JP3256118B2 - Ultra-high heat input welding High-strength steel for welding with excellent heat-affected zone toughness - Google Patents

Ultra-high heat input welding High-strength steel for welding with excellent heat-affected zone toughness

Info

Publication number
JP3256118B2
JP3256118B2 JP34437695A JP34437695A JP3256118B2 JP 3256118 B2 JP3256118 B2 JP 3256118B2 JP 34437695 A JP34437695 A JP 34437695A JP 34437695 A JP34437695 A JP 34437695A JP 3256118 B2 JP3256118 B2 JP 3256118B2
Authority
JP
Japan
Prior art keywords
welding
heat input
steel
haz
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34437695A
Other languages
Japanese (ja)
Other versions
JPH09157787A (en
Inventor
周二 粟飯原
龍治 植森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP34437695A priority Critical patent/JP3256118B2/en
Publication of JPH09157787A publication Critical patent/JPH09157787A/en
Application granted granted Critical
Publication of JP3256118B2 publication Critical patent/JP3256118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高層建築のボックス
柱の組み立てで適用されるエレクトロスラグ溶接などの
超大入熱溶接における熱影響部(以下、HAZと称す
る)靱性に優れた溶接用高張力鋼に関するものである。
特に、入熱が500kJ/cm以上で、例えば、150
0kJ/cm程度でも優れたHAZ靱性を有するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength steel for heat-affected zone (hereinafter referred to as HAZ) toughness in ultra-high heat input welding such as electroslag welding applied to assembling box columns of a high-rise building. It is about.
Particularly, when the heat input is 500 kJ / cm or more, for example, 150 kJ / cm.
It has excellent HAZ toughness even at about 0 kJ / cm.

【0002】[0002]

【従来の技術】最近の建築構造物の高層化に伴い、鋼製
柱が大型化し、これに使用される鋼材の板厚も増してき
た。このような大型の鋼製柱を溶接で組み立てる際に、
高能率で溶接することが必要であり、極厚鋼板を1パス
で溶接できるエレクトロスラグ溶接が広く適用されるよ
うになってきている。典型的な入熱の範囲は500〜1
500kJ/cmであり、このような超大入熱溶接では
造船などで使用されるサブマージアーク溶接などの大入
熱溶接(入熱は100〜200kJ/cm)とは異な
り、HAZが受ける熱履歴において1350℃以上の高
温滞留時間が極めて長くなり、オーステナイト粒の粗大
化が極めて顕著であり、HAZの靱性を確保することが
困難であった。最近の大地震を契機として建築構造物の
信頼性確保が急務の課題であり、このような超大入熱溶
接HAZ部の靱性向上を達成することは極めて重要な課
題である。
2. Description of the Related Art With the recent increase in the height of building structures, steel columns have become larger and the thickness of steel materials used for the columns has also increased. When assembling such large steel columns by welding,
It is necessary to perform welding with high efficiency, and electroslag welding, which can weld extremely thick steel plates in one pass, has been widely applied. Typical heat input range is 500-1
In such a super large heat input welding, unlike a large heat input welding such as a submerged arc welding (heat input is 100 to 200 kJ / cm) used in shipbuilding or the like, the heat history received by the HAZ is 1350. The high-temperature residence time at a temperature of not less than ℃ was extremely long, and the coarsening of austenite grains was extremely remarkable, and it was difficult to secure the toughness of HAZ. It is an urgent task to secure the reliability of the building structure in response to the recent large earthquake, and it is extremely important to achieve such improvement in the toughness of the super-large heat input welding HAZ.

【0003】従来から大入熱溶接HAZ靱性向上に関し
ては以下に示すように多くの知見・技術があるが、上記
のとおり超大入熱溶接と大入熱溶接とではHAZが受け
る熱履歴が大きく異なるために、大入熱溶接HAZ靱性
向上技術を単純に本発明の対象分野に適用することはで
きない。
[0003] Conventionally, there are many knowledge and techniques for improving the HAZ toughness of large heat input welding, as described below. However, as described above, the heat histories of the HAZ greatly differ between ultra-high heat input welding and large heat input welding. Therefore, the technology for improving the HAZ toughness of the high heat input welding cannot be simply applied to the target field of the present invention.

【0004】従来の大入熱溶接HAZ靱性向上は大きく
分類すると主に二つの基本技術に基づいたものであっ
た。その一つは鋼中粒子によるピン止め効果を利用した
オーステナイト粒粗大化防止技術であり、他の一つはオ
ーステナイト粒内フェライト変態利用による有効結晶粒
微細化技術である。
[0004] The conventional high heat input welding HAZ toughness improvement is largely based on two basic technologies. One is a technique for preventing austenite grain coarsening using the pinning effect of particles in steel, and the other is an effective grain refinement technique using ferrite transformation in austenite grains.

【0005】鉄と鋼、第61年(1975)第11号、
第68頁には、各種の鋼中窒化物・炭化物についてオー
ステナイト粒成長抑制効果を検討し、Tiを添加した鋼
ではTiNの微細粒子が鋼中に生成し、大入熱溶接HA
Zにおけるオーステナイト粒成長を効果的に抑制する技
術が示されている。
Iron and steel, No. 11, 1975 (1975)
On page 68, the effect of suppressing austenite grain growth on various types of nitrides and carbides in steel was examined. In the case of Ti-added steel, fine particles of TiN were formed in the steel.
A technique for effectively suppressing austenite grain growth in Z is disclosed.

【0006】特開昭60−184663号公報には、A
lを0.04〜0.10%、Tiを0.002〜0.0
2%,さらに、希土類元素(REM)を0.003〜
0.05%含有する鋼において、入熱が150kJ/c
mの大入熱溶接HAZ靱性を向上させる技術が開示され
ている。これは、REMが硫・酸化物を形成して大入熱
溶接時にHAZ部の粗粒化を防止する作用を有するため
である。
[0006] Japanese Patent Application Laid-Open No. 60-184663 discloses A
1 to 0.04 to 0.10%, Ti to 0.002 to 0.0
2%, and 0.003 to rare earth element (REM)
Heat input of 150 kJ / c in steel containing 0.05%
A technique for improving the high heat input welding HAZ toughness of m is disclosed. This is because the REM has an action of forming sulfur / oxide and preventing the HAZ portion from coarsening during large heat input welding.

【0007】特開昭60−245768号公報には、粒
子径が0.1〜3.0μm、粒子数が5×103〜1×
107ケ/mm3のTi酸化物、あるいはTi酸化物とT
i窒化物との複合体のいずれかを含有する鋼では、入熱
が100kJ/cmの大入熱溶接HAZ内でこれら粒子
がフェライト変態核として作用することによりHAZ組
織が微細化してHAZ靱性を向上できる技術が開示され
ている。
Japanese Patent Application Laid-Open No. 60-245768 discloses that the particle size is 0.1 to 3.0 μm and the number of particles is 5 × 10 3 to 1 ×.
10 7 / mm 3 of Ti oxide, or Ti oxide and T
In steels containing any of the composites with i-nitrides, these particles act as ferrite transformation nuclei in a large heat input welding HAZ with a heat input of 100 kJ / cm, thereby miniaturizing the HAZ structure and improving HAZ toughness. Techniques that can be improved are disclosed.

【0008】特願平2−254118号公報には、Ti
とSを適量含有する鋼において大入熱溶接HAZ組織中
にTiNとMnSの複合析出物を核として粒内フェライ
トが生成し、HAZ組織を微細化することによりHAZ
靱性の向上が図れる技術が開示されている。
[0008] Japanese Patent Application No. 2-254118 discloses Ti
In a steel containing a proper amount of S and S, intragranular ferrite is formed in the large heat input welding HAZ structure by using a composite precipitate of TiN and MnS as a nucleus, and the HAZ structure is refined.
A technique that can improve toughness is disclosed.

【0009】特開昭61−253344号公報には、A
lを0.005〜0.08%、Bを0.0003〜0.
0050%含み、さらに、Ti、Ca、REMのうち少
なくとも1種以上を0.03%以下含む鋼は大入熱溶接
HAZで未溶解のREM・Caの酸化・硫化物あるいは
TiNを起点として冷却過程でBNを形成し、これから
フェライトが生成することにより大入熱HAZ靱性が向
上する技術が開示されている。
Japanese Patent Application Laid-Open No. 61-253344 discloses A
1 is 0.005 to 0.08%, and B is 0.0003 to 0.
Steel containing at least 0050% and at least 0.03% of at least one of Ti, Ca and REM is subjected to a cooling process starting from unmelted REM / Ca oxide / sulfide or TiN in the large heat input welding HAZ. A technique is disclosed in which a high heat input HAZ toughness is improved by forming BN from the ferrite and forming ferrite from the BN.

【0010】鉄と鋼、第61年(1975)第11号、
第68頁に開示されている技術はTiNをはじめとする
窒化物を利用してオーステナイト粒成長抑制を図るもの
であり、大入熱溶接では効果が発揮されるが、本発明が
対象とする超大入熱溶接では1350℃以上の滞留時間
が極めて長いために、ほとんどのTiNは固溶し、粒成
長の効果を失う。従って、この技術を本発明が目的とす
る超大入熱溶接HAZの靱性には適用できない。
[0010] Iron and steel, No. 11, 1975
The technique disclosed on page 68 is intended to suppress austenite grain growth by using nitrides such as TiN, and is effective in large heat input welding. In heat input welding, since the residence time at 1350 ° C. or more is extremely long, most of TiN forms a solid solution and loses the effect of grain growth. Therefore, this technique cannot be applied to the toughness of the ultra-high heat input welding HAZ intended by the present invention.

【0011】特開昭60−184663号公報に開示さ
れた技術はREMの硫化物と酸化物の複合体(以下硫・
酸化物と称す)を利用して大入熱溶接時にHAZ部の粗
粒化を防止するものである。硫・酸化物は窒化物に比べ
て1350℃以上の高温における安定性は高いので、粒
成長抑制効果は維持される。しかしながら、硫・酸化物
を微細に分散させることは困難である。硫・酸化物密度
が低いために、個々の粒子のピン止め効果は維持される
としても超大入熱溶接HAZのオーステナイト粒径を小
さくすることには限度があり、これだけで靱性向上をは
かることはできない。
The technique disclosed in Japanese Patent Application Laid-Open No. 60-184661 is a composite of a sulfide and an oxide of REM (hereinafter referred to as sulfuric acid).
Oxide) is used to prevent coarsening of the HAZ during large heat input welding. Sulfur / oxide has a higher stability at a high temperature of 1350 ° C. or higher than nitride, so that the effect of suppressing grain growth is maintained. However, it is difficult to finely disperse sulfur oxides. Due to the low sulfur and oxide density, even if the pinning effect of individual particles is maintained, there is a limit to reducing the austenite particle size of the ultra-high heat input welded HAZ, and it is impossible to improve toughness by itself. Can not.

【0012】特開昭60−245768号公報に記載さ
れた技術はTi酸化物、あるいはTi酸化物とTi窒化
物との複合体のいずれかの粒子がフェライト変態核とし
て作用することによりHAZ組織を微細化させてHAZ
靱性を向上させるものであり、Ti酸化物の高温安定性
を考慮すると超大入熱溶接においてもその効果は維持さ
れる。しかしながら、粒内変態核から生成するフェライ
トの結晶方位は全くランダムというわけではなく、母相
オーステナイトの結晶方位の影響を受ける。従って、超
大入熱溶接HAZではオーステナイト粒が粗大化する場
合には粒内変態だけでHAZ組織を微細化することには
限度がある。
The technique described in Japanese Patent Application Laid-Open No. 60-245768 discloses a method in which a HAZ structure is formed by particles of either Ti oxide or a composite of Ti oxide and Ti nitride acting as ferrite transformation nuclei. HAZ
It improves toughness, and its effect is maintained even in ultra-high heat input welding in consideration of the high-temperature stability of Ti oxide. However, the crystal orientation of ferrite generated from the intragranular transformation nucleus is not completely random, and is affected by the crystal orientation of the parent phase austenite. Therefore, in the case of ultra-high heat input welding HAZ, when austenite grains become coarse, there is a limit to making the HAZ structure finer only by intragranular transformation.

【0013】特開平2−254118号公報に開示され
た技術は、TiN上にMnSを析出させた複合析出物か
らフェライトを変態させるものであり、大入熱溶接のよ
うに1350℃以上の滞留時間が比較的短い場合には効
果を発揮するが、超大入熱溶接においては1350℃以
上の滞留時間が長く、この間にTiNは固溶してしまう
ためにフェライト変態核が消失し、その効果が発揮でき
ない。
The technique disclosed in Japanese Patent Application Laid-Open No. 2-254118 is to transform ferrite from a composite precipitate obtained by depositing MnS on TiN, and has a residence time of 1350 ° C. or more as in large heat input welding. Is relatively short, but in ultra-high heat input welding, the residence time at 1350 ° C. or more is long, and during this time, TiN dissolves, so the ferrite transformation nuclei disappear and the effect is exhibited. Can not.

【0014】特開昭61−253344号公報に開示さ
れた技術は、REM・Caの酸化・硫化物あるいはTi
N上にBNを形成し、これからフェライトを生成させる
ことによりHAZ組織を微細化するものであり、超大入
熱溶接においても同様な効果は期待できる。しかしなが
ら、REM・Caの酸化・硫化物の個数を増加させるこ
とは困難であり、しかもTiNは固溶してフェライト生
成核としての作用を発揮できず、粒内フェライト変態だ
けでは超大入熱溶接HAZの靱性向上には限度がある。
The technique disclosed in Japanese Patent Application Laid-Open No. Sho 61-253344 discloses an oxide / sulfide of REM / Ca or Ti
BN is formed on N and ferrite is formed from the BN to refine the HAZ structure. Similar effects can be expected in ultra-high heat input welding. However, it is difficult to increase the number of oxides and sulfides of REM / Ca, and TiN cannot form a ferrite nucleus because it forms a solid solution. There is a limit to the improvement in toughness.

【0015】[0015]

【発明が解決しようとする課題】本発明は高層建築物の
ボックス柱の組み立てで適用されるエレクトロスラグ溶
接などの入熱が500kJ/cm以上の超大入熱溶接に
おけるHAZ靱性に優れた溶接用高張力鋼を提供するこ
とにある。
SUMMARY OF THE INVENTION The present invention relates to a welding head having excellent HAZ toughness in ultra-high heat input welding of 500 kJ / cm or more, such as electroslag welding, which is applied to assemble box columns of a high-rise building. It is to provide a tension steel.

【0016】[0016]

【課題を解決するための手段】本発明は、超大入熱溶接
HAZの靱性向上にはHAZ組織の微細化が必須であ
り、このためにはHAZのオーステナイト粒成長を抑制
するとともにオーステナイト粒内からのフェライト変態
を促進し、これら両者の相乗作用により有効結晶粒を微
細化することにより初めて可能であるとの結論に達し
た。
In order to improve the toughness of the ultra-high heat input welding HAZ, it is essential that the HAZ structure be refined. It has been concluded that this is possible only by promoting the ferrite transformation of and making the effective crystal grains fine by synergistic action of these two.

【0017】本発明の要旨は次のとおりである。 (1)A粒子径が0.01〜0.20μmのMg含有酸
化物を1平方mmあたり40,000〜100,000
個含み、且つ、粒子径が0.20〜5.0μmのTi含
有酸化物とMnSとからなる複合体を1平方mmあたり
20〜400個含む鋼であることを特徴とする超大入熱
溶接熱影響部の靱性に優れた溶接用高張力鋼。 (2)A重量%で、0.04≦ C≦0.20,0.0
2≦Si≦0.15,0.6 ≦Mn≦2.0,P≦
0.02,0.0020≦ S≦0.0060,Al≦
0.005,0.005≦Ti≦0.025,0.00
20≦ N≦0.0080,0.0002≦Mg≦0.
0030,0.0005≦ O≦0.0080,を含有
し、残部Feおよび不可避的不純物よりなる鋼であるこ
とを特徴とする上記(1)に記載の超大入熱溶接熱影響
部の靱性に優れた溶接用高張力鋼。 (3)A上記(2)の鋼に、更に重量%で、母材強度上
昇元素群、05≦Cu≦1.5,05≦Ni≦2.0,
02≦Cr≦1.0,02≦Mo≦1.0,005≦N
b≦0.05,005≦ V≦0.10,0004≦
B≦0.0040の1種または2種以上を含有せしめた
ことを特徴とする超大入熱溶接熱影響部の靱性に優れた
溶接用高張力鋼。
The gist of the present invention is as follows. (1) Mg-containing oxide having an A particle diameter of 0.01 to 0.20 μm is used in an amount of 40,000 to 100,000 per square mm.
A super-large heat input welding heat, characterized in that the steel contains 20 to 400 composites per square mm of a Ti-containing oxide and MnS having a particle diameter of 0.20 to 5.0 μm. High strength steel for welding with excellent toughness in the affected zone. (2) 0.04 ≦ C ≦ 0.20,0.0 in A weight%
2 ≦ Si ≦ 0.15,0.6 ≦ Mn ≦ 2.0, P ≦
0.02, 0.0020 ≦ S ≦ 0.0060, Al ≦
0.005, 0.005 ≦ Ti ≦ 0.025,0.00
20 ≦ N ≦ 0.0080, 0.0002 ≦ Mg ≦ 0.
030, 0.0005 ≦ O ≦ 0.0080, and the balance of Fe and inevitable impurities is excellent in the toughness of the heat-affected zone of the ultra-high heat input welding described in (1) above. High strength steel for welding. (3) A In addition to the steel of the above (2), a base metal strength increasing element group, 05 ≦ Cu ≦ 1.5, 05 ≦ Ni ≦ 2.0,
02 ≦ Cr ≦ 1.0, 02 ≦ Mo ≦ 1.0, 005 ≦ N
b ≦ 0.05,005 ≦ V ≦ 0.10,0004 ≦
High strength steel for welding excellent in toughness of a heat affected zone of a very large heat input weld, characterized in that one or two or more of B ≦ 0.0040 are contained.

【0018】ここで、Mg含有酸化物の個数は例えば1
400℃で20秒保持後、急冷した試料から抽出レプリ
カを採取し、透過型電子顕微鏡で測定する。また、Ti
含有酸化物とMnSとからなる複合体の個数は例えば1
400℃で20秒保持後、800℃〜500℃の冷却時
間を800秒で冷却した試料についてCMA分析装置に
より測定する。
Here, the number of Mg-containing oxides is, for example, 1
After holding at 400 ° C. for 20 seconds, an extraction replica is collected from the quenched sample and measured with a transmission electron microscope. Also, Ti
The number of composites composed of the contained oxide and MnS is, for example, 1
After holding at 400 ° C. for 20 seconds, a sample cooled at 800 ° C. to 500 ° C. for 800 seconds is measured by a CMA analyzer.

【0019】本発明者らは、超大入熱溶接HAZの組織
と靱性の関係に関する詳細な調査・研究を実施した結
果、従来の大入熱溶接HAZの組織制御または靱性向上
法をそのまま適用しても、超大入熱溶接HAZ靱性向上
は限られたものであり、複数の組織制御技術を組み合わ
せることにより初めて靱性向上が可能となることを知見
した。上記のとおり、HAZ靱性向上にはHAZの組織
微細化、すなわち、有効結晶粒の微細化が必須である。
有効結晶粒の微細化にはオーステナイト粒の微細化と粒
内フェライト変態利用によるオーステナイト粒内組織の
分断・微細化がある。超大入熱溶接では1350℃以上
の高温における滞留時間が極めて長いために、これら二
つの組織微細化技術を単独に用いたのでは十分な組織微
細化は得られず、両者を組み合わせることにより初めて
達成可能であるとの結論に達した。
The present inventors have conducted detailed investigations and studies on the relationship between the structure and toughness of the ultra-high heat input welding HAZ. As a result, the present inventors have applied the conventional method of controlling the structure or improving the toughness of the large heat input welding HAZ. However, it has been found that the improvement of the HAZ toughness of the ultra-high heat input welding is limited, and the toughness can be improved only by combining a plurality of microstructure control techniques. As described above, in order to improve the HAZ toughness, it is essential to refine the structure of the HAZ, that is, to refine the effective crystal grains.
The refinement of effective crystal grains includes refinement of austenite grains and fragmentation and refinement of the structure within austenite grains by utilizing intragranular ferrite transformation. In ultra-high heat input welding, the residence time at a high temperature of 1350 ° C or more is extremely long, so it is not possible to obtain sufficient structure refinement by using these two structure refinement techniques alone. We have come to the conclusion that it is possible.

【0020】まず、オーステナイト粒の微細化には鋼中
粒子によるピン止め効果を利用することが有効である
が、窒化物の中でも最も熱的に安定であるとされるTi
Nでも1350℃以上に長時間加熱されると溶解し、ピ
ン止め効果を失うために、超大入熱溶接には適用できな
い。従って、高温で安定である酸化物粒子の利用が必須
となる。しかしながら、従来技術のREMあるいはCa
酸化物(酸・硫化物も含む)では、超大入熱溶接HAZ
のオーステナイト粒粗大化抑制に十分な程度にこれら酸
化物を鋼中に微細分散させることは不可能である。本発
明者らは各種の酸化物について比較検討した。50kg
の真空溶解炉を用いてTiと他の脱酸元素による複合脱
酸を行って製造した鋼塊から鋼板を製造し、抽出レプリ
カ法により粒子の分布を調査した。ここで、超大入熱H
AZではピン止めに無効な窒化物の個数を除くために、
1400℃で20秒保持後急冷した試料について測定を
実施した。これによりピン止めに有効な粒子のみをカウ
ントできる。この測定方法により0.01〜0.20μ
mの酸化物系粒子の個数をカウントした。その結果を図
1に示す。Tiと複合してMgにより溶鋼を脱酸し、M
gを含有する酸化物を生成させることが最も粒子の微細
分散に有効であり、超大入熱溶接HAZのオーステナイ
ト粒粗大化を効果的に防止できることを知見するに至っ
た。TiとMgを複合して脱酸した場合に生成する0.
20μm以下の酸化物はMgを主体とする酸化物であ
る。Tiの単独脱酸ではピン止めに有効な微細な酸化物
を生成させることは困難であり、また、Mgの単独脱酸
でもMg酸化物の凝集・粗大化が起きやすく、十分な微
細分散を得ることはできない。
First, it is effective to use the pinning effect of the particles in the steel to refine the austenite grains, but Ti is considered to be the most thermally stable among nitrides.
Even if N is heated to 1350 ° C. or more for a long time, it melts and loses the pinning effect, so that it cannot be applied to ultra-high heat input welding. Therefore, it is essential to use oxide particles that are stable at high temperatures. However, prior art REM or Ca
For oxides (including acids and sulfides), ultra-high heat input welding HAZ
It is impossible to finely disperse these oxides in steel to an extent sufficient to suppress austenite grain coarsening. The present inventors have compared various oxides. 50 kg
A steel sheet was manufactured from a steel ingot manufactured by performing a complex deoxidation with Ti and other deoxidizing elements using a vacuum melting furnace described above, and the distribution of particles was examined by an extraction replica method. Here, the super large heat input H
In AZ, to eliminate the number of nitrides that are invalid for pinning,
The measurement was performed on a sample that was quenched after holding at 1400 ° C. for 20 seconds. Thus, only particles effective for pinning can be counted. According to this measurement method, 0.01 to 0.20 μm
The number of m-type oxide particles was counted. The result is shown in FIG. Deoxidized molten steel with Mg in combination with Ti
It has been found that generation of an oxide containing g is most effective for fine dispersion of particles, and can effectively prevent coarsening of austenite grains in the ultra-high heat input welding HAZ. It is produced when Ti and Mg are combined and deoxidized.
The oxide having a size of 20 μm or less is an oxide mainly composed of Mg. It is difficult to generate a fine oxide effective for pinning by single deoxidation of Ti, and it is easy to cause agglomeration and coarsening of Mg oxide even by single deoxidation of Mg to obtain sufficient fine dispersion. It is not possible.

【0021】従来より知られているように、粒子の体積
分率をf、平均径をrとすると、ピン止めされたオース
テナイト粒径と粒子間平均距離はf/rに比例する。オ
ーステナイト粒をピン止めするためには微細粒子が多量
に分散している必要がある。ピン止めに有効な粒子径は
0.01〜0.20μm、特に、0.1μm以下の粒子
が有効に作用する。また、粒子間平均距離は鋼の単位面
積あたりに観察される粒子個数に関係する。上記の条件
に基づいた抽出レプリカ法による測定において測定面1
平方mmあたりの粒子個数が少なくとも40,000個
は必要である。これ以下の個数では超大入熱溶接HAZ
のオーステナイト粒粗大化抑制の効果が弱くなる。しか
しながら、鋼中に多量の粒子が存在すると、塑性変形時
におけるディンプルの生成を助長し、鋼の延性を著しく
低下させる原因となる。このために粒子の個数には上限
を設ける必要があり、鋼の延性(引張試験における伸び
・絞り、シャルピー衝撃試験における上部棚吸収エネル
ギー)と粒子数の関係から上限を測定面1平方mmあた
り100,000個とした。
As conventionally known, assuming that the volume fraction of particles is f and the average diameter is r, the pinned austenite particle diameter and the average distance between particles are proportional to f / r. In order to pin the austenite grains, a large amount of fine particles need to be dispersed. Particles effective for pinning have a particle size of 0.01 to 0.20 μm, particularly particles having a particle size of 0.1 μm or less. The average distance between particles is related to the number of particles observed per unit area of steel. Measurement surface 1 in measurement by the extraction replica method based on the above conditions
At least 40,000 particles per square mm are required. If the number is less than this, the super large heat input welding HAZ
The effect of suppressing austenite grain coarsening becomes weaker. However, when a large amount of particles are present in the steel, the formation of dimples at the time of plastic deformation is promoted, which causes a significant decrease in the ductility of the steel. For this reason, it is necessary to set an upper limit on the number of particles. From the relationship between the ductility of steel (elongation / drawing in a tensile test and the upper shelf absorbed energy in a Charpy impact test) and the number of particles, the upper limit is set to 100 per square mm of the measurement surface. 2,000.

【0022】本発明ではオーステナイト粒成長抑制に加
えて、粒内フェライト変態による有効結晶粒の微細化が
必要である。TiNあるいはTiNを含む複合粒子から
粒内フェライトを変態させる技術(例えば、特開平2−
254118号公報)では上述のように超大入熱溶接で
はTiNは溶解するためにフェライト変態核が消失し、
無効となる。従って、高温で安定な酸化物系のフェライ
ト変態核を使用することが必須となる。この際、同時に
オーステナイト粒のピン止めに有効なMg酸化物を生成
することが可能でなければならない。このような条件を
満たす酸化物について種々検討を行った結果、Ti酸化
物が最も適したものであるとの結論に至った。特開昭6
0−245768号公報などに見るごとく、Ti酸化物
を主体とする複合粒子はフェライト変態核としての高い
作用を有することは広く知られている。本発明ではTi
と他の脱酸元素(Xとする)との組み合わせにおいては
Ti酸化物中にX酸化物が共存することになり、フェラ
イト変態能が大きく変化することが明らかとなった。こ
れは、Ti酸化物上にMnSが析出することがフェライ
ト変態に必要な条件であり、Ti酸化物にX酸化物が共
存することによりMnS析出能が大きく変化するためで
ある。本発明者らは50kg真空溶解炉を用い、Tiと
Xとの複合脱酸系においてXを種々変化させ、Ti酸化
物上にMnSが析出する頻度を測定した。超大入熱溶接
HAZ相当の熱サイクルとして最高加熱温度が1400
℃、保持時間が20秒、800〜500℃の冷却時間を
800秒とし、この熱サイクルを与えたサンプルをCM
A分析装置(EPMA分析を二次元的に行い、元素の二
次元分布を測定する装置)により分析し、粒子径が0.
2μm以上のTi酸化物含有酸化物の個数と、このうち
MnSを析出しているTi含有酸化物の個数を測定し
た。ここで、TiとOが同時に検出される粒子をTi含
有酸化物、MnとSが同時に検出される粒子をMnSと
判定した。結果を図2に示す。Tiの単独脱酸に比べて
TiとXの複合脱酸の場合のほうがTi含有酸化物の個
数が増加しているが、このうち、粒内フェライト変態核
としての能力を有すると考えることができるMnSを析
出しているTi含有酸化物の個数を比較すると、Xの種
類による差が明確となる。すなわち、TiとMgを複合
添加した系でTi含有酸化物とMnSの複合体を最も多
く生成し、粒内フェライト変態核をもっとも多く生成す
ることが明らかとなった。図2と対応して熱サイクル材
の旧オーステナイト粒内における粒内フェライト面積率
もTiとMgの複合脱酸系で最も高い。なお、結晶組成
的に粒内フェライト変態を促進する粒子においてもその
粒子径が0.2μm未満となると、粒内フェライトの生
成確率が急減する。従って、粒内フェライト変態核とし
ては0.20μm以上であることが必要である。逆に、
5.0μmを超える粒子は脆性破壊の起点となりやす
く、靱性のばらつきを増加させる。従って、変態核の粒
子径は5.0μm以下とする必要がある。このようなサ
イズの変態核が鋼の検査面1平方mmあたり少なくとも
20個存在する必要がある。20個未満では超大入熱溶
接HAZ靱性確保に不十分である。逆に、400個を超
えると延性低下を来すので、上限を400個とした。
In the present invention, in addition to suppressing austenite grain growth, it is necessary to refine effective crystal grains by intragranular ferrite transformation. Technology for transforming intragranular ferrite from TiN or composite particles containing TiN (see, for example,
No. 254118), as described above, in ultra-high heat input welding, TiN dissolves, so that ferrite transformation nuclei disappear,
Invalid. Therefore, it is essential to use oxide-based ferrite transformation nuclei that are stable at high temperatures. At this time, it must be possible to simultaneously generate Mg oxide effective for pinning austenite grains. As a result of conducting various studies on oxides satisfying such conditions, it was concluded that Ti oxide was the most suitable. JP 6
It is widely known that composite particles mainly composed of Ti oxide have a high action as a ferrite transformation nucleus, as seen in Japanese Patent Application No. 0-245768. In the present invention, Ti
It has been clarified that, in the combination of and the other deoxidizing element (referred to as X), the X oxide coexists in the Ti oxide, and the ferrite transformation ability greatly changes. This is because the precipitation of MnS on the Ti oxide is a necessary condition for the ferrite transformation, and the coexistence of the X oxide with the Ti oxide greatly changes the MnS precipitation ability. Using a 50 kg vacuum melting furnace, the present inventors varied X in the complex deoxidation system of Ti and X, and measured the frequency of MnS precipitation on the Ti oxide. The maximum heating temperature is 1400 as a heat cycle equivalent to ultra-high heat input welding HAZ
C., the holding time was 20 seconds, and the cooling time from 800 to 500 ° C. was 800 seconds.
An A analyzer (a device that performs EPMA analysis two-dimensionally and measures the two-dimensional distribution of elements) is analyzed.
The number of Ti oxide-containing oxides having a size of 2 μm or more and the number of Ti-containing oxides in which MnS was precipitated were measured. Here, particles in which Ti and O were simultaneously detected were determined as Ti-containing oxides, and particles in which Mn and S were simultaneously detected were determined as MnS. The results are shown in FIG. The number of Ti-containing oxides is increased in the case of complex deoxidation of Ti and X as compared with the case of single deoxidation of Ti, and among them, it can be considered that they have the ability as intragranular ferrite transformation nuclei. When the number of Ti-containing oxides on which MnS is precipitated is compared, the difference depending on the type of X becomes clear. In other words, it has been clarified that the composite of Ti and Mg produces the largest amount of the composite of Ti-containing oxide and MnS and the largest amount of the intragranular ferrite transformation nucleus. Corresponding to FIG. 2, the intragranular ferrite area ratio in the former austenite grains of the heat cycle material is also the highest in the composite deoxidizing system of Ti and Mg. In addition, even in the case of particles which promote the intragranular ferrite transformation due to the crystal composition, if the particle diameter is less than 0.2 μm, the probability of forming intragranular ferrite is sharply reduced. Therefore, the intragranular ferrite transformation nucleus needs to be 0.20 μm or more. vice versa,
Particles having a size exceeding 5.0 μm tend to be a starting point of brittle fracture and increase the variation in toughness. Therefore, the particle diameter of the transformation nucleus needs to be 5.0 μm or less. There must be at least 20 transformation nuclei of such a size per square mm of the steel inspection surface. If the number is less than 20, it is insufficient to secure ultra-high heat input welding HAZ toughness. Conversely, if the number exceeds 400, ductility decreases, so the upper limit was set to 400.

【0023】上記の結果から、TiとMgを複合して脱
酸した鋼において超大入熱溶接HAZのオーステナイト
の粒成長を抑制し、同時に粒内フェライト変態を促進す
ることにより効果的にHAZの有効結晶粒を微細化でき
ることが明らかとなった。
From the above results, it can be seen that in a steel deoxidized by combining Ti and Mg, the grain growth of austenite in the ultra-high heat input welding HAZ is suppressed and, at the same time, the intragranular ferrite transformation is promoted, so that the HAZ is effectively used. It became clear that crystal grains can be refined.

【0024】以下に、成分限定理由を示す。The reasons for limiting the components are shown below.

【0025】Cは母材の強度を上昇できる元素である。
0.04%未満では母材強度の確保が得られないので
0.04%を下限値とした。逆にCを多く含有すると、
脆性破壊の起点となるセメンタイトを増加させるため、
母材・HAZの靱性を低下させる。0.20%を超える
と靱性低下が顕著となるので、これを上限値とした。
C is an element capable of increasing the strength of the base material.
If it is less than 0.04%, the base material strength cannot be secured, so 0.04% was made the lower limit. Conversely, if a large amount of C is contained,
To increase cementite, which is the starting point of brittle fracture,
Decreases the toughness of base metal and HAZ. If it exceeds 0.20%, the toughness is significantly reduced.

【0026】Siは母材強度上昇に有効な元素である。
0.02%未満ではこの効果が得られないので下限値を
0.02%とした。逆に、0.15%超含有すると、H
AZ組織中に島状マルテンサイトが生成し、有効結晶粒
径を微細化しても靱性向上は得られない。従って、上限
を0.15%とした。
Si is an element effective for increasing the strength of the base material.
If less than 0.02%, this effect cannot be obtained, so the lower limit is set to 0.02%. Conversely, if the content exceeds 0.15%, H
Island martensite is generated in the AZ structure, and improvement in toughness cannot be obtained even if the effective crystal grain size is reduced. Therefore, the upper limit is set to 0.15%.

【0027】Mnは母材の強度上昇に有効な元素であ
る。0.6%未満ではこの効果が得られないので下限値
を0.6%とした。逆に、2.0%超含有すると靱性低
下が顕著となる。従って、上限値を2.0%とした。
Mn is an element effective for increasing the strength of the base material. If the content is less than 0.6%, this effect cannot be obtained, so the lower limit is set to 0.6%. Conversely, if the content exceeds 2.0%, the toughness is significantly reduced. Therefore, the upper limit is set to 2.0%.

【0028】Pは粒界脆化をもたらし、靱性に有害な元
素であり、低いほうが望ましい。0.02%超含有する
と靱性低下が顕著となるので、0.02%を上限とす
る。
P is an element that causes grain boundary embrittlement and is harmful to toughness. If the content exceeds 0.02%, the toughness is significantly reduced, so the upper limit is 0.02%.

【0029】Sは本発明ではTi含有酸化物上にMnS
を析出し、粒内フェライトを生ぜしめるために必須の元
素である。0.0020%未満ではMnS析出が不十分
で粒内フェライトが生じなくなる。従って、下限を0.
0020%とした。逆に、0.0060%超含有する
と、MnSがTi酸化物上だけでなく鋼中に析出し、伸
長介在物を生成し、板厚方向の延性低下が顕著となる。
従って、上限値を0.0060%とした。
In the present invention, S represents MnS on Ti-containing oxide.
Is an essential element for precipitating and producing intragranular ferrite. If it is less than 0.0020%, MnS precipitation is insufficient and intragranular ferrite is not generated. Therefore, the lower limit is set to 0.
0020%. Conversely, when the content exceeds 0.0060%, MnS precipitates not only on the Ti oxide but also in the steel, generates elongated inclusions, and the ductility in the sheet thickness direction is significantly reduced.
Therefore, the upper limit was made 0.0060%.

【0030】AlはTi酸化物の生成を抑制するので、
本発明では低いほうがよい。0.005%超含有すると
Ti含有酸化物量が顕著に低下するので、0.005%
を上限値とした。
Since Al suppresses formation of Ti oxide,
In the present invention, lower is better. If the content exceeds 0.005%, the content of the Ti-containing oxide is significantly reduced.
Was set as the upper limit.

【0031】Tiは酸化物を生成し、粒内フェライト変
態核を提供するための必須元素である。0.005%未
満ではTi含有酸化物の個数が不足するので0.005
%を下限値とした。逆に、0.025%超含有すると破
壊起点となる粗大なTi含有酸化物を生成して靱性低下
をもたらす上に、靱性に有害なTiCを多量に析出す
る。従って、上限値を0.025%とした。
Ti is an essential element for forming oxides and providing intragranular ferrite transformation nuclei. If the content is less than 0.005%, the number of Ti-containing oxides becomes insufficient.
% Was defined as the lower limit. Conversely, if the content exceeds 0.025%, a coarse Ti-containing oxide serving as a fracture starting point is generated to cause a decrease in toughness, and a large amount of TiC harmful to toughness is precipitated. Therefore, the upper limit is set to 0.025%.

【0032】Nは、酸化物として存在するTiの残余と
結合してTiNを析出する。TiNは溶接融合線直近H
AZにおいてはオーステナイト粒粗大化抑制効果を失う
が、融合線から離れ、加熱温度が低いHAZではTiN
は溶解しないために粒成長抑制に効果を発揮する。HA
Zの全域にわたって靱性を向上させるためにはTiNも
利用することが不可欠であり、このためにNを含有させ
る必要がある。Nが0.0020%未満ではTiN析出
が不十分となるので、下限値を0.0020%とした。
逆に、0.0080%超含有するとフェライト地に固溶
して靱性低下をもたらす。従って、上限値を0.008
0%とした。
N combines with the residual Ti present as an oxide to precipitate TiN. TiN is H closest to the weld fusion line
In AZ, the effect of suppressing austenite grain coarsening is lost, but in HAZ which is far from the fusion line and has a low heating temperature, TiN
Is effective in suppressing grain growth because it does not dissolve. HA
In order to improve the toughness over the entire range of Z, it is essential to use TiN, and therefore, it is necessary to contain N. If N is less than 0.0020%, TiN precipitation becomes insufficient, so the lower limit was made 0.0020%.
Conversely, if the content exceeds 0.0080%, the solid solution in the ferrite ground causes a decrease in toughness. Therefore, the upper limit is 0.008
0%.

【0033】MgはTi含有酸化物のフェライト変態能
を低下させることなくMg含有酸化物を微細に生成し、
オーステナイト粒粗大化抑制に働く。0.0002%未
満ではこの効果が得られないので下限値を0.0002
%とした。逆に、0.0030%超含有すると、Ti含
有酸化物中のMg濃度が高くなり、粒内フェライト変態
能を低下させるとともに、鋼中のMg含有酸化物が多く
なり、延性を低下させる。従って、上限値を0.003
0%とした。
Mg forms the Mg-containing oxide finely without lowering the ferrite transformation ability of the Ti-containing oxide,
Works to suppress austenite grain coarsening. If less than 0.0002%, this effect cannot be obtained, so the lower limit is 0.0002%.
%. On the other hand, when the content exceeds 0.0030%, the Mg concentration in the Ti-containing oxide increases, and the transgranular ferrite transformation ability decreases, and the Mg-containing oxide in the steel increases, and the ductility decreases. Therefore, the upper limit is 0.003
0%.

【0034】OはMgおよびTiの酸化物を生成させる
ための必須元素である。0.0005%未満では両酸化
物の個数が十分とはならないので、0.0005%を下
限値とする。逆に、0.0080%超では酸化物が多く
なりすぎて延性低下を来す。従って、上限値を0.00
80%とした。
O is an essential element for forming oxides of Mg and Ti. If it is less than 0.0005%, the number of both oxides will not be sufficient, so 0.0005% is made the lower limit. Conversely, if the content exceeds 0.0080%, the amount of oxides becomes too large, resulting in a decrease in ductility. Therefore, the upper limit is 0.00
80%.

【0035】さらに、母材強度上昇に効果のある選択元
素の限定範囲を以下の理由で決定した。
Further, the limited range of the selected element effective for increasing the base material strength was determined for the following reasons.

【0036】Cuは母材強度上昇に有効な元素であり、
特に、時効熱処理により微細Cu相を析出させることに
より著しい強度上昇が得られる。0.05%未満では強
度上昇が得られないので、0.05%を下限値とした。
逆に、1.5%超含有すると脆化が顕著となるので上限
値を1.5%とした。
Cu is an element effective for increasing the base material strength.
In particular, a remarkable increase in strength can be obtained by precipitating a fine Cu phase by aging heat treatment. If less than 0.05%, no increase in strength can be obtained, so 0.05% was set as the lower limit.
Conversely, if the content exceeds 1.5%, embrittlement becomes remarkable, so the upper limit was set to 1.5%.

【0037】Niは焼入れ性を上昇させることにより母
材強度上昇に効果を有し、さらに、靱性を向上する。
0.05%未満ではこれらの効果が得られないので下限
値を0.05%とした。逆に、2.0%超含有すると焼
入れ性が高くなりすぎてHAZ硬化組織を生成しやすく
なり、HAZ靱性を低下させる。従って、上限値を2.
0%とした。
Ni has the effect of increasing the base material strength by increasing the hardenability, and further improves the toughness.
If the content is less than 0.05%, these effects cannot be obtained, so the lower limit is set to 0.05%. Conversely, if the content exceeds 2.0%, the quenchability becomes too high, so that a HAZ hardened structure is easily generated, and the HAZ toughness is reduced. Therefore, the upper limit is set to 2.
0%.

【0038】Crは母材強度上昇に効果を有する。0.
02%未満ではこの効果が得られないので下限値を0.
02%とした。逆に、1.0%超含有するとHAZに硬
化組織を生成してHAZ靱性を低下させる。従って、上
限値を1.0%とした。
Cr has the effect of increasing the strength of the base material. 0.
If it is less than 02%, this effect cannot be obtained, so the lower limit is set to 0.
02%. Conversely, if the content exceeds 1.0%, a hardened structure is formed in the HAZ, and the HAZ toughness is reduced. Therefore, the upper limit was set to 1.0%.

【0039】Moは母材強度上昇に効果を有する。0.
02%未満ではこの効果が得られないので下限値を0.
02%とした。逆に、1.0%超含有するとHAZに硬
化組織を生成してHAZ靱性を低下させる。従って、上
限値を1.0%とした。
Mo is effective in increasing the strength of the base material. 0.
If it is less than 02%, this effect cannot be obtained, so the lower limit is set to 0.
02%. Conversely, if the content exceeds 1.0%, a hardened structure is formed in the HAZ, and the HAZ toughness is reduced. Therefore, the upper limit was set to 1.0%.

【0040】Nbは母材の強度上昇および細粒化に有効
な元素である。0.005%未満ではこれらの効果が得
られないので下限値を0.005%とした。逆に、0.
05%超含有するとHAZにおける炭窒化物の析出が顕
著となりHAZ靱性低下が著しくなる。従って、上限値
を0.05%とした。
Nb is an element effective for increasing the strength and refining the base material. If the content is less than 0.005%, these effects cannot be obtained, so the lower limit is set to 0.005%. Conversely, 0.
If the content exceeds 0.05%, precipitation of carbonitrides in the HAZ becomes remarkable, and the reduction in HAZ toughness becomes remarkable. Therefore, the upper limit is set to 0.05%.

【0041】Vは母材の強度上昇および細粒化に有効な
元素である。0.005%未満ではこれらの効果が得ら
れないので下限値を0.005%とした。逆に、0.1
0%超含有するとHAZにおける炭窒化物の析出が顕著
となりHAZ靱性低下が著しくなる。従って、上限値を
0.10%とした。
V is an element effective for increasing the strength and refining the base material. If the content is less than 0.005%, these effects cannot be obtained, so the lower limit is set to 0.005%. Conversely, 0.1
When the content exceeds 0%, precipitation of carbonitrides in the HAZ becomes remarkable, and HAZ toughness is significantly reduced. Therefore, the upper limit is set to 0.10%.

【0042】Bは制御冷却および焼入れ熱処理を施す場
合に特に顕著な強度上昇の効果を発揮する。また、超大
入熱溶接HAZのTi含有酸化物上にBの窒化物や炭ホ
ウ化物を析出して粒内フェライト変態を促進する効果を
有する。0.0004%未満の含有量では上記効果が得
られないので下限値を0.0004%とした。逆に、
0.0040%超含有すると粗大な窒化物や炭ホウ化物
を析出してこれが破壊の起点となるために靱性を低下さ
せる。従って、上限値を0.0040%とした。
B exerts a particularly remarkable increase in strength when subjected to controlled cooling and quenching heat treatment. Further, it has an effect of precipitating intragranular ferrite transformation by precipitating B nitride or carbon boride on the Ti-containing oxide of the ultra-high heat input welding HAZ. If the content is less than 0.0004%, the above effect cannot be obtained, so the lower limit was made 0.0004%. vice versa,
When the content exceeds 0.0040%, coarse nitrides and carbide borides are precipitated and serve as starting points of fracture, so that toughness is reduced. Therefore, the upper limit is set to 0.0040%.

【0043】[0043]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例)以下に、本発明の実施例を示す。転炉により
鋼を溶製し、連続鋳造により厚さが240mmのスラブ
を製造した。表1−1及び表1−2に鋼材の化学成分を
示す。HAZ靱性は炭素当量にも大きく依存するので、
本発明の効果を確認するために、ほぼ同一の化学成分で
Al,N,Ti,Mg,Oのみを変えた鋼を溶製して比
較した。
(Examples) Examples of the present invention will be described below. Steel was melted by a converter, and a slab having a thickness of 240 mm was manufactured by continuous casting. Table 1-1 and Table 1-2 show the chemical components of the steel material. Since the HAZ toughness also depends greatly on the carbon equivalent,
In order to confirm the effects of the present invention, steels were prepared by melting only Al, N, Ti, Mg, and O with substantially the same chemical components and comparing them.

【0044】表2に鋼板の製造方法と板厚、母材の機械
的性質を示す。表に示すとおり、制御圧延・制御冷却
法、焼入れ・焼戻し法、および、直接焼入れ・焼戻し法
により鋼板を製造した。板厚は40〜100mmとし
た。
Table 2 shows the manufacturing method and thickness of the steel sheet, and the mechanical properties of the base material. As shown in the table, steel sheets were manufactured by a controlled rolling / controlled cooling method, a quenching / tempering method, and a direct quenching / tempering method. The plate thickness was 40 to 100 mm.

【0045】図3に示すエレクトロスラグ溶接により溶
接試験体を作成した。溶接の電流は380A、電圧は4
6V、速度は1.14cm/分とした。入熱は920k
J/cmである。図3に示すように、溶接融合線および
溶接融合線から3mmの位置がノッチ位置に一致するよ
うにシャルピー衝撃試験片を採取した。また、比較とし
て、入熱が150kJ/cmのサブマージアーク溶接も
実施した。エレクトロスラグ溶接と同じノッチ位置とな
るようにシャルピー衝撃試験片を採取した。衝撃試験は
0℃で行い、2本繰り返しの平均値で靱性を評価した結
果を表3に示す。また、エレクトロスラグ溶接部融合線
直近のHAZのミクロ組織観察を実施し、γ粒径と粒内
フェライト分率を測定した。さらに、Mg含有酸化物個
数と、Ti含有酸化物とMnSの複合体の個数を上記の
方法に従って測定した。結果を表3に示す。図4にサブ
マージアーク溶接HAZ靱性を、図5にエレクトロスラ
グ溶接HAZ靱性を示す。
A weld specimen was prepared by electroslag welding shown in FIG. Welding current is 380A, voltage is 4
6V, the speed was 1.14 cm / min. Heat input is 920k
J / cm. As shown in FIG. 3, a Charpy impact test specimen was collected so that the weld fusion line and the position 3 mm from the weld fusion line coincided with the notch position. For comparison, submerged arc welding with a heat input of 150 kJ / cm was also performed. A Charpy impact test specimen was collected so as to be at the same notch position as in electroslag welding. The impact test was performed at 0 ° C., and the results of evaluating the toughness by the average value of two repetitions are shown in Table 3. Further, the microstructure of the HAZ immediately near the fusion line of the electroslag weld was observed, and the γ grain size and the intragranular ferrite fraction were measured. Further, the number of Mg-containing oxides and the number of composites of Ti-containing oxide and MnS were measured according to the above-described method. Table 3 shows the results. FIG. 4 shows the HAZ toughness of the submerged arc welding, and FIG. 5 shows the HAZ toughness of the electroslag welding.

【0046】表3から明らかなとおり、発明鋼はMg含
有酸化物の個数が多く、超大入熱(エレクトロスラグ)
溶接HAZのγ粒径が小さく、同時に、Ti含有酸化物
とMnSの複合体の個数が多く、HAZの粒内フェライ
ト分率が高い。その結果、超大入熱溶接HAZの靱性が
高い。大入熱溶接では比較鋼より発明鋼のほうがHAZ
靱性が高いが、その差は超大入熱溶接HAZのほうが大
きい。超大入熱溶接では本発明のようにγ粒成長抑制と
粒内フェライト変態を同時に実現した鋼で著しい靱性向
上が得られるためである。
As is apparent from Table 3, the invention steel has a large number of Mg-containing oxides and has a very large heat input (electroslag).
The γ grain size of the welded HAZ is small, and at the same time, the number of composites of Ti-containing oxide and MnS is large, and the HAZ has a high intragranular ferrite fraction. As a result, the toughness of the ultra-high heat input welding HAZ is high. In the case of large heat input welding, the HAZ of the invention steel is higher than that of the comparative steel
Although the toughness is high, the difference is greater in the ultra-high heat input welding HAZ. This is because, in ultra-high heat input welding, remarkable improvement in toughness can be obtained with a steel that simultaneously achieves the suppression of gamma grain growth and the intragranular ferrite transformation as in the present invention.

【0047】番号4と13の比較鋼はTi含有酸化物と
MnSの複合体の個数は多いが、Mg含有酸化物の個数
が少ないために、粒内フェライトは多いがγ粒が大き
く、超大入熱溶接HAZ靱性向上は不十分である。番号
11と23の比較鋼はAlが本発明範囲より高く、Ti
含有酸化物とMnSの複合体の個数が少ないために、超
大入熱溶接HAZ靱性向上は不十分である。
The comparative steels Nos. 4 and 13 have a large number of composites of Ti-containing oxide and MnS, but have a small number of Mg-containing oxides. The improvement in HAZ toughness by heat welding is insufficient. The comparative steels of Nos. 11 and 23 have Al higher than the range of the present invention and Ti
Since the number of composites of the contained oxide and MnS is small, the improvement of the HAZ toughness of the ultra-high heat input welding is insufficient.

【0048】[0048]

【表1−1】 [Table 1-1]

【0049】[0049]

【表1−2】 [Table 1-2]

【0050】[0050]

【表2】 [Table 2]

【0051】[0051]

【表3】 [Table 3]

【0052】[0052]

【発明の効果】以上説明したとおり、本発明鋼ではMg
含有酸化物およびTi含有酸化物を主体とする複合体に
より入熱が500kJ/cm以上の超大入熱溶接HAZ
のγ粒抑制と粒内フェライト変態促進との相乗作用によ
りHAZの有効結晶粒が微細化され、HAZ靱性を顕著
に向上させることができる。本発明を超大入熱溶接が適
用される建築構造物に適用することにより、極めて信頼
性の高い溶接構造物を製造することが可能である。従っ
て、本発明は工業上極めて効果が大きい。
As described above, in the steel of the present invention, Mg
Heat input welding HAZ with a heat input of 500 kJ / cm or more by a composite mainly composed of a titanium-containing oxide and a titanium-containing oxide
The effective crystal grains of HAZ are refined by the synergistic action of the suppression of γ grains and the promotion of intragranular ferrite transformation, and the HAZ toughness can be remarkably improved. By applying the present invention to a building structure to which ultra-high heat input welding is applied, it is possible to manufacture a highly reliable welded structure. Therefore, the present invention is extremely effective industrially.

【図面の簡単な説明】[Brief description of the drawings]

【図1】脱酸元素の種類によるγ粒成長抑制に有効な微
細酸化物個数の変化を示す図である。
FIG. 1 is a diagram showing a change in the number of fine oxides effective for suppressing γ grain growth depending on the type of deoxidizing element.

【図2】脱酸元素の種類による粒内フェライト変態に有
効なTi含有酸化物とMnSとの複合体の個数の変化を
示す図である。
FIG. 2 is a diagram showing a change in the number of composites of Ti-containing oxide and MnS effective for intragranular ferrite transformation depending on the type of deoxidizing element.

【図3】エレクトロスラグ溶接条件を示す図である。FIG. 3 is a diagram showing electroslag welding conditions.

【図4】大入熱(サブマージアーク)溶接HAZ靱性を
Pcmに対してプロットした図である。
FIG. 4 is a diagram in which large heat input (submerged arc) welding HAZ toughness is plotted against Pcm.

【図5】超大入熱(エレクトロスラグ)溶接HAZ靱性
をPcmに対してプロットした図である。
FIG. 5 is a diagram in which ultra-high heat input (electroslag) welding HAZ toughness is plotted against Pcm.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) C22C 38/00-38/60

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 粒子径が0.01〜0.20μmのMg
含有酸化物を1平方mmあたり40,000〜100,
000個含み、且つ、粒子径が0.20〜5.0μmの
Ti含有酸化物とMnSとからなる複合体を1平方mm
あたり20〜400個含む鋼であることを特徴とする超
大入熱溶接熱影響部の靱性に優れた溶接用高張力鋼。
1. Mg having a particle diameter of 0.01 to 0.20 μm.
The content of oxides is 40,000 to 100,
1 mm 2 of a composite comprising MnS and a Ti-containing oxide having a particle size of 0.20 to 5.0 μm and containing
A high-strength steel for welding with excellent toughness in a heat-affected zone of ultra-high heat input welding, characterized in that the steel contains 20 to 400 steels per steel.
【請求項2】 重量%で、0.04≦ C≦0.20,
0.02≦Si≦0.15,0.6 ≦Mn≦2.0,
P≦0.02,0.0020≦ S≦0.0060,A
l≦0.005,0.005≦Ti≦0.025,0.
0020≦ N≦0.0080,0.0002≦Mg
≦0.0030,0.0005≦ O≦0.0080,
を含有し、残部Feおよび不可避的不純物よりなる鋼で
あることを特徴とする請求項1に記載の超大入熱溶接熱
影響部の靱性に優れた溶接用高張力鋼。
2. In% by weight, 0.04 ≦ C ≦ 0.20,
0.02 ≦ Si ≦ 0.15, 0.6 ≦ Mn ≦ 2.0,
P ≦ 0.02,0.0020 ≦ S ≦ 0.0060, A
l ≦ 0.005, 0.005 ≦ Ti ≦ 0.025,0.
0020 ≦ N ≦ 0.0080, 0.0002 ≦ Mg
≦ 0.0030, 0.0005 ≦ O ≦ 0.0080,
The high tensile strength steel for welding excellent in toughness of the ultra-high heat input welding heat-affected zone according to claim 1, characterized in that it is a steel containing Fe and unavoidable impurities.
【請求項3】 請求項2の鋼に、更に重量%で、母材強
度上昇元素群、0.05≦Cu≦1.5,0.05≦N
i≦2.0,0.02≦Cr≦1.0,0.02≦Mo
≦1.0,0.005≦Nb≦0.05,0.005≦
V≦0.10,0.0004≦ B≦0.0040の
1種または2種以上を含有せしめたことを特徴とする請
求項2に記載の超大入熱溶接熱影響部の靱性に優れた溶
接用高張力鋼。
3. The steel according to claim 2, further comprising, in% by weight, a base metal strength increasing element group: 0.05 ≦ Cu ≦ 1.5, 0.05 ≦ N
i ≦ 2.0, 0.02 ≦ Cr ≦ 1.0, 0.02 ≦ Mo
≦ 1.0, 0.005 ≦ Nb ≦ 0.05, 0.005 ≦
The welding having excellent toughness of the heat-affected zone of the ultra-high heat input welding according to claim 2, wherein one or two or more of V ≦ 0.10, 0.0004 ≦ B ≦ 0.0040 are contained. For high tensile steel.
JP34437695A 1995-12-06 1995-12-06 Ultra-high heat input welding High-strength steel for welding with excellent heat-affected zone toughness Expired - Fee Related JP3256118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34437695A JP3256118B2 (en) 1995-12-06 1995-12-06 Ultra-high heat input welding High-strength steel for welding with excellent heat-affected zone toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34437695A JP3256118B2 (en) 1995-12-06 1995-12-06 Ultra-high heat input welding High-strength steel for welding with excellent heat-affected zone toughness

Publications (2)

Publication Number Publication Date
JPH09157787A JPH09157787A (en) 1997-06-17
JP3256118B2 true JP3256118B2 (en) 2002-02-12

Family

ID=18368768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34437695A Expired - Fee Related JP3256118B2 (en) 1995-12-06 1995-12-06 Ultra-high heat input welding High-strength steel for welding with excellent heat-affected zone toughness

Country Status (1)

Country Link
JP (1) JP3256118B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8882936B2 (en) 2004-08-24 2014-11-11 Nippon Steel & Sumitomo Metal Corporation High-tensile steel with excellent weldability and toughness and with tensile strength of 550 MPa class or more and method of production of the same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2341613A (en) * 1998-09-04 2000-03-22 British Steel Plc A steel composition for laser welding
WO2000061322A1 (en) * 1999-04-08 2000-10-19 Nippon Steel Corporation Cast steel piece and steel product excellent in forming characteristics and method for treatment of molted steel therefor and method for production thereof
JP3699657B2 (en) * 2000-05-09 2005-09-28 新日本製鐵株式会社 Thick steel plate with yield strength of 460 MPa or more with excellent CTOD characteristics of the heat affected zone
EP1221493B1 (en) * 2000-05-09 2005-01-12 Nippon Steel Corporation THICK STEEL PLATE BEING EXCELLENT IN CTOD CHARACTERISTIC IN WELDING HEAT AFFECTED ZONE AND HAVING YIELD STRENGTH OF 460 Mpa OR MORE
KR20020041022A (en) * 2000-11-25 2002-06-01 이구택 Structural steel with superior welding property
JP4762450B2 (en) * 2001-08-06 2011-08-31 新日本製鐵株式会社 Method for producing high strength welded structural steel with excellent base metal toughness and weld zone HAZ toughness
JP4547037B2 (en) * 2007-12-07 2010-09-22 新日本製鐵株式会社 Steel excellent in CTOD characteristics of weld heat affected zone and method for producing the same
TWI534271B (en) 2009-05-19 2016-05-21 新日鐵住金股份有限公司 Steel for a welded structure
TWI365915B (en) 2009-05-21 2012-06-11 Nippon Steel Corp Steel for welded structure and producing method thereof
US9403242B2 (en) 2011-03-24 2016-08-02 Nippon Steel & Sumitomo Metal Corporation Steel for welding
JP6665658B2 (en) * 2016-04-21 2020-03-13 日本製鉄株式会社 High strength steel plate
JP6665659B2 (en) * 2016-04-21 2020-03-13 日本製鉄株式会社 Thick steel plate and manufacturing method thereof
JP6897449B2 (en) * 2017-09-21 2021-06-30 日本製鉄株式会社 High-strength thick steel sheet and its manufacturing method
JP6946887B2 (en) * 2017-09-21 2021-10-13 日本製鉄株式会社 Abrasion resistant steel sheet and its manufacturing method
JP6897450B2 (en) * 2017-09-21 2021-06-30 日本製鉄株式会社 High-strength thick steel sheet and its manufacturing method
JP2019056146A (en) * 2017-09-21 2019-04-11 新日鐵住金株式会社 High tensile strength steel material for hydraulic pressure iron pipe, method for producing the same, and hydraulic pressure iron pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8882936B2 (en) 2004-08-24 2014-11-11 Nippon Steel & Sumitomo Metal Corporation High-tensile steel with excellent weldability and toughness and with tensile strength of 550 MPa class or more and method of production of the same

Also Published As

Publication number Publication date
JPH09157787A (en) 1997-06-17

Similar Documents

Publication Publication Date Title
KR101846759B1 (en) Steel plate and method for manufacturing same
JP3256118B2 (en) Ultra-high heat input welding High-strength steel for welding with excellent heat-affected zone toughness
KR20070027715A (en) Steel for welded structure excellent in low temperature toughness of heat affected zone of welded part, and method for production thereof
WO2008126910A1 (en) Steel material having excellent high temperature properties and excellent toughness, and method for production thereof
WO2008126944A1 (en) Steel material having excellent high-temperature strength and toughness, and method for production thereof
JP4041201B2 (en) High-strength steel for welding with excellent toughness of heat affected zone
JP5692138B2 (en) High strength steel for super high heat input welding with excellent low temperature toughness in heat affected zone
KR101971772B1 (en) Method of manufacturing steel plate for high-heat input welding
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
US6344093B1 (en) High tensile strength steel product for high heat input welding, having excellent toughness in heat-affected zone
JP3752075B2 (en) High strength steel for super large heat input welding
JP3749616B2 (en) High-strength steel for welding with excellent toughness of heat affected zone
JPH01159356A (en) High tension steel having superior tougeness at weld heat-affected zone
JP3464567B2 (en) Welded structural steel with excellent toughness in the heat affected zone
JP3782645B2 (en) High strength steel for super large heat input welding
JPH10183295A (en) Steel material excellent in toughness at heat-affected zone in large heat input weld, and its production
JP3403293B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP3513001B2 (en) Ultra-high heat input welding High-strength steel for welding with excellent heat-affected zone toughness
JP5434437B2 (en) High heat input welding steel
JPH093599A (en) Steel for welding structure excellent in toughness of weld heat affected zone and its production
JP3502805B2 (en) Method for producing steel with excellent toughness in weld joint
JP4762450B2 (en) Method for producing high strength welded structural steel with excellent base metal toughness and weld zone HAZ toughness
JP3371699B2 (en) Manufacturing method of earthquake resistant building steel with excellent fire resistance
JP2000054065A (en) High tensile strength steel material for welding, excellent in toughness in weld heat-affected zone, and its production
JP3492313B2 (en) High strength steel for super large heat input welding

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071130

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees