過少となったため、耐水素脆化特性が劣化している。   On the other hand, Samples Nos. 22 to 33 all have the inventive components, but Nos. 22 to 25 are manufactured under appropriate manufacturing conditions, especially the cooling rate during solidification is changed. It is. No. 22 (Comparative Example) has a slow cooling rate in the temperature range of 1500 ° C. to 1400 ° C., and a cooling rate in the temperature range of 1400 ° C. to 1200 ° C. is too fast. The number of precipitates of 30 nm or more is reduced, and the hydrogen analysis results show that the amount of hydrogen in H2 is insufficient and the hydrogen embrittlement resistance is deteriorated. Samples Nos. 26 to 28 are obtained by changing the cooling rate of 700 ° C. to 400 ° C. after rolling. In No. 28 (comparative example), the cooling rate is too fast, so that the precipitation of fine carbides of 10 nm or less is insufficient, and the hydrogen analysis results show that the amount of hydrogen in H1 is too small, so the hydrogen embrittlement resistance is significantly deteriorated. . Sample No. 29 has a particularly slow cooling rate up to 700 ° C. after the end of rolling, so that carbides containing a large amount of V are coarsely deposited, resulting in insufficient amount of precipitates of 10 nm or less, and the hydrogen analysis results are also H1. Since the amount of hydrogen became too small, the hydrogen embrittlement resistance deteriorated. Sample No. 30 had a heating time during quenching that was too long and fine carbides were re-dissolved, so the amount of precipitates of 10 nm or less was insufficient, and the hydrogen analysis results showed that the amount of hydrogen in H1 was too small. Therefore, the hydrogen embrittlement resistance is deteriorated.

また、試料No. 31〜33は、焼き入れ、焼き戻し工程にて微細析出物の生成を制御したものであり、試料No. 31と32(発明例)は圧延条件が熱間圧延工程で微細析出物を生成させるための条件を満足しないものの、その後の熱処理条件が適正であるため、析出炭化物のサイズと個数が本発明条件を満足し、また水素分析結果も本発明条件を満足し、優れた耐水素脆化特性が得られている。これに対して、試料No. 33は焼き戻し温度が低く、焼き戻し時間が短いため、微細炭化物の析出が不十分となって、耐水素脆化特性が劣っている。   Samples Nos. 31 to 33 are those in which the formation of fine precipitates is controlled in the quenching and tempering processes. Samples Nos. 31 and 32 (invention examples) have fine rolling conditions in the hot rolling process. Although the conditions for generating precipitates are not satisfied, but the subsequent heat treatment conditions are appropriate, the size and number of precipitated carbides satisfy the conditions of the present invention, and the hydrogen analysis results also satisfy the conditions of the present invention and are excellent. Furthermore, hydrogen embrittlement resistance is obtained. On the other hand, Sample No. 33 has a low tempering temperature and a short tempering time, so that the precipitation of fine carbides is insufficient and the hydrogen embrittlement resistance is poor.

実施例における水素昇温分析結果の一例を示すグラフである。It is a graph which shows an example of the hydrogen temperature rising analysis result in an Example. 実施例における4点曲げ陰極チャージ寿命試験の実施要領説明図である。It is explanatory drawing of the implementation point of the 4-point bending cathode charge life test in an Example.

Claims (6)

mass%で、
C:0.3〜0.7%、
Si:0.1〜3.0%、
Mn:0.01〜1.8%、
P:0.01%以下、
S:0.01%以下、
Cr:0.2〜1.8%、
Ti:0.004〜0.20%、
N:0.0010〜0.0080%を含有するとともに、
V:0.03〜1.0%、Mo:0.01〜1.0%のうちの1種または2種を含有し、残部がFeおよび不純物からなり、析出物として炭化物、窒化物、炭窒化物を含み、引張強さが1300MPa以上の高強度鋼であって、
10mm×10mm×厚さ2mmの試験片を陰極として、室温の0.1MのNaOHと0.05Mのチオ尿素との混合水溶液中で、0.1mA/cm2 の電流密度で24時間通電する陰極チャージを実施した直後に、試験片を昇温速度12℃/分で加熱しながら放出される水素量を逐次測定して得られた水素量について、室温〜350℃までに放出される低温域放出水素量H1が1.0〜10mass ppmであり、350℃〜800℃までに放出される高温域放出水素量H2が0.3〜5mass ppmであって、
前記陰極チャージを実施後さらに80℃の大気中で24時間放置した後に測定された低温域放出水素量H3と前記H1との比H3/H1が0.05以上であり、かつ前記陰極チャージを実施後さらに80℃の大気中で24時間放置した後に測定された高温域放出水素量H4と前記H2との比H4/H2が0.8以上であることを特徴とする耐水素脆化特性に優れた高強度鋼。
mass%
C: 0.3-0.7%
Si: 0.1 to 3.0%,
Mn: 0.01 to 1.8%,
P: 0.01% or less,
S: 0.01% or less,
Cr: 0.2 to 1.8%,
Ti: 0.004 to 0.20%,
N: containing 0.0010 to 0.0080%,
V: 0.03 to 1.0%, Mo: contain one or two of 0.01 to 1.0%, the balance consists of Fe and impurities, and precipitates are carbide, nitride, charcoal A high strength steel containing nitride and having a tensile strength of 1300 MPa or more,
Cathode energized at a current density of 0.1 mA / cm 2 for 24 hours in a mixed aqueous solution of 0.1 M NaOH and 0.05 M thiourea at room temperature using a test piece of 10 mm × 10 mm × 2 mm thickness as a cathode Immediately after the charging, the hydrogen amount obtained by sequentially measuring the amount of hydrogen released while heating the test piece at a heating rate of 12 ° C./min. Is released in a low temperature range from room temperature to 350 ° C. The amount of hydrogen H1 is 1.0 to 10 mass ppm, the amount of hydrogen H2 released in the high temperature range from 350 ° C. to 800 ° C. is 0.3 to 5 mass ppm,
The ratio H3 / H1 of the amount H3 of the low-temperature region released hydrogen and the H1 measured after standing for 24 hours in the atmosphere at 80 ° C. after the cathode charge is 0.05 or more, and the cathode charge is performed. Further, the hydrogen embrittlement resistance is characterized in that the ratio H4 / H2 of the amount H4 of hydrogen released in the high temperature range and H2 measured after standing for 24 hours in the atmosphere at 80 ° C. is 0.8 or more. High strength steel.
mass%で、
C:0.3〜0.7%、
Si:0.1〜3.0%、
Mn:0.01〜1.8%、
P:0.01%以下、
S:0.01%以下、
Cr:0.2〜1.8%、
Ti:0.004〜0.20%、
N:0.0010〜0.0080%を含有するとともに、
V:0.03〜1.0%、Mo:0.01〜1.0%のうちの1種または2種を含有し、残部がFeおよび不純物からなり、 析出物として炭化物、窒化物、炭窒化物を含み、引張強さが1300MPa以上の高強度鋼であって、
前記析出物からFe系炭化物、Fe−Cr系炭化物を除く炭化物、窒化物、炭窒化物のうち、粒径10nm以下のものを20個/(500nm)2 以上含有し、粒径30nm以上のものを10個/(500nm)2 以上含有し、かつ粒径30nm以上の前記析出物中のTiの平均含有量が30mass%以上であり、粒経10nm以下の前記析出物中のTiの平均含有量が30mass%未満であることを特徴とする耐水素脆化特性に優れた高強度鋼。
mass%
C: 0.3-0.7%
Si: 0.1 to 3.0%,
Mn: 0.01 to 1.8%,
P: 0.01% or less,
S: 0.01% or less,
Cr: 0.2 to 1.8%,
Ti: 0.004 to 0.20%,
N: containing 0.0010 to 0.0080%,
V: 0.03 to 1.0%, Mo: contain one or two of 0.01 to 1.0%, the balance consists of Fe and impurities, and precipitates are carbide, nitride, charcoal A high strength steel containing nitride and having a tensile strength of 1300 MPa or more,
Of the precipitates, carbides, nitrides, and carbonitrides excluding Fe-based carbides and Fe-Cr-based carbides, containing 20 particles / (500 nm) 2 or more having a particle size of 10 nm or less, and having a particle size of 30 nm or more 10 / (500 nm) 2 or more, and the average content of Ti in the precipitate having a particle size of 30 nm or more is 30 mass% or more, and the average content of Ti in the precipitate having a particle size of 10 nm or less Is a high-strength steel excellent in hydrogen embrittlement resistance, characterized by being less than 30 mass%.
さらに、mass%で、
Zr:0.03〜1.0%、
Nb:0.03〜1.0%、
Al:0.001〜0.1%
のうち1種または2種以上を含有する請求項1または2に記載した高強度鋼。
Furthermore, at mass%,
Zr: 0.03-1.0%,
Nb: 0.03-1.0%,
Al: 0.001 to 0.1%
The high-strength steel according to claim 1 or 2 , containing one or more of them.
さらに、mass%で、
Cu:0.02〜0.5%、
Ni:0.02〜2.0%
のうち1種または2種を含有する請求項1から3のいずれか1項に記載した高強度鋼。
Furthermore, at mass%,
Cu: 0.02 to 0.5%,
Ni: 0.02 to 2.0%
High strength steel given in any 1 paragraph of Claims 1-3 containing 1 type or 2 types among these.
請求項1から4のいずれか1項に記載した成分を有する鋼を溶製し、溶製した鋼を鋳造し、得られた鋳造片を熱間圧延し、その後熱延材に焼き入れ、焼き戻しを施す高強度鋼の製造方法であって、
前記鋳造に際し、凝固時における1500℃〜1400℃の温度域を20℃/分以上で、かつ1400℃〜1200℃の温度域を5℃/分以上、30℃/分以下の平均冷却速度で冷却し、
前記熱間圧延に際し、得られた鋳造片を1000℃〜1250℃に加熱し、圧延終了温度を900℃以上として熱間圧延し、圧延終了温度から700℃までの温度域を100℃/分以上の平均冷却速度で冷却し、さらに700℃〜400℃までの温度域を50℃/分以下の平均冷却速度に制限して冷却し、
前記焼き入れ焼き戻しに際し、室温から600℃/分以上の加熱速度で840℃〜1100℃の温度に加熱し、840℃以上の温度に加熱される時間が2秒〜120秒になるように速やかに焼入れし、さらに600℃/分以上の加熱速度で400℃〜600℃の温度に加熱し、400℃以上に加熱される時間が2秒〜120秒になるように速やかに冷却することを特徴とする、耐水素脆化特性に優れた高強度鋼の製造方法。
A steel having the components described in any one of claims 1 to 4 is melted, the melted steel is cast, the obtained cast piece is hot-rolled, and then quenched into a hot-rolled material. A method for producing high strength steel to which reversion is performed,
During the casting, the temperature range of 1500 ° C. to 1400 ° C. during solidification is 20 ° C./min or more, and the temperature range of 1400 ° C. to 1200 ° C. is cooled at an average cooling rate of 5 ° C./min to 30 ° C./min. And
At the time of the hot rolling, the obtained cast piece is heated to 1000 ° C. to 1250 ° C., hot rolled at a rolling end temperature of 900 ° C. or higher, and a temperature range from the rolling end temperature to 700 ° C. is 100 ° C./min or higher. The cooling is performed at an average cooling rate of 700 ° C. to 400 ° C. and limited to an average cooling rate of 50 ° C./min or less.
During the quenching and tempering, heating is performed from room temperature to a temperature of 840 ° C. to 1100 ° C. at a heating rate of 600 ° C./min or more, and the heating time to a temperature of 840 ° C. or more is quickly 2 seconds to 120 seconds. And further cooled to a temperature of 400 ° C. to 600 ° C. at a heating rate of 600 ° C./min or more and rapidly cooled so that the time of heating to 400 ° C. or more is 2 seconds to 120 seconds. that, the method of producing a high strength steel excellent in hydrogen embrittlement resistance.
請求項1から4のいずれか1項に記載した成分を有する鋼を溶製し、溶製した鋼を鋳造し、得られた鋳造片を熱間圧延し、その後熱延材に焼き入れ、焼き戻しを施す高強度鋼の製造方法であって、
前記鋳造に際し、凝固時における1500℃〜1400℃の温度域を20℃/分以上で、かつ1400℃〜1200℃の温度域を5℃/分以上、30℃/分以下の平均冷却速度で冷却し、
前記焼き入れ焼き戻しに際し、焼き入れ温度Tqを840℃<Tq<1300℃、かつTq>9500/{6.72−log([%V][%C])}−400℃としてTqから焼き入れし、その後に500℃以上の温度に5分以上加熱して焼き戻すことを特徴とする、耐水素脆化特性に優れた高強度鋼の製造方法。
A steel having the components described in any one of claims 1 to 4 is melted, the melted steel is cast, the obtained cast piece is hot-rolled, and then quenched into a hot-rolled material. A method for producing high strength steel to which reversion is performed,
During the casting, the temperature range of 1500 ° C. to 1400 ° C. during solidification is 20 ° C./min or more, and the temperature range of 1400 ° C. to 1200 ° C. is cooled at an average cooling rate of 5 ° C./min to 30 ° C./min. And
In the quenching and tempering, the quenching temperature Tq is set to 840 ° C. <Tq <1300 ° C. and Tq> 9500 / {6.72−log ([% V] [% C])} − 400 ° C. And then tempering by heating to a temperature of 500 ° C. or higher for 5 minutes or longer , and a method for producing high-strength steel excellent in hydrogen embrittlement resistance.
JP2003273162A 2003-07-11 2003-07-11 High strength steel with excellent hydrogen embrittlement resistance and method for producing the same Expired - Fee Related JP4008391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003273162A JP4008391B2 (en) 2003-07-11 2003-07-11 High strength steel with excellent hydrogen embrittlement resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003273162A JP4008391B2 (en) 2003-07-11 2003-07-11 High strength steel with excellent hydrogen embrittlement resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005029870A JP2005029870A (en) 2005-02-03
JP4008391B2 true JP4008391B2 (en) 2007-11-14

Family

ID=34210476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003273162A Expired - Fee Related JP4008391B2 (en) 2003-07-11 2003-07-11 High strength steel with excellent hydrogen embrittlement resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP4008391B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4026922A4 (en) * 2019-09-03 2022-07-13 Nippon Steel Corporation Steel sheet

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4485424B2 (en) * 2005-07-22 2010-06-23 新日本製鐵株式会社 Manufacturing method of high-strength bolts with excellent delayed fracture resistance
JP4867382B2 (en) * 2006-02-14 2012-02-01 Jfeスチール株式会社 Steel with high strength and excellent delayed fracture resistance after tempering treatment
JP4699342B2 (en) * 2006-11-17 2011-06-08 株式会社神戸製鋼所 High strength non-tempered steel for cold forging with excellent fatigue limit ratio
JP4699341B2 (en) * 2006-11-17 2011-06-08 株式会社神戸製鋼所 High strength hot forged non-tempered steel parts with excellent fatigue limit ratio
JP5653020B2 (en) * 2009-09-29 2015-01-14 中央発條株式会社 Spring steel and springs with excellent corrosion fatigue strength
US8936236B2 (en) 2009-09-29 2015-01-20 Chuo Hatsujo Kabushiki Kaisha Coil spring for automobile suspension and method of manufacturing the same
JP5600502B2 (en) * 2010-07-06 2014-10-01 株式会社神戸製鋼所 Steel for bolts, bolts and methods for producing bolts
JP5711539B2 (en) 2011-01-06 2015-05-07 中央発條株式会社 Spring with excellent corrosion fatigue strength
JP5658651B2 (en) * 2011-12-19 2015-01-28 株式会社神戸製鋼所 Steel material for rolling roll for galvanized steel sheet excellent in spalling resistance, and rolling roll for galvanized steel sheet
ES2765016T3 (en) 2012-01-11 2020-06-05 Kobe Steel Ltd Bolt and Bolt Manufacturing Method
JP6171473B2 (en) * 2013-03-28 2017-08-02 新日鐵住金株式会社 Spring steel and spring steel with excellent corrosion resistance
JP6212473B2 (en) * 2013-12-27 2017-10-11 株式会社神戸製鋼所 Rolled material for high-strength spring and high-strength spring wire using the same
MX2017007583A (en) * 2014-12-12 2017-09-07 Nippon Steel & Sumitomo Metal Corp Low-alloy steel for oil well tubular, and method for manufacturing low-alloy steel oil well tubular.
JP6479527B2 (en) * 2015-03-27 2019-03-06 株式会社神戸製鋼所 Bolt wire with excellent pickling property and delayed fracture resistance after quenching and tempering, and bolt
KR101947973B1 (en) * 2016-10-19 2019-02-13 미쓰비시 세이코 가부시키가이샤 High strength spring, method of manufacturing the same, steel for high strength spring, and method of manufacturing the same
JP7200627B2 (en) * 2018-11-27 2023-01-10 大同特殊鋼株式会社 High-strength bolt steel and its manufacturing method
WO2022050500A1 (en) 2020-09-01 2022-03-10 현대제철 주식회사 Material for hot stamping, and method for manufacturing same
CN113430459B (en) * 2021-06-17 2022-05-17 燕山大学 Vanadium microalloyed medium-carbon carbide-free bainite steel and preparation method thereof
KR102608376B1 (en) * 2021-10-29 2023-11-30 현대제철 주식회사 Hot stamping component
CN115386784B (en) * 2022-09-15 2023-08-01 哈尔滨工程大学 Metallurgical method for effectively improving hydrogen damage resistance of pipeline steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4026922A4 (en) * 2019-09-03 2022-07-13 Nippon Steel Corporation Steel sheet

Also Published As

Publication number Publication date
JP2005029870A (en) 2005-02-03

Similar Documents

Publication Publication Date Title
JP4008391B2 (en) High strength steel with excellent hydrogen embrittlement resistance and method for producing the same
JP4485424B2 (en) Manufacturing method of high-strength bolts with excellent delayed fracture resistance
KR20070094801A (en) Method for producing austenitic iron-carbon-manganese metal sheets, and sheets produced thereby
JP5913214B2 (en) Bolt steel and bolts, and methods for producing the same
WO2004046405A1 (en) Steel for spring being improved in quenching characteristics and resistance to pitting corrosion
JP3256118B2 (en) Ultra-high heat input welding High-strength steel for welding with excellent heat-affected zone toughness
JP5353161B2 (en) High strength spring steel with excellent delayed fracture resistance and method for producing the same
JP6798557B2 (en) steel
JP4031068B2 (en) High strength steel for bolts with excellent hydrogen embrittlement resistance
JP4280123B2 (en) Spring steel with excellent corrosion fatigue resistance
JP4267126B2 (en) Steel material excellent in delayed fracture resistance and method for producing the same
US20070039418A1 (en) Method for producing steel ingot
JP2012017484A (en) Steel for bolt, bolt, and method for production of the bolt
EP3633060B1 (en) Steel plate and method of manufacturing the same
JPH1180903A (en) High strength steel member excellent in delayed fracture characteristic, and its production
JP3251648B2 (en) Precipitation hardening type martensitic stainless steel and method for producing the same
JP2019173160A (en) Low alloy steel excellent in hydrogen embrittlement resistance
JP3581028B2 (en) Hot work tool steel and high temperature members made of the hot work tool steel
JP3153071B2 (en) High-strength steel rod excellent in delayed fracture resistance and method of manufacturing the same
JP4174221B2 (en) High strength steel excellent in delayed fracture resistance and method for producing the same
JPS5845360A (en) Low alloy steel with temper embrittlement resistance
JP6729265B2 (en) Low alloy steel
JP2007031746A (en) Steel for high strength bolt having excellent delayed fracture resistance, and high strength bolt
JP4465490B2 (en) Precipitation hardened ferritic heat resistant steel
JP6972722B2 (en) Low alloy steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4008391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees