JP4424503B2 - Steel bar and wire rod - Google Patents

Steel bar and wire rod Download PDF

Info

Publication number
JP4424503B2
JP4424503B2 JP2005248739A JP2005248739A JP4424503B2 JP 4424503 B2 JP4424503 B2 JP 4424503B2 JP 2005248739 A JP2005248739 A JP 2005248739A JP 2005248739 A JP2005248739 A JP 2005248739A JP 4424503 B2 JP4424503 B2 JP 4424503B2
Authority
JP
Japan
Prior art keywords
less
steel
inclusions
steel bar
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005248739A
Other languages
Japanese (ja)
Other versions
JP2007063589A (en
Inventor
善弘 大藤
訓正 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2005248739A priority Critical patent/JP4424503B2/en
Publication of JP2007063589A publication Critical patent/JP2007063589A/en
Application granted granted Critical
Publication of JP4424503B2 publication Critical patent/JP4424503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、棒鋼及び/又は線材(以下、「棒鋼・線材」という。)に関し、詳しくは、鍛造と切削加工を施す部品の素材、なかでも自動車や産業機械などに用いられる部品の素材となる棒鋼・線材に関する。   The present invention relates to a steel bar and / or a wire (hereinafter referred to as “bar steel / wire”), and more specifically, a material for a part subjected to forging and cutting, particularly a material for a part used in an automobile or an industrial machine. It relates to steel bars and wires.

棒鋼・線材を素材とする自動車や産業機械などに用いられる部品の成形は、冷間鍛造或いは熱間鍛造と、切削加工とを組み合わせて行うことが多い。このため、産業界からは、冷間鍛造や熱間鍛造の際の良好な加工性と優れた切削性を兼ね備えた棒鋼・線材に対する要望が大きく、特に、冷間鍛造時に割れの発生を安定して防止できることが強く望まれている。   Molding of parts used for automobiles and industrial machines made of steel bars and wire rods is often performed by a combination of cold forging or hot forging and cutting. For this reason, there is a great demand from the industry for steel bars and wire rods that have good workability and excellent machinability during cold forging and hot forging. It is strongly desired that this can be prevented.

特許文献1には、被顕面積150mm2内に存在する硫化物又は硫化物を主体とする複合化合物を評価し、断面積が、それぞれ、60μm2以上のもの及び10〜20μm2のものの個数を特定の範囲内に調整した「冷間鍛造性の優れた鋼線材」が開示されている。 In Patent Document 1, a sulfide or a composite compound mainly composed of sulfide existing in an exposed area of 150 mm 2 is evaluated, and the numbers of cross-sectional areas of 60 μm 2 or more and 10 to 20 μm 2 are shown. A “steel wire rod excellent in cold forgeability” adjusted within a specific range is disclosed.

また、特許文献2には、0.0003〜0.01%のZrなど特定の元素を含有し、更に、MnSの平均アスペクト比と最大アスペクト比、或いは、前記MnSのアスペクト比に加えてその最大粒径と1mm2あたりの数を制御した「鍛造性と被削性に優れた鋼」が開示されている。 Further, Patent Document 2 contains a specific element such as 0.0003 to 0.01% of Zr, and the average aspect ratio and maximum aspect ratio of MnS, or the maximum aspect ratio in addition to the aspect ratio of MnS. “Steel excellent in forgeability and machinability” in which the particle diameter and the number per mm 2 are controlled is disclosed.

なお、特許文献3にも、MnSの長径長さと短径長さの最大比や最大長さを制御した技術が開示されている。   Patent Document 3 also discloses a technique in which the maximum ratio of the major axis length to the minor axis length and the maximum length of MnS are controlled.

特開2000−204440号公報JP 2000-204440 A WO01/066814号公報WO01 / 0666814 特開2001−40452号公報Japanese Patent Application Laid-Open No. 2001-40552

前記特許文献1で提案された技術は、硫化物又は硫化物を主体とする複合化合物の断面積が、それぞれ、60μm2以上のもの及び10〜20μm2のものについて着目しただけのものであり、大きな介在物が冷間鍛造性に及ぼす影響、特に、介在物の最大長径が冷間鍛造性に及ぼす影響について全く考慮されていない。しかも、硫化物又は硫化物を主体とする複合化合物についての被顕面積すなわち評価面積が極めて小さい。このため、冷間鍛造における限界据込み率が小さく、加工性が不十分であって、工業的な規模で自動車や産業機械などに用いられる部品を量産することは難しい。 The technique proposed in the above-mentioned Patent Document 1 merely focuses on those having a cross-sectional area of 60 μm 2 or more and 10 to 20 μm 2 of sulfide or a composite compound mainly composed of sulfide, No consideration is given to the influence of large inclusions on cold forgeability, particularly the influence of the maximum long diameter of inclusions on cold forgeability. Moreover, the exposed area, that is, the evaluation area, of the sulfide or the composite compound mainly containing sulfide is extremely small. For this reason, the limit upsetting rate in cold forging is small, the workability is insufficient, and it is difficult to mass-produce parts used for automobiles, industrial machines, etc. on an industrial scale.

また、特許文献2で提案された技術は、MnS以外の他の介在物による冷間鍛造性への影響について全く考慮されておらず、また、介在物の分散状態についての考慮もなされていない。更に、介在物としてのMnSについての評価面積が小さい。このため、前記特許文献1で提案された技術の場合と同様に、冷間鍛造における限界据込み率が小さく、加工性が不十分であって、工業的な規模で自動車や産業機械などに用いられる部品を量産することは難しい。   In addition, the technique proposed in Patent Document 2 does not consider the influence on the cold forgeability by inclusions other than MnS, nor does it consider the dispersion state of inclusions. Furthermore, the evaluation area about MnS as an inclusion is small. For this reason, as in the case of the technique proposed in Patent Document 1, the limit upsetting rate in cold forging is small, the workability is insufficient, and it is used for automobiles and industrial machines on an industrial scale. It is difficult to mass-produce parts.

特許文献3で提案された技術は、介在物としてのMnSの長径長さと短径長さの最大比や最大長さについて考慮されたものであり、優れた接触疲労寿命強度を確保することができるものである。しかしながら、MnS以外の他の介在物についての考慮が全くなされていない。しかも、その実施例の記載から明らかなように、鋼の化学組成は脱酸元素として一般的なAlが非添加で、しかも、不純物に対する配慮が不十分である。また、MnSも、実施例に具体的に記載されているように、約200個という少数を評価したものでしかない。このため、冷間鍛造における加工性は必ずしも良好ではなく、工業的な規模で自動車や産業機械などに用いられる部品を量産することが難しかった。   The technique proposed in Patent Document 3 takes into consideration the maximum ratio of the major axis length to the minor axis length and the maximum length of MnS as inclusions, and can ensure excellent contact fatigue life strength. Is. However, no consideration is given to inclusions other than MnS. Moreover, as is clear from the description of the examples, the chemical composition of steel is not added with general Al as a deoxidizing element, and consideration for impurities is insufficient. In addition, MnS is only an evaluation of a small number of about 200, as specifically described in the examples. For this reason, the workability in cold forging is not always good, and it is difficult to mass-produce parts used in automobiles, industrial machines, etc. on an industrial scale.

本発明の目的は、冷間鍛造や熱間鍛造の際の良好な加工性、なかでも冷間鍛造の際の良好な加工性及び優れた切削性を兼ね備え、自動車や産業機械などに用いられる部品の素材として好適な棒鋼・線材を提供することである。   The object of the present invention is a component used in automobiles, industrial machines, etc., which has good workability in cold forging and hot forging, in particular, good workability in cold forging and excellent machinability. It is to provide a steel bar / wire suitable as a material for the above.

従来、鍛造での割れ発生が開始する限界の加工度(以下、「限界加工度」という。)の向上には、介在物について量の低減と微細化を行えばよいことが知られていた。また、棒鋼・線材においては、通常質量%で、0.005%以上のSを含むため、最も多い介在物はMnSを主体とする硫化物や複合介在物であり、S量の低減が限界加工度の向上に有効であることも知られていた。   Conventionally, it has been known that the amount of inclusions can be reduced and refined in order to improve the limit workability at which cracking in forging starts (hereinafter referred to as “limit workability”). In addition, since steel bars and wires usually contain 0.005% or more of S by mass%, the most inclusions are sulfides and composite inclusions mainly composed of MnS. It was also known to be effective in improving the degree.

しかしながら一方、MnSを主体とする硫化物や複合介在物は、工具寿命を延ばし、切削抵抗を低減し、また、切り屑処理性を高めるので、Sの含有量を増やすことが切削性の向上に有効であることも知られていた。   However, sulfides and composite inclusions mainly composed of MnS prolong tool life, reduce cutting resistance, and improve chip disposal, so increasing the S content improves cutting performance. It was also known to be effective.

そこで、本発明者らは、自動車や産業機械などに用いられる部品の素材として利用される棒鋼・線材に、大きな限界加工度、なかでも冷間鍛造での大きな限界加工度を確保させ、しかも、良好な切削性を確保させて、工業的な規模で安定した量産を行うことができるようにするために介在物の形態、分布などについて種々調査・研究を重ねた。その結果、下記(a)〜(f)の知見を得た。   Therefore, the present inventors have ensured a large limit working degree, particularly a large limit working degree in cold forging, to the steel bars and wires used as materials for parts used in automobiles and industrial machines, In order to ensure good machinability and enable stable mass production on an industrial scale, various investigations and researches were carried out on the form and distribution of inclusions. As a result, the following findings (a) to (f) were obtained.

(a)冷間鍛造の際の限界加工度に対して、介在物の長径、なかでも最大長径が大きな影響を及ぼす。上記介在物の最大長径は、熱間鍛造の際の限界加工度にも影響する。   (A) The long diameter of inclusions, particularly the maximum long diameter, has a great influence on the limit working degree during cold forging. The maximum major axis of the inclusion also affects the limit working degree during hot forging.

(b)鋼中の介在物としては、硫化物、酸化物、窒化物、炭化物や炭窒化物などが挙げられ、これらの介在物のうちで硫化物は比較的軟質であるが、他の介在物は硬質である。そして、軟質な介在物と硬質な介在物とでは、冷間鍛造における限界加工度への影響度合いが異なるので、良好な限界加工度を得るためには、先ず、硬質な介在物の最大長径をより一層小さくする必要がある。   (B) Examples of inclusions in steel include sulfides, oxides, nitrides, carbides and carbonitrides. Among these inclusions, sulfides are relatively soft, but other inclusions are included. The object is hard. And, since soft inclusions and hard inclusions have different degrees of influence on the limit workability in cold forging, first, in order to obtain a good limit workability, the maximum major axis of the hard inclusions is set. It is necessary to make it even smaller.

(c)一方、硫化物は切削性の向上に寄与するため、Sを積極的に添加して硫化物を形成させる必要があるものの、冷間鍛造における限界加工度を高めるためにはその最大長径を抑制する必要がある。   (C) On the other hand, since sulfide contributes to improvement of machinability, it is necessary to positively add S to form sulfide. However, in order to increase the limit workability in cold forging, its maximum long diameter It is necessary to suppress.

(d)工業的な規模で安定した量産を行うためには、部品の素材として用いられる棒鋼・線材について、広い領域で介在物の最大長径及び分布状況を評価する必要があり、その評価方法としては、例えば下記の文献に示される「極値統計法」が優れている。
「金属疲労 微小欠陥と介在物の影響」、233〜239ページ、(著者:村上敬宜、発行日:1993年3月8日、発行所:養賢堂)。
(D) In order to carry out stable mass production on an industrial scale, it is necessary to evaluate the maximum long diameter and distribution of inclusions in a wide area for steel bars and wires used as component materials. For example, the “extremum statistical method” shown in the following document is excellent.
“Metal fatigue: Influence of micro defects and inclusions”, pages 233 to 239 (author: Takayoshi Murakami, issue date: March 8, 1993, issue: Yokendo).

なお、「極値統計法」による介在物の最大長径及び分布状況の評価は、例えば次に示すような手順で行えばよい。   In addition, what is necessary is just to perform the evaluation of the maximum long diameter of an inclusion and distribution condition by the following procedure, for example by "extremum statistical method".

〈1〉棒鋼・線材の長手方向に平行である断面を鏡面研磨した後、その研磨面を被検面として、検査基準面積S0(mm2)を決める。
〈2〉上記S0中で最大の長径を有する介在物を選び、その長径Lmax(μm)を測定する。
〈3〉上述した測定を、重複しない場所でn回繰り返して行う。
〈4〉測定したn個のLmaxを小さい順に並べ直し、それぞれLmax,j(j=1〜n)とする。
〈5〉それぞれのjについて下記の基準化変数yjを計算する。
j=−ln[−ln{j/(n+1)}]。
〈6〉極値確率用紙の座標横軸にLmax、縦軸に基準化変数yをとって、j=1〜nについてプロットし、最小二乗法により近似直線を求める。
〈7〉評価したい面積をS(mm2)、T=S/S0として下記の式からyの値を求め、上記の近似直線を用いて、前記yの値におけるLmaxを求めれば、これがその評価面積における介在物の最大長径である。
y=−ln[−ln{(T−1)/T}]。
<1> After mirror-polishing a cross section parallel to the longitudinal direction of the steel bar / wire rod, an inspection reference area S 0 (mm 2 ) is determined using the polished surface as a test surface.
<2> The inclusion having the maximum major axis in S 0 is selected, and the major axis L max (μm) is measured.
<3> The above-described measurement is repeated n times in a non-overlapping place.
<4> The measured n L max are rearranged in ascending order, and are set to L max, j (j = 1 to n), respectively.
<5> The following normalized variable y j is calculated for each j .
y j = −ln [−ln {j / (n + 1)}].
<6> taken extreme value probability L max to coordinate the horizontal axis of the sheet, the normalized variable y on the vertical axis, plotted for j = 1 to n, obtaining an approximate straight line by the least square method.
<7> If the area to be evaluated is S (mm 2 ), T = S / S 0 , the value of y is obtained from the following equation, and the above-mentioned approximate straight line is used to obtain L max at the value of y, this is It is the maximum major axis of inclusions in the evaluation area.
y = -ln [-ln {(T-1) / T}].

(e)Teは、硫化物の最大長径を小さくして冷間鍛造や熱間鍛造の際の限界加工度を高める作用を有するので、含有させてもよい。しかしながら、Teの含有量が多くなると、MnとTeを主体とする介在物が生成しやすくなって、熱間鍛造時に割れや疵の発生が顕著になる。   (E) Te has the effect of reducing the maximum major axis of sulfides to increase the limit degree of processing during cold forging and hot forging, and therefore may be included. However, when the Te content increases, inclusions mainly composed of Mn and Te are easily generated, and cracks and wrinkles are prominent during hot forging.

(f)Zr、Ca、Mg及びREM(希土類元素)は、硫化物の最大長径を小さくする作用を有するものの、これらの元素は非常に酸化力が強く粗大な酸化物を生成する場合がある。このため、不純物としてその含有量の上限を規制することが好ましい。   (F) Although Zr, Ca, Mg, and REM (rare earth elements) have an action of reducing the maximum major axis of sulfides, these elements may generate a coarse oxide having a very strong oxidizing power. For this reason, it is preferable to restrict | limit the upper limit of the content as an impurity.

本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記(1)〜(5)に示す棒鋼・線材にある。   This invention is completed based on said knowledge, The summary exists in the steel bar and wire shown to following (1)-(5).

(1)質量%で、C:0.15〜0.6%、Si:0.05〜0.8%、Mn:0.2〜1.5%、S:0.02〜0.05%、Cr:0.1〜2.0%、Al:0.01〜0.05%、N:0.004〜0.025%を含有し、残部はFe及び不純物からなり、不純物中のP:0.025%以下、Ti:0.003%以下及びO(酸素):0.0015%以下の化学組成を有し、且つ、棒鋼・線材の長手方向に平行である断面において、極値統計法によって求められる介在物の最大長径が、硫化物又は硫化物を主体とする複合介在物については、1.0×104mm2中250μm以下且つ1.0×107mm2中400μm以下であるとともに、酸化物、窒化物、炭化物、炭窒化物又はこれらを主体とする複合介在物については、1.0×104mm2中50μm以下且つ1.0×107mm2中80μm以下であることを特徴とする棒鋼・線材。 (1) By mass%, C: 0.15-0.6%, Si: 0.05-0.8%, Mn: 0.2-1.5%, S: 0.02-0.05% , Cr: 0.1 to 2.0%, Al: 0.01 to 0.05%, N: 0.004 to 0.025%, the balance is made of Fe and impurities, and P: In the cross section having a chemical composition of 0.025% or less, Ti: 0.003% or less, and O (oxygen): 0.0015% or less and parallel to the longitudinal direction of the steel bars / wires, an extreme value statistical method The maximum major axis of the inclusions determined by the above is not more than 250 μm in 1.0 × 10 4 mm 2 and not more than 400 μm in 1.0 × 10 7 mm 2 for sulfides or composite inclusions mainly composed of sulfides. In addition, for oxides, nitrides, carbides, carbonitrides or composite inclusions mainly composed of these, 1.0 × 1 4 bars and wire rods, wherein in mm 2 is 50μm or less and 1.0 × 10 7 mm 2 in 80μm or less.

(2)Feの一部に代えて、Mo:0.8%以下を含有する上記(1)に記載の棒鋼・線材。   (2) The steel bar / wire according to (1), which contains Mo: 0.8% or less instead of part of Fe.

(3)Feの一部に代えて、Nb:0.08%以下及びV:0.15%以下から選択される1種以上を含有する上記(1)又は(2)に記載の棒鋼・線材。   (3) The steel bar / wire according to (1) or (2) above, which contains at least one selected from Nb: 0.08% or less and V: 0.15% or less instead of part of Fe .

(4)Feの一部に代えて、Te:0.008%以下を含有し、且つ、棒鋼・線材の長手方向に平行である断面積100mm2中におけるMnとTeを主体とする介在物の存在割合が1個未満である上記(1)から(3)までのいずれかに記載の棒鋼・線材。 (4) Instead of a part of Fe, inclusions of Te: 0.008% or less and inclusions mainly composed of Mn and Te in a cross-sectional area of 100 mm 2 parallel to the longitudinal direction of the steel bars and wires The steel bar / wire according to any one of (1) to (3), wherein the existence ratio is less than one.

(5)不純物中のZr:0.0005%以下、Ca:0.0005%以下、Mg:0.0005%以下及びREM(希土類元素):0.0010%以下である上記(1)から(4)までのいずれかに記載の棒鋼・線材。   (5) Zr in impurities: 0.0005% or less, Ca: 0.0005% or less, Mg: 0.0005% or less, and REM (rare earth element): 0.0010% or less (1) to (4 ) Steel bars and wire rods as described in any of the above.

ここで、「硫化物を主体とする複合介在物」とは、硫化物が面積率で50%以上である介在物を指す。なお、「酸化物、窒化物、炭化物又は炭窒化物を主体とする複合介在物」とは、酸化物、窒化物、炭化物又は炭窒化物が介在物に占める面積率が合計で50%以上である介在物を指す。   Here, the “composite inclusion mainly composed of sulfide” refers to an inclusion whose sulfide is 50% or more in area ratio. The “composite inclusion mainly composed of oxide, nitride, carbide or carbonitride” means that the total area ratio of oxide, nitride, carbide or carbonitride in inclusions is 50% or more. Refers to an inclusion.

また、「MnとTeを主体とする介在物」とは、介在物中に検出されるMnとTe以外の元素の割合が30原子%未満である介在物を指す。   The “inclusions mainly composed of Mn and Te” refers to inclusions in which the ratio of elements other than Mn and Te detected in the inclusions is less than 30 atomic%.

本発明でいう「REM(希土類元素)」は、Sc、Y及びランタノイドの合計17元素の総称であり、REMの含有量は上記元素の合計含有量を指す。   “REM (rare earth element)” as used in the present invention is a general term for a total of 17 elements of Sc, Y, and lanthanoid, and the content of REM refers to the total content of the above elements.

以下、上記(1)〜(5)の棒鋼・線材に係る発明を、それぞれ、「本発明(1)」〜「本発明(5)」という。また、総称して「本発明」ということがある。   Hereinafter, the inventions related to the steel bars and wires of the above (1) to (5) are referred to as “present invention (1)” to “present invention (5)”, respectively. Also, it may be collectively referred to as “the present invention”.

本発明の棒鋼・線材は、冷間鍛造や熱間鍛造の際の良好な加工性、なかでも冷間鍛造の際の良好な加工性及び優れた切削性を兼ね備えているので、自動車や産業機械などに用いられる部品の素材として利用することができる。   The steel bars and wires of the present invention have good workability during cold forging and hot forging, in particular, good workability during cold forging and excellent machinability, so automobiles and industrial machinery It can be used as a material for parts used in such as.

以下、本発明の各要件について詳しく説明する。なお、化学成分の含有量の「%」は「質量%」を意味する。   Hereinafter, each requirement of the present invention will be described in detail. In addition, “%” of the content of the chemical component means “mass%”.

(A)化学組成
C:0.15〜0.6%
Cは、部品としての強度を確保するために必須の元素である。しかし、その含有量が0.15%未満では前記の効果が不十分である。一方、Cの含有量が0.6%を超えると、強度が高くなりすぎるため、冷間鍛造での限界加工度及び切削性が大きく低下する。したがって、Cの含有量を0.15〜0.6%とした。なお、Cの含有量は0.15〜0.25%にすることが好ましい。
(A) Chemical composition C: 0.15 to 0.6%
C is an essential element for securing the strength as a part. However, if the content is less than 0.15%, the above effect is insufficient. On the other hand, when the content of C exceeds 0.6%, the strength becomes too high, so that the limit workability and the machinability in cold forging are greatly reduced. Therefore, the content of C is set to 0.15 to 0.6%. The C content is preferably 0.15 to 0.25%.

Si:0.05〜0.8%
Siは、部品としての強度を確保するために必須の元素である。しかし、その含有量が0.05%未満では前記の効果が不十分である。一方、Siの含有量が0.8%を超えると、冷間鍛造での変形抵抗が大きく増加し、鍛造金型の寿命を短くする。したがって、Siの含有量を0.05〜0.8%とした。鍛造金型の寿命をより重視する場合には、Siの含有量は0.05〜0.3%にすることが好ましい。
Si: 0.05 to 0.8%
Si is an essential element for securing the strength as a part. However, if the content is less than 0.05%, the above effects are insufficient. On the other hand, when the Si content exceeds 0.8%, the deformation resistance in cold forging increases greatly, and the life of the forging die is shortened. Therefore, the Si content is set to 0.05 to 0.8%. In the case where the life of the forging die is more important, the Si content is preferably 0.05 to 0.3%.

Mn:0.2〜1.5%
Mnは、焼入れ性及び焼戻し軟化抵抗を高める効果があり、部品としての強度を確保するために必須の元素である。しかし、その含有量が0.2%未満では前記の効果が不十分である。一方、Mnの含有量が1.5%を超えると、強度が高くなりすぎるため、冷間鍛造での限界加工度及び切削性が大きく低下する。したがって、Mnの含有量を0.2〜1.5%とした。なお、Mnの含有量は0.5〜0.9%にすることが好ましい。
Mn: 0.2 to 1.5%
Mn has an effect of enhancing hardenability and temper softening resistance, and is an essential element for ensuring strength as a part. However, if the content is less than 0.2%, the above effect is insufficient. On the other hand, when the content of Mn exceeds 1.5%, the strength becomes too high, so that the limit workability and the machinability in cold forging are greatly reduced. Therefore, the Mn content is set to 0.2 to 1.5%. The Mn content is preferably 0.5 to 0.9%.

S:0.02〜0.05%
Sは、硫化物又は硫化物を主体とする複合介在物を形成し、切削性を高める作用を有する。しかし、その含有量が0.02%未満では、前記の効果が不十分である。一方、Sの含有量が多くなると、硫化物又は硫化物を主体とする複合介在物が粗大化しやすくなる。特に、Sの含有量が0.05%を超えると、様々な工夫を施しても硫化物又は硫化物を主体とする複合介在物の最大長径を後述する本発明の規定内に制御することが困難になって、冷間鍛造での限界加工度が大きく低下する。したがって、Sの含有量を0.02〜0.05%とした。なお、Sの含有量は0.02〜0.03%にすることが好ましい。
S: 0.02-0.05%
S forms a sulfide or a composite inclusion mainly composed of sulfide, and has an effect of improving machinability. However, if the content is less than 0.02%, the above effect is insufficient. On the other hand, when the S content increases, sulfides or composite inclusions mainly composed of sulfides are likely to be coarsened. In particular, when the content of S exceeds 0.05%, the maximum major axis of sulfide or a composite inclusion mainly composed of sulfide can be controlled within the provisions of the present invention described later, even if various measures are taken. It becomes difficult, and the limit working degree in cold forging is greatly reduced. Therefore, the content of S is set to 0.02 to 0.05%. The S content is preferably 0.02 to 0.03%.

Cr:0.1〜2.0%
Crは、焼入れ性及び焼戻し軟化抵抗を高める効果があり、部品としての強度を確保するために必須の元素である。しかし、その含有量が0.1%未満では前記の効果が不十分である。一方、Crの含有量が2.0%を超えると、強度が高くなりすぎるため、冷間鍛造での限界加工度及び切削性が大きく低下する。したがって、Crの含有量を0.1〜1.5%とした。焼入れ性及び焼戻し軟化抵抗の向上効果をより重視する場合には、Crの含有量は1.0〜2.0%とすることが好ましい。
Al:0.01〜0.05%
Alは、鋼を脱酸して鋼中の酸素量を低減するために必須の元素である。また、AlはNと結合してAlNを形成し、結晶粒を微細化して部品の靱性や疲労強度を高める効果も有する。しかしながら、Alの含有量が0.01%未満ではこれらの効果が得難くなる。一方、Alの含有量が0.05%を超えると、介在物の最大長径を後述する本発明の規定内に制御することが困難になって、冷間鍛造での限界加工度が大きく低下する。したがって、Alの含有量を0.01〜0.05%とした。なお、Alの含有量は0.02〜0.04%にすることが好ましい。
Cr: 0.1 to 2.0%
Cr has an effect of improving hardenability and temper softening resistance, and is an essential element for securing strength as a part. However, if the content is less than 0.1%, the above effect is insufficient. On the other hand, when the content of Cr exceeds 2.0%, the strength becomes too high, so that the limit workability and the machinability in cold forging are greatly reduced. Therefore, the content of Cr is set to 0.1 to 1.5%. When the effect of improving hardenability and temper softening resistance is more important, the Cr content is preferably 1.0 to 2.0%.
Al: 0.01 to 0.05%
Al is an essential element for deoxidizing steel and reducing the amount of oxygen in the steel. In addition, Al combines with N to form AlN, and has the effect of increasing the toughness and fatigue strength of parts by refining crystal grains. However, when the Al content is less than 0.01%, it is difficult to obtain these effects. On the other hand, if the Al content exceeds 0.05%, it becomes difficult to control the maximum major axis of inclusions within the provisions of the present invention described later, and the limit working degree in cold forging is greatly reduced. . Therefore, the Al content is set to 0.01 to 0.05%. The Al content is preferably 0.02 to 0.04%.

N:0.004〜0.025%
Nは、Al、Nb、V及びTiと結合してAlN、NbN、VN及びTiNを形成しやすく、本発明においては、上記の窒化物のうちでAlN、NbN及びVNは結晶粒微細化に有効で、延性を高める効果がある。しかし、Nの含有量が0.004%未満では前記の効果は得難い。一方、Nの含有量が0.025%を超えると、凝固段階でボイドが形成されやすくなり、これが棒鋼・線材中でもクラックとして残存するため、冷間鍛造での限界加工度が大きく低下する。したがって、Nの含有量を0.004〜0.025%とした。なお、Nの含有量は0.012〜0.020%にすることが好ましい。
N: 0.004 to 0.025%
N easily binds to Al, Nb, V and Ti to form AlN, NbN, VN and TiN. In the present invention, among the above nitrides, AlN, NbN and VN are effective for grain refinement. And it has the effect of increasing ductility. However, if the N content is less than 0.004%, the above effect is difficult to obtain. On the other hand, if the N content exceeds 0.025%, voids are likely to be formed in the solidification stage, and these remain as cracks in the steel bar and wire, so that the limit workability in cold forging is greatly reduced. Therefore, the N content is set to 0.004 to 0.025%. The N content is preferably 0.012 to 0.020%.

本発明においては、不純物元素としてのP、Ti及びO(酸素)の含有量を下記のとおりに制限する。   In the present invention, the contents of P, Ti and O (oxygen) as impurity elements are limited as follows.

P:0.025%以下
Pは、粒界偏析して粒界を脆化させやすい元素で、特に、その含有量が0.025%を超えると、粒界脆化が顕著になって冷間鍛造での限界加工度が大きく低下する。したがって、Pの含有量を0.025%以下とした。なお、Pの含有量は0.020%以下にすることが好ましい。
P: 0.025% or less P is an element that easily segregates at the grain boundary and easily embrittles the grain boundary. The limit working degree in forging is greatly reduced. Therefore, the content of P is set to 0.025% or less. The P content is preferably 0.020% or less.

Ti:0.003%以下
Tiは、Nと結合してTiNを形成しやすい。TiNは非常に硬質で、且つ、形状が角状であるため、冷間鍛造での割れの起点となりやすい。そのため、Tiの含有量が0.003%を超えると、介在物の最大長径を後述する本発明の規定内に制御しても、冷間鍛造での限界加工度が大きく低下して、後述する本発明の目標値に達しない。したがって、Tiの含有量を0.003%以下とした。なお、不純物元素としてのTiの含有量はできるだけ少なくすることが望ましいが、原料及び製鋼でのコストを考慮すると0.001%以下にすることが好ましい。
Ti: 0.003% or less Ti easily bonds to N to form TiN. Since TiN is very hard and has a square shape, it is likely to be a starting point for cracks in cold forging. Therefore, if the Ti content exceeds 0.003%, even if the maximum major axis of inclusions is controlled within the definition of the present invention described later, the limit working degree in cold forging is greatly reduced, which will be described later. The target value of the present invention is not reached. Therefore, the Ti content is set to 0.003% or less. Note that the content of Ti as an impurity element is desirably as small as possible, but is preferably 0.001% or less in consideration of costs for raw materials and steelmaking.

O(酸素):0.0015%以下
Oは、Alと結合して硬質な酸化物系介在物を形成しやすく、特に、Oの含有量が0.0015%を超えると、介在物の最大長径を後述する本発明の規定内に制御することが困難になって、冷間鍛造での限界加工度が大きく低下する。したがって、Oの含有量を0.0015%以下とした。なお、不純物元素としてのOの含有量はできる限り少なくすることが望ましいが、製鋼でのコストを考慮すると、0.0010%以下にすることが好ましい。
O (oxygen): 0.0015% or less O is liable to form a hard oxide inclusion by combining with Al. Particularly, when the O content exceeds 0.0015%, the maximum major axis of the inclusion Therefore, it becomes difficult to control within the rules of the present invention, which will be described later, and the limit working degree in cold forging is greatly reduced. Therefore, the content of O is set to 0.0015% or less. Although the content of O as an impurity element is desirably as small as possible, considering the cost in steelmaking, it is preferable to make it 0.0010% or less.

上記の理由から、本発明(1)に係る棒鋼・線材の化学組成を、上述した範囲のCからNまでの元素を含有し、残部はFe及び不純物からなり、不純物中のP:0.025%以下、Ti:0.003%以下及びO(酸素):0.0015%以下であることと規定した。   For the above reason, the chemical composition of the steel bar / wire according to the present invention (1) contains the elements from C to N in the above-mentioned range, the balance is made of Fe and impurities, and P in the impurities is 0.025. % Or less, Ti: 0.003% or less, and O (oxygen): 0.0015% or less.

なお、本発明に係る棒鋼・線材の化学組成は、必要に応じて、Feの一部に代えて、後述する第1群〜第3群に示される元素を任意に含有させたものでもよい。   In addition, the chemical composition of the steel bar and wire according to the present invention may optionally contain elements shown in the first group to the third group, which will be described later, instead of a part of Fe if necessary.

以下、上記第1群〜第3群の任意添加元素に関して説明する。   Hereinafter, the optional additive elements of the first group to the third group will be described.

第1群:Mo:0.8%以下
Moは、焼入れ性及び焼戻し軟化抵抗を高める作用を有し、前述したMn及びCrによる強度確保の効果を補完するのに有効である。しかしながら、Moの含有量が0.8%を超えると、強度が高くなりすぎるため、冷間鍛造での限界加工度及び切削性が大きく低下する。したがって、Moの含有量を0.8%以下とした。なお、前記したMoの効果を確実に得るためには、その含有量を0.05%以上とすることが好ましい。したがって、より望ましいMoの含有量は0.05〜0.8%である。
First group: Mo: 0.8% or less Mo has an effect of increasing hardenability and temper softening resistance, and is effective in complementing the effect of securing the strength by Mn and Cr described above. However, if the Mo content exceeds 0.8%, the strength becomes too high, so that the limit workability and the machinability in cold forging are greatly reduced. Therefore, the Mo content is set to 0.8% or less. In addition, in order to acquire the above-mentioned effect of Mo reliably, it is preferable that the content shall be 0.05% or more. Therefore, the more desirable Mo content is 0.05 to 0.8%.

第2群:Nb:0.08%以下及びV:0.15%以下
Nbは、部品の靱性や疲労強度を高める効果を有する。すなわち、Nbは、C及びNと結合して、NbC、NbN及びNb(C、N)を形成しやすく、前述したAlNによる結晶粒微細化作用を補完するのに有効で、部品の靱性や疲労強度を高める効果を有する。しかしながら、Nbを0.08%を超えて含有させても前記の効果が飽和し、コストが嵩むだけである。したがって、Nbの含有量を0.08%以下とした。なお、前記したNbの効果を確実に得るためには、その含有量を0.01%以上とすることが好ましい。したがって、より望ましいNbの含有量は0.01〜0.08%である。
Second group: Nb: 0.08% or less and V: 0.15% or less Nb has an effect of increasing toughness and fatigue strength of parts. That is, Nb is easily bonded to C and N to form NbC, NbN and Nb (C, N), and is effective in supplementing the above-described crystal grain refining action by AlN. Has the effect of increasing strength. However, even if Nb is contained in excess of 0.08%, the above effect is saturated and only the cost is increased. Therefore, the Nb content is set to 0.08% or less. In addition, in order to acquire the effect of above-mentioned Nb reliably, it is preferable that the content shall be 0.01% or more. Therefore, the more desirable Nb content is 0.01 to 0.08%.

Vは、部品の靱性や疲労強度を高める効果を有する。すなわち、Vは、N及びCと結合してVN及びVCを形成しやすく、このうち、VNは前述したAlNによる結晶粒微細化作用を補完するのに有効で、部品の靱性や疲労強度を高める効果を有する。しかしながら、Vを0.15%を超えて含有させてもその効果が飽和し、コストが嵩むだけである。したがって、Vの含有量を0.15%以下とした。なお、前記したVの効果を確実に得るためには、その含有量を0.02%以上とすることが好ましい。したがって、より望ましいVの含有量は0.02〜0.15%である。   V has the effect of increasing the toughness and fatigue strength of the part. That is, V is easy to combine with N and C to form VN and VC. Among these, VN is effective in supplementing the above-described grain refining action by AlN, and increases the toughness and fatigue strength of parts. Has an effect. However, even if it contains V exceeding 0.15%, the effect is saturated and only the cost is increased. Therefore, the content of V is set to 0.15% or less. In order to surely obtain the effect of V described above, the content is preferably set to 0.02% or more. Therefore, the more desirable V content is 0.02 to 0.15%.

上記のNb及びVはいずれか1種のみ、又は2種の複合で含有することができる。   Said Nb and V can be contained only in any 1 type or 2 types of composite.

第3群:Te:0.008%以下
Teは、MnS中に固溶して、硫化物のアスペクト比を小さくして最大長径を短くし、冷間鍛造や熱間鍛造の際の限界加工度を高める効果を有する。しかしながら、Teの含有量が0.008%を超えると、様々な工夫を施しても後述するMnとTeを主体とする介在物の生成を抑制することが困難になって、熱間鍛造時に割れや疵が多発するようになる。したがって、Teの含有量を0.008%以下とした。なお、前記したTeの効果を確実に得るためには、その含有量を0.002%以上とすることが好ましい。したがって、より望ましいTeの含有量は0.002〜0.008%である。
Third group: Te: 0.008% or less Te is a solid solution in MnS, reduces the aspect ratio of the sulfide to shorten the maximum major axis, and the limit working degree in cold forging and hot forging. Has the effect of increasing However, if the Te content exceeds 0.008%, it becomes difficult to suppress the formation of inclusions mainly composed of Mn and Te, which will be described later, even if various measures are taken. And habits occur frequently. Therefore, the Te content is set to 0.008% or less. In addition, in order to acquire the effect of Te mentioned above reliably, it is preferable that the content shall be 0.002% or more. Therefore, the more desirable Te content is 0.002 to 0.008%.

上記の理由から、本発明(2)に係る棒鋼・線材の化学組成は、本発明(1)における棒鋼・線材のFeの一部に代えて、Mo:0.8%以下を含有することと規定した。   For the above reasons, the chemical composition of the steel bar / wire according to the present invention (2) contains Mo: 0.8% or less instead of a part of Fe of the steel bar / wire in the present invention (1). Stipulated.

また、本発明(3)に係る棒鋼・線材の化学組成は、本発明(1)又は本発明(2)における棒鋼・線材のFeの一部に代えて、Nb:0.08%以下及びV:0.15%以下から選択される1種以上を含有することと規定した。   Further, the chemical composition of the steel bar / wire according to the present invention (3) is Nb: 0.08% or less and V in place of a part of Fe of the steel bar / wire in the present invention (1) or the present invention (2). : Defined as containing at least one selected from 0.15% or less.

更に、本発明(4)に係る棒鋼・線材の化学組成は、本発明(1)から本発明(3)までのいずれかにおける棒鋼・線材のFeの一部に代えて、Te:0.008%以下を含有することと規定した。   Further, the chemical composition of the steel bar / wire according to the present invention (4) is changed to Te: 0.008 instead of a part of Fe of the steel bar / wire in any of the present invention (1) to the present invention (3). % Or less.

なお、本発明においては、不純物元素としてのZr、Ca、Mg及びREM(希土類元素)の含有量を、それぞれ、Zr:0.0005%以下、Ca:0.0005%以下、Mg:0.0005%以下及びREM(希土類元素):0.0010%以下に制限することによって、冷間鍛造の際の限界加工度を一層安定して高めることができる。   In the present invention, the contents of Zr, Ca, Mg, and REM (rare earth elements) as impurity elements are Zr: 0.0005% or less, Ca: 0.0005% or less, and Mg: 0.0005, respectively. % Or less and REM (rare earth element): By limiting to 0.0010% or less, it is possible to more stably increase the limit working degree during cold forging.

したがって、本発明(1)から本発明(4)までのいずれかにおいて棒鋼・線材の不純物中のZr、Ca、Mg及びREMの含有量について、Zr:0.0005%以下、Ca:0.0005%以下、Mg:0.0005%以下及びREM(希土類元素):0.0010%以下に制限するのが特に好ましく、棒鋼・線材の化学組成をこのように規定したものが本発明(5)である。   Therefore, in any of the present invention (1) to the present invention (4), the Zr, Ca, Mg and REM contents in the impurities of the steel bar / wire are Zr: 0.0005% or less, Ca: 0.0005 % Or less, Mg: 0.0005% or less, and REM (rare earth element): 0.0010% or less are particularly preferable, and the present invention (5) defines the chemical composition of the steel bars and wires. is there.

なお、既に述べたとおり、「REM」は、Sc、Y及びランタノイドの合計17元素の総称であり、REMの含有量は上記元素の合計含有量を指す。   As already described, “REM” is a generic name for a total of 17 elements of Sc, Y, and lanthanoid, and the content of REM indicates the total content of the above elements.

(B)硫化物又は硫化物を主体とする複合介在物の最大長径
本発明の棒鋼・線材においては、その長手方向に平行である断面において、極値統計法によって求められる硫化物又は硫化物を主体とする複合介在物の最大長径が、1.0×104mm2中250μm以下且つ1.0×107mm2中400μm以下を満たす必要がある。既に述べたように、「硫化物を主体とする複合介在物」とは、硫化物が面積率で50%以上である介在物を指す。
(B) Maximum long diameter of sulfide or composite inclusion mainly composed of sulfide In the steel bar / wire of the present invention, the sulfide or sulfide obtained by the extreme value statistical method is used in the cross section parallel to the longitudinal direction. The maximum major axis of the composite inclusion as a main component needs to satisfy 250 μm or less in 1.0 × 10 4 mm 2 and 400 μm or less in 1.0 × 10 7 mm 2 . As already described, the “composite inclusion mainly composed of sulfide” refers to an inclusion whose sulfide has an area ratio of 50% or more.

なお、極値統計法による硫化物又は硫化物を主体とする複合介在物の最大長径(以下、簡単のために、「硫化物系介在物の最大長径」ということがある。)の評価は、例えば、先に述べた〈1〉〜〈7〉の手順で行えばよい。   The evaluation of the maximum major axis of sulfides or composite inclusions mainly composed of sulfides (hereinafter, sometimes referred to as “the maximum major axis of sulfide inclusions” for simplicity) by the extreme value statistical method is For example, the steps <1> to <7> described above may be performed.

以下、上記の硫化物系介在物の最大長径の規定について説明する。   Hereinafter, the definition of the maximum major axis of the sulfide inclusion will be described.

本発明者らは、表1に示す鋼A〜Iを真空溶解炉で溶解した後、インゴットに鋳造した。なお、鋼A及び鋼Bは150kg真空溶解炉で溶解し、鋼C〜Iは30kg真空溶解炉で溶解し、鋳造は、鋼Bについてはシリカ鋳型を用いて行い、また、鋼B以外の鋼については鋳鉄鋳型を用いて行った。インゴットの平均直径は150kgインゴットが220mmであり、30kgインゴットが120mmである。   The inventors of the present invention cast steels A to I shown in Table 1 in an ingot after melting them in a vacuum melting furnace. Steel A and Steel B are melted in a 150 kg vacuum melting furnace, Steels C to I are melted in a 30 kg vacuum melting furnace, casting is performed using a silica mold for Steel B, and steels other than Steel B are used. Was performed using a cast iron mold. The average diameter of the ingot is 220 mm for a 150 kg ingot and 120 mm for a 30 kg ingot.

溶解は不純物元素が十分低減するように原料の選定に十分注意を払うだけでなく、下記(1-1)〜(1-3)の手順で実施して酸化物量を低減するとともに粗大な酸化物や窒化物が生成しないように配慮した。   In addition to paying sufficient attention to the selection of raw materials so that the impurity elements are sufficiently reduced, the following steps (1-1) to (1-3) are performed to reduce the amount of oxides and coarse oxides. Consideration was made so that no nitrides were formed.

(1-1)真空排気したチャンバー内のるつぼ中の電解鉄を誘導加熱によって溶解し、目標含有量に相当するCを添加。
(1-2)1570〜1590℃で40分保持して、十分な脱ガス処理を実施。
(1-3)C及びAl以外の合金元素を添加した後、通常の方法で迅速分析を行い、目標の含有量に達していない合金元素とAlを添加し、その後90秒以内に出鋼。
(1-1) Dissolve the electrolytic iron in the crucible in the evacuated chamber by induction heating, and add C corresponding to the target content.
(1-2) Hold for 40 minutes at 1570 to 1590 ° C. and perform sufficient degassing.
(1-3) After adding alloy elements other than C and Al, perform rapid analysis by the usual method, add alloy elements that do not reach the target content and Al, and then produce steel within 90 seconds.

このようにして得た鋼A〜Iのインゴットを1250℃で60分加熱した後、仕上げ温度が950℃以上となるように一次熱間鍛造し、室温まで放冷して、各鋼について直径が30〜65mmの範囲の3種類の棒鋼を得た。表2に、一次熱間鍛造した各棒鋼の直径の詳細を示す。   The ingots of steels A to I thus obtained were heated at 1250 ° C. for 60 minutes, then subjected to primary hot forging so that the finishing temperature was 950 ° C. or higher, and allowed to cool to room temperature. Three types of steel bars in the range of 30 to 65 mm were obtained. Table 2 shows the details of the diameters of the respective steel bars subjected to primary hot forging.

上記の一次熱間鍛造した各棒鋼を、表2に示す均質化処理条件で熱処理してから室温まで放冷し、次いで、1150℃で30分加熱した後、仕上げ温度が950℃以上となるように二次熱間鍛造し、室温まで放冷して、直径25mmの棒鋼を作製した。   Each of the first hot forged steel bars is heat-treated under the homogenization conditions shown in Table 2, allowed to cool to room temperature, and then heated at 1150 ° C. for 30 minutes, so that the finishing temperature becomes 950 ° C. or higher. The steel was secondarily hot forged and allowed to cool to room temperature to produce a steel bar having a diameter of 25 mm.

なお、表2には、鋳型材質、インゴットの質量及び平均直径を併記した。また、一次熱間鍛造の際の鍛錬成形比も「鍛錬比」の項に示した。   In Table 2, the mold material, the mass of the ingot, and the average diameter are also shown. Also, the forging ratio at the time of primary hot forging is shown in the “forging ratio” section.

上記のようにして得た鋼A〜Iの直径25mmの棒鋼から、その長手方向に平行な断面を切り出して鏡面研磨した後、目盛りが入った接眼鏡を装着した光学顕微鏡を用いて倍率200倍で60視野観察し、各視野の中での硫化物系介在物の最大長径を計測した。上記各視野の面積は0.30mm2である。 After cutting a cross section parallel to the longitudinal direction of the steel bars A to I having a diameter of 25 mm and mirror-polishing the steel A to I, the magnification is 200 times using an optical microscope equipped with a scaled eyepiece. The maximum length of the sulfide inclusions in each field was measured. The area of each visual field is 0.30 mm 2 .

なお、光学顕微鏡による観察で硫化物は灰色のコントラストを呈するため、他の介在物と容易に識別できるが、最大長径を有する介在物が複合介在物で、硫化物を主体とするか否かの判別が困難な場合は、倍率400倍で撮影した写真を画像解析して硫化物の占める面積率を計測した。   In addition, since the sulfide exhibits a gray contrast by observation with an optical microscope, it can be easily distinguished from other inclusions. However, the inclusion having the maximum longest diameter is a composite inclusion and whether or not the sulfide is mainly used. When it was difficult to discriminate, a photograph taken at a magnification of 400 times was subjected to image analysis to measure the area ratio occupied by sulfide.

次いで、各視野で測定した硫化物系介在物の最大長径について、極値統計法によってデータを整理した。すなわち、各視野での硫化物系介在物の最大長径Lmaxについて、既に述べた手順〈1〉〜〈6〉に則って横軸にLmax、縦軸に基準化変数yをとってプロットし、最小二乗法によって近似直線を求めた。 Next, the data on the maximum long diameter of sulfide inclusions measured in each field of view was arranged by the extreme value statistical method. That is, the maximum major axis L max of the sulfide inclusions in each field of view is plotted with L max on the horizontal axis and the normalization variable y on the vertical axis in accordance with the steps <1> to <6> already described. The approximate straight line was obtained by the least square method.

ここで、自動車や産業機械などに用いられる部品の大きさは、比較的大きいものでも100mm×100mm程度であるため、極値統計における評価面積は1.0×104mm2とすれば十分である。また、量産においてその部品を1000個製造してもトラブルが発生しないことが要求されると仮定すれば、1.0×107mm2について評価すれば十分である。 Here, since the size of parts used for automobiles and industrial machines is relatively large, it is about 100 mm × 100 mm. Therefore, it is sufficient that the evaluation area in the extreme value statistics is 1.0 × 10 4 mm 2. is there. If it is assumed that no trouble occurs even if 1000 parts are manufactured in mass production, it is sufficient to evaluate 1.0 × 10 7 mm 2 .

なお、評価面積が1.0×104mm2の場合、既に述べた手順〈7〉におけるTは、(1.0×104)/0.30で求められるため、y=10.4となる。また、評価面積が1.0×107mm2の場合、Tは、(1.0×107)/0.30で求められるため、y=17.3となる。そこで次に、上記で求めた近似直線から、y=10.4及びy=17.3におけるLmaxを求めた。 When the evaluation area is 1.0 × 10 4 mm 2 , T in the already-described procedure <7> is obtained by (1.0 × 10 4 ) /0.30, so y = 10.4. Become. Further, when the evaluation area is 1.0 × 10 7 mm 2 , T is obtained by (1.0 × 10 7 ) /0.30, and thus y = 17.3. Therefore, L max at y = 10.4 and y = 17.3 was obtained from the approximate straight line obtained above.

表2に、上記極値統計法によって求めた1.0×104mm2中及び1.0×107mm2中の硫化物系介在物の最大長径(つまり、y=10.4及びy=17.3でのLmax)を示す。 Table 2 shows the maximum major axis of sulfide inclusions in 1.0 × 10 4 mm 2 and 1.0 × 10 7 mm 2 determined by the above extreme value statistical method (that is, y = 10.4 and y = shows the L max) of 17.3.

前記のように二次熱間鍛造後室温まで放冷して得た棒鋼は、次のようにしてその限界加工度も調査した。   The steel bar obtained by cooling to room temperature after secondary hot forging as described above was also examined for its limit workability as follows.

先ず、二次熱間鍛造後室温まで放冷して得た鋼A〜Hの直径25mmの棒鋼には、更に920℃で1時間保持した後、室温まで放冷する焼鈍処理を施した。同様に、二次熱間鍛造後室温まで放冷して得た鋼Iの直径25mmの棒鋼には、更に750℃で3時間保持した後、10℃/hの冷却速度で680℃まで冷却し、その後は室温まで放冷する焼鈍処理を施した。   First, the steel A to H having a diameter of 25 mm was obtained by allowing the steel to be cooled to room temperature after secondary hot forging, and then subjected to an annealing treatment for further cooling to room temperature after holding at 920 ° C. for 1 hour. Similarly, a steel bar having a diameter of 25 mm, which was obtained by allowing it to cool to room temperature after secondary hot forging, was further maintained at 750 ° C. for 3 hours, and then cooled to 680 ° C. at a cooling rate of 10 ° C./h. Thereafter, an annealing treatment for cooling to room temperature was performed.

次いで、上記の焼鈍処理を施した鋼A〜Iの直径25mmの棒鋼の各々から、直径が14mmで長さ(高さ)が21mmの円柱状試験片を11個ずつ採取した。なお、上記の円柱状試験片の側面積は923mm2であるため、各鋼について11個の試験片の側面積の合計が1.0×104mm2となる。 Next, 11 cylindrical test pieces each having a diameter of 14 mm and a length (height) of 21 mm were sampled from each of the steel bars A to I having a diameter of 25 mm subjected to the annealing treatment. Incidentally, the side area of the cylindrical test piece for a 923Mm 2, the sum of the lateral area of 11 test pieces for each steel is 1.0 × 10 4 mm 2.

上記の円柱状試験片を用いて以下に示す冷間圧縮試験を行い、割れが発生する限界加工度を測定した。   The following cold compression test was performed using the above cylindrical test piece, and the limit working degree at which cracking occurred was measured.

すなわち、先ず円柱状試験片の高さ方向に、高さ21mmの50%(つまり、10.5mm)の圧縮加工を施し、その後、初期高さである21mmの2%に相当する0.42mmずつの圧縮加工を行い圧縮加工の度毎に割れが発生していないかを目視で判定した。上記の試験は11個ずつ採取した全ての円柱状試験片について実施し、最も早い段階で割れが発生した試験片の加工度をその条件における限界加工度である「限界圧縮率」と判定した。   That is, 50% (that is, 10.5 mm) of the 21 mm height is first compressed in the height direction of the cylindrical test piece, and then 0.42 mm corresponding to 2% of the initial height of 21 mm. It was visually determined whether or not cracking occurred at every compression processing. The above test was performed on all the cylindrical specimens sampled 11 pieces each, and the degree of processing of the test piece in which cracking occurred at the earliest stage was determined as the “limit compression ratio” which is the limit degree of processing under the conditions.

前記の冷間圧縮試験における目標は、上記の限界圧縮率が65%以上、且つ、一次熱間鍛造後に前記した均質化処理を施さない場合に較べて限界圧縮率が10%以上向上することとした。それに加えて冷間圧縮試験での試験数を11個の1000倍行ったと仮定したときの、限界圧縮率が60%以上と判断されることも目標とした。   The target in the cold compression test is that the above-mentioned limit compression rate is 65% or more and that the limit compression rate is improved by 10% or more compared to the case where the above-mentioned homogenization treatment is not performed after the primary hot forging. did. In addition to that, it was also set as a target that the critical compression ratio was judged to be 60% or more when it was assumed that the number of tests in the cold compression test was performed 1000 times 11 times.

上記のようにして求めた限界圧縮率を表2に併せて示す。また、図1に、表2に示した限界圧縮率と硫化物系介在物の最大長径との関係を整理して示す。   Table 2 shows the limit compression ratios obtained as described above. FIG. 1 shows the relationship between the critical compressibility shown in Table 2 and the maximum major axis of sulfide inclusions.

図1から、極値統計法によって求められる1.0×104mm2中の硫化物系介在物の最大長径が250μm以下の場合に、65%以上の限界圧縮率が得られることが明らかであり、また、上記の場合には、表2から、一次熱間鍛造後の均質化処理を施さない場合に較べ、限界圧縮率が10%以上向上していることも分かる。 From FIG. 1, it is clear that when the maximum major axis of sulfide inclusions in 1.0 × 10 4 mm 2 obtained by the extreme value statistical method is 250 μm or less, a limit compression ratio of 65% or more can be obtained. In addition, in the above case, it can be seen from Table 2 that the critical compression ratio is improved by 10% or more compared to the case where the homogenization treatment after the primary hot forging is not performed.

ここで実施した冷間圧縮試験での側面積の合計は1.0×104mm2であるが、量産においてその部品を1000個製造してもトラブルが発生しないことが要求されると仮定すれば、先に述べたように1.0×107mm2について評価する必要がある。これを直接評価するためには、前述した冷間圧縮試験の1000倍の個数を処理する必要があるが、個数が多すぎて現実的ではない。そこで図1から、極値統計法によって求められる1.0×104mm2中での硫化物系介在物の最大長径が400μm以下の場合には、60%以上の限界圧縮率が得られていることから、1.0×107mm2での硫化物系介在物の最大長径が400μm以下であれば、量産を考慮して、前述した冷間圧縮試験の1000倍の個数を処理しても、60%以上の限界圧縮率が得られると判断できる。 The total side area in the cold compression test conducted here is 1.0 × 10 4 mm 2 , but it is assumed that it is required that no trouble occurs even if 1000 parts are manufactured in mass production. For example, it is necessary to evaluate 1.0 × 10 7 mm 2 as described above. In order to directly evaluate this, it is necessary to process 1000 times the number of the cold compression tests described above, but the number is too large to be realistic. Therefore, from FIG. 1, when the maximum major axis of sulfide inclusions in 1.0 × 10 4 mm 2 obtained by the extreme value statistical method is 400 μm or less, a limit compression ratio of 60% or more is obtained. Therefore, if the maximum major axis of the sulfide inclusion at 1.0 × 10 7 mm 2 is 400 μm or less, 1000 times the number of the cold compression test described above is processed in consideration of mass production. Also, it can be determined that a limit compression ratio of 60% or more is obtained.

したがって、本発明においては、棒鋼・線材の長手方向に平行である断面において、極値統計法によって求められる硫化物系介在物の最大長径、つまり、硫化物又は硫化物を主体とする複合介在物の最大長径が、1.0×104mm2中250μm以下且つ1.0×107mm2中400μm以下であることと規定した。 Therefore, in the present invention, in the cross section parallel to the longitudinal direction of the steel bars and wires, the maximum long diameter of sulfide inclusions determined by the extreme value statistical method, that is, the composite inclusion mainly composed of sulfide or sulfide. The maximum major axis was defined to be 250 μm or less in 1.0 × 10 4 mm 2 and 400 μm or less in 1.0 × 10 7 mm 2 .

なお、硫化物系介在物の最大長径には、介在物の組成、凝固速度、凝固偏析などが影響する。また、製鋼の設備によっても影響を受ける。このため、以下に、極値統計法によって求められる硫化物系介在物の最大長径、つまり、硫化物又は硫化物を主体とする複合介在物の最大長径を1.0×104mm2中250μm以下且つ1.0×107mm2中400μm以下にする方法の一例を示す。 It should be noted that the composition of inclusions, solidification rate, solidification segregation, and the like affect the maximum major axis of sulfide inclusions. It is also affected by steelmaking facilities. For this reason, the maximum long diameter of sulfide inclusions determined by the extreme value statistical method, that is, the maximum long diameter of sulfide or a composite inclusion mainly composed of sulfide is 250 μm in 1.0 × 10 4 mm 2 below. Hereinafter, an example of a method of making it 400 μm or less in 1.0 × 10 7 mm 2 will be described.

a.Sの鋼中含有量を質量%で、0.05%以下にする。   a. The content of S in steel is 0.05% by mass or less.

b.取鍋、タンディッシュ等の耐火物の溶損や鋳造時のスラグ及びパウダーの巻き込みを防止する。   b. Prevents melting of refractories such as ladle and tundish and entrainment of slag and powder during casting.

c.鋳造をインゴットで行う場合には、小型の鋳型を用い、鋳型の材質に熱伝導のよいものを用いる。
例えば、30kgのインゴットの場合には、1200〜1250℃で60分〜120分加熱した後、仕上げ温度が950℃以上となるように一次熱間鍛造し、室温まで放冷して直径が30mmの棒鋼にした後、1220〜1270℃×8〜12時間の均質化処理条件で熱処理してから室温まで放冷し、次いで、1150〜1200℃で30〜60分加熱した後、仕上げ温度が950℃以上となるように二次熱間鍛造し、室温まで放冷して、直径25mmの棒鋼を作製する。且つ、上記のa、bを満たしていれば、硫化物又は硫化物を主体とする複合介在物に関して、本発明の規定内の最大長径が得られる。
c. When casting with an ingot, a small mold is used, and a mold having a good heat conductivity is used.
For example, in the case of a 30 kg ingot, after heating at 1200 to 1250 ° C. for 60 to 120 minutes, primary hot forging is performed so that the finishing temperature is 950 ° C. or higher, and the product is allowed to cool to room temperature and has a diameter of 30 mm. After forming into a steel bar, it was heat-treated under a homogenization condition of 1220 to 1270 ° C. × 8 to 12 hours, allowed to cool to room temperature, then heated at 1150 to 1200 ° C. for 30 to 60 minutes, and then the finishing temperature was 950 ° C. Secondary hot forging is performed as described above, and the steel is allowed to cool to room temperature to produce a steel bar having a diameter of 25 mm. And if said a and b are satisfy | filled, the largest long diameter in the prescription | regulation of this invention will be obtained regarding the composite inclusion which mainly consists of sulfide or sulfide.

d.連続鋳造によって大断面のブルーム、例えば300×400mm角といったブルームを製造する場合には、Sの鋼中の含有量を質量%で、0.04%以下にし、二次精錬でRH法真空脱ガス処理を長時間実施し、溶鋼の電磁攪拌を十分に行い、未凝固圧下を行い、総鍛錬成形比(ブルームの断面積/棒鋼・線材の断面積)が120以上で、しかも、その鍛錬成形比が10以上の熱間圧延を施した後、1250℃以上で10時間以上の熱処理を行う。   d. When producing a bloom with a large cross-section, for example, a 300 × 400 mm square, by continuous casting, the S content in steel is 0.04% or less by mass, and RH vacuum degassing is performed by secondary refining. The treatment is carried out for a long time, electromagnetic stirring of the molten steel is performed sufficiently, unsolidified reduction is performed, and the total forging ratio (bloom cross section / bar / wire cross section) is 120 or more, and the forging ratio Is subjected to hot rolling for 10 or more, and then heat treatment is performed at 1250 ° C. or more for 10 hours or more.

(C)酸化物、窒化物、炭化物、炭窒化物又はこれらを主体とする複合介在物の最大長径
本発明の棒鋼・線材においては、その長手方向に平行である断面において、極値統計法によって求められる酸化物、窒化物、炭化物、炭窒化物又はこれらを主体とする複合介在物の最大長径が1.0×104mm2中50μm以下且つ1.0×107mm2中80μm以下を満たす必要がある。既に述べたように、「酸化物、窒化物、炭化物又は炭窒化物を主体とする複合介在物」とは、酸化物、窒化物、炭化物又は炭窒化物が介在物に占める面積率が合計で50%以上である介在物を指す。
(C) Maximum long diameter of oxide, nitride, carbide, carbonitride or composite inclusion mainly composed of them In the steel bar / wire of the present invention, in the cross section parallel to the longitudinal direction, the extreme statistical method is used. The maximum major axis of the required oxide, nitride, carbide, carbonitride, or composite inclusion mainly composed of these is 50 μm or less in 1.0 × 10 4 mm 2 and 80 μm or less in 1.0 × 10 7 mm 2 It is necessary to satisfy. As already stated, “composite inclusions mainly composed of oxides, nitrides, carbides or carbonitrides” means the total area ratio of oxides, nitrides, carbides or carbonitrides in the inclusions. It refers to inclusions that are 50% or more.

なお、極値統計法による酸化物、窒化物、炭化物、炭窒化物又はこれらを主体とする複合介在物の最大長径(以下、「酸化物等の最大長径」ということもある。)の評価も、例えば、先に述べた〈1〉〜〈7〉の手順で行えばよい。   In addition, evaluation of the maximum major axis of oxides, nitrides, carbides, carbonitrides, or composite inclusions mainly composed of these (hereinafter also referred to as “maximum major axis of oxides”) may be performed by an extreme value statistical method. For example, the steps <1> to <7> described above may be performed.

以下、上記の酸化物等の最大長径の規定について説明する。   Hereinafter, the definition of the maximum major axis of the oxide or the like will be described.

本発明者らは、表3に示す鋼J〜Sを真空溶解炉で溶解した後、インゴットに鋳造した。なお、鋼Jは150kg真空溶解炉で溶解し、鋼K〜Sは30kg真空溶解炉で溶解し、鋳造は、鋼Jについてはシリカ鋳型を用いて行い、また、鋼J以外の鋼については鋳鉄鋳型を用いて行った。インゴットの平均直径は150kgインゴットが220mmであり、30kgインゴットが120mmである。   The inventors of the present invention cast steel JS shown in Table 3 in an ingot after melting in a vacuum melting furnace. Steel J is melted in a 150 kg vacuum melting furnace, steels K to S are melted in a 30 kg vacuum melting furnace, casting is performed using a silica mold for steel J, and cast iron is used for steels other than steel J. Performed using a mold. The average diameter of the ingot is 220 mm for a 150 kg ingot and 120 mm for a 30 kg ingot.

鋼J〜O及び鋼Q〜Sの溶解は、次の(2-1)〜(2-3)の手順で行った。   The melting of Steels J to O and Steels Q to S was performed by the following procedures (2-1) to (2-3).

(2-1)真空排気したチャンバー内のるつぼ中の電解鉄を誘導加熱によって溶解し、目標含有量に相当するCを添加。
(2-2)1570〜1590℃において表4に示した時間保持し、脱ガス処理を実施。
(2-3)C及びAl以外の合金元素を添加した後、通常の方法で迅速分析を行い、目標の含有量に達していない合金元素とAlを添加して、表4に示した時間が経過してから出鋼。
(2-1) Electrolytic iron in the crucible in the evacuated chamber is dissolved by induction heating, and C corresponding to the target content is added.
(2-2) Degassing treatment was performed at 1570 to 1590 ° C. for the time shown in Table 4.
(2-3) After adding alloy elements other than C and Al, perform rapid analysis by a normal method, add alloy elements and Al that have not reached the target content, and the time shown in Table 4 Steeling after a lapse.

また、鋼Jの溶解は、次の(3-1)〜(3-3)の手順で行った。   Moreover, the melting of the steel J was performed by the following procedures (3-1) to (3-3).

(3-1)真空排気したチャンバー内のるつぼ中の電解鉄を誘導加熱によって溶解し、目標含有量に相当するCとAlを添加。
(3-2)1570〜1590℃において表4に示した時間保持し、脱ガス処理を実施。
(3-3)C及びAl以外の合金元素を添加した後、通常の方法で迅速分析を行い、目標の含有量に達していない合金元素を添加して、表4に示した時間が経過してから出鋼。
(3-1) Electrolytic iron in the crucible in the evacuated chamber is dissolved by induction heating, and C and Al corresponding to the target content are added.
(3-2) Degassing treatment was performed at 1570 to 1590 ° C for the time shown in Table 4.
(3-3) After adding alloy elements other than C and Al, perform a quick analysis by the usual method, add alloy elements that have not reached the target content, and the time shown in Table 4 has elapsed. After that.

このようにして得た鋼J〜Sのインゴットを1250℃で60分加熱した後、仕上げ温度が950℃以上となるように一次熱間鍛造し、室温まで放冷して、鋼Jについては直径が35mmの棒鋼を、また、鋼K〜Sについては直径が30mmの棒鋼を得た。   After heating the ingots of steels J to S thus obtained at 1250 ° C. for 60 minutes, primary hot forging was performed so that the finishing temperature was 950 ° C. or more, and the steel J was cooled to room temperature. Obtained a steel bar having a diameter of 35 mm, and steels K to S having a diameter of 30 mm.

上記の一次熱間鍛造した各棒鋼を、1250℃×10時間の均質化処理条件で熱処理してから室温まで放冷し、次いで、1150℃で30分加熱した後、仕上げ温度が950℃以上となるように二次熱間鍛造し、室温まで放冷して、直径25mmの棒鋼を作製した。   Each of the first hot forged steel bars was heat-treated under a homogenization condition of 1250 ° C. × 10 hours, allowed to cool to room temperature, then heated at 1150 ° C. for 30 minutes, and then the finishing temperature was 950 ° C. or higher. Secondary hot forging was performed and the mixture was allowed to cool to room temperature to produce a steel bar having a diameter of 25 mm.

上記のようにして得た鋼J〜Sの直径25mmの棒鋼から、その長手方向に平行な断面を切り出して鏡面研磨した後、目盛りが入った接眼鏡を装着した光学顕微鏡を用いて倍率200倍で60視野観察し、各視野の中での酸化物等の最大長径を計測した。上記各視野の面積は0.30mm2である。 After cutting a cross section parallel to the longitudinal direction of the steel J to S having a diameter of 25 mm and mirror-polishing the steel J to S obtained as described above, the magnification is 200 times using an optical microscope equipped with a scaled eyepiece. 60 fields of view were observed, and the maximum major axis of oxide or the like in each field of view was measured. The area of each visual field is 0.30 mm 2 .

なお、既に述べたように、光学顕微鏡による観察で硫化物は灰色のコントラストを呈し、他の介在物と容易に識別できるので、それ以外の介在物を酸化物、窒化物、炭化物又は炭窒化物のいずれかと判定した。最大長径を有する介在物が複合介在物で、酸化物、窒化物、炭化物又は炭窒化物を主体とするか否かの判別が困難な場合は、倍率400倍で撮影した写真を画像解析して酸化物、窒化物、炭化物又は炭窒化物が介在物に占める面積率を計測した。   As already mentioned, the sulfide exhibits a gray contrast when observed with an optical microscope and can be easily distinguished from other inclusions. Therefore, other inclusions are oxides, nitrides, carbides or carbonitrides. It was determined that either. If the inclusion with the maximum major axis is a composite inclusion and it is difficult to determine whether it is mainly composed of oxide, nitride, carbide or carbonitride, analyze the photograph taken at 400x magnification. The area ratio of oxides, nitrides, carbides, or carbonitrides in the inclusions was measured.

このようにして各視野で測定した酸化物等の最大長径について、既に述べた極値統計法によってデータを整理した。また、評価面積も、先に述べたのと同様に、1.0×104mm2及び1.0×107mm2とした。 Thus, the data on the maximum major axis of oxides and the like measured in each field of view was organized by the above-described extreme value statistical method. The evaluation area was also set to 1.0 × 10 4 mm 2 and 1.0 × 10 7 mm 2 as described above.

表4に、極値統計法によって求めた1.0×104mm2中及び1.0×107mm2中の酸化物等の最大長径を示す。 Table 4 shows maximum long diameters of oxides and the like in 1.0 × 10 4 mm 2 and 1.0 × 10 7 mm 2 obtained by the extreme value statistical method.

前記のように二次熱間鍛造後室温まで放冷して得た棒鋼は、次のようにしてその限界加工度も調査した。   The steel bar obtained by cooling to room temperature after secondary hot forging as described above was also examined for its limit workability as follows.

先ず、二次熱間鍛造後室温まで放冷して得た鋼J〜Rの直径25mmの棒鋼には、更に920℃で1時間保持した後、室温まで放冷する焼鈍処理を施した。同様に、二次熱間鍛造後室温まで放冷して得た鋼Sの直径25mmの棒鋼には、更に750℃で3時間保持した後、10℃/hの冷却速度で680℃まで冷却し、その後は室温まで放冷する焼鈍処理を施した。   First, the steel J to R having a diameter of 25 mm obtained by cooling to room temperature after secondary hot forging was further subjected to an annealing treatment of holding at 920 ° C. for 1 hour and then allowing to cool to room temperature. Similarly, a steel bar with a diameter of 25 mm of steel S obtained by allowing to cool to room temperature after secondary hot forging is further maintained at 750 ° C. for 3 hours, and then cooled to 680 ° C. at a cooling rate of 10 ° C./h. Thereafter, an annealing treatment for cooling to room temperature was performed.

次いで、上記の焼鈍処理を施した鋼J〜Sの直径25mmの棒鋼の各々から、直径が14mmで長さ(高さ)が21mmの円柱状試験片を11個ずつ採取した。   Next, 11 columnar test pieces each having a diameter of 14 mm and a length (height) of 21 mm were collected from each of the steel bars J to S having a diameter of 25 mm subjected to the annealing treatment.

上記の円柱状試験片を用いて既に「(B)硫化物又は硫化物を主体とする複合介在物の最大長径」の項で述べたのと同じ方法で冷間圧縮試験を行い、割れが発生する限界加工度としての限界圧縮率を測定した。   Using the above cylindrical test piece, a cold compression test was performed in the same manner as described in the section “(B) Maximum long diameter of sulfide or composite inclusion mainly composed of sulfide”, and cracking occurred. The critical compressibility was measured as the critical working degree.

すなわち、先ず円柱状試験片の高さ方向に、高さ21mmの50%(つまり、10.5mm)の圧縮加工を施し、その後、初期高さである21mmの2%に相当する0.42mmずつの圧縮加工を行い、圧縮加工の度毎に割れが発生していないかを目視で判定した。上記の試験は11個ずつ採取した全ての円柱状試験片について実施し、最も早い段階で割れが発生した試験片の加工度をその条件における限界加工度である「限界圧縮率」と判定した。   That is, 50% (that is, 10.5 mm) of the 21 mm height is first compressed in the height direction of the cylindrical test piece, and then 0.42 mm corresponding to 2% of the initial height of 21 mm. The compression process was performed, and it was visually determined whether or not cracking occurred every time the compression process was performed. The above test was performed on all the cylindrical specimens sampled 11 pieces each, and the degree of processing of the test piece in which cracking occurred at the earliest stage was determined as the “limit compression ratio” which is the limit degree of processing under the conditions.

なお、前記の冷間圧縮試験における目標は、限界圧縮率が65%以上であることとした。それに加えて冷間圧縮試験での試験数を11個の1000倍行ったと仮定したときの、限界圧縮率が60%以上と判断されることも目標とした。   The target in the cold compression test is that the critical compression ratio is 65% or more. In addition to that, it was also set as a target that the limit compression rate was judged to be 60% or more when it was assumed that the number of tests in the cold compression test was 1000 times 11 times.

上記のようにして求めた限界圧縮率を表4に併せて示す。また、図2に、表4に示した限界圧縮率と酸化物等の最大長径との関係を整理して示す。   Table 4 shows the limit compression ratio obtained as described above. FIG. 2 shows the relationship between the critical compressibility shown in Table 4 and the maximum major axis of oxide or the like.

図2から、極値統計法によって求められる1.0×104mm2中の酸化物等の最大長径が50μm以下の場合に、65%以上の限界圧縮率が得られることが明らかである。 From FIG. 2, it is clear that a limit compression ratio of 65% or more can be obtained when the maximum major axis of oxide or the like in 1.0 × 10 4 mm 2 obtained by the extreme value statistical method is 50 μm or less.

ここで実施した冷間圧縮試験での側面積の合計は1.0×104mm2であるが、量産においてその部品を1000個製造してもトラブルが発生しないことが要求されると仮定すれば、先に述べたように1.0×107mm2について評価する必要がある。これを直接評価するためには、前述した冷間圧縮試験の1000倍の個数を処理する必要があるが、個数が多すぎて現実的ではない。そこで図2から、極値統計法によって求められる1.0×104mm2中での酸化物等の最大長径が80μm以下の場合には、60%以上の限界圧縮率が得られていることから、1.0×107mm2での酸化物等の最大長径が80μm以下であれば、量産を考慮して、前述した冷間圧縮試験の1000倍の個数を処理しても、60%以上の限界圧縮率が得られると判断できる。 The total side area in the cold compression test conducted here is 1.0 × 10 4 mm 2 , but it is assumed that it is required that no trouble occurs even if 1000 parts are manufactured in mass production. For example, it is necessary to evaluate 1.0 × 10 7 mm 2 as described above. In order to directly evaluate this, it is necessary to process 1000 times the number of the cold compression tests described above, but the number is too large to be realistic. Therefore, from FIG. 2, when the maximum major axis of oxide or the like in 1.0 × 10 4 mm 2 obtained by the extreme value statistical method is 80 μm or less, a critical compression ratio of 60% or more is obtained. From the above, if the maximum major axis of an oxide or the like at 1.0 × 10 7 mm 2 is 80 μm or less, even if the number of 1000 times the number of cold compression tests described above is processed, 60% It can be determined that the above limit compression rate can be obtained.

したがって、本発明においては、棒鋼・線材の長手方向に平行である断面において、極値統計法によって求められる酸化物等の最大長径、つまり、酸化物、窒化物、炭化物、炭窒化物又はこれらを主体とする複合介在物の最大長径が、1.0×104mm2中50μm以下且つ1.0×107mm2中80μm以下であることと規定した。 Therefore, in the present invention, in the cross section parallel to the longitudinal direction of the steel bars / wires, the maximum long diameter of the oxide or the like determined by the extreme value statistical method, that is, the oxide, nitride, carbide, carbonitride, or these It was specified that the maximum major axis of the composite inclusion as the main component was 50 μm or less in 1.0 × 10 4 mm 2 and 80 μm or less in 1.0 × 10 7 mm 2 .

なお、酸化物等の最大長径には、介在物の組成、凝固速度、凝固偏析などが影響する。また、製鋼の設備によっても影響を受ける。このため、以下に、極値統計法によって求められる酸化物等の最大長径、つまり、酸化物、窒化物、炭化物、炭窒化物又はこれらを主体とする複合介在物の最大長径を1.0×104mm2中50μm以下且つ1.0×107mm2中80μm以下にする方法の一例を示す。 It should be noted that the composition of inclusions, solidification rate, solidification segregation, and the like affect the maximum major axis of oxide and the like. It is also affected by steelmaking facilities. For this reason, hereinafter, the maximum major axis of an oxide or the like determined by the extreme value statistical method, that is, the maximum major axis of an oxide, nitride, carbide, carbonitride, or composite inclusion mainly composed of these is 1.0 ×. An example of a method of 50 μm or less in 10 4 mm 2 and 80 μm or less in 1.0 × 10 7 mm 2 is shown.

e.Al、O(酸素)及びTiの鋼中含有量を、質量%で、それぞれ、Al:0.01〜0.05%、O:0.0015%以下及びTi:0.003%以下にする。   e. The contents of Al, O (oxygen) and Ti in the steel are, in mass%, Al: 0.01 to 0.05%, O: 0.0015% or less, and Ti: 0.003% or less, respectively.

f.取鍋、タンディッシュ等の耐火物の溶損や鋳造時のスラグ及びパウダーの巻き込みを防止する。   f. Prevents melting of refractories such as ladle and tundish and entrainment of slag and powder during casting.

g.鋳造をインゴットで行う場合には、小型の鋳型を用い、鋳型の材質に熱伝導のよいものを用いる。
例えば、30kgのインゴットの場合には、下記(4-1)〜(4-3)に記載した溶解方法で、且つ、上記のe、fを満たしていれば、酸化物、窒化物、炭化物、炭窒化物又はこれらを主体とする複合介在物に関して、本発明の規定内の最大長径が得られる。
g. When casting with an ingot, a small mold is used, and a mold having a good heat conductivity is used.
For example, in the case of a 30 kg ingot, an oxide, a nitride, a carbide, if the melting method described in the following (4-1) to (4-3) and the above e and f are satisfied With respect to carbonitrides or composite inclusions mainly composed of these, the maximum major axis within the definition of the present invention is obtained.

(4-1)真空排気したチャンバー内のるつぼ中の電解鉄を誘導加熱によって溶解し、目標含有量に相当するCを添加。
(4-2)1570〜1590℃で40〜60分保持して、十分な脱ガス処理を実施。
(4-3)C及びAl以外の合金元素を添加した後、通常の方法で迅速分析を行い、目標の含有量に達していない合金元素とAlを添加し、その後90秒以内に出鋼。
(4-1) Dissolve the electrolytic iron in the crucible in the evacuated chamber by induction heating, and add C corresponding to the target content.
(4-2) Hold at 1570 to 1590 ° C. for 40 to 60 minutes and perform sufficient degassing treatment.
(4-3) After adding alloy elements other than C and Al, perform rapid analysis by the usual method, add alloy elements that do not reach the target content and Al, and then produce steel within 90 seconds.

h.連続鋳造によって大断面のブルーム、例えば300×400mm角といったブルームを製造する場合には、Al、O(酸素)及びTiの鋼中含有量を、質量%で、それぞれ、Al:0.02〜0.04%、O:0.0010%以下及びTi:0.002%以下にし、二次精錬でRH法真空脱ガス処理を長時間実施し、溶鋼の電磁攪拌を十分に行い、未凝固圧下を行い、総鍛錬成形比(ブルームの断面積/棒鋼・線材の断面積)が120以上で、しかも、その鍛錬成形比が10以上の熱間圧延を施した後、1250℃以上で10時間以上の熱処理を行う。   h. When producing a bloom having a large cross-section, for example, a 300 × 400 mm square, by continuous casting, the contents of Al, O (oxygen) and Ti in the steel in mass% are each Al: 0.02 to 0. 0.04%, O: 0.0010% or less and Ti: 0.002% or less, RH vacuum degassing treatment is performed for a long time by secondary refining, electromagnetic stirring of the molten steel is sufficiently performed, and the unsolidified pressure is reduced. After performing hot rolling with a total wrought ratio (bloom cross section / bar / wire cross section) of 120 or more, and with a wrought ratio of 10 or more, at 1250 ° C or more for 10 hours or more Heat treatment is performed.

(D)MnとTeを主体とする介在物の存在割合
棒鋼・線材の長手方向に平行である断面積100mm2中におけるMnとTeを主体とする介在物の存在割合が1個以上の場合には、熱間鍛造時に割れや疵が生じる場合がある。このため、上記断面積100mm2中におけるMnとTeを主体とする介在物の存在割合は1個未満とするのがよい。
(D) Incidence ratio of inclusions mainly composed of Mn and Te When the ratio of inclusions mainly composed of Mn and Te in a cross-sectional area of 100 mm 2 parallel to the longitudinal direction of the steel bar / wire is 1 or more May cause cracks and wrinkles during hot forging. For this reason, the ratio of inclusions mainly composed of Mn and Te in the cross-sectional area of 100 mm 2 is preferably less than one.

したがって、本発明(4)に係る棒鋼・線材においては、その長手方向に平行である断面積100mm2中におけるMnとTeを主体とする介在物の存在割合を1個未満と規定した。 Therefore, in the steel bar and wire according to the present invention (4), the ratio of inclusions mainly composed of Mn and Te in the cross-sectional area of 100 mm 2 parallel to the longitudinal direction is defined as less than one.

なお、既に述べたように、「MnとTeを主体とする介在物」とは、介在物中に検出されるMnとTe以外の元素の割合が30原子%未満である介在物を指す。   As described above, “inclusions mainly composed of Mn and Te” refers to inclusions in which the ratio of elements other than Mn and Te detected in the inclusions is less than 30 atomic%.

以下、実施例により本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

[実施例1]
表5に示す化学組成を有する鋼a〜uを真空溶解炉で溶解した後、インゴットに鋳造した。なお、鋼aは150kg真空溶解炉で溶解した後、シリカ鋳型を用いて鋳造した。また、鋼b〜uは30kg真空溶解炉で溶解した後、鋳鉄鋳型を用いて鋳造した。インゴットの平均直径は150kgインゴットが220mmであり、30kgインゴットが120mmである。
[Example 1]
Steels a to u having the chemical compositions shown in Table 5 were melted in a vacuum melting furnace and then cast into ingots. Steel a was melted in a 150 kg vacuum melting furnace and then cast using a silica mold. Further, the steels b to u were melted in a 30 kg vacuum melting furnace and then cast using a cast iron mold. The average diameter of the ingot is 220 mm for a 150 kg ingot and 120 mm for a 30 kg ingot.

鋼a〜p及び鋼r〜uの溶解は、次の(E1-1)〜(E1-3)の手順で行った。   The steels a to p and the steels r to u were melted by the following procedures (E1-1) to (E1-3).

(E1-1)真空排気したチャンバー内のるつぼ中の電解鉄を誘導加熱によって溶解し、目標含有量に相当するCを添加。
(E1-2)1570〜1590℃において表6及び表7に示した時間保持し、脱ガス処理を実施。
(E1-3)C及びAl以外の合金元素を添加した後、通常の方法で迅速分析を行い、目標の含有量に達していない合金元素とAlを添加して、表6及び表7に示した時間が経過してから出鋼。
(E1-1) The electrolytic iron in the crucible in the evacuated chamber is dissolved by induction heating, and C corresponding to the target content is added.
(E1-2) Degassing treatment was performed at 1570 to 1590 ° C. for the time shown in Tables 6 and 7.
(E1-3) After adding alloy elements other than C and Al, perform rapid analysis by the usual method, add alloy elements that do not reach the target content and Al, and show in Table 6 and Table 7. Steeling after a long time.

また、鋼qの溶解は、次の(E1-4)〜(E1-6)の手順で行った。   Moreover, the melting of the steel q was performed by the following procedures (E1-4) to (E1-6).

(E1-4)真空排気したチャンバー内のるつぼ中の電解鉄を誘導加熱によって溶解し、目標含有量に相当するCとAlを添加。
(E1-5)1570〜1590℃において表7に示した時間保持し、脱ガス処理を実施。
(E1-6)C及びAl以外の合金元素を添加した後、通常の方法で迅速分析を行い、目標の含有量に達していない合金元素を添加して、表7に示した時間が経過してから出鋼。
(E1-4) Electrolytic iron in the crucible in the evacuated chamber is melted by induction heating, and C and Al corresponding to the target content are added.
(E1-5) Degassing treatment was performed at 1570 to 1590 ° C for the time shown in Table 7.
(E1-6) After adding alloy elements other than C and Al, perform rapid analysis by the usual method, add alloy elements that have not reached the target content, and the time shown in Table 7 has elapsed. After that.

なお、表5における鋼a〜f、鋼h、鋼i及び鋼p〜uは、化学組成が本発明(1)〜(4)で規定する条件を満たす本発明例の鋼である。一方、表5における鋼g及び鋼j〜oは、化学組成が本発明で規定する条件から外れた比較例の鋼である。   Steels a to f, steel h, steel i, and steels p to u in Table 5 are steels according to examples of the present invention whose chemical compositions satisfy the conditions defined in the present invention (1) to (4). On the other hand, steel g and steels j to o in Table 5 are steels of comparative examples whose chemical compositions deviate from the conditions specified in the present invention.

上記のようにして得たインゴットのうち、Teを含有する鋼i、鋼j及び鋼r〜uのインゴットは、その高さ方向に平行な断面を切り出して鏡面研磨した後、調査面積を100mm2としてEPMAによる面分析を行った。その結果、鋼i及び鋼r〜uには、MnとTeを主体とする介在物は全く観察されなかった。一方、Teを0.010%含む鋼jには、MnとTeを主体とする介在物が4個観察された。なお、既に述べたように、「MnとTeを主体とする介在物」とは、介在物中に検出されるMnとTe以外の元素の割合が30原子%未満である介在物を指す。 Among the ingots obtained as described above, the steel i, steel j, and steel ru to ingots containing Te were cut into a cross section parallel to the height direction and mirror-polished, and then the investigation area was 100 mm 2. The surface analysis by EPMA was performed. As a result, no inclusions mainly composed of Mn and Te were observed in the steel i and the steels r to u. On the other hand, in steel j containing 0.010% of Te, four inclusions mainly composed of Mn and Te were observed. As described above, “inclusions mainly composed of Mn and Te” refers to inclusions in which the ratio of elements other than Mn and Te detected in the inclusions is less than 30 atomic%.

次いで、鋼a〜h及び鋼k〜qの鋳込みままのインゴット、並びに、EPMAでの面分析用試験片を切り出した鋼i、鋼j及び鋼r〜uのインゴットの残部を、1250℃で60分加熱した後、仕上げ温度が950℃以上となるように一次熱間鍛造し、室温まで放冷して、直径が30〜65mmの範囲の各種サイズの棒鋼を得た。表6及び表7に、一次熱間鍛造した各棒鋼の直径の詳細を示す。なお、鋼jは一次熱間鍛造した際に割れを生じたため、以降の作業を中止した。   Next, as-cast ingots of steels a to h and steels k to q, and the remainder of the ingots of steel i, steel j, and steel ru to u cut out the test pieces for surface analysis with EPMA were obtained at 1250 ° C. After partial heating, primary hot forging was performed so that the finishing temperature would be 950 ° C. or higher, and the product was allowed to cool to room temperature to obtain various sizes of steel bars having a diameter in the range of 30 to 65 mm. Tables 6 and 7 show the details of the diameters of the steel bars subjected to primary hot forging. Since steel j cracked during the primary hot forging, the subsequent work was stopped.

鋼jを除いた上記の一次熱間鍛造した各棒鋼を、表6及び表7に示す均質化処理条件で熱処理してから室温まで放冷し、次いで、1150℃で30分加熱した後、仕上げ温度が950℃以上となるように二次熱間鍛造し、室温まで放冷して、直径25mmの棒鋼を作製した。   Each of the first hot forged steel bars excluding steel j was heat-treated under the homogenization conditions shown in Table 6 and Table 7, allowed to cool to room temperature, then heated at 1150 ° C. for 30 minutes, and then finished. Secondary hot forging was performed so that the temperature would be 950 ° C. or higher, and the resultant was allowed to cool to room temperature, to produce a steel bar having a diameter of 25 mm.

表6及び表7には、鋳型材質及びインゴットの質量を併記した。また、一次熱間鍛造の際の鍛錬成形比も「鍛錬比」の項に示した。なお、上記のとおり鋼jは一次熱間鍛造した際に割れを生じたので、表7には記載しなかった。   In Tables 6 and 7, the mold material and the mass of the ingot are shown. Also, the forging ratio at the time of primary hot forging is shown in the “forging ratio” section. Since steel j cracked during the primary hot forging as described above, it was not listed in Table 7.

上記のようにして得た鋼a〜i及び鋼k〜uの直径25mmの棒鋼から、その長手方向に平行な断面を切り出して鏡面研磨した後、目盛りが入った接眼鏡を装着した光学顕微鏡を用いて倍率200倍で60視野観察し、各視野の中での硫化物系介在物の最大長径及び酸化物等の最大長径を計測した。上記各視野の面積は0.30mm2である。 From the steel a to i and the steel k to u obtained as described above, a cross section parallel to the longitudinal direction was cut out and mirror-polished, and then an optical microscope equipped with a scaled eyepiece was attached. Using this, 60 fields of view were observed at a magnification of 200 times, and the maximum length of sulfide inclusions and the maximum length of oxides and the like in each field were measured. The area of each visual field is 0.30 mm 2 .

このようにして各視野で測定した硫化物系介在物の最大長径及び酸化物等の最大長径について、既に述べた極値統計法によってデータを整理した。また、評価面積も、先に述べたのと同様に、1.0×104mm2及び1.0×107mm2とした。 Thus, the data on the maximum long diameter of sulfide inclusions and the maximum long diameter of oxides and the like measured in each field of view were arranged by the above-described extreme value statistical method. The evaluation area was also set to 1.0 × 10 4 mm 2 and 1.0 × 10 7 mm 2 as described above.

なお、上記で計測した「硫化物系介在物の最大長径」は「硫化物又は硫化物を主体とする複合介在物の最大長径」を指し、また、「酸化物等の最大長径」は「酸化物、窒化物、炭化物、炭窒化物又はこれらを主体とする複合介在物の最大長径」を指す。   The “maximum major axis of sulfide inclusions” measured above refers to the “maximum major axis of sulfides or composite inclusions mainly composed of sulfides”, and the “maximum major axis of oxides” is “oxidation”. The maximum long diameter of the inclusion, nitride, carbide, carbonitride, or composite inclusion mainly composed of these.

前記のように二次熱間鍛造後室温まで放冷して得た棒鋼は、次のようにしてその限界加工度も調査した。   The steel bar obtained by cooling to room temperature after secondary hot forging as described above was also examined for its limit workability as follows.

先ず、二次熱間鍛造後室温まで放冷して得た鋼a〜g、鋼i及び鋼k〜uの直径25mmの棒鋼には、更に920℃で1時間保持した後、室温まで放冷する焼鈍処理を施した。同様に、二次熱間鍛造後室温まで放冷して得た鋼hの直径25mmの棒鋼には、更に750℃で3時間保持した後、10℃/hの冷却速度で680℃まで冷却し、その後は室温まで放冷する焼鈍処理を施した。   First, steel ag, steel i, and steel ku obtained by allowing to cool to room temperature after secondary hot forging are further kept at 920 ° C. for 1 hour and then allowed to cool to room temperature. An annealing treatment was performed. Similarly, a steel bar with a diameter of 25 mm of steel h obtained by allowing to cool to room temperature after secondary hot forging is further maintained at 750 ° C. for 3 hours and then cooled to 680 ° C. at a cooling rate of 10 ° C./h. Thereafter, an annealing treatment for cooling to room temperature was performed.

次いで、上記の焼鈍処理を施した鋼a〜i及び鋼k〜uの直径25mmの棒鋼の各々から、直径が14mmで長さ(高さ)が21mmの円柱状試験片を11個ずつ採取した。   Next, 11 cylindrical test pieces each having a diameter of 14 mm and a length (height) of 21 mm were sampled from each of the steels a to i and steels k to u subjected to the annealing treatment and having a diameter of 25 mm. .

上記の円柱状試験片を用いて既に述べたのと同じ方法で冷間圧縮試験を行い、割れが発生する限界加工度としての限界圧縮率を測定した。   A cold compression test was performed by the same method as described above using the above cylindrical test piece, and the critical compressibility as a critical working degree at which cracking occurred was measured.

すなわち、先ず円柱状試験片の高さ方向に、高さ21mmの50%(つまり、10.5mm)の圧縮加工を施し、その後、初期高さである21mmの2%に相当する0.42mmずつの圧縮加工を行い、圧縮加工の度毎に割れが発生していないかを目視で判定した。上記の試験は11個ずつ採取した全ての円柱状試験片について実施し、最も早い段階で割れが発生した試験片の加工度をその条件における限界加工度である「限界圧縮率」と判定した。   That is, 50% (that is, 10.5 mm) of the 21 mm height is first compressed in the height direction of the cylindrical test piece, and then 0.42 mm corresponding to 2% of the initial height of 21 mm. The compression process was performed, and it was visually determined whether or not cracking occurred every time the compression process was performed. The above test was performed on all the cylindrical specimens sampled 11 pieces each, and the degree of processing of the test piece in which cracking occurred at the earliest stage was determined as the “limit compression ratio” which is the limit degree of processing under the conditions.

前記の冷間圧縮試験における目標は、限界圧縮率が65%以上であることとした。また望ましくは、均質化処理を施さない場合に較べて限界圧縮率が10%以上向上することとした。   The target in the cold compression test is that the critical compression ratio is 65% or more. Desirably, the critical compression ratio is improved by 10% or more as compared with the case where the homogenization treatment is not performed.

上記のようにして求めた限界圧縮率を表6及び表7に併せて示す。   Tables 6 and 7 show the limit compression ratios obtained as described above.

表6及び表7から、本発明(1)〜本発明(4)で規定する条件を満たす試験番号6、11、14、17、20、26、27及び35〜38の場合には、65%以上の限界圧縮率が得られており、冷間鍛造の際の良好な加工性を有していることが明らかである。   From Table 6 and Table 7, in the case of the test numbers 6, 11, 14, 17, 20, 26, 27, and 35 to 38 that satisfy the conditions specified in the present invention (1) to the present invention (4), 65% It is clear that the above critical compression ratio is obtained and has good workability during cold forging.

これに対して、本発明(1)〜本発明(4)で規定する条件から外れた試験番号の場合には、冷間圧縮試験における限界圧縮率が目標とする65%に達しておらず、冷間鍛造の際の加工性に劣っている。   On the other hand, in the case of a test number that deviates from the conditions specified in the present invention (1) to the present invention (4), the critical compression ratio in the cold compression test does not reach the target 65%, It is inferior in workability at the time of cold forging.

なお、65%以上の限界圧縮率が得られた試験番号6、11、14、17、20、26、27及び35〜38の焼鈍処理後の棒鋼については、旋削試験による切削性の調査も実施した。すなわち、焼鈍処理後の直径25mmの各棒鋼を機械加工によって直径24mmにし、次いで、超硬工具P20の三角チップを用いて下記の条件で20秒間旋削して主分力、送り分力及び背分力を測定し、その合力の平均値として求めた切削抵抗で切削性を評価した。   In addition, for the steel bars after the annealing treatments of test numbers 6, 11, 14, 17, 20, 26, 27, and 35 to 38, which obtained a critical compression ratio of 65% or more, investigation of machinability by a turning test was also conducted. did. That is, each steel bar having a diameter of 25 mm after the annealing treatment is machined to a diameter of 24 mm, and then turned for 20 seconds under the following conditions using a triangular tip of a carbide tool P20 to be subjected to main component force, feed component force and back component. The force was measured, and the machinability was evaluated by the cutting force obtained as an average value of the resultant force.

・周速:100m/分、
・切り込み深さ:1.0mm、
・送り量:0.15mm/rev.、
・ 潤滑:なし(乾式)。
・ Peripheral speed: 100m / min,
-Cutting depth: 1.0 mm,
-Feed rate: 0.15 mm / rev. ,
・ Lubrication: None (dry type).

切削性の目標は、表8に示す化学組成を有する鋼vを新たに溶製し、鋼vを用いた比較材を上記条件で旋削試験した際の切削抵抗を5%以上下回ることとした。   The target of machinability was to newly melt steel v having the chemical composition shown in Table 8 and to lower the cutting resistance by 5% or more when a comparative material using steel v was subjected to a turning test under the above conditions.

なお、切削性評価のための比較材は次のようにして作製した。すなわち、Sの含有量が本発明で規定する条件から外れた鋼vを30kg真空溶解炉を用いて溶解し、鋳鉄鋳型を用いて平均直径が120mmのインゴットに鋳造した。次いで、そのインゴットを1250℃で60分加熱した後、仕上げ温度が950℃以上となるように熱間鍛造し、室温まで放冷して、直径25mmの棒鋼を作製し、更に920℃で1時間保持した後、室温まで放冷する焼鈍処理を施した後、機械加工して直径24mmにした。   In addition, the comparative material for machinability evaluation was produced as follows. That is, steel V in which the content of S deviated from the conditions specified in the present invention was melted using a 30 kg vacuum melting furnace, and cast into an ingot having an average diameter of 120 mm using a cast iron mold. Next, the ingot was heated at 1250 ° C. for 60 minutes, then hot forged so that the finishing temperature was 950 ° C. or higher, and allowed to cool to room temperature to produce a steel bar having a diameter of 25 mm, and further at 920 ° C. for 1 hour. After holding, the substrate was subjected to an annealing treatment for cooling to room temperature, and then machined to a diameter of 24 mm.

切削抵抗を求めた結果、本発明(1)〜本発明(4)で規定する条件を満たす試験番号6、11、14、17、20、26、27及び35〜38の全てにおいて、目標に達する良好な切削性も有することが判明した。   As a result of obtaining the cutting resistance, the target is reached in all of test numbers 6, 11, 14, 17, 20, 26, 27, and 35 to 38 that satisfy the conditions specified in the present invention (1) to the present invention (4). It has been found that it also has good machinability.

[実施例2]
表9に示す化学組成を有する鋼イ〜チを30kg真空溶解炉で溶解した後、鋳鉄鋳型を用いて平均直径が120mmのインゴットに鋳造した。
[Example 2]
Steels having a chemical composition shown in Table 9 were melted in a 30 kg vacuum melting furnace, and then cast into an ingot having an average diameter of 120 mm using a cast iron mold.

なお、鋼の溶解は、全て次の(E2-1)〜(E2-3)の手順で行った。   In addition, all the melting of steel was performed in the following procedures (E2-1) to (E2-3).

(E2-1)真空排気したチャンバー内のるつぼ中の電解鉄を誘導加熱によって溶解し、目標含有量に相当するCを添加。
(E2-2)1570〜1590℃において表10に示した時間保持し、脱ガス処理を実施。
(E2-3)C及びAl以外の合金元素を添加した後、通常の方法で迅速分析を行い、目標の含有量に達していない合金元素とAlを添加して、表10に示した時間が経過してから出鋼。
(E2-1) Electrolytic iron in the crucible in the evacuated chamber is dissolved by induction heating, and C corresponding to the target content is added.
(E2-2) Degassing treatment was performed at 1570 to 1590 ° C. for the time shown in Table 10.
(E2-3) After adding alloy elements other than C and Al, perform rapid analysis by a normal method, add alloy elements that do not reach the target content and Al, and the times shown in Table 10 Steeling after a lapse.

なお、表9における鋼イ〜チは全て化学組成が本発明(1)〜(4)で規定する条件を満たす本発明例の鋼である。このうち鋼イ〜ニは化学組成が本発明(5)で規定する条件も満たす鋼である。   In addition, all the steels 1 to 1 in Table 9 are steels of the present invention examples whose chemical compositions satisfy the conditions defined in the present inventions (1) to (4). Among these, steels a to d are steels whose chemical composition also satisfies the conditions specified in the present invention (5).

次いで、鋼イ〜チの鋳込みままのインゴットを、1250℃で60分加熱した後、仕上げ温度が950℃以上となるように一次熱間鍛造し、室温まで放冷して、直径が30mmの棒鋼を得た。   Next, after heating the ingot as-cast steel to 60 ° C. at 1250 ° C. for 60 minutes, primary hot forging is performed so that the finishing temperature is 950 ° C. or more, and the steel is allowed to cool to room temperature. Got.

上記の一次熱間鍛造した各棒鋼を、表10に示す均質化処理条件で熱処理してから室温まで放冷し、次いで、1150℃で30分加熱した後、仕上げ温度が950℃以上となるように二次熱間鍛造し、室温まで放冷して、直径25mmの棒鋼を作製した。   Each of the first hot forged steel bars is heat-treated under the homogenization conditions shown in Table 10 and allowed to cool to room temperature, and then heated at 1150 ° C. for 30 minutes, so that the finishing temperature becomes 950 ° C. or higher. The steel was secondarily hot forged and allowed to cool to room temperature to produce a steel bar having a diameter of 25 mm.

表10には、鋳型材質及びインゴットの質量を併記した。また、一次熱間鍛造の際の鍛錬成形比も「鍛錬比」の項に示した。   Table 10 shows the mold material and the mass of the ingot. Also, the forging ratio at the time of primary hot forging is shown in the “forging ratio” section.

上記のようにして得た鋼イ〜チの直径25mmの棒鋼から、その長手方向に平行な断面を切り出して鏡面研磨した後、目盛りが入った接眼鏡を装着した光学顕微鏡を用いて倍率200倍で60視野観察し、各視野の中での硫化物系介在物の最大長径及び酸化物等の最大長径を計測した。上記各視野の面積は0.30mm2である。 After cutting a cross section parallel to the longitudinal direction from a steel bar having a diameter of 25 mm of the steel ichi obtained as described above and mirror-polishing it, the magnification is 200 times using an optical microscope equipped with a scaled eyepiece. The maximum length of sulfide inclusions and the maximum length of oxides and the like in each field were measured. The area of each visual field is 0.30 mm 2 .

このようにして各視野で測定した硫化物系介在物の最大長径及び酸化物等の最大長径について、既に述べた極値統計法によってデータを整理した。また、評価面積も、先に述べたのと同様に、1.0×104mm2及び1.0×107mm2とした。 Thus, the data on the maximum long diameter of sulfide inclusions and the maximum long diameter of oxides and the like measured in each field of view were arranged by the above-described extreme value statistical method. The evaluation area was also set to 1.0 × 10 4 mm 2 and 1.0 × 10 7 mm 2 as described above.

なお、上記で計測した「硫化物系介在物の最大長径」は「硫化物又は硫化物を主体とする複合介在物の最大長径」を指し、また、「酸化物等の最大長径」は「酸化物、窒化物、炭化物、炭窒化物又はこれらを主体とする複合介在物の最大長径」を指す。   The “maximum major axis of sulfide inclusions” measured above refers to the “maximum major axis of sulfides or composite inclusions mainly composed of sulfides”, and the “maximum major axis of oxides” refers to “oxidation. The maximum long diameter of the inclusion, nitride, carbide, carbonitride, or composite inclusion mainly composed of these.

前記のように二次熱間鍛造後室温まで放冷して得た棒鋼は、次のようにしてその限界加工度も調査した。   The steel bar obtained by cooling to room temperature after secondary hot forging as described above was also examined for its limit workability as follows.

先ず、二次熱間鍛造後室温まで放冷して得た鋼イ〜チの直径25mmの棒鋼には、更に920℃で1時間保持した後、室温まで放冷する焼鈍処理を施した。   First, after the secondary hot forging, the steel bar having a diameter of 25 mm, which was obtained by allowing to cool to room temperature, was further maintained at 920 ° C. for 1 hour and then subjected to an annealing treatment to cool to room temperature.

次いで、上記の焼鈍処理を施した鋼イ〜チの直径25mmの棒鋼の各々から、直径が14mmで長さ(高さ)が21mmの円柱状試験片を11個ずつ採取した。   Next, 11 cylindrical test pieces each having a diameter of 14 mm and a length (height) of 21 mm were sampled from each of the steel bars having a diameter of 25 mm, which were subjected to the above-described annealing treatment.

上記の円柱状試験片を用いて既に述べたのと同じ方法で冷間圧縮試験を行い、割れが発生する限界加工度としての限界圧縮率を測定した。すなわち、先ず円柱状試験片の高さ方向に、高さ21mmの50%(つまり、10.5mm)の圧縮加工を施し、その後、初期高さである21mmの2%に相当する0.42mmずつの圧縮加工を行い、圧縮加工の度毎に割れが発生していないかを目視で判定した。上記の試験は11個ずつ採取した全ての円柱状試験片について実施し、最も早い段階で割れが発生した試験片の加工度をその条件における限界加工度である「限界圧縮率」と判定した。   A cold compression test was performed in the same manner as described above using the above cylindrical test piece, and the critical compressibility as the critical degree of processing at which cracking occurred was measured. That is, 50% (ie, 10.5 mm) of the 21 mm height is first compressed in the height direction of the cylindrical specimen, and then 0.42 mm corresponding to 2% of the initial height of 21 mm. The compression process was performed, and it was visually determined whether or not cracking occurred at every compression process. The above test was carried out on all the cylindrical specimens collected 11 by one, and the degree of processing of the test piece in which cracking occurred at the earliest stage was determined as the “limit compression ratio” which is the limit degree of processing under the conditions.

上記のようにして求めた限界圧縮率を表10に併せて示す。   Table 10 shows the limit compression ratio obtained as described above.

表9及び表10から、本発明(1)〜本発明(4)で規定する条件を満たす試験番号39〜46の全てにおいて、65%以上の限界圧縮率が得られており、冷間鍛造の際の良好な加工性を有していることが明らかである。上記の試験番号のうちでも本発明(5)で規定する条件を満たす試験番号39〜42の場合には、72%以上の限界圧縮率が得られており、一層良好な冷間鍛造性を有していることが明らかである。   From Table 9 and Table 10, in all of the test numbers 39 to 46 satisfying the conditions specified in the present invention (1) to the present invention (4), a limit compression ratio of 65% or more was obtained, and cold forging It is clear that it has good processability. Among the above test numbers, in the case of test numbers 39 to 42 that satisfy the conditions specified in the present invention (5), a limit compression ratio of 72% or more was obtained, and even better cold forgeability was obtained. Obviously.

なお、[実施例1]の場合と同様に、焼鈍処理後の棒鋼については、旋削試験による切削性の調査も実施した。すなわち、焼鈍処理後の直径25mmの各棒鋼を機械加工によって直径24mmにし、次いで、超硬工具P20の三角チップを用いて下記の条件で20秒間旋削して主分力、送り分力及び背分力を測定し、その合力の平均値として求めた切削抵抗で切削性を評価した。   Note that, as in [Example 1], the machinability of the steel bar after the annealing treatment was also investigated by a turning test. That is, each steel bar having a diameter of 25 mm after the annealing treatment is machined to a diameter of 24 mm, and then turned for 20 seconds under the following conditions using a triangular tip of the carbide tool P20, and the main component force, the feed component force and the back component The force was measured, and the machinability was evaluated by the cutting force obtained as an average value of the resultant force.

・周速:100m/分、
・切り込み深さ:1.0mm、
・送り量:0.15mm/rev.、
・ 潤滑:なし(乾式)。
・ Peripheral speed: 100m / min,
-Cutting depth: 1.0 mm,
-Feed rate: 0.15 mm / rev. ,
・ Lubrication: None (dry type).

切削性の目標は、表8に示す化学組成を有する鋼vを用いた比較材を上記条件で旋削試験した際の切削抵抗を5%以上下回ることとした。なお、切削性評価のための鋼vの比較材作製方法は既に述べたとおりである。   The target of machinability was determined to be 5% or less below the cutting resistance when a comparative material using steel v having the chemical composition shown in Table 8 was subjected to a turning test under the above conditions. In addition, the comparative material preparation method of the steel v for machinability evaluation is as having already stated.

切削抵抗を求めた結果、本発明(1)〜本発明(4)で規定する条件を満たす試験番号39〜46の全てにおいて、目標に達する良好な切削性も有することが判明した。   As a result of obtaining the cutting resistance, it was found that all of the test numbers 39 to 46 satisfying the conditions defined in the present invention (1) to the present invention (4) also had good cutting ability to reach the target.

本発明の棒鋼・線材は、冷間鍛造や熱間鍛造の際の良好な加工性、なかでも冷間鍛造の際の良好な加工性及び優れた切削性を兼ね備えているので、自動車や産業機械などに用いられる部品の素材として利用することができる。   The steel bars and wires of the present invention have good workability during cold forging and hot forging, in particular, good workability during cold forging and excellent machinability, so automobiles and industrial machinery It can be used as a raw material for parts used in, for example.

限界圧縮率と硫化物又は硫化物を主体とする複合介在物の最大長径との関係を整理して示す図である。It is a figure which rearranges and shows the relationship between a limit compressibility and the maximum long diameter of the composite inclusion which has sulfide or sulfide as a main component. 限界圧縮率と酸化物、窒化物、炭化物、炭窒化物又はこれらを主体とする複合介在物の最大長径との関係を整理して示す図である。It is a figure which arrange | positions and shows the relationship between a limit compressibility and the largest long diameter of an oxide, nitride, carbide, carbonitride, or the composite inclusion which has these as a main body.

Claims (5)

質量%で、C:0.15〜0.6%、Si:0.05〜0.8%、Mn:0.2〜1.5%、S:0.02〜0.05%、Cr:0.1〜2.0%、Al:0.01〜0.05%、N:0.004〜0.025%を含有し、残部はFe及び不純物からなり、不純物中のP:0.025%以下、Ti:0.003%以下及びO(酸素):0.0015%以下の化学組成を有し、且つ、棒鋼・線材の長手方向に平行である断面において、極値統計法によって求められる介在物の最大長径が、硫化物又は硫化物を主体とする複合介在物については、1.0×104mm2中250μm以下且つ1.0×107mm2中400μm以下であるとともに、酸化物、窒化物、炭化物、炭窒化物又はこれらを主体とする複合介在物については、1.0×104mm2中50μm以下且つ1.0×107mm2中80μm以下であることを特徴とする棒鋼・線材。 In mass%, C: 0.15-0.6%, Si: 0.05-0.8%, Mn: 0.2-1.5%, S: 0.02-0.05%, Cr: 0.1 to 2.0%, Al: 0.01 to 0.05%, N: 0.004 to 0.025%, the balance is made of Fe and impurities, P in the impurity is 0.025 % Or less, Ti: 0.003% or less, and O (oxygen): 0.0015% or less in the cross section parallel to the longitudinal direction of the steel bar / wire, and obtained by an extreme value statistical method. The maximum major axis of inclusions is sulfide or a composite inclusion mainly composed of sulfides, which is 250 μm or less in 1.0 × 10 4 mm 2 and 400 μm or less in 1.0 × 10 7 mm 2 and is oxidized. things, nitrides, carbides, for carbonitride, or these composite inclusions mainly is, 1.0 × 10 4 m Bars and wire rods, wherein 50μm or less and in 1.0 × 10 7 mm 2 2 is 80μm or less. Feの一部に代えて、Mo:0.8%以下を含有する請求項1に記載の棒鋼・線材。   The steel bar / wire according to claim 1, which contains Mo: 0.8% or less instead of part of Fe. Feの一部に代えて、Nb:0.08%以下及びV:0.15%以下から選択される1種以上を含有する請求項1又は2に記載の棒鋼・線材。   The steel bar / wire according to claim 1 or 2, which contains at least one selected from Nb: 0.08% or less and V: 0.15% or less, instead of part of Fe. Feの一部に代えて、Te:0.008%以下を含有し、且つ、棒鋼・線材の長手方向に平行である断面積100mm2中におけるMnとTeを主体とする介在物の存在割合が1個未満である請求項1から3までのいずれかに記載の棒鋼・線材。 Instead of a part of Fe, the content ratio of inclusions mainly composed of Mn and Te in a cross-sectional area of 100 mm 2 containing Te: 0.008% or less and parallel to the longitudinal direction of the steel bar / wire. The steel bar / wire according to any one of claims 1 to 3, wherein the number is less than one. 不純物中のZr:0.0005%以下、Ca:0.0005%以下、Mg:0.0005%以下及びREM(希土類元素):0.0010%以下である請求項1から4までのいずれかに記載の棒鋼・線材。
Zr in impurities: 0.0005% or less, Ca: 0.0005% or less, Mg: 0.0005% or less, and REM (rare earth element): 0.0010% or less. Steel bar and wire listed.
JP2005248739A 2005-08-30 2005-08-30 Steel bar and wire rod Active JP4424503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005248739A JP4424503B2 (en) 2005-08-30 2005-08-30 Steel bar and wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005248739A JP4424503B2 (en) 2005-08-30 2005-08-30 Steel bar and wire rod

Publications (2)

Publication Number Publication Date
JP2007063589A JP2007063589A (en) 2007-03-15
JP4424503B2 true JP4424503B2 (en) 2010-03-03

Family

ID=37926121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005248739A Active JP4424503B2 (en) 2005-08-30 2005-08-30 Steel bar and wire rod

Country Status (1)

Country Link
JP (1) JP4424503B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5182067B2 (en) * 2008-12-24 2013-04-10 新日鐵住金株式会社 Steel for vacuum carburizing or carbonitriding
JP5476766B2 (en) * 2009-03-31 2014-04-23 Jfeスチール株式会社 Machine structural steel with excellent cold forgeability and method for producing the same
JP5397247B2 (en) * 2010-02-02 2014-01-22 新日鐵住金株式会社 Hot rolled steel bar or wire rod
JP2011167725A (en) * 2010-02-18 2011-09-01 Ihi Corp Defective dimension estimating method and device
JP5472063B2 (en) * 2010-11-30 2014-04-16 新日鐵住金株式会社 Free-cutting steel for cold forging
JP5949287B2 (en) * 2012-08-01 2016-07-06 新日鐵住金株式会社 Steel for cold forging
JP2014040894A (en) * 2012-08-23 2014-03-06 Ntn Corp Ring member for bearing component, race, rolling bearing, and method of manufacturing ring member for bearing component
US20160060744A1 (en) * 2013-04-18 2016-03-03 Nippon Steel & Sumitomo Metal Corporation Case-hardening steel and case-hardened steel member
US10526686B2 (en) 2013-04-24 2020-01-07 Nippon Steel Corporation Low-oxygen clean steel and low-oxygen clean steel product
BR112021001353A2 (en) * 2018-10-01 2021-04-20 Nippon Steel Corporation seamless steel tube suitable for use in an acid environment
CN113684423B (en) * 2021-10-26 2022-01-28 江苏省沙钢钢铁研究院有限公司 High-carbon steel wire rod

Also Published As

Publication number Publication date
JP2007063589A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
JP4424503B2 (en) Steel bar and wire rod
JP5778055B2 (en) ROLLED STEEL FOR HOT FORGING, HOT FORGING SEMICONDUCTOR, COMMON RAIL AND PROCESS FOR PRODUCING THE SAME
JP3918787B2 (en) Low carbon free cutting steel
JP3753101B2 (en) High strength and high rigidity steel and manufacturing method thereof
JP5368830B2 (en) Steel for machine structure, manufacturing method thereof and machine structure parts
JP6787238B2 (en) Manufacturing method of steel for machine structure
JP6642237B2 (en) Cold forging steel and method for producing the same
JP6918238B2 (en) Martensitic S Free-cutting stainless steel
JP5556778B2 (en) Free-cutting steel for cold forging
JP2010070812A (en) Free-cutting austenitic stainless steel wire rod excellent in cold forgeability, and manufacturing method therefor
JP5316495B2 (en) Bearing steel
JP5474615B2 (en) Martensitic stainless free-cutting steel bar wire with excellent forgeability
JP5474616B2 (en) Ferritic stainless free-cutting steel rod with excellent forgeability
JP2018035423A (en) Steel for carburization, carburization steel member and manufacturing method of carburization steel member
JP2021155808A (en) Steel material
JP5583986B2 (en) Austenitic stainless free-cutting steel rod with excellent forgeability
JP6801717B2 (en) Cold forging steel and its manufacturing method
JP4032915B2 (en) Wire for machine structure or steel bar for machine structure and manufacturing method thereof
JP6683073B2 (en) Steel for carburizing, carburized steel parts and method for manufacturing carburized steel parts
JP5363882B2 (en) Cold-working steel, cold-working steel manufacturing method, machine structural component manufacturing method, and machine structural component
KR20180117129A (en) Rolled wire rod
JP7199231B2 (en) Ferritic S free-cutting stainless steel
JP7141944B2 (en) Non-tempered forged parts and steel for non-tempered forgings
JP6642236B2 (en) Cold forging steel
JP6766531B2 (en) Cold forging steel and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4424503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350