JP2009221594A - Hot-working tool steel having excellent toughness - Google Patents

Hot-working tool steel having excellent toughness Download PDF

Info

Publication number
JP2009221594A
JP2009221594A JP2008312524A JP2008312524A JP2009221594A JP 2009221594 A JP2009221594 A JP 2009221594A JP 2008312524 A JP2008312524 A JP 2008312524A JP 2008312524 A JP2008312524 A JP 2008312524A JP 2009221594 A JP2009221594 A JP 2009221594A
Authority
JP
Japan
Prior art keywords
hot
toughness
tool steel
steel
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008312524A
Other languages
Japanese (ja)
Inventor
Taishiro Fukumaru
大志郎 福丸
Ryuichiro Sugano
隆一朗 菅野
Kimita Kataoka
公太 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2008312524A priority Critical patent/JP2009221594A/en
Publication of JP2009221594A publication Critical patent/JP2009221594A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot-working tool steel most suitable for various hot-working tools such as a press die, forging die, die-casting die and extruding tool, and having enhanced toughness. <P>SOLUTION: The hot-working tool steel comprises, by mass, 0.34 to 0.40% C, >0.5 to 0.8% Si, 0.45 to 0.75% Mn, 0 to <0.5% Ni, 4.9 to 5.5% Cr, Mo and/or W singly or totally in an amount of 2.5 to 2.9% in (Mo+1/2W) terms, 0.5 to 0.7% V, and the balance Fe with unavoidable impurities. The hot-working tool steel exerts a superior toughness-improvement effect, particularly in a high hardness range of 45 HRC or higher. Accordingly, the tool steel can be applied not only to various hot-working tools such as a press die, forging die, die-casting die and extruding tool, but also to a hot-working tool member to which a heavy load is applied during use. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、プレス金型や鍛造金型、ダイカスト金型、押出工具といった多種の熱間工具に供して最適な、靭性を向上させた熱間工具鋼に関するものである。   The present invention relates to a hot work tool steel with improved toughness that is optimal for various hot tools such as a press die, a forging die, a die casting die, and an extrusion tool.

熱間工具は、高温の被加工材や硬質な被加工材と接触しながら使用されるため、熱疲労や衝撃に耐えうる強度と靭性を兼ね備えている必要がある。そのため、従来熱間工具の分野には、例えばJIS鋼種であるSKD61系の合金工具鋼が用いられていた。さらに最近では、熱間工具を使用して製造される製品の製造時間の短縮や複雑形状の成形のために被加工材が高温化してきていることや、製品の複数同時加工に伴って金型等の熱間工具も大型化してきていることなどから、熱間工具材料にはさらに高い高温強度と大型サイズでも内部まで高い靭性を確保できることが求められている。   Since a hot tool is used while being in contact with a high-temperature work material or a hard work material, it must have both strength and toughness that can withstand thermal fatigue and impact. For this reason, in the field of hot tools, for example, SKD61-based alloy tool steel, which is a JIS steel type, has been used. More recently, the temperature of workpieces has increased due to the shortening of the manufacturing time of products manufactured using hot tools and the formation of complex shapes, and dies due to the simultaneous processing of multiple products. Since hot tools such as these are becoming larger, hot tool materials are required to be able to secure high toughness up to the inside even at higher high-temperature strength and large size.

合金工具鋼の靭性と高温強度を改善することを目的として、化学組成の範囲を定めることにより靭性を維持しつつ高温強度を改善する手法や(特許文献1参照)、残留炭化物の量を規定することにより靭性および高温強度を改善する手法が提案されている(特許文献2参照)。
特開平2−179848号公報 特開2000−328196号公報
For the purpose of improving the toughness and high temperature strength of the alloy tool steel, a method for improving the high temperature strength while maintaining the toughness by determining the chemical composition range (see Patent Document 1) and the amount of residual carbide are specified. Thus, a technique for improving toughness and high-temperature strength has been proposed (see Patent Document 2).
JP-A-2-179848 JP 2000-328196 A

しかし、上述の特許文献1は、靭性の具体的な測定値が無いことから靭性のレベルを評価することはできないが、本発明者が行った検討結果から判断するに、靭性および高温強度を十分に高いレベルで兼備するためには化学組成の範囲の限定が不十分である。また、上述の特許文献2の方法においても、靭性および高温強度は焼入れ後のマルテンサイト組織やベイナイト組織などの組織の影響を大きく受けるため、靭性および高温強度を高いレベルで制御するためには残留炭化物量を規定するだけでは不十分である。   However, although the above-mentioned Patent Document 1 cannot evaluate the toughness level because there is no specific measurement value of toughness, the toughness and the high-temperature strength are sufficient to judge from the examination results made by the present inventors. In order to achieve a high level, the range of the chemical composition is not sufficiently limited. In the method of Patent Document 2 described above, the toughness and the high temperature strength are greatly affected by the structure such as the martensite structure and the bainite structure after quenching. It is not enough to specify the amount of carbide.

そこで、本願出願人は、十分なレベルの高温強度を備えた上では、靱性の著しい向上を達成した熱間工具鋼として、特願2007−222220を提案した。すなわち、質量%で、C:0.34〜0.40%、Si:0.3〜0.5%、Mn:0.45〜0.75%、Ni:0〜0.5%未満、Cr:4.9〜5.5%、MoおよびWは単独または複合で(Mo+1/2W):2.5〜2.9%、V:0.5〜0.7%、残部Feおよび不可避的不純物を基本組成とする熱間工具鋼である。   Accordingly, the applicant of the present application has proposed Japanese Patent Application No. 2007-222220 as a hot tool steel that has achieved a significant improvement in toughness after having a sufficient high-temperature strength. That is, in mass%, C: 0.34 to 0.40%, Si: 0.3 to 0.5%, Mn: 0.45 to 0.75%, Ni: 0 to less than 0.5%, Cr : 4.9 to 5.5%, Mo and W are used alone or in combination (Mo + 1 / 2W): 2.5 to 2.9%, V: 0.5 to 0.7%, remaining Fe and inevitable impurities Is a hot work tool steel with a basic composition.

しかしながら、上記の提案に係っては、その維持される高温強度のレベルに比して、一方では発揮される靱性向上効果は非常に顕著なものである。よって、この靱性向上効果を最大限に利用するという見地に立てば、その効果の恩恵を受け得る「靱性に優れた熱間工具鋼」の開発には、更なる検討の余地がある。   However, with regard to the above proposal, the toughness improving effect exhibited on the other hand is very remarkable as compared with the maintained high-temperature strength level. Therefore, there is room for further study in the development of “hot tool steel with excellent toughness” that can benefit from the effect of maximizing the toughness improvement effect.

本発明の目的は、より確実に優れた靭性を有する熱間工具鋼を提供することである。   An object of the present invention is to provide a hot work tool steel having more excellent toughness.

本発明者が鋭意研究を行った結果として、特願2007−222220では、靭性および高温強度には焼入れ後の組織が大きく影響することを突き止め、優れた靭性および高温強度を兼ね備えるために好適な焼入れ後の組織を明らかにした。そして、好適な焼入れ後の組織を得るためには、各元素の含有量を最適な範囲に制御することによってこそ得られる、その極めて狭い好組成域が存在することを見出した。そして、特願2007−222220においては、その靱性と高温強度の向上効果に対し、特に靱性の著しい向上に作用する元素種であるSiの調整量に更なる検討の余地があったことから、それを見直したことで、本発明に到達した。   As a result of the inventor's earnest research, in Japanese Patent Application No. 2007-222220, it is found that the structure after quenching greatly affects toughness and high-temperature strength, and is suitable for combining excellent toughness and high-temperature strength. Revealed later organization. And in order to obtain the suitable structure | tissue after hardening, it discovered that the very narrow favorable composition area | region obtained only by controlling content of each element to the optimal range exists. In addition, in Japanese Patent Application No. 2007-222220, there was room for further study on the adjustment amount of Si, which is an elemental species that acts on the remarkable improvement of toughness, with respect to the improvement effect of toughness and high-temperature strength. As a result, the present invention has been achieved.

すなわち本発明は、質量%で、C:0.34〜0.40%、Si:0.5超〜0.8%、Mn:0.45〜0.75%、Ni:0〜0.5%未満、Cr:4.9〜5.5%、MoおよびWは単独または複合で(Mo+1/2W):2.5〜2.9%、V:0.5〜0.7%、残部Feおよび不可避的不純物からなることを特徴とする靭性に優れた熱間工具鋼である。本発明の熱間工具鋼は、例えばその硬さを40HRC以上に調質して使用すればよいが、特に45HRC以上の高硬さ域において、その優れた靭性を発揮する。   That is, the present invention is mass%, C: 0.34 to 0.40%, Si: more than 0.5 to 0.8%, Mn: 0.45 to 0.75%, Ni: 0 to 0.5. %, Cr: 4.9 to 5.5%, Mo and W alone or in combination (Mo + 1 / 2W): 2.5 to 2.9%, V: 0.5 to 0.7%, balance Fe Further, it is a hot work tool steel excellent in toughness characterized by comprising inevitable impurities. The hot tool steel of the present invention may be used after adjusting its hardness to 40 HRC or higher, for example, and exhibits excellent toughness particularly in a high hardness region of 45 HRC or higher.

ここで、本発明の熱間工具鋼に好ましくは、それを構成するC,Si,Mn,Ni,Cr,Mo,W、Vの各元素のうちの1種または2種以上が、さらに下記の狭組成域を満たすことである。これにおいては、勿論、その全てを満たすことが望ましい。
C :0.35〜0.39%、
Si:0.5超〜0.7 %、
Mn:0.5 〜0.7 %、
Ni:0.01〜0.3 %、
Cr:5.0 〜5.4 %、
MoおよびWは単独または複合で(Mo+1/2W):2.6〜2.8%、
V :0.55〜0.65%
Here, the hot tool steel of the present invention is preferably one or more of C, Si, Mn, Ni, Cr, Mo, W, and V elements constituting the hot tool steel of the present invention. The narrow composition range is satisfied. In this, of course, it is desirable to satisfy all of them.
C: 0.35-0.39%,
Si: more than 0.5 to 0.7%,
Mn: 0.5 to 0.7%,
Ni: 0.01 to 0.3%,
Cr: 5.0 to 5.4%,
Mo and W are single or combined (Mo + 1 / 2W): 2.6 to 2.8%,
V: 0.55-0.65%

本発明によれば熱間工具鋼の靭性を非常に高いレベルで兼備することができる。そして、この効果は、40HRC以上の硬さ域においては勿論のこと、例えば45HRC以上、更には46HRC以上の高硬さ域に調質した時においては、最大限に発揮される。よって、多種熱間の用途・環境に適用が可能な熱間工具鋼の実用化にとって有効な技術となる。   According to the present invention, the toughness of hot tool steel can be combined at a very high level. And this effect is exhibited to the maximum when it is tempered in a high hardness region of 45 HRC or more, further 46 HRC or more, as well as in a hardness region of 40 HRC or more. Therefore, this is an effective technique for practical application of hot tool steel that can be applied to various uses and environments.

上述したように、本発明の重要な特徴は各元素の含有量を最適な範囲に制御することにある。すなわち、各元素の含有量を限定的な範囲に制御するだけで、製造方法は従来のままで、広い範囲の焼入れ冷却速度でも、高温強度は実用域に止めた上で、靭性を高いレベルで維持できる組織を得ることができる狭組成域が存在するのであって、それを特定できたところに特徴を有する。すなわち、基本元素においては、C−Cr量の関係は従来のバランスを踏襲しながらも、これに相互関係する他の炭化物形成元素のMo,W,Vの最適調整と、そして、これら基本元素の調整による結果特性には多大な影響を及ぼすSiやNiの調整こそが重要なのである。以下、本発明鋼の狭組成域で構成される成分限定の理由について述べる。   As described above, an important feature of the present invention is that the content of each element is controlled within an optimum range. In other words, by controlling the content of each element to a limited range, the manufacturing method remains the same, and even at a wide range of quenching and cooling rates, the high temperature strength is kept within the practical range and the toughness is at a high level. There is a narrow composition range in which a tissue that can be maintained can be obtained, and is characterized by the fact that it can be specified. That is, in the basic element, the relationship of the amount of C—Cr follows the conventional balance, but the optimum adjustment of Mo, W, V of other carbide forming elements interrelated to this, and the basic element It is important to adjust Si and Ni, which have a great influence on the resulting characteristics of the adjustment. Hereinafter, the reason for limiting the components constituted by the narrow composition range of the steel of the present invention will be described.

Cは、一部が基地中に固溶して強度を付与し、一部は炭化物を形成することで耐摩耗性や耐焼付き性を高める、熱間工具鋼には重要な必須元素である。また、固溶した侵入型原子であるCは、CrなどのCと親和性の大きい置換型原子と共添加した場合、I(侵入型原子)−S(置換型原子)効果;溶質原子の引きずり抵抗として作用し高強度化する効果も期待される。ただし、含有量が0.34質量%(以下、単に%と表記する)未満では工具部材として十分な硬さ、耐摩耗性を確保できなくなる。他方、過度の添加は靭性や熱間強度の低下を招くため上限を0.40%とする。好ましくは0.35〜0.39%、更に好ましくは0.36〜0.38%である。   C is an essential essential element for hot work tool steel, part of which is dissolved in the matrix to give strength, and part of it forms carbides to improve wear resistance and seizure resistance. Further, when C, which is a solid interstitial atom, is co-added with a substitution atom having a high affinity with C, such as Cr, the I (interstitial atom) -S (substitution atom) effect; solute atom dragging The effect of increasing the strength by acting as a resistance is also expected. However, if the content is less than 0.34 mass% (hereinafter simply referred to as%), sufficient hardness and wear resistance as a tool member cannot be secured. On the other hand, excessive addition causes a decrease in toughness and hot strength, so the upper limit is made 0.40%. Preferably it is 0.35-0.39%, More preferably, it is 0.36-0.38%.

Siは、製鋼時の脱酸剤であるとともに被削性を高める元素である。これらの効果を得るためには0.3%以上の添加が必要であるが、多過ぎると針状のベイナイトを生成させて靭性を低下させたり、焼入れ冷却時のベイナイト組織中のセメンタイト系の炭化物の析出を抑制することによって間接的に焼戻し時の合金炭化物の析出・凝集・粗大化を促進して高温強度を低下させたりする。   Si is an element that enhances machinability as well as a deoxidizer during steelmaking. In order to obtain these effects, addition of 0.3% or more is necessary, but if it is too much, needle-like bainite is generated to reduce toughness, or cementite-based carbides in the bainite structure during quenching cooling. Inhibiting the precipitation of aluminum indirectly promotes the precipitation, aggregation and coarsening of alloy carbides during tempering, thereby lowering the high temperature strength.

そこで本願出願人は、この靱性と高温強度を高いレベルで兼備させるにおいて、0.3〜0.5%という最適なSi域を、特願2007−222220で提案した。しかしながら、このSi量の上限管理においては、その靱性と高温強度の中でも、特に靱性向上への寄与程度が高いものであることは、上述の通りである。そこで本発明者は、高温強度は実用域に保った上での、靱性の向上効果が享受できるSi上限値について、再度見直した。その結果、特願2007−222220の提案鋼の靭性値よりは低いものの、Siは0.8%以下であれば、優れた被削性を有した上で、従来鋼と同等か若しくはそれ以上の靭性を確保できることを見出した。以上のことから、靭性と被削性のバランスを考慮した本発明のSiは、0.5超〜0.8%とした。好ましくは0.5超〜0.7%である。   Therefore, the applicant of the present application has proposed an optimal Si region of 0.3 to 0.5% in Japanese Patent Application No. 2007-222220 in order to combine this toughness and high-temperature strength at a high level. However, in the upper limit management of the Si amount, among the toughness and high-temperature strength, the contribution to the improvement of toughness is particularly high as described above. Therefore, the present inventor reviewed again the Si upper limit value that can enjoy the effect of improving toughness while keeping the high temperature strength in a practical range. As a result, although it is lower than the toughness value of the proposed steel of Japanese Patent Application No. 2007-222220, if Si is 0.8% or less, it has excellent machinability and is equal to or higher than that of conventional steel. It has been found that toughness can be secured. From the above, the Si of the present invention considering the balance between toughness and machinability was made to exceed 0.5 to 0.8%. Preferably it is more than 0.5 to 0.7%.

Mnは、焼入性を高め、フェライトの生成を抑制し、適度の焼入れ焼戻し硬さを得る効果がある。また、非金属介在物MnSとして組織中に存在すれば、被削性の向上に大きな効果がある。これらの効果を得るためには0.45%以上の添加が必要であるが、多過ぎると基地の粘さを上げて被削性を低下させるので0.75%以下とする。好ましくは0.5〜0.7%である。   Mn has the effect of improving hardenability, suppressing the formation of ferrite, and obtaining appropriate quenching and tempering hardness. Moreover, if it exists in a structure | tissue as nonmetallic inclusion MnS, there exists a big effect in the improvement of a machinability. In order to obtain these effects, addition of 0.45% or more is necessary. However, if too much is added, the base viscosity is increased and machinability is lowered. Preferably it is 0.5 to 0.7%.

Niは、多過ぎると基地の粘さを上げて被削性を低下させたり、高温強度を低下させたりするので、0.5%未満とする必要がある。好ましくは、0.3%以下に規制することである。ただし、C、Cr、Mn、Mo、Wなどとともに本発明鋼に優れた焼入性を付与し、緩やかな焼入冷却速度の場合にも、マルテンサイト主体の組織を形成させ、靭性の低下を防ぐために重要な添加元素でもあり、さらに基地の本質的な靭性改善効果を与えることから0.01%程度添加しても良い。   If Ni is too much, it will increase the viscosity of the base and lower the machinability or lower the high temperature strength, so it needs to be less than 0.5%. Preferably, it is restricted to 0.3% or less. However, it provides excellent hardenability to the steel of the present invention together with C, Cr, Mn, Mo, W, etc., and even in the case of a slow quenching cooling rate, a martensite-based structure is formed and the toughness is reduced. It is also an important additive element for preventing, and may further be added in an amount of about 0.01% because it provides an essential toughness improving effect of the base.

Crは焼入れ性を高めて、また、炭化物を形成して基地の強化や耐摩耗性を向上させる効果を有する元素であり、焼戻し軟化抵抗および高温強度の向上にも寄与する、本発明の熱間工具鋼には必須の元素である。これらの効果を得るため4.9%以上添加する必要がある。ただし、過度の添加は焼入れ性や高温強度の低下を招くため、上限を5.5%とする。好ましくは5.0〜5.4%、更に好ましくは5.1〜5.3%である。   Cr is an element having an effect of improving hardenability and forming carbides to improve the strengthening and wear resistance of the base, and contributes to the improvement of temper softening resistance and high temperature strength. It is an essential element for tool steel. In order to obtain these effects, it is necessary to add 4.9% or more. However, excessive addition causes a decrease in hardenability and high temperature strength, so the upper limit is made 5.5%. Preferably it is 5.0 to 5.4%, more preferably 5.1 to 5.3%.

MoおよびWは、焼入性を高めるとともに、焼戻しにより微細炭化物を析出させて強度を付与し、軟化抵抗を向上させるために単独または複合で添加できる。WはMoの約2倍の原子量であることからMo+1/2Wで規定することができる(当然、いずれか一方のみの添加としても良いし、双方を共添加することもできる)。そして、前記した効果を得るためには(Mo+1/2W)で2.5%以上の添加が必要である。多過ぎると被削性の低下や針状ベイナイトの生成による靭性の低下を招くので、(Mo+1/2W)で2.9%以下とする。好ましくは(Mo+1/2W)で2.6〜2.8%である。   Mo and W can be added singly or in combination to enhance hardenability, precipitate fine carbides by tempering, impart strength, and improve softening resistance. Since W has an atomic weight approximately twice that of Mo, it can be defined as Mo + 1 / 2W (of course, either one may be added or both may be added together). In order to obtain the above-described effect, it is necessary to add 2.5% or more at (Mo + 1 / 2W). If the amount is too large, the machinability is lowered and the toughness is lowered due to the formation of acicular bainite, so (Mo + 1 / 2W) is 2.9% or less. Preferably, it is 2.6 to 2.8% in (Mo + 1 / 2W).

Vは、炭化物を形成し、基地の強化や耐摩耗性向上の効果を有する。また、焼戻し軟化抵抗を高めるとともに結晶粒の粗大化を抑制し、靭性向上に寄与する。この効果を得るためには0.5%以上を添加する必要があるが、多過ぎると被削性や靭性の低下を招くので0.7%以下とする。好ましくは0.55〜0.65%である。   V forms carbides and has the effect of strengthening the base and improving wear resistance. In addition, it increases temper softening resistance and suppresses coarsening of crystal grains, thereby contributing to improvement of toughness. In order to obtain this effect, it is necessary to add 0.5% or more, but if it is too much, the machinability and toughness are lowered, so the content is made 0.7% or less. Preferably it is 0.55-0.65%.

なお、不可避的不純物として、残留する可能性のある主な元素は、P、S、Co、Cu、Al、Ca、Mg、O、N等である。本発明の作用効果を最大限に達成するためには、これらはできるだけ低い方が望ましいが、一方では、介在物の形態制御や、その他の機械的特性、あるいは製造効率の向上などの、付加的な作用効果を得る目的のもとでは、多少の含有および/または添加することもできる。この場合、P≦0.03%、S≦0.01%、Co≦0.05%、Cu≦0.25%、Al≦0.025%、Ca≦0.01%、Mg≦0.01%、O≦0.01%、N≦0.03%であれば、本発明の熱間工具鋼の基本特性に特に大きな影響を及ぼさないと考えられるので、この範囲であれば許容でき、好ましい規制上限である。   Note that main elements that may remain as inevitable impurities are P, S, Co, Cu, Al, Ca, Mg, O, N, and the like. In order to achieve the maximum effect of the present invention, these should be as low as possible. However, on the other hand, there are additional features such as inclusion shape control, other mechanical properties, and improvement in production efficiency. Some contents and / or additions may be added for the purpose of obtaining various effects. In this case, P ≦ 0.03%, S ≦ 0.01%, Co ≦ 0.05%, Cu ≦ 0.25%, Al ≦ 0.025%, Ca ≦ 0.01%, Mg ≦ 0.01 %, O ≦ 0.01%, N ≦ 0.03%, it is considered that the basic properties of the hot work tool steel of the present invention are not particularly affected. It is the upper limit of regulation.

表1に本発明鋼、比較鋼、参考鋼および従来鋼の化学成分を示す。参考鋼は本出願人が提案した特願2007−222220の化学組成を有した鋼、従来鋼は現在一般的に使用されている、当然のことながら本発明の成分範囲外の熱間工具鋼である。   Table 1 shows chemical compositions of the steels of the present invention, comparative steels, reference steels and conventional steels. The reference steel is a steel having the chemical composition of Japanese Patent Application No. 2007-222220 proposed by the applicant, and the conventional steel is a hot tool steel outside the component range of the present invention. is there.

Figure 2009221594
Figure 2009221594

これらの本発明鋼、比較鋼、参考鋼および従来鋼は、次の手順で作製した。まず、真空誘導溶解炉にて10kgずつ溶製した鋼塊に、1250℃で5時間の均質化熱処理を施した後、1150℃で熱間鍛造することによって30mm厚さ×60mm幅の鋼材を作製した。その後、860℃で焼なまし処理したのち、1030℃で焼入れ処理した。焼入れは加圧ガス冷却にて行い、焼入温度(1030℃)から焼入温度と室温(20℃)との中間の温度(525℃)まで冷却するのに要する時間を半冷時間と定義した場合(例えば、1030℃から525℃まで冷却するのに10分かかる場合「半冷10分」と表す)、急冷に対応するものとして半冷3分程度、大型サイズの鋼材の中心部のように冷却速度が遅くなる部分に対応するものとして半冷40分程度で冷却した。その後、種々の温度で焼戻し処理して、46HRCの硬さに調質した。   These inventive steels, comparative steels, reference steels and conventional steels were produced by the following procedure. First, a steel ingot of 10 kg each in a vacuum induction melting furnace is subjected to homogenization heat treatment at 1250 ° C. for 5 hours, and then hot forged at 1150 ° C. to produce a steel material 30 mm thick × 60 mm wide. did. Then, after annealing at 860 ° C., quenching was performed at 1030 ° C. Quenching is performed by pressurized gas cooling, and the time required for cooling from the quenching temperature (1030 ° C.) to an intermediate temperature (525 ° C.) between the quenching temperature and room temperature (20 ° C.) is defined as a semi-cooling time. In the case (for example, when it takes 10 minutes to cool from 1030 ° C. to 525 ° C., it is expressed as “semi-cooled 10 minutes”). It was cooled in about 40 minutes semi-cooling as a part corresponding to the part where the cooling rate becomes slow. Thereafter, it was tempered at various temperatures and tempered to a hardness of 46HRC.

上記のようにして作製した表1の本発明鋼、比較鋼、参考鋼および従来鋼から、鍛造後の鋼材の幅方向に試験片の長手方向、鋼材の長手方向に試験片のノッチ方向がくるように(すなわちT方向から採取)して作製した2mmUノッチシャルピー衝撃試験片を用いて、室温でシャルピー衝撃試験した結果を表2に示す。   From the steel of the present invention, the comparative steel, the reference steel and the conventional steel produced as described above, the longitudinal direction of the test piece comes in the width direction of the steel material after forging, and the notch direction of the test piece comes in the longitudinal direction of the steel material. Table 2 shows the results of a Charpy impact test at room temperature using a 2 mm U-notch Charpy impact test piece prepared as described above (that is, taken from the T direction).

Figure 2009221594
Figure 2009221594

表2の結果より、焼入れ時に急冷を行えば、本発明の組成外である従来鋼20であってもマルテンサイトを主体とした組織とできるので、T方向から採取した試験片でも比較的高い衝撃値が得られる。しかしながら、焼入れ時に冷却が半冷40分程度に遅くなった場合、従来鋼20はもとよりMo量が低いことに加えて、低めのC量とNiも無添加であるために焼入れ性がかなり劣り、衝撃値が最も低い。   From the results of Table 2, if quenching is performed at the time of quenching, even the conventional steel 20 outside the composition of the present invention can have a structure mainly composed of martensite, so even a test piece taken from the T direction has a relatively high impact. A value is obtained. However, when cooling is slowed down to about 40 minutes during quenching, in addition to the conventional steel 20 not only having a low Mo amount, but also a low C amount and Ni are not added, the hardenability is considerably inferior, The impact value is the lowest.

これに対して、本発明鋼1は、特願2007−222220で提案した参考鋼10に比してはSi量が多いために、ベイナイトの中でも針状ベイナイト組織が発達した傾向にあるが、冷却速度が遅くなっても、従来鋼20に比して、その十分な靭性を維持している。そして、本発明鋼1に同様、針状ベイナイト組織が発達した傾向にある比較鋼30は、本発明のSi量を満たしてはいるものの、Mo量が低いことから、本発明鋼1に比較して焼入れ性に劣り、半冷40分のときの衝撃値が低い。   In contrast, the steel 1 of the present invention has a larger amount of Si than the reference steel 10 proposed in Japanese Patent Application No. 2007-222220, and thus a needle-like bainite structure tends to develop among bainite. Even if the speed is low, the sufficient toughness is maintained as compared with the conventional steel 20. And the comparative steel 30 which has the tendency which the acicular bainite structure developed like this invention steel 1 has satisfy | filled the amount of Si of this invention, but since the amount of Mo is low, compared with this invention steel 1. It is inferior in hardenability and has a low impact value when semi-cooled for 40 minutes.

表3に本発明鋼の化学成分を示す。   Table 3 shows the chemical composition of the steel of the present invention.

Figure 2009221594
Figure 2009221594

これらの本発明鋼は、次の手順で作製した。まず、真空誘導溶解炉にて10kgずつ溶製した鋼塊に、1250℃で5時間の均質化熱処理を施した後、1150℃で熱間鍛造することによって35mm厚さ×60mm幅の鋼材を作製した。その後、870℃で焼なまし処理したのち、1030℃で焼入れ処理した。焼入れは加圧ガス冷却にて行い、上記の定義による半冷時間にて、半冷3分程度および40分程度で冷却した。その後、種々の温度で焼戻し処理して、46HRCの硬さに調質した。   These inventive steels were produced by the following procedure. First, a steel ingot of 10 kg in a vacuum induction melting furnace is subjected to homogenization heat treatment at 1250 ° C. for 5 hours, and then hot forged at 1150 ° C. to produce a steel material having a thickness of 35 mm × 60 mm. did. Then, after annealing at 870 ° C., quenching was performed at 1030 ° C. Quenching was performed by pressurized gas cooling, and cooling was performed for about 3 minutes and 40 minutes for semi-cooling in the semi-cooling time defined above. Thereafter, it was tempered at various temperatures and tempered to a hardness of 46HRC.

上記のようにして作製した表3の本発明鋼の、上記の要領によるT方向から採取して作製した2mmUノッチシャルピー衝撃試験片を用いて、室温でシャルピー衝撃試験した結果を表4に示す。   Table 4 shows the results of a Charpy impact test at room temperature using a 2 mm U-notch Charpy impact test piece prepared from the T-direction of the steel of the present invention shown in Table 3 prepared as described above.

Figure 2009221594
Figure 2009221594

表4の結果より、本発明鋼2、3、4、5は、そのSi量の増加によって、ベイナイトの中でも針状ベイナイト組織が発達した傾向にあるが、冷却速度が遅くなっても十分な靭性を維持している。   From the results of Table 4, steels 2, 3, 4 and 5 of the present invention tend to have a needle-like bainite structure developed in bainite due to an increase in the amount of Si, but sufficient toughness even when the cooling rate is slow. Is maintained.

本発明を適用して熱間工具鋼の靭性を向上させることによって、プレス金型や鍛造金型、ダイカスト金型、押出工具といった多種の熱間工具への適用はもちろんのこと、さらに使用負荷が大きい金型等の熱間工具部材にも適用できる。   By applying the present invention to improve the toughness of hot work tool steel, not only can it be applied to various hot tools such as press dies, forging dies, die casting dies, and extrusion tools, but also the usage load is increased. It can also be applied to hot tool members such as large molds.

Claims (10)

質量%で、C:0.34〜0.40%、Si:0.5超〜0.8%、Mn:0.45〜0.75%、Ni:0〜0.5%未満、Cr:4.9〜5.5%、MoおよびWは単独または複合で(Mo+1/2W):2.5〜2.9%、V:0.5〜0.7%、残部Feおよび不可避的不純物からなることを特徴とする靭性に優れた熱間工具鋼。 In mass%, C: 0.34 to 0.40%, Si: more than 0.5 to 0.8%, Mn: 0.45 to 0.75%, Ni: 0 to less than 0.5%, Cr: 4.9-5.5%, Mo and W alone or in combination (Mo + 1 / 2W): 2.5-2.9%, V: 0.5-0.7%, balance Fe and unavoidable impurities Hot tool steel with excellent toughness characterized by 質量%で、C:0.35〜0.39%であることを特徴とする請求項1に記載の靭性に優れた熱間工具鋼。 The hot work tool steel excellent in toughness according to claim 1, wherein the mass% is C: 0.35 to 0.39%. 質量%で、Si:0.5超〜0.7%であることを特徴とする請求項1または2に記載の靭性に優れた熱間工具鋼。 The hot work tool steel excellent in toughness according to claim 1 or 2, wherein the mass% is Si: more than 0.5 to 0.7%. 質量%で、Mn:0.5〜0.7%であることを特徴とする請求項1ないし3のいずれかに記載の靭性に優れた熱間工具鋼。 The hot work tool steel excellent in toughness according to any one of claims 1 to 3, wherein Mn is 0.5 to 0.7% by mass. 質量%で、Ni:0.01〜0.3%であることを特徴とする請求項1ないし4のいずれかに記載の靭性に優れた熱間工具鋼。 The hot work tool steel excellent in toughness according to any one of claims 1 to 4, wherein Ni is 0.01 to 0.3% in mass%. 質量%で、Cr:5.0〜5.4%であることを特徴とする請求項1ないし5のいずれかに記載の靭性に優れた熱間工具鋼。 The hot work tool steel excellent in toughness according to any one of claims 1 to 5, wherein Cr: 5.0 to 5.4% by mass. 質量%で、MoおよびWは単独または複合で(Mo+1/2W):2.6〜2.8%であることを特徴とする請求項1ないし6のいずれかに記載の靭性に優れた熱間工具鋼。 The hot and excellent toughness according to any one of claims 1 to 6, characterized in that Mo and W are individually or in combination of (Mo + 1 / 2W): 2.6 to 2.8%. Tool steel. 質量%で、V:0.55〜0.65%であることを特徴とする請求項1ないし7のいずれかに記載の靭性に優れた熱間工具鋼。 The hot work tool steel excellent in toughness according to any one of claims 1 to 7, wherein V is 0.55 to 0.65% in mass%. 硬さが、40HRC以上であることを特徴とする請求項1ないし8のいずれかに記載の靭性に優れた熱間工具鋼。 The hot work tool steel excellent in toughness according to any one of claims 1 to 8, wherein the hardness is 40 HRC or more. 硬さが、45HRC以上であることを特徴とする請求項1ないし8のいずれかに記載の靭性に優れた熱間工具鋼。 The hot work tool steel excellent in toughness according to any one of claims 1 to 8, wherein the hardness is 45 HRC or more.
JP2008312524A 2008-02-20 2008-12-08 Hot-working tool steel having excellent toughness Pending JP2009221594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008312524A JP2009221594A (en) 2008-02-20 2008-12-08 Hot-working tool steel having excellent toughness

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008038477 2008-02-20
JP2008312524A JP2009221594A (en) 2008-02-20 2008-12-08 Hot-working tool steel having excellent toughness

Publications (1)

Publication Number Publication Date
JP2009221594A true JP2009221594A (en) 2009-10-01

Family

ID=41238662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008312524A Pending JP2009221594A (en) 2008-02-20 2008-12-08 Hot-working tool steel having excellent toughness

Country Status (1)

Country Link
JP (1) JP2009221594A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012193451A (en) * 2011-03-03 2012-10-11 Hitachi Metals Ltd Hot work tool steel having excellent toughness
JP2013032576A (en) * 2011-07-04 2013-02-14 Hitachi Metals Ltd Method for producing hot work tool steel having excellent toughness
EP3150735A4 (en) * 2014-05-28 2017-12-13 Hitachi Metals, Ltd. Hot work tool material and method for manufacturing hot work tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012193451A (en) * 2011-03-03 2012-10-11 Hitachi Metals Ltd Hot work tool steel having excellent toughness
JP2013032576A (en) * 2011-07-04 2013-02-14 Hitachi Metals Ltd Method for producing hot work tool steel having excellent toughness
EP3150735A4 (en) * 2014-05-28 2017-12-13 Hitachi Metals, Ltd. Hot work tool material and method for manufacturing hot work tool

Similar Documents

Publication Publication Date Title
JP2005206913A (en) Alloy tool steel
WO2008032816A1 (en) Hot-working tool steel having excellent stiffness and high-temperature strength and method for production thereof
JP5929963B2 (en) Hardening method of steel
JP2009013439A (en) High toughness high-speed tool steel
JP2017155306A (en) Hot tool steel having excellent high temperature strength and toughness
JP2015193867A (en) high toughness hot work tool steel
JP6177754B2 (en) Carburized steel plate and machine structural parts with excellent punchability and grain coarsening prevention properties
WO2012118053A1 (en) Hot work tool steel having excellent toughness, and process of producing same
JP4860774B1 (en) Cold work tool steel
JP4797673B2 (en) Hot forging method for non-tempered parts
JP5212774B2 (en) Hot tool steel excellent in toughness and high temperature strength and method for producing the same
JP2007308784A (en) Alloy steel
JP5029942B2 (en) Hot work tool steel with excellent toughness
JP5212772B2 (en) Hot work tool steel with excellent toughness and high temperature strength
JP5351528B2 (en) Cold mold steel and molds
JP2020026567A (en) Hot stamp die steel, hot stamp die and method for producing the same
JP2009221594A (en) Hot-working tool steel having excellent toughness
JP2000226635A (en) Hot tool steel excellent in high temperature strength and toughness
JP2005336553A (en) Hot tool steel
JP2001089826A (en) Hot working tool steel excellent in wear resistance
WO2021187484A1 (en) Steel for hot working die, die for hot working, and manufacturing method for same
JP2001158937A (en) Tool steel for hot working, method for producing same and method for producing tool for hot working
KR102550394B1 (en) Hot work tool steels and hot work tools
JP2014210941A (en) Powder high-speed tool steel excellent in high-temperature temper hardness
JP6195727B2 (en) Cast iron castings and manufacturing method thereof