JP3251648B2 - Precipitation hardening type martensitic stainless steel and method for producing the same - Google Patents

Precipitation hardening type martensitic stainless steel and method for producing the same

Info

Publication number
JP3251648B2
JP3251648B2 JP20980892A JP20980892A JP3251648B2 JP 3251648 B2 JP3251648 B2 JP 3251648B2 JP 20980892 A JP20980892 A JP 20980892A JP 20980892 A JP20980892 A JP 20980892A JP 3251648 B2 JP3251648 B2 JP 3251648B2
Authority
JP
Japan
Prior art keywords
weight
less
toughness
strength
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20980892A
Other languages
Japanese (ja)
Other versions
JPH0633195A (en
Inventor
美博 植松
武志 宇都宮
貞雄 廣津
誠一 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP20980892A priority Critical patent/JP3251648B2/en
Publication of JPH0633195A publication Critical patent/JPH0633195A/en
Application granted granted Critical
Publication of JP3251648B2 publication Critical patent/JP3251648B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、時効処理後に高強度を
発現し、且つ高い強度領域においても靭性に優れた析出
硬化型マルテンサイト系ステンレス鋼及びその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a precipitation hardening type martensitic stainless steel which exhibits high strength after aging treatment and has excellent toughness even in a high strength region, and a method for producing the same.

【0002】[0002]

【従来の技術】析出硬化型マルテンサイト系ステンレス
鋼は、時効処理前の硬さが低く、打ち抜き加工性や成形
加工性に優れている。他方、時効処理後を施した後で
は、析出硬化によって高強度を発現する。この特徴を活
用して、各種バネ,スチールベルト等として析出硬化型
マルテンサイト系ステンレス鋼が使用されている。
2. Description of the Related Art Precipitation hardening martensitic stainless steel has low hardness before aging treatment and is excellent in punching workability and forming workability. On the other hand, after the aging treatment, high strength is exhibited by precipitation hardening. Utilizing this feature, precipitation-hardening martensitic stainless steel is used as various springs, steel belts and the like.

【0003】本出願人も、この種の析出硬化型マルテン
サイト系ステンレス鋼として、高強度で且つ靭性に優れ
たスチールベルト用材料を特公昭59−49303号と
して紹介した。ここで紹介した析出硬化型マルテンサイ
ト系ステンレス鋼においては、溶体化処理状態や溶接後
の熱影響部に多量のオーステナイト相が残留しないよう
にC,Ti,Mn,Ni,Cr,Cu及びAlの間で成
分調整を図っている。これにより、特に溶接部のマルテ
ンサイト化を促進させ、時効処理による強度向上を図っ
ている。
The present applicant has also introduced a steel belt material having high strength and excellent toughness as this kind of precipitation hardening martensitic stainless steel as Japanese Patent Publication No. 59-49303. In the precipitation hardening type martensitic stainless steel introduced here, C, Ti, Mn, Ni, Cr, Cu and Al are added so that a large amount of austenite phase does not remain in the solution-treated state or the heat-affected zone after welding. The components are adjusted between them. This promotes the formation of martensite particularly in the welded portion, and improves the strength by aging treatment.

【0004】[0004]

【発明が解決しようとする課題】特公昭59−4930
3号で紹介した析出硬化型マルテンサイト系ステンレス
鋼は、強度の面で要求特性を満足するものの、スチール
ベルト等として過酷な使用雰囲気に曝されると靭性が不
足する場合がある。析出硬化型マルテンサイト系ステン
レス鋼の靭性は、Mo添加によって向上させることがで
きる。しかし、使用分野が多岐にわたるに伴って、従来
よりも更に高い靭性が要求されるようになってきてい
る。このように高い靭性が要求される場合、単にMo添
加だけで要求特性を満足させることができない。
[Problems to be Solved by the Invention] Japanese Patent Publication No. 59-4930
The precipitation-hardened martensitic stainless steel introduced in No. 3 satisfies the required characteristics in terms of strength, but may have insufficient toughness when exposed to a severe use atmosphere as a steel belt or the like. The toughness of precipitation hardening martensitic stainless steel can be improved by adding Mo. However, as the fields of use have been diversified, higher toughness than before has been required. When such high toughness is required, the required characteristics cannot be satisfied only by adding Mo.

【0005】本発明は、このような問題を解消すべく案
出されたものであり、結晶粒が微細で且つ析出物の少な
い組織とすることにより、高強度化に起因して靭性の低
下を引き起こさない析出硬化型マルテンサイト系ステン
レス鋼を提供することを目的とする。
The present invention has been devised in order to solve such a problem, and has a structure in which the crystal grains are fine and the number of precipitates is small. It is an object of the present invention to provide a precipitation hardening type martensitic stainless steel that does not cause the precipitation hardening.

【0006】[0006]

【課題を解決するための手段】本発明の析出硬化型マル
テンサイト系ステンレス鋼は、その目的を達成するた
め、C:0.08重量%以下,Si:0.7〜2.5重
量%,Mn:3.0重量%以下,Ni:6.0〜10.
0重量%,Cr:10.0〜17.0重量%,Cu:
0.5〜2.0重量%,Mo:0.5〜3.0重量%,
Ti:0.15〜0.45重量%,N:0.015重量
%以下及びS:0.003重量%以下を含有し、残部が
Fe及び不可避的不純物からなる組成を有し、焼鈍後に
平均結晶粒径が25μm以下であり、マトリックスに析
出した粒径5×10-2μm以上の析出物が6×106
/mm2以下に抑えられている組織をもつことを特徴と
する。
The precipitation hardening type martensitic stainless steel of the present invention has a C content of 0.08% by weight or less, a Si content of 0.7 to 2.5% by weight, Mn: 3.0% by weight or less, Ni: 6.0 to 10.
0% by weight, Cr: 10.0 to 17.0% by weight, Cu:
0.5 to 2.0% by weight, Mo: 0.5 to 3.0% by weight,
Ti: 0.15 to 0.45% by weight, N: 0.015% by weight or less and S: 0.003% by weight or less, with the balance being Fe and unavoidable impurities. It is characterized by having a structure in which the crystal grain size is 25 μm or less and the precipitates having a grain size of 5 × 10 −2 μm or more deposited on the matrix are suppressed to 6 × 10 6 particles / mm 2 or less.

【0007】この析出硬化型マルテンサイト系ステンレ
ス鋼は、C:0.08重量%以下,Si:0.7〜2.
5重量%,Mn:3.0重量%以下,Ni:6.0〜1
0.0重量%,Cr:10.0〜17.0重量%,C
u:0.5〜2.0重量%,Mo:0.5〜3.0重量
%,Ti:0.15〜0.45重量%,N:0.015
重量%以下及びS:0.003重量%以下を含有し、残
部がFe及び不可避的不純物からなる組成を有する鋼を
溶体化処理した後、35%以上の冷間圧延を施し、次い
で980〜1130℃の温度に5分以下加熱する焼鈍を
施し、更に時効処理を行うことにより製造される。
The precipitation hardening type martensitic stainless steel has a C content of 0.08% by weight or less and a Si content of 0.7-2.
5% by weight, Mn: 3.0% by weight or less, Ni: 6.0 to 1
0.0% by weight, Cr: 10.0 to 17.0% by weight, C
u: 0.5 to 2.0% by weight, Mo: 0.5 to 3.0% by weight, Ti: 0.15 to 0.45% by weight, N: 0.015
% Of S and 0.003% by weight of S, the remainder having a composition comprising Fe and unavoidable impurities is subjected to a solution treatment, and then subjected to cold rolling of 35% or more, and then 980 to 1130. It is manufactured by performing annealing for heating at a temperature of 5 ° C. for 5 minutes or less and further performing aging treatment.

【0008】[0008]

【作 用】特開昭59−493030号公報で紹介した
マルテンサイト系ステンレス鋼について、更なる靭性の
向上を図るためには焼鈍時の再結晶によって結晶粒を微
細化させると共に、靭性低下の要因であるTiC等の析
出物をマトリックスに再固溶させる必要があると考え
た。この前提の下で、焼鈍後の結晶粒を平均粒径で25
μm以下とし、析出物の分布量を6×106 個/mm2
以下に抑えるとき、高い強度を維持しながら靭性の向上
が図られることが実験的に確認された。
[Operation] In order to further improve the toughness of the martensitic stainless steel introduced in Japanese Patent Application Laid-Open No. 59-493030, in order to further improve the toughness, the crystal grains are refined by recrystallization at the time of annealing, and the factors of the toughness decrease It was considered necessary to re-dissolve precipitates such as TiC in the matrix. Under this assumption, the average grain size of the annealed crystal grains is 25%.
μm or less, and the distribution amount of precipitates is 6 × 10 6 particles / mm 2
It has been experimentally confirmed that when the content is suppressed to below, improvement in toughness is achieved while maintaining high strength.

【0009】結晶粒が細かく且つTiC等の析出が抑制
された組織は、特定された成分をもつマルテンサイト系
ステンレス鋼に高い圧延率で冷間圧延を施し、次いで9
80〜1130℃の温度域で焼鈍することによって得ら
れる。また、靭性は、疲労予亀裂を付けた試験片の常温
引張り試験における最大引張り応力で表される指標JM
に基づいて正確に評価することができる。JM 値が14
00N/mm2 以上のとき、焼鈍後の結晶粒が平均粒径
で25μm以下であり、析出物の分布量が6×106
/mm2 以下に抑えられた組織が得られている。
The structure in which the crystal grains are fine and the precipitation of TiC or the like is suppressed is obtained by subjecting a martensitic stainless steel having a specified component to cold rolling at a high rolling rate,
It is obtained by annealing in a temperature range of 80 to 1130 ° C. The toughness is an index J M represented by the maximum tensile stress in a room-temperature tensile test of a specimen with a fatigue pre-crack.
Can be accurately evaluated based on the J M value of 14
When it is not less than 00 N / mm 2, a structure is obtained in which the crystal grains after annealing have an average particle size of 25 μm or less, and the distribution of precipitates is suppressed to 6 × 10 6 / mm 2 or less.

【0010】以下、本発明の析出硬化型マルテンサイト
系ステンレス鋼に含まれる合金成分及びその含有量につ
いて説明する。 C: 鋼の強度を向上させ、且つ高温で生成するδフェ
ライト相を抑制する上で有効な元素である。しかし、C
含有量が多量になるに従って、焼入れにより生成したマ
ルテンサイト相の硬度が上昇し、冷間加工変形能が低下
する。その結果、成形加工性が不十分になると共に、溶
体化処理後の冷却でマルテンサイト単相組織を得ること
が困難になる。更に、焼鈍状態でTiCの生成を促進さ
せ、靭性を低下させる。したがって、本発明において
は、C含有量の上限を0.08重量%に規定した。
Hereinafter, the alloy components contained in the precipitation hardening martensitic stainless steel of the present invention and the contents thereof will be described. C: An element effective in improving the strength of steel and suppressing the δ ferrite phase generated at high temperatures. But C
As the content increases, the hardness of the martensite phase generated by quenching increases, and the cold work deformability decreases. As a result, the moldability becomes insufficient, and it becomes difficult to obtain a martensite single phase structure by cooling after the solution treatment. Further, it promotes the generation of TiC in the annealed state and lowers the toughness. Therefore, in the present invention, the upper limit of the C content is specified as 0.08% by weight.

【0011】Si: 固溶強化能が大きく、マトリック
スを強化する作用を呈する。また、Ti及びNiと複合
添加することによって、時効処理時にSi,Ti,Ni
等の元素からなる金属間化合物の微細整合析出が生じ、
鋼の強度を向上させる。このような作用は、Si含有量
が0.7重量%以上で顕著に現れる。しかし、2.5重
量%を超える多量のSiを含有させるとき、δフェライ
ト相の生成が助長され、強度及び靭性が低下する。した
がって、Si含有量は、0.7〜2.5重量%の範囲に
設定した。 Mn: 高温域でδフェライト相が生成することを抑制
する作用を呈する。しかし、多量のMn添加は、溶接部
の靭性低下や溶接作業性低下を引き起こし易い。そこ
で、本発明においては、Mn含有量の上限を3.0重量
%に規定した。
Si: It has a large solid solution strengthening ability and has an effect of strengthening the matrix. Moreover, by adding Ti and Ni in combination, Si, Ti, Ni
Fine consistent precipitation of intermetallic compounds consisting of elements such as
Improve the strength of steel. Such an effect appears remarkably when the Si content is 0.7% by weight or more. However, when a large amount of Si exceeding 2.5% by weight is contained, formation of a δ ferrite phase is promoted, and strength and toughness are reduced. Therefore, the Si content was set in the range of 0.7 to 2.5% by weight. Mn: exhibits an action of suppressing the formation of a δ ferrite phase in a high temperature range. However, the addition of a large amount of Mn tends to cause a decrease in toughness of a welded portion and a decrease in welding workability. Therefore, in the present invention, the upper limit of the Mn content is set to 3.0% by weight.

【0012】Ni: 析出硬化に寄与し、δフェライト
相の生成を抑制する。本発明の合金系においては、時効
硬化能を低下させず、高強度で且つ高靭性を維持するた
めに、最低6.0重量%のNi含有が必要である。しか
し、10.0重量%を超える多量のNiを含有させると
き、焼入れ以後の残留オーステナイト相の量が増加し、
必要とする強度が得られない。そこで、Ni含有量は、
6.0〜10.0重量%の範囲に設定した。 Cr: ステンレス鋼としての耐食性を得るため、少な
くとも10.0重量%以上のCrを含有させることが必
要である。しかし、17.0重量%を超える多量のCr
を含有させると、δフェライト相及び残留オーステナイ
ト相が生成し、溶接部の強度を低下させる原因となる。
そこで、Cr含有量は、10.0〜17.0重量%の範
囲に設定した。
Ni: contributes to precipitation hardening and suppresses the formation of a δ ferrite phase. In the alloy system of the present invention, in order to maintain high strength and high toughness without lowering the age hardening ability, it is necessary to contain at least 6.0% by weight of Ni. However, when a large amount of Ni exceeding 10.0% by weight is contained, the amount of the retained austenite phase after quenching increases,
The required strength cannot be obtained. Therefore, the Ni content is
It was set in the range of 6.0 to 10.0% by weight. Cr: In order to obtain corrosion resistance as stainless steel, it is necessary to contain at least 10.0% by weight or more of Cr. However, a large amount of Cr exceeding 17.0% by weight
, A δ ferrite phase and a residual austenite phase are formed, which causes a reduction in the strength of the welded portion.
Therefore, the Cr content was set in the range of 10.0 to 17.0% by weight.

【0013】Cu: 本発明の合金系においては、Cu
の析出強化作用を特に重視しなくても高い強度を得るこ
とができる。しかし、亜硫酸ガス系の腐食環境下におけ
る耐食性を確保するためにはCrの含有だけでは不十分
であり、この点でCuの添加が有効である。Cu含有量
が0.5重量%以上になると、耐食性の向上が顕著にな
る。しかし、2.0重量%を超えて多量のCuを含有さ
せるとき、熱間加工性が劣化し、加工された素材表面に
ひび割れ等の欠陥が発生することがある。また、多量の
Cu添加に伴って、高強度化した場合に靭性が低下する
傾向がみられる。そこで、0.5〜2.0重量%の範囲
にCu含有量を設定した。
Cu: In the alloy system of the present invention, Cu
A high strength can be obtained without particularly emphasizing the precipitation strengthening effect of. However, in order to ensure corrosion resistance in a corrosive environment of sulfur dioxide, it is not sufficient to contain Cr alone, and in this regard, the addition of Cu is effective. When the Cu content is 0.5% by weight or more, the improvement in corrosion resistance becomes remarkable. However, when a large amount of Cu is contained in excess of 2.0% by weight, hot workability is degraded, and defects such as cracks may be generated on the processed material surface. In addition, with the addition of a large amount of Cu, there is a tendency that toughness is reduced when the strength is increased. Therefore, the Cu content was set in the range of 0.5 to 2.0% by weight.

【0014】Mo: 強度及び靭性を向上させる上で、
有効な合金元素である。有効な硬化能を発現するために
は、0.5重量%以上のMoを含有させることが必要で
ある。しかし、3.0重量%を超えるMoを含有させて
も、Mo含有量の増加に見合った強度及び靭性の向上が
得られない。しかも、多量のMoを含有させると、δフ
ェライト相の生成が助長され、溶接部の強度が低下し易
くなる。そこで、Mo含有量は、0.5〜3.0重量%
の範囲に設定した。 Ti: 析出硬化に寄与する合金元素であり、高強度を
得るために0.15重量%以上のTiを含有させること
が必要である。しかし、0.45重量%を超えて多量の
Tiを含有させると、過度の析出硬化反応によって強度
の向上が図られるものの靭性の低下が生じる。そこで、
0.15〜0.45重量%の範囲にTi含有量を設定し
た。
Mo: In order to improve strength and toughness,
It is an effective alloying element. In order to exhibit effective curing ability, it is necessary to contain 0.5% by weight or more of Mo. However, even if Mo exceeds 3.0% by weight, improvement in strength and toughness commensurate with the increase in Mo content cannot be obtained. In addition, when a large amount of Mo is contained, the formation of the δ ferrite phase is promoted, and the strength of the welded portion is easily reduced. Therefore, the Mo content is 0.5 to 3.0% by weight.
Was set in the range. Ti: An alloy element that contributes to precipitation hardening, and it is necessary to contain 0.15% by weight or more of Ti in order to obtain high strength. However, if a large amount of Ti is contained in excess of 0.45% by weight, the strength is improved by an excessive precipitation hardening reaction, but the toughness is reduced. Therefore,
The Ti content was set in the range of 0.15 to 0.45% by weight.

【0015】N: Tiとの親和力が大きく、析出硬化
元素として働く有効TiをTiNの生成によって消費す
る。また、N含有量の増加に応じTiN介在物が大きく
なり、疲労強度や靭性を低下させる原因となる。したが
って、N含有量は低いほど好ましく、本発明においては
N含有量の上限を0.015重量%に規定した。 S: MnS等の非金属介在物として鋼中に存在し、疲
労強度,靭性,耐食性等に悪影響を与える。この点で、
S含有量は低いほど好ましく、上限を0.003重量%
に規定した。
N: Has a high affinity for Ti, and consumes effective Ti acting as a precipitation hardening element by producing TiN. In addition, TiN inclusions increase with an increase in the N content, which causes a reduction in fatigue strength and toughness. Therefore, the N content is preferably as low as possible. In the present invention, the upper limit of the N content is set to 0.015% by weight. S: Exists in steel as non-metallic inclusions such as MnS, and adversely affects fatigue strength, toughness, corrosion resistance, and the like. In this regard,
The lower the S content, the better, and the upper limit is 0.003% by weight.
Stipulated.

【0016】本発明で使用される鋼は、以上の化学成分
範囲で溶体化処理後に実質的にマルテンサイト単相組織
が生成するように成分調整される。この鋼の残部は、基
本的にはFeであるが、不可避的に混入する不純物を除
き、脱酸を目的として添加されたAl,脱硫を目的とし
て添加されたCa,希土類金属,熱間加工性を向上させ
るために添加された0.01重量%以下のB等を含有す
ることもできる。Alは、Tiと同様な作用を呈するの
で、Tiの一部を置換して0.45重量%以下の割合で
含有させても良い。本発明で規定された合金元素を含有
するステンレス鋼は、溶体化処理され、冷間圧延が施さ
れた後、焼鈍される。このとき、圧延率35%未満で冷
間圧延を行うと、焼鈍時に一部或いは全体に粗大な結晶
粒が発生する。粗大結晶粒に成長した組織をもつステン
レス鋼に時効処理を施すと、高強度化に伴って靭性が低
下する。
The steel used in the present invention is adjusted in composition so that a martensite single phase structure is substantially formed after solution treatment in the above range of chemical components. The balance of the steel is basically Fe, but Al is added for the purpose of deoxidation, Ca added for the purpose of desulfurization, rare earth metal, hot workability B or the like added in an amount of 0.01% by weight or less in order to improve the content. Since Al exhibits the same action as Ti, a part of Ti may be substituted and contained at a ratio of 0.45% by weight or less. The stainless steel containing the alloy element specified in the present invention is subjected to a solution treatment, subjected to cold rolling, and then annealed. At this time, if cold rolling is performed at a rolling reduction of less than 35%, coarse crystal grains are generated partially or entirely during annealing. When aging treatment is applied to stainless steel having a structure grown to coarse crystal grains, toughness decreases with increasing strength.

【0017】高強度を維持しながら高い靭性を確保する
ためには、焼鈍時に均一で微細な再結晶粒を生成させる
ことが必要である。焼鈍時に生成する再結晶粒を平均粒
径で25μm以下の細粒にするとき、JM 値で1400
N/mm2 以上の高い靭性が得られる。微細な組織を得
るためには、焼鈍に先立って行われる冷間加工により多
数の加工歪みを導入することが重要である。この点で、
圧延率35%以上の冷間加工を採用した。冷間圧延され
たステンレス鋼は、再結晶及び析出物固溶化のため、9
80〜1130℃の温度域で焼鈍される。1130℃を
超える高温で焼鈍すると、再結晶の成長が促進され、粗
大な再結晶粒が生成し易くなる。逆に980℃未満の焼
鈍温度では、鋼中に存在するTiC等の析出物がマトリ
ックスに十分に固溶せず、靭性低下の原因となる。この
点で、1000〜1100℃の温度域で焼鈍することが
好ましい。また、長時間をかけて焼鈍すると、再結晶粒
が粗大化し易い。そのため、焼鈍時間の上限を5分とし
た。
In order to ensure high toughness while maintaining high strength, it is necessary to generate uniform and fine recrystallized grains during annealing. When the recrystallized grains average particle size 25μm or less fine particles produced during annealing, 1400 in J M value
High toughness of N / mm 2 or more can be obtained. In order to obtain a fine structure, it is important to introduce a large number of working strains by cold working performed before annealing. In this regard,
Cold working with a rolling reduction of 35% or more was employed. The cold-rolled stainless steel is used for recrystallization and precipitation solubilization.
Anneal in the temperature range of 80 to 1130 ° C. When annealing at a high temperature exceeding 1130 ° C., the growth of recrystallization is promoted, and coarse recrystallized grains are easily generated. Conversely, if the annealing temperature is lower than 980 ° C., precipitates such as TiC present in the steel do not sufficiently dissolve in the matrix, causing a decrease in toughness. In this regard, it is preferable to perform annealing in a temperature range of 1000 to 1100 ° C. In addition, when annealing is performed for a long time, recrystallized grains are likely to become coarse. Therefore, the upper limit of the annealing time is set to 5 minutes.

【0018】焼鈍により、析出していたTiC等の大半
がマトリックスに固溶するものの、完全に析出物を固溶
させようとすると焼鈍温度を高くしたり、焼鈍時間を長
くすることが必要になる。その結果、再結晶粒が粗大化
し、強度低下を引き起こす。本発明者等の研究によると
き、焼鈍後に固溶せずに残留している析出物のうち、粒
径5×10-2μm以上の析出物を6×106 個/mm2
以下の分布割合に抑え、且つ平均粒径で25μm以下の
微細な結晶粒を維持することにより、時効処理後の強度
及び靭性の双方が改善されることが判明した。焼鈍され
たステンレス鋼は、必要に応じ調質圧延によって良好な
形状に成形される。形状特性を改善するためには、3%
以上の圧延率で調質圧延を行うことが好ましい。しか
し、調質圧延の圧延率を余り高くしても形状改善効果は
小さく、却って靭性を低下させることにもなる。したが
って、調質圧延は、圧延率3〜50%で行うことが好ま
しい。
Although most of the precipitated TiC and the like form a solid solution in the matrix by annealing, it is necessary to raise the annealing temperature or lengthen the annealing time in order to completely dissolve the precipitate. . As a result, the recrystallized grains become coarse, causing a decrease in strength. According to the study by the present inventors, among the precipitates remaining without solid solution after annealing, precipitates having a particle size of 5 × 10 −2 μm or more were found to be 6 × 10 6 / mm 2.
It has been found that both the strength and the toughness after the aging treatment are improved by suppressing the distribution ratio to the following range and maintaining fine crystal grains having an average particle size of 25 μm or less. The annealed stainless steel is formed into a good shape by temper rolling if necessary. 3% to improve shape characteristics
It is preferable to perform temper rolling at the above rolling ratio. However, even if the rolling reduction of the temper rolling is too high, the effect of improving the shape is small, and on the contrary, the toughness is reduced. Therefore, the temper rolling is preferably performed at a rolling rate of 3 to 50%.

【0019】本発明では、疲労予亀裂を付けた試験片の
切欠き引張り試験における最大応力JM により靭性を評
価している。JM 値は、従来の切欠き引張り試験に比較
して、合金元素,加工熱処理等の諸因子が靭性に与える
影響の詳細な調査を可能にする。このJM 値が1400
N/mm2 以上であると、前述した微細で析出物の少な
い組織が形成されており、強度及び靭性共に優れた材料
が得られる。焼鈍後のステンレス鋼は、適宜の調質圧延
を経て時効処理される。時効処理としては、一般的に析
出硬化型鋼で行われている425〜550℃で10分以
上加熱する熱処理が採用される。時効処理によって、高
強度が発現され、JM 値が1400N/mm2 以上の靭
性に優れた材料が得られる。
In the present invention, the toughness is evaluated by the maximum stress J M in a notch tensile test of a test piece with a fatigue pre-crack. The J M value enables a detailed investigation of the effects of various factors such as alloying elements and thermomechanical treatment on the toughness, as compared to conventional notch tensile tests. This J M value is 1400
When it is at least N / mm 2 , the above-mentioned microstructure with few precipitates is formed, and a material excellent in both strength and toughness can be obtained. The annealed stainless steel is subjected to aging treatment through appropriate temper rolling. As the aging treatment, a heat treatment generally performed on precipitation hardened steel at 425 to 550 ° C. for 10 minutes or more is adopted. By the aging treatment, a high strength material is obtained, and a material having a J M value of 1400 N / mm 2 or more and excellent toughness is obtained.

【0020】JM 値が1400N/mm2 以上であるこ
とから、引張り強さも少なくとも1400N/mm2
上になっている。たとえば、引張り強さが1650N/
mm2 程度であっても、JM 値が1400N/mm2
上であれば、相当に優れた靭性が得られる。しかし、1
400N/mm2 未満のJM 値では、靭性が急激に低下
する。すなわち、高強度の領域において高い靭性を得る
ためには、1400N/mm2 以上のJM 値が必要であ
る。
Since the J M value is 1400 N / mm 2 or more, the tensile strength is at least 1400 N / mm 2 or more. For example, the tensile strength is 1650N /
Even if it is about 2 mm, considerably excellent toughness can be obtained if the J M value is 1400 N / mm 2 or more. However, 1
At a J M value of less than 400 N / mm 2 , the toughness sharply decreases. That is, in order to obtain high toughness in a high strength region, a J M value of 1400 N / mm 2 or more is required.

【0021】[0021]

【実施例】【Example】

実施例1:表1に示した成分をもつ各ステンレス鋼につ
いて、100kgの鋼塊から熱間圧延を経て板厚6mm
の熱延板を製造した。熱延板を切削加工した後、圧延率
40%の冷間圧延及び1030℃に180秒加熱する焼
鈍を施し、更に15%の調質圧延により板厚2mmの鋼
帯に成形した。なお、表1におけるJ1〜J5は、本発
明の対象となる鋼である。他方、a〜cは比較鋼であ
り、Mo含有量又はCu含有量が本発明で規定した成分
範囲を外れている。
Example 1 For each of the stainless steels having the components shown in Table 1, a 100 kg ingot was subjected to hot rolling to a sheet thickness of 6 mm.
Was manufactured. After the hot-rolled sheet was cut, the sheet was subjected to cold rolling at a rolling ratio of 40%, annealing at 1030 ° C. for 180 seconds, and further temper rolling at 15% to form a steel strip having a thickness of 2 mm. In addition, J1 to J5 in Table 1 are steels to which the present invention is applied. On the other hand, a to c are comparative steels, and the Mo content or the Cu content is out of the component range specified in the present invention.

【表1】 [Table 1]

【0022】480℃に1時間加熱する時効処理を15
%調質圧延材に施した後、硬さ,引張り強さ,切欠き引
張り強さ,JM 値等の機械的性質を調べた。切欠き引張
り強さは、ASTM E338−81に準拠して従来と
同様な方法により測定した。JM 値の測定には、図1に
示す試験片1を使用した。試験片1は、長さ160mm
及び幅45mmの矩形状に成形し、それぞれの両端から
28mmの位置に直径16mmの円形孔2,3を穿設し
た。また、試験片1の中央部に直径4mmの中心孔4を
穿設し、中心孔4から幅方向に延びた長さ2.5mm及
び幅0.3mmのノッチ5,6を放電加工により切り込
んだ。そして、疲労試験機で長さ3.5mmの疲労予亀
裂7,8を導入した。この試験片1を切欠き引張り試験
にかけると、亀裂の発生及び進展抵抗が同時に評価され
る従来の切欠き引張り試験と異なり、亀裂の進展抵抗の
みが評価される。また、疲労予亀裂7,8への応力集中
度の方が高いことから、亀裂底における材料の靭性がよ
り厳しく評価される。
Aging treatment at 480 ° C. for 1 hour
After performing the% temper rolling material were examined hardness, tensile strength, notched tensile strength, the mechanical properties of J M value or the like. The notch tensile strength was measured by a method similar to the conventional method according to ASTM E338-81. The test piece 1 shown in FIG. 1 was used for measuring the J M value. Test piece 1 is 160 mm long
And formed into a rectangular shape having a width of 45 mm, and circular holes 2 and 3 having a diameter of 16 mm were formed at positions 28 mm from both ends. Further, a center hole 4 having a diameter of 4 mm was formed in the center of the test piece 1, and notches 5 and 6 having a length of 2.5 mm and a width of 0.3 mm extending in the width direction from the center hole 4 were cut by electric discharge machining. . Then, 3.5 mm long pre-fatigue cracks 7 and 8 were introduced by a fatigue tester. When the test piece 1 is subjected to a notch tensile test, unlike the conventional notch tensile test in which the crack generation and the propagation resistance are simultaneously evaluated, only the crack propagation resistance is evaluated. In addition, since the degree of stress concentration on the fatigue pre-cracks 7 and 8 is higher, the toughness of the material at the crack bottom is more strictly evaluated.

【0023】測定結果を、表2に示す。また、引張り強
さTSに対する切欠き引張り強さNTSの比NTS/T
S及びJM 値の比JM /TSを引張り強さTSで整理し
たところ、比率NTS/TS及びJM /TSと引張り強
さTSとの間に図2に示す関係が成立していることが判
った。なお、図2において、○印は比率NTS/TSを
示し、△印は比率JM /TSを示す。また、白抜きが本
発明の対象鋼,黒塗りが比較鋼である。本発明が対象と
する鋼は、表2及び図2に示されているように、強度面
では比較鋼と大差がない。また、従来の切欠き引張り試
験により靭性を評価するとき、本発明の対象鋼は、比較
鋼と同じ靭性レベルにある。しかし、JM 値で靭性を評
価するとき、本発明の対象鋼は、比較鋼よりも優れた靭
性を示し、亀裂に対して強い進展抵抗をもっていること
が判る。なお、鋼J1〜J5は、何れも従来の析出硬化
型鋼と同様な強度レベルにあり、従来のマルテンサイト
鋼の加工と同様な加工方法によって各種の加工を施すこ
とが可能である。
Table 2 shows the measurement results. Also, the ratio of the notch tensile strength NTS to the tensile strength TS, NTS / T
When the ratio J M / TS of the S and J M values is arranged by the tensile strength TS, the relationship shown in FIG. 2 is established between the ratios NTS / TS and J M / TS and the tensile strength TS. I understood. In FIG. 2, a circle indicates the ratio NTS / TS, and a triangle indicates the ratio J M / TS. In addition, the outline is the target steel of the present invention, and the black is the comparative steel. As shown in Table 2 and FIG. 2, the steel targeted by the present invention does not differ much in strength from the comparative steel. Further, when toughness is evaluated by a conventional notch tensile test, the target steel of the present invention is at the same toughness level as the comparative steel. However, when evaluating the toughness in J M value, the target steel of the present invention exhibits excellent toughness than the comparative steels, it is found that has a strong development resistance to cracking. The steels J1 to J5 are all at the same strength level as the conventional precipitation hardening type steel, and can be subjected to various processes by the same processing method as the conventional martensitic steel.

【表2】 [Table 2]

【0024】実施例2:表1に示した鋼J1の熱延板を
切削加工し、20〜60%の圧延率で冷間圧延した。次
いで、1030℃に3分加熱する焼鈍を行った後、圧延
率15%の調質圧延により板厚2mmの帯材を製造し
た。480℃に1時間加熱する時効処理を帯材に施し、
時効材の引張り強さ及びJM 値を測定した。測定結果を
焼鈍前の冷間圧延率で整理したところ、引張り強さTS
及びJM 値と冷間圧延率との間に図3に示す関係が成立
していた。図3から明らかなように、引張り強さTS
は、冷間圧延率が大きくなるに従って上昇する傾向を示
すが、それほど大きな変化はない。他方、JM 値は、冷
間圧延率35%を境として大きく変化している。冷間圧
延率が35%未満の試験片について、その組織を観察し
たところ、焼鈍時に結晶粒が大きく成長していることが
判明した。これに対し、冷間圧延率35%以上の試験片
では、結晶粒の成長が抑えられ、平均粒径で25μm以
下の微細な結晶組織をもっていた。このことから、焼鈍
前に35%以上の圧延率で冷間圧延を施すことが、JM
値を1400N/mm2 以上にし、時効処理後の強度及
び靭性を高いレベルにする上で有効であることが判る。
Example 2 A hot rolled sheet of steel J1 shown in Table 1 was cut and cold rolled at a rolling rate of 20 to 60%. Next, after annealing at 1030 ° C. for 3 minutes, a 2 mm-thick strip was manufactured by temper rolling at a rolling reduction of 15%. Apply aging treatment to 480 ° C for 1 hour on the strip,
The tensile strength and J M value aging material was measured. When the measurement results were arranged by the cold rolling reduction before annealing, the tensile strength TS
And the relationship shown in FIG. 3 between the J M value and the cold rolling rate was established. As is clear from FIG. 3, the tensile strength TS
Shows a tendency to increase as the cold rolling reduction increases, but there is no significant change. On the other hand, the J M value changes greatly at a cold rolling reduction of 35%. Observation of the structure of the test piece having a cold rolling reduction of less than 35% revealed that the crystal grains had grown greatly during annealing. On the other hand, in the test piece having a cold rolling reduction of 35% or more, the growth of crystal grains was suppressed, and the test piece had a fine crystal structure having an average particle size of 25 μm or less. Therefore, it is subjected to cold rolling at a rolling reduction of 35% or more before annealing, J M
It can be seen that the value is 1400 N / mm 2 or more, which is effective in increasing the strength and toughness after aging treatment to high levels.

【0025】実施例3:表1の鋼J1に対し、焼鈍温度
を950〜1150℃の範囲で変えながら3分加熱する
焼鈍を行った。その他は実施例1と同様な加工熱処理を
施した480℃時効材について、JM 値を測定した。測
定結果を焼鈍温度で整理したところ、JM 値と焼鈍温度
との間に図4に示す関係が成立していた。図4から明ら
かなように、980℃未満の低い焼鈍温度ではJM 値が
低くなっている。これは、析出物が十分に再固溶してい
ないことに起因するものと推察される。また、1130
℃を超える高い焼鈍温度では、結晶粒の成長が活発に行
われ、JM 値が低下している。これに対し、980〜1
130℃の温度域に焼鈍温度を維持したものでは、14
00N/mm2 を超える高いJM 値が得られている。こ
のことから、強度及び靭性の双方共に優れた材質とする
ためには、980〜1130℃の温度域で焼鈍を行う必
要があることが判る。
Example 3 Steel J1 in Table 1 was annealed by heating for 3 minutes while changing the annealing temperature in the range of 950 to 1150 ° C. Other about 480 ° C. aged material was subjected to the same machining heat treatment as in Example 1, was measured J M value. The measurement results were organized in annealing temperature, the relationship shown in FIG. 4 between the J M value and the annealing temperature was established. As is clear from FIG. 4, the J M value is low at a low annealing temperature of less than 980 ° C. This is presumed to be due to the fact that the precipitate was not sufficiently re-dissolved. Also, 1130
At a high annealing temperature exceeding ℃, the crystal grains grow actively, and the J M value decreases. In contrast, 980-1
In the case where the annealing temperature is maintained in the temperature range of 130 ° C., 14
A high J M value exceeding 00 N / mm 2 is obtained. From this, it can be seen that it is necessary to perform annealing in a temperature range of 980 to 1130 ° C. in order to make the material excellent in both strength and toughness.

【0026】実施例4:表1に示した鋼J1の熱延板に
切削加工,冷間圧延,焼鈍を順次施した後、圧延率15
%の調質圧延により板厚2mmの帯材を製造した。48
0℃に1時間加熱する時効処理を帯材に施し、時効材の
引張り強さ及びJM 値を測定した。このとき、圧延率及
び焼鈍温度を種々変更することによって、焼鈍後の組織
における再結晶粒の平均結晶粒径及び析出物の分布量を
調整した。測定結果を焼鈍後の結晶粒径及び析出物分布
量で整理したところ、引張り強さTS及びJM 値と結晶
粒径及び析出物分布量との間にそれぞれ図5及び図6に
示す関係が成立していた。なお、析出物分布量は、非水
溶媒系電解液を用いて母相を数μm溶解し、母相上に残
存した析出物について、2万倍の視野で検出可能な析出
物の個数をカウントし、単位面積当りの平均個数(個/
mm2)で表した。析出物はTiC,Ti422 等か
らなり、この視野では粒径5×10-2μm以上の析出物
が観察された。
Example 4 A hot-rolled sheet of steel J1 shown in Table 1 was sequentially subjected to cutting, cold rolling and annealing, and then a rolling reduction of 15
% To produce a strip having a thickness of 2 mm. 48
An aging treatment of heating to 0 ° C. for 1 hour was applied to the strip, and the tensile strength and J M value of the aging material were measured. At this time, the average crystal grain size of recrystallized grains and the distribution of precipitates in the structure after annealing were adjusted by variously changing the rolling reduction and the annealing temperature. When the measurement results are arranged by the crystal grain size and the precipitate distribution amount after annealing, the relationship shown in FIGS. 5 and 6 between the tensile strength TS and J M value and the crystal grain size and the precipitate distribution amount respectively is shown. It was established. The amount of precipitate distribution was determined by dissolving the mother phase several μm using a non-aqueous solvent-based electrolyte and counting the number of precipitates remaining on the mother phase that could be detected in a 20,000-fold field of view. And the average number per unit area (pcs /
mm 2 ). Precipitates consist of TiC, Ti 4 C 2 S 2, etc., and precipitates having a particle size of 5 × 10 −2 μm or more were observed in this visual field.

【0027】図5から明らかなように、引張り強さ及び
M 値共に、平均結晶粒径が大きくなるに従って低下す
る傾向を示した。引張り強さの低下度はごく僅かである
が、JM 値は平均結晶粒径が25μmを超えると大きく
低下した。また、引張り強さは、図6に示すように析出
物の分布量が増加するに伴って若干低下する傾向を示し
た。一方、JM 値は、析出物分布量6×106 個/mm
2 を境として急激に低下した。このことから、引張り強
さを高レベルに維持した状態でJM 値が1400N/m
2 以上の優れた靭性を付与するためには、焼鈍後の平
均結晶粒径を25μm以下にし且つ析出物分布量を6×
106 個/mm2 以下に抑えることが有効であることが
判る。すなわち、同じ成分をもつステンレス鋼であって
も、冷間圧延によって導入される応力歪みの量及び焼鈍
により解放される歪みや再結晶の成長度を調整すること
により、高強度で且つ靭性に優れた析出硬化型マルテン
サイト系ステンレス鋼が得られる。
[0027] As apparent from FIG. 5, the tensile strength and J M value both showed a tendency to decrease according to the average grain diameter increases. Although the degree of degradation of the tensile strength is negligible, J M value was greatly reduced when the average crystal grain size exceeds 25 [mu] m. In addition, as shown in FIG. 6, the tensile strength showed a tendency to slightly decrease as the amount of distribution of the precipitate increased. On the other hand, the J M value was determined to be 6 × 10 6 precipitates / mm.
It dropped sharply after 2 . From this, the J M value was 1400 N / m while maintaining the tensile strength at a high level.
In order to impart excellent toughness of at least m 2 , the average crystal grain size after annealing should be 25 μm or less and the amount of precipitate distribution should be 6 ×
It turns out that it is effective to suppress the number to 10 6 pieces / mm 2 or less. That is, even with stainless steel having the same composition, by adjusting the amount of stress strain introduced by cold rolling and the strain released by annealing and the growth rate of recrystallization, high strength and excellent toughness are obtained. Thus, a precipitation-hardened martensitic stainless steel is obtained.

【0028】[0028]

【発明の効果】以上に説明したように、本発明において
は、C,Si,Mn,Ni,Cr,Cu,Mo,Ti等
の成分調整を図ると共に、焼鈍後の組織における結晶粒
の平均粒径及び析出物分布量を調整している。これによ
り、高強度を維持しつつ、従来よりも更に靭性を向上さ
せた材料が得られる。しかも、従来と同等の製造コスト
で、性質改善を行うことができる。得られた析出硬化型
マルテンサイト系ステンレス鋼は、従来鋼と同等の強度
や耐食性が要求され、更に高い靭性が要求される各種バ
ネ,スチールベルト,その他の構造材料として使用され
る。
As described above, according to the present invention, the composition of C, Si, Mn, Ni, Cr, Cu, Mo, Ti and the like is adjusted, and the average grain size of the crystal structure after annealing is obtained. The diameter and the amount of precipitate distribution are adjusted. As a result, a material having higher toughness than before can be obtained while maintaining high strength. In addition, the properties can be improved at the same manufacturing cost as the conventional one. The obtained precipitation-hardened martensitic stainless steel is required to have the same strength and corrosion resistance as conventional steels, and is used as various structural materials, such as springs, steel belts, and the like, which require higher toughness.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 靭性を評価する指標JM 値の測定に使用した
試験片
Fig. 1 Specimen used to measure the index J M value for evaluating toughness

【図2】 引張り強さTSに対する切欠き引張り強さN
TSの比率NTS/TS及びJM 値の比率JM /TSと
引張り強さTSとの関係を表したグラフ
FIG. 2 Notch tensile strength N with respect to tensile strength TS
Graph showing the relationship between TS ratio NTS / TS and J M value of the ratio J M / TS tensile strength TS

【図3】 冷間圧延率が引張り強さTS及びJM 値に与
える影響を表したグラフ
FIG. 3 is a graph showing the effect of the cold rolling reduction on the tensile strength TS and J M value.

【図4】 焼鈍温度がJM 値に与える影響を表したグラ
FIG. 4 is a graph showing the effect of annealing temperature on J M value.

【図5】 焼鈍後の平均結晶粒径が引張り強さ及びJM
値に与える影響を表したグラフ
FIG. 5 shows that the average grain size after annealing is different from the tensile strength and J M
Graph showing the effect on values

【図6】 焼鈍後の析出物分布量が引張り強さ及びJM
値に与える影響を表したグラフ
FIG. 6 shows that the distribution of precipitates after annealing shows tensile strength and J M
Graph showing the effect on values

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大橋 誠一 山口県新南陽市野村南町4976番地 日新 製鋼株式会社鉄鋼研究所内 (56)参考文献 特開 昭60−36649(JP,A) 特開 昭60−36623(JP,A) 特開 昭63−171857(JP,A) 特開 昭60−152660(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 302 C21D 8/00 C21D 9/46 C22C 38/50 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Seiichi Ohashi 4976 Nomura Minami-cho, Shinnanyo-shi, Yamaguchi Pref. 60-36623 (JP, A) JP-A-63-171857 (JP, A) JP-A-60-152660 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38/00 302 C21D 8/00 C21D 9/46 C22C 38/50

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C:0.08重量%以下,Si:0.7
〜2.5重量%,Mn:3.0重量%以下,Ni:6.
0〜10.0重量%,Cr:10.0〜17.0重量
%,Cu:0.5〜2.0重量%,Mo:0.5〜3.
0重量%,Ti:0.15〜0.45重量%,N:0.
015重量%以下及びS:0.003重量%以下を含有
し、残部がFe及び不可避的不純物からなる組成を有
し、焼鈍後に平均結晶粒径が25μm以下であり、マト
リックスに析出した粒径5×10-2μm以上の析出物が
6×106個/mm2以下に抑えられている組織をもつこ
とを特徴とする強度及び靭性に優れた析出硬化型マルテ
ンサイト系ステンレス鋼。
C: 0.08% by weight or less, Si: 0.7
-2.5 wt%, Mn: 3.0 wt% or less, Ni: 6.
0 to 10.0% by weight, Cr: 10.0 to 17.0% by weight, Cu: 0.5 to 2.0% by weight, Mo: 0.5 to 3.0%.
0% by weight, Ti: 0.15 to 0.45% by weight, N: 0.
015% by weight or less and S: 0.003% by weight or less, with the balance being Fe and unavoidable impurities.
And that the average crystal grain size after annealing is 25 μm or less, and that the precipitates having a grain size of 5 × 10 −2 μm or more precipitated in the matrix are suppressed to 6 × 10 6 grains / mm 2 or less. A precipitation-hardening martensitic stainless steel with excellent strength and toughness.
【請求項2】 C:0.08重量%以下,Si:0.7
〜2.5重量%,Mn:3.0重量%以下,Ni:6.
0〜10.0重量%,Cr:10.0〜17.0重量
%,Cu:0.5〜2.0重量%,Mo:0.5〜3.
0重量%,Ti:0.15〜0.45重量%,N:0.
015重量%以下及びS:0.003重量%以下を含有
し、残部がFe及び不可避的不純物からなる組成を有
る鋼を溶体化処理した後、35%以上の冷間圧延を施
し、次いで980〜1130℃の温度に5分以下加熱す
る焼鈍を施し、更に時効処理を行うことを特徴とする強
度及び靭性に優れた析出硬化型マルテンサイト系ステン
レス鋼の製造方法。
2. C: 0.08% by weight or less, Si: 0.7
-2.5 wt%, Mn: 3.0 wt% or less, Ni: 6.
0 to 10.0% by weight, Cr: 10.0 to 17.0% by weight, Cu: 0.5 to 2.0% by weight, Mo: 0.5 to 3.0%.
0% by weight, Ti: 0.15 to 0.45% by weight, N: 0.
015% by weight or less and S: 0.003% by weight or less
And, after the balance has been subjected to solution treatment the <br/> Ru steel to have a composition consisting of Fe and unavoidable impurities, subjected to rolling of 35% or more of cold, then 5 minutes or less at a temperature of 980 to 1,130 ° C. heating A method for producing a precipitation-hardening martensitic stainless steel excellent in strength and toughness, characterized by performing annealing and further aging treatment.
JP20980892A 1992-07-14 1992-07-14 Precipitation hardening type martensitic stainless steel and method for producing the same Expired - Fee Related JP3251648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20980892A JP3251648B2 (en) 1992-07-14 1992-07-14 Precipitation hardening type martensitic stainless steel and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20980892A JP3251648B2 (en) 1992-07-14 1992-07-14 Precipitation hardening type martensitic stainless steel and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0633195A JPH0633195A (en) 1994-02-08
JP3251648B2 true JP3251648B2 (en) 2002-01-28

Family

ID=16578950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20980892A Expired - Fee Related JP3251648B2 (en) 1992-07-14 1992-07-14 Precipitation hardening type martensitic stainless steel and method for producing the same

Country Status (1)

Country Link
JP (1) JP3251648B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7842141B2 (en) 2002-06-19 2010-11-30 Jfe Steel Corporation Stainless-steel pipe for oil well and process for producing the same
US9982545B2 (en) 2004-12-08 2018-05-29 Mitsubishi Hitachi Power Systems, Ltd. Precipitation hardened martensitic stainless steel, manufacturing method therefor, and turbine moving blade and steam turbine using the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3006926B2 (en) * 1991-09-04 2000-02-07 協和醗酵工業株式会社 Method for producing L-threonine by fermentation method
JP2001131713A (en) * 1999-11-05 2001-05-15 Nisshin Steel Co Ltd Ti-CONTAINING ULTRAHIGH STRENGTH METASTABLE AUSTENITIC STAINLESS STEEL AND PRODUCING METHOD THEREFOR
US20060065327A1 (en) * 2003-02-07 2006-03-30 Advance Steel Technology Fine-grained martensitic stainless steel and method thereof
JP5100144B2 (en) * 2007-02-08 2012-12-19 日新製鋼株式会社 Steel plate for spring, spring material using the same, and manufacturing method thereof
JP6572802B2 (en) * 2016-03-04 2019-09-11 日鉄ステンレス株式会社 Precipitation hardening type martensitic stainless steel sheet for steel belt and manufacturing method
CN116024496A (en) * 2022-12-22 2023-04-28 敦化市拜特科技有限公司 Stainless steel strip and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7842141B2 (en) 2002-06-19 2010-11-30 Jfe Steel Corporation Stainless-steel pipe for oil well and process for producing the same
US9982545B2 (en) 2004-12-08 2018-05-29 Mitsubishi Hitachi Power Systems, Ltd. Precipitation hardened martensitic stainless steel, manufacturing method therefor, and turbine moving blade and steam turbine using the same

Also Published As

Publication number Publication date
JPH0633195A (en) 1994-02-08

Similar Documents

Publication Publication Date Title
KR100205141B1 (en) Austenitic stainless steel
JP6683294B1 (en) Steel plate and enamel products
RU2733612C2 (en) Steel, product made from such steel, and method of its production
EP1118687B1 (en) High-strength, high-toughness martensitic stainless steel sheet, method of inhibiting cold-rolled steel sheet edge cracking, and method of producing the steel sheet
WO2017043660A1 (en) Steel sheet and enameled product
KR20190072517A (en) Steel
JP6723210B2 (en) Nickel-based alloy
CN111727269B (en) Martensitic stainless steel sheet, method for producing same, and spring member
JP5543814B2 (en) Steel plate for heat treatment and method for producing steel member
TWI758184B (en) Vostian iron-based stainless steel material, method for producing the same, and leaf spring
JP3255296B2 (en) High-strength steel for spring and method of manufacturing the same
JP2012188747A (en) Forged steel material for nuclear power generation devices, and welded structure for nuclear power generation devices
JP6798557B2 (en) steel
JP3251648B2 (en) Precipitation hardening type martensitic stainless steel and method for producing the same
EP1302556A1 (en) Stainless steel sheet product good of delayed fracture-strength and manufacturing method thereof
JP4867638B2 (en) High-strength bolts with excellent delayed fracture resistance and corrosion resistance
JP2826819B2 (en) Method for producing high-strength stainless steel with excellent workability and no welding softening
JPH11256282A (en) Precipitation hardening martensitic stainless steel excellent in strength, toughness, and fatigue characteristic, and its production
JP2022064692A (en) Austenitic stainless steel and method for producing austenitic stainless steel
TWI773346B (en) Vostian iron-based stainless steel material, method for producing the same, and leaf spring
JP3378346B2 (en) Precipitation-hardened martensitic stainless steel with excellent strength and toughness
WO2023153185A1 (en) Austenitic stainless steel and method for producing austenitic stainless steel
JP7401826B2 (en) Steel plate and method for manufacturing steel plate
WO2022153790A1 (en) Martensite-based stainless steel material and method for producing same
JP7464832B2 (en) Bolts and bolt steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees