JP2909089B2 - Maraging steel and manufacturing method thereof - Google Patents

Maraging steel and manufacturing method thereof

Info

Publication number
JP2909089B2
JP2909089B2 JP10651289A JP10651289A JP2909089B2 JP 2909089 B2 JP2909089 B2 JP 2909089B2 JP 10651289 A JP10651289 A JP 10651289A JP 10651289 A JP10651289 A JP 10651289A JP 2909089 B2 JP2909089 B2 JP 2909089B2
Authority
JP
Japan
Prior art keywords
maraging steel
less
solution treatment
temperature
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10651289A
Other languages
Japanese (ja)
Other versions
JPH02285053A (en
Inventor
利弘 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14435471&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2909089(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP10651289A priority Critical patent/JP2909089B2/en
Publication of JPH02285053A publication Critical patent/JPH02285053A/en
Application granted granted Critical
Publication of JP2909089B2 publication Critical patent/JP2909089B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はBを含有する18%Ni系マルエージング鋼およ
びその製造方法に関し、特に靱性の優れたマルエージン
グ鋼の結晶粒微細化法に関するものである。
The present invention relates to an 18% Ni-based maraging steel containing B and a method for producing the same, and more particularly to a method for refining the grain size of a maraging steel having excellent toughness. It is.

〔従来の技術〕[Conventional technology]

マルエージング鋼は、超強力鋼の一つとして知られて
おり、高い強度と優れた靱性有することから例えば宇
宙、航空機、高速回転機器の分野に特殊スプリング、ボ
ルト、容器などに用途が多く、中でも18%Ni系のマルエ
ージング鋼は、熱処理として固溶化処理と時効処理を行
なうことによって容易に良好な強靱性を得ることができ
るため、広範囲から分野に使用されている。
Maraging steel is known as one of the super-strength steels, and because of its high strength and excellent toughness, it has many uses for special springs, bolts, containers, etc. in the fields of space, aircraft, high-speed rotating equipment, among others. 18% Ni-based maraging steel is widely used in various fields because good toughness can be easily obtained by solution treatment and aging treatment as heat treatment.

しかし、等に引張強さが200kgf/mm2以上の高強度を有
するマルエージング鋼においては、強度の上昇につれて
延性、靱性が劣化するという問題があり、特に肉厚の小
さい部品では、結晶粒が粗いと延性、靱性などの特性の
バラツキも大きくなるので結晶粒を微細化することは一
層重要になる。これを解決する一つの手段としてオース
テナイト結晶粒を微細化するという方法が用いられ、例
えば板、棒、パイプ等の冷間加工が可能な形状および比
較的サイズの小さいものを対象として、冷間加工を加
え、さらに固溶化処理を行なうという方法がとられてき
た。
However, in the maraging steel tensile strength at equal has a 200 kgf / mm 2 or more high strength, ductility with increasing strength, there is a problem that the toughness is degraded, in particular small parts thick, crystal grains Roughness also increases variations in properties such as ductility and toughness, so it is more important to refine crystal grains. One method for solving this problem is to use a method of refining austenite crystal grains. For example, cold working is performed on a plate, a rod, a pipe, etc. that can be cold worked and has a relatively small size. And a solution treatment is further performed.

これに対して、靱性の改善に有効な合金元素を添加す
る方法も試みられており、例えば特公昭59−34226号に
はB、Zr、Ca、Mgの1種または2種以上を含有させたマ
ルエージング鋼、また特開昭61−210156号にはBを含有
するマルエージング鋼およびその製造方法、特開昭52−
23520号にはB、Zr、Ca、Vを同時に添加したマルエー
ジング鋼に加工熱処理を組み合せた製造方法などの記載
がある。
On the other hand, a method of adding an alloy element effective for improving toughness has also been attempted. For example, Japanese Patent Publication No. 59-34226 contains one or more of B, Zr, Ca, and Mg. Japanese Patent Application Laid-Open No. Sho 61-210156 discloses a maraging steel containing B and a method for producing the same.
No. 23520 describes a manufacturing method in which a maraging steel to which B, Zr, Ca, and V are added simultaneously and a thermomechanical treatment are combined.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

前述の固溶化処理前に冷間加工を施す方法は、結晶粒
度番号10以上の微細な結晶粒を得るには、固溶化処理温
度を実質的に固溶化が不十分な程度に低く抑える必要が
ある。ところが、固溶化処理温度が低くなりすぎると、
結晶粒は微細化するものの、逆にMoを比較的多く含むマ
ルエージング鋼ではFe、Mo等からなる未固溶の粗大な金
属間化合物が残存し、延性、靱性を低下させるという問
題があった。
In the above-described method of performing cold working before the solution treatment, in order to obtain fine crystal grains having a crystal grain size number of 10 or more, it is necessary to suppress the solution treatment temperature to an extent that the solution is substantially insufficient. is there. However, if the solution treatment temperature becomes too low,
Although the crystal grains are refined, the maraging steel containing a relatively large amount of Mo, on the other hand, has a problem that undissolved coarse intermetallic compounds composed of Fe, Mo, and the like remain, reducing ductility and toughness. .

また、前述のB、Zr、Ca、Mgの1種または2種以上含
有したマルエージング鋼の特公昭59−34226号において
はBは0.0025%以下で添加すると、Zr、Caと同様に脱酸
強化による清浄度向上の他、脱窒および結晶粒界へのM
o、Crなどの析出を防止し延性、靱性を付与すると記載
されており、特開昭61−210156号においてはBを0.0005
〜0.0020%添加すると未再結晶溶体化処理温度域が広が
り、工業的に未再結晶溶体化処理を容易に行なうことが
できるようになり、その結果として引張強度および破壊
靱性とともに優れた鋼を製造することができることが示
されている。
In addition, in Japanese Patent Publication No. 59-34226, a maraging steel containing one or more of B, Zr, Ca, and Mg, when B is added in an amount of 0.0025% or less, deoxidation is strengthened in the same manner as Zr and Ca. Denitrification and M on the grain boundaries
o, it is described that it prevents precipitation of Cr and the like and imparts ductility and toughness, and in JP-A-61-210156, B is 0.0005.
Addition of up to 0.0020% increases the temperature range of non-recrystallized solution treatment and makes it easier to industrially perform non-recrystallized solution treatment, resulting in the production of steel with excellent tensile strength and fracture toughness. It is shown that you can.

ところが、上述のマルエージング鋼や製造方法では細
線あるいは薄板の結晶粒度は微細化することができても
通常の寸法として使用されるマルエージング鋼の棒材や
板材の結晶粒度をASTM No.10以上の超微細にして靱性ま
たは他の特性を安定して得ることは困難である。
However, in the above-mentioned maraging steel and the manufacturing method, the grain size of fine wires or thin plates can be refined, but the grain size of the bar material or plate material of maraging steel used as a normal size is ASTM No. 10 or more. It is difficult to obtain ultrafine and stable toughness or other properties.

また、特開昭52−23520号には、B、Zr、Ca、Vをそ
れぞれ1%以下で同時に添加したマルエージング鋼を溶
体化処理した後、50℃以下に急冷し、その後100〜350℃
の温度で加工率10〜95%の塑性加工を加え、続いてオー
ステナイト化終了温度(Af点)から1200℃までの温度で
加熱保持した後、室温まで冷却し、その後時効処理を行
なう方法であるが、例えば広幅の板などを100〜350℃の
温度範囲に加熱しながら連続して塑性加工するいは、高
価な設備を要する欠点があった。
Japanese Patent Application Laid-Open No. 52-23520 discloses that a maraging steel to which B, Zr, Ca, and V are simultaneously added at a content of 1% or less is subjected to a solution treatment, rapidly cooled to 50 ° C or less, and then 100 to 350 ° C.
This is a method in which plastic working with a working ratio of 10 to 95% is performed at a temperature of, followed by heating and holding at a temperature from the austenitizing end temperature (Af point) to 1200 ° C, then cooling to room temperature, and then aging treatment. However, there is a drawback that, for example, if a wide plate is continuously subjected to plastic working while being heated to a temperature range of 100 to 350 ° C., expensive equipment is required.

本発明はかかる点に鑑み、超微細な結晶粒を有するマ
ルエージング鋼およびその製造方法を提供するものであ
る。
In view of the above, the present invention provides a maraging steel having ultrafine crystal grains and a method for producing the maraging steel.

〔課題を解決するための手段〕[Means for solving the problem]

発明者はマルエージング鋼の結晶粒微細化に有効な合
金元素について、種々検討した結果、一定量のBを添加
したマルエージング鋼に特定の固溶化処理と冷間加工条
件を組み合わせた場合にのみ超微細な結晶粒が得られる
ことを知見したものである。具合的には、Bの添加量を
変化させた18%Ni系のマルエージング鋼およびBを添加
しない18%Ni系のマルエージング鋼について熱間加工
後、第1表に示すように1回目の固溶化処理を行ない、
その後冷間加工を施し、続いて第2回目の固溶化処理を
行なった結果を第3図に示す。
The inventor conducted various studies on alloying elements effective for grain refinement of maraging steel, and found that only a specific solution treatment and a cold working condition were combined with maraging steel to which a certain amount of B was added. It has been found that ultrafine crystal grains can be obtained. Specifically, after hot working of an 18% Ni-based maraging steel in which the amount of B added was changed and an 18% Ni-based maraging steel in which B was not added, as shown in Table 1, the first time Perform a solution treatment,
Thereafter, cold working was performed, and then the second solution treatment was performed. The result is shown in FIG.

第3図からBを添加したマルエージング鋼はB無添加
のマルエージング鋼に比較して結晶粒が微細化してお
り、特にBを0.0003%以上含有するマルエージング鋼は
結晶粒度番号が10以上と著しく微細化している。しか
し、同じBを添加したマルエージング鋼でも1回目の溶
体化処理後に冷間加工を施さない場合は、2回目の固溶
化処理後においてもほとんど結晶粒が微細化しないこと
がわかる。
From Fig. 3, the maraging steel with B added has finer crystal grains than the maraging steel without B addition, and in particular, the maraging steel containing 0.0003% or more of B has a grain size number of 10 or more. It is extremely fine. However, even if the same maraging steel to which B is added is not subjected to cold working after the first solution treatment, it can be seen that the crystal grains hardly become fine even after the second solution treatment.

発明者はBのほかにCa、Zr、Y、Mgなどの各元素につ
いて同様な試験を行なった結果、結晶粒の微細化に有効
な元素はBを添加した場合にのみ効果があることを新規
に見出し本発明に至ったものである。すなわち、第1の
発明は重量%で、C 0.03%以下、Si 0.1%以下、Mn 0.1
%以下、P 0.01%以下、S 0.01%以下、Ni 16〜20%、C
o 7〜14%、Mo 3.0〜5.5%、Al 0.2%以下、Ti 0.3〜2.
0%、N 0.01%以下、B 0.0003〜0.01%を含有し、残部
が実質的にFeからなり、かつ結晶粒度がASTM No.で10以
上の細粒であることを特徴とする、超微細結晶粒を有す
るマルエージング鋼であり、第2の発明は、第1の発明
に記載の組成からなるマルエージング鋼を、熱間加工後
800〜950℃の温度で固溶化処理を行ない、その後加工率
で10%以上の冷間加工を行なった後、さらに再結晶温度
以上の温度で固溶化処理を行なうことを特徴とする超微
細結晶粒を有するマルエージング鋼の製造方法である。
The inventors conducted similar tests on each element such as Ca, Zr, Y, and Mg in addition to B. As a result, it was newly found that elements effective for grain refinement are effective only when B is added. And led to the present invention. That is, in the first invention, C is 0.03% or less, Si is 0.1% or less, and Mn 0.1
%, P 0.01% or less, S 0.01% or less, Ni 16-20%, C
o 7-14%, Mo 3.0-5.5%, Al 0.2% or less, Ti 0.3-2.
Ultra-fine crystals containing 0%, N 0.01% or less, B 0.0003-0.01%, the balance being substantially Fe, and having a grain size of 10 or more in ASTM No. A second invention is a maraging steel having grains, wherein the maraging steel having the composition described in the first invention is obtained by hot working.
An ultrafine crystal characterized by performing a solution treatment at a temperature of 800 to 950 ° C., then performing a cold working at a working rate of 10% or more, and further performing a solution treatment at a temperature equal to or higher than a recrystallization temperature. This is a method for producing a maraging steel having grains.

本発明において、1回目の固溶化処理はFe、Moを主成
分とする未固溶の金属間化合物を残留させないために実
施するもので、上記目的を達成するためには800℃以上
が必要で、950℃を越えると結晶粒が粗大化するため、
1回目の固溶化処理温度範囲を800〜950℃に限定する。
1回目の固溶化処理後に行なう冷間加工は、材料に加工
歪を付加して、その後実施する2回目の固溶化処理によ
って微細に再結晶させるために行なうものである。例え
ば、第1表に示す工程Cおよび工程EないしIの結果を
まとめると第2図に示すように冷間加工率が10%以上で
微細化効果が得られるものの、B無添加の材料は、冷間
加工を行なっても効果のないことがわかる。
In the present invention, the first solution treatment is performed in order not to leave undissolved intermetallic compounds containing Fe and Mo as main components, and 800 ° C. or higher is required to achieve the above object. If the temperature exceeds 950 ° C, the crystal grains become coarse.
The temperature range of the first solution treatment is limited to 800 to 950 ° C.
The cold working performed after the first solution treatment is performed in order to add processing strain to the material and finely recrystallize by the second solution treatment performed thereafter. For example, when the results of Step C and Steps E to I shown in Table 1 are summarized, as shown in FIG. It can be seen that cold working has no effect.

したがって1回目の固溶化処理後に実施する冷間加工
率は10%以上に限定する。望ましくは冷間加工率は20%
以上である。引続いて行なう固溶化処理は、前の工程で
冷間加工して材料に歪を付加し、再結晶させて結晶粒を
微細化するため少なくとも再結晶温度以上の温度で実施
する必要がある。第1図は第1表に示した工程Aないし
Dの熱間加工後、840℃×1時間、1回目の固溶化処理
を行ない、続いて30%の冷間加工を施した後、2回目の
固溶化処理温度と結晶粒度との関係を調べた一例を示す
図である。第1図から、結晶粒度を微細にするには2回
目の固溶化処理温度は再結晶温度以上で、しかも低温側
で実施することが良いことがわかる。しかし、材料の寸
法あるいは2回目の固溶化処理前の冷間加工率などによ
って適正な加熱保持時間、再結晶温度等は変化するので
2回目の固溶化処理条件を適宜選択することが望まし
い。
Therefore, the rate of cold working performed after the first solution treatment is limited to 10% or more. Desirably a cold working rate of 20%
That is all. The subsequent solution treatment needs to be performed at least at a temperature higher than the recrystallization temperature in order to apply a strain to the material by cold working in the previous step and recrystallize the crystal grains. FIG. 1 shows that after the hot working in steps A to D shown in Table 1, a first solution treatment was performed at 840 ° C. for 1 hour, followed by a 30% cold working, and then a second solution working. FIG. 4 is a diagram showing an example of examining the relationship between the solution treatment temperature and the crystal grain size of the sample. From FIG. 1, it can be seen that in order to make the crystal grain size fine, the second solution treatment temperature is preferably higher than the recrystallization temperature and at a lower temperature. However, since the appropriate heating holding time, recrystallization temperature, and the like change depending on the dimensions of the material, the rate of cold working before the second solution treatment, and the like, it is desirable to appropriately select the conditions for the second solution treatment.

〔作用〕[Action]

以下に本発明の組成の限定理由について述べる。 The reasons for limiting the composition of the present invention are described below.

Niはマルエージング鋼のマトリックス(基地)である
低Cのマルテンサイトを形成させるために少なくとも16
%は必要な元素であるが、20%を越えるとオーステナイ
トが安定化し、マルテンサイト組織を形成しにくくなる
ことから、Niは16〜20%とした。
Ni must be at least 16 to form low C martensite, the matrix of the maraging steel.
% Is a necessary element, but if it exceeds 20%, austenite is stabilized and it becomes difficult to form a martensite structure. Therefore, Ni is set to 16 to 20%.

Coは、マトリックスであるマルテンサイト組織を安定
性に大きく影響することなく、Moの固溶度を低下させる
ことによってMoが微細な金属間化合物を形成して析出す
るのを促進することによって析出強化に寄与するが、そ
の含有量が7%未満では必ずしも十分効果が得られず、
また14%を越えると脆化する傾向がみられることから、
Coの含有量を7〜14%に限定した。
Co strengthens the precipitation by reducing the solid solubility of Mo by promoting the formation of fine intermetallic compounds by reducing the solid solubility of Mo without significantly affecting the stability of the martensite structure, which is the matrix. However, if the content is less than 7%, the effect is not always sufficiently obtained,
If it exceeds 14%, it tends to become brittle,
The content of Co was limited to 7-14%.

Moは時効処理により、微細な金属間化合物を形成し、
マトリックスに析出することによって強化に寄与する元
素であるが、その含有量が3.0%未満の場合その効果が
少なく、また5.5%を越えて含有すると延性、靱性を劣
化させるFe、Moを主要元素とする粗大析出物を形成しや
すくなるため、Moの含有量を3〜5.5%とした。
Mo forms a fine intermetallic compound by aging treatment,
It is an element that contributes to strengthening by precipitating in the matrix, but its effect is small when its content is less than 3.0%, and when it exceeds 5.5%, the main elements are Fe and Mo, which deteriorate ductility and toughness. In order to easily form coarse precipitates, the content of Mo was set to 3 to 5.5%.

Tiは、Moと同様に時効処理により微細な金属間化合物
を形成し、析出することによって強化に寄与する元素で
あるが、その含有量が0.3%未満の場合その効果が少な
く、2.0%を越えて含有させると延性、靱性が劣化する
ことから、Tiの含有量を0.3〜2.0%とした。
Ti is an element that contributes to strengthening by forming and precipitating a fine intermetallic compound by aging treatment like Mo, but its effect is small when its content is less than 0.3%, and exceeds 2.0% If added, the ductility and toughness deteriorate, so the content of Ti is set to 0.3 to 2.0%.

Alは、時効析出した強化に寄与するだけでなく、脱酸
作用を持っているが、0.2%を越えて含有させると靱性
が劣化することから、その含有量を0.2%以下とした。
Al not only contributes to aging-precipitated strengthening, but also has a deoxidizing effect. However, if contained in excess of 0.2%, toughness deteriorates, so its content was made 0.2% or less.

Nは、その含有量が0.01%を越えるとTi、Cとともに
炭窒化物を形成し介在物として残るだけでなく、効果に
寄与する有効Ti量を減少させる不純物元素であることか
ら、その含有量を0.01%以下とした。
N is an impurity element that, when its content exceeds 0.01%, forms a carbonitride with Ti and C and remains as an inclusion, and also reduces the effective Ti amount contributing to the effect. Was set to 0.01% or less.

Bは、結晶粒を微細化するのに必要な、かつ有効な元
素であるが、その含有量が0.0003%未満の場合十分な効
果が得られず、また0.01%を越えて含有させると靱性が
劣化することから、その含有量を0.0003%〜0.01%とし
た。
B is an element necessary and effective for refining crystal grains. However, if the content is less than 0.0003%, sufficient effect cannot be obtained, and if the content exceeds 0.01%, toughness is reduced. Due to deterioration, the content was made 0.0003% to 0.01%.

結晶粒度番号は大きい方が強度、靱性が高くなるが、
10より小さいとその効果が不十分であり、本発明の方法
によれば10以上が達成できるので10以上とした。
The larger the grain size number, the higher the strength and toughness.
If the value is smaller than 10, the effect is insufficient, and according to the method of the present invention, 10 or more can be achieved.

〔実施例〕〔Example〕

以下、本発明を実施例にて説明する。 Hereinafter, the present invention will be described with reference to examples.

第2表に示す試料番号1〜11の組成からなる18%Ni系
マルエージング鋼を真空誘導溶解にて溶解して10kgイン
ゴットに鋳造し、1200℃で均質化焼鈍したのち、鍛伸、
熱間圧延を行なって4.5mm厚さの平材に仕上げた。
18% Ni maraging steel having the composition of Sample Nos. 1 to 11 shown in Table 2 was melted by vacuum induction melting, cast into a 10 kg ingot, homogenized and annealed at 1200 ° C.
Hot rolling was performed to make a 4.5 mm thick flat material.

この平材を用いて、第1表に示す工程のうち、工程
C、D、EおよびIの熱処理、冷間加工を行なった後、
さらに480℃〜520℃の範囲で時効処理を行ない、縦断面
の結晶粒度を測定した。その結果を第2表に併記する。
After performing the heat treatment and the cold working of steps C, D, E and I in the steps shown in Table 1 using this flat material,
Further, aging treatment was performed in the range of 480 ° C. to 520 ° C., and the grain size of the longitudinal section was measured. The results are shown in Table 2.

Bを含有する本発明合金の1ないし10は第2表に示す
ように結晶粒度No.10以上の細粒であるのに対して、B
無添加の比較合金11は冷間加工を行なっても細粒効果が
小さいことがわかる。また比較法の工程Iは、1回目の
固溶化処理後に冷間加工は行なわずに2回目の固溶化処
理を実施したものであるが、Bを含有する本発明合金の
1ないし10に関しても細粒化しないことがわかる。
As shown in Table 2, 1 to 10 of the alloys of the present invention containing B are fine grains having a grain size of No. 10 or more.
It can be seen that the comparative alloy 11 with no addition has a small fine-grain effect even after cold working. Step I of the comparative method, in which the second solution treatment was carried out without performing the cold working after the first solution treatment, was carried out with respect to 1 to 10 of the alloy of the present invention containing B. It turns out that it does not granulate.

〔発明の効果〕〔The invention's effect〕

本発明によれば、Bを含有するマルエージング鋼の結
晶粒を容易に微細化することができ、またBを含有し結
晶粒が結晶粒度番号で10以上と超微細なマルエージング
鋼は、強度、靱性等に優れること、および特に肉厚の小
さい部品では、結晶粒が超微細であることによって延
性、靱性等のバラツキが小さいことが期待され、各種工
具材、構造部材等に用いれば、優れた工具寿命、機械的
性質を示すなどの工業上顕著な効果を持つことが予想さ
れる。
ADVANTAGE OF THE INVENTION According to this invention, the crystal grain of the maraging steel containing B can be easily refined | reduced. , Excellent toughness, and especially for parts with small thickness, it is expected that the variation in ductility, toughness, etc. is small due to the ultra-fine crystal grains, and if used for various tool materials, structural members, etc. It is expected to have industrially remarkable effects, such as showing tool life and mechanical properties.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、Bを含有するマルエージング鋼とBを含有し
ないマルエージング鋼について、冷間加工後に行なう2
回目の固溶化処理温度と結晶粒度番号の関係を示す図で
あり、第2図は、Bを含有するマルエージング鋼と含有
しないマルエージング鋼の2回の固溶化処理の間に行な
う冷間加工の加工率と結晶粒度番号の関係を示す図であ
り、第3図は、マルエージング鋼のB含有量と結晶粒度
番号の関係を示す図である。
FIG. 1 shows that a maraging steel containing B and a maraging steel not containing B are subjected to cold working 2
FIG. 2 is a diagram showing a relationship between a second solution treatment temperature and a crystal grain size number, and FIG. 2 shows cold working performed between two solution treatments of a maraging steel containing B and a maraging steel not containing B; FIG. 3 is a diagram showing the relationship between the working ratio and the grain size number, and FIG. 3 is a diagram showing the relationship between the B content of the maraging steel and the grain size number.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、C 0.03%以下、Si 0.1%以下、
Mn 0.1%以下、P 0.01%以下、S 0.01%以下、Ni 16〜2
0%、Co 7〜14%、Mo 3.0〜5.5%、Al 0.2%以下、Ti
0.3〜2.0%、N 0.01%以下、B 0.0003〜0.01%を含有
し、残部が実質的にFeからなり、かつ結晶粒度がASTM N
o.で10以上の細粒であることを特徴とする、超微細結晶
粒を有するマルエージング鋼。
(1) In weight%, C is 0.03% or less, Si is 0.1% or less,
Mn 0.1% or less, P 0.01% or less, S 0.01% or less, Ni 16 ~ 2
0%, Co 7-14%, Mo 3.0-5.5%, Al 0.2% or less, Ti
0.3 to 2.0%, N 0.01% or less, B 0.0003 to 0.01%, the balance is substantially composed of Fe, and the grain size is ASTM N
A maraging steel having ultra-fine crystal grains, characterized by having fine grains of 10 or more in o.
【請求項2】請求項1に記載の組成からなるマルエージ
ング鋼を、熱間加工後800〜950℃の温度で固溶化処理を
行ない、その後加工率で10%以上の冷間加工を行なった
後、さらに再結晶温度以上の温度で固溶化処理を行なう
ことを特徴とする超微細結晶粒を有するマルエージング
鋼の製造方法。
2. A maraging steel having a composition according to claim 1 is subjected to a solution treatment at a temperature of 800 to 950 ° C. after hot working, and then to a cold working at a working ratio of 10% or more. Thereafter, a solution treatment is performed at a temperature higher than a recrystallization temperature to produce a maraging steel having ultrafine crystal grains.
JP10651289A 1989-04-26 1989-04-26 Maraging steel and manufacturing method thereof Expired - Lifetime JP2909089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10651289A JP2909089B2 (en) 1989-04-26 1989-04-26 Maraging steel and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10651289A JP2909089B2 (en) 1989-04-26 1989-04-26 Maraging steel and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH02285053A JPH02285053A (en) 1990-11-22
JP2909089B2 true JP2909089B2 (en) 1999-06-23

Family

ID=14435471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10651289A Expired - Lifetime JP2909089B2 (en) 1989-04-26 1989-04-26 Maraging steel and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2909089B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60033772T2 (en) 1999-12-24 2007-10-31 Hitachi Metals, Ltd. Martensitic hardening steel with high fatigue strength and martensitic hardening steel strip
FR2816959B1 (en) * 2000-11-17 2003-08-01 Imphy Ugine Precision PROCESS FOR MANUFACTURING A STRIP OR A CUT PIECE IN A COLD-ROLLED MARAGING STEEL STRIP
JP2006283085A (en) * 2005-03-31 2006-10-19 Hitachi Metals Ltd Method for producing spring material
JP5007930B2 (en) * 2005-12-13 2012-08-22 日立金属株式会社 Maraging steel having high fatigue strength, maraging steel strip using the same, and method for producing maraging steel having high fatigue strength
JP2009013464A (en) * 2007-07-04 2009-01-22 Hitachi Metals Ltd Maraging steel for metal belt
US20100189590A1 (en) * 2007-07-11 2010-07-29 Hitachi Metals, Ltd. Maraging steel and maraging steel for metallic belt
CN103331326B (en) * 2013-06-25 2015-07-08 浙江国邦钢业有限公司 Tube making process of high molybdenum alloy and seamless steel tube with high molybdenum alloy
CN114085965B (en) * 2021-11-19 2023-03-10 华能国际电力股份有限公司 Two-stage solution treatment process for aging-strengthened high-temperature alloy

Also Published As

Publication number Publication date
JPH02285053A (en) 1990-11-22

Similar Documents

Publication Publication Date Title
KR100910193B1 (en) Ultra-high-strength precipitation-hardenable stainless steel and elongated strip made therefrom
EP3441497B1 (en) Lightweight steel sheet with enhanced elastic modulus, and manufacturing method thereof
JP2004010963A (en) HIGH STRENGTH Ti ALLOY AND ITS PRODUCTION METHOD
JPH01252747A (en) High strength titanium material having excellent ductility and its manufacture
JP4408386B2 (en) High-strength steel with fine grain structure
JP2909089B2 (en) Maraging steel and manufacturing method thereof
JP3842836B2 (en) Method for producing high-tensile steel with excellent low-temperature toughness
JPS62270721A (en) Production of high-mn austenitic stainless steel for cryogenic service
JP3169977B2 (en) ▲ high ▼ strength non-magnetic stainless steel
CN112662932B (en) TWIP steel and preparation method thereof
CN111218616B (en) Low-temperature-resistant high-toughness high-strength low-alloy round steel and preparation method thereof
JP3246993B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
KR20000058123A (en) Heavy wall steel material having superior weldability and method for producing the same
JPH0629480B2 (en) Hot-rolled high-strength steel sheet excellent in strength, ductility, toughness, and fatigue characteristics, and method for producing the same
JP2879930B2 (en) Free-cutting stainless steel for molds with excellent rust resistance
KR20200066925A (en) High entropy alloy and manufacturing method of the same
TWI760241B (en) Multi-performance medium-entropy lightweight steel and method of fabricating the same
JPS63145752A (en) Austenitic iron alloy having strength and toughness
JP4564189B2 (en) High toughness non-tempered steel for hot forging
JPS6357745A (en) High-strength stainless steel excellent in workability
JPH0726175B2 (en) Method for manufacturing high speed tool steel
JP2843375B2 (en) Free-cutting stainless steel for molds with excellent rust resistance
JP3164140B2 (en) Martensitic stainless steel for machine parts
JP3379760B2 (en) Manufacturing method of high strength and high permeability steel
JPS6114207B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RVTR Cancellation of determination of trial for invalidation