WO2021187484A1 - Steel for hot working die, die for hot working, and manufacturing method for same - Google Patents

Steel for hot working die, die for hot working, and manufacturing method for same Download PDF

Info

Publication number
WO2021187484A1
WO2021187484A1 PCT/JP2021/010616 JP2021010616W WO2021187484A1 WO 2021187484 A1 WO2021187484 A1 WO 2021187484A1 JP 2021010616 W JP2021010616 W JP 2021010616W WO 2021187484 A1 WO2021187484 A1 WO 2021187484A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
hardness
steel
hot working
die
Prior art date
Application number
PCT/JP2021/010616
Other languages
French (fr)
Japanese (ja)
Inventor
修司 山中
貴之 平重
志保 福元
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to EP21772321.2A priority Critical patent/EP4123047A1/en
Priority to US17/911,411 priority patent/US20230099300A1/en
Priority to CN202180020353.6A priority patent/CN115279932B/en
Priority to KR1020227031729A priority patent/KR20220143067A/en
Publication of WO2021187484A1 publication Critical patent/WO2021187484A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/10Die sets; Pillar guides
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0257Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium

Definitions

  • the present invention relates to steel for hot working dies, hot working dies, and a method for manufacturing the same.
  • An advantage of the hot stamping method is that a molded product of an ultra-high-strength steel plate having a tensile strength of about 1.5 GPa can be obtained by quenching by die quenching in which the mold is rapidly cooled. Another advantage is that it has excellent moldability, such as almost no springback.
  • the hot stamping method has a problem of low productivity. That is, since it takes time to maintain the bottom dead center for diquenching, the productivity is lowered.
  • a mold with high thermal conductivity is required. This is because in diquenching, the heat of the steel sheet is absorbed by the mold, but the higher the thermal conductivity of the mold, the shorter the time for holding the bottom dead point and the higher the productivity.
  • hot stamping dies are required to have high hardness in order to improve wear resistance, and hot stamping die steel must have both high hardness and high thermal conductivity when made into a die. Is required.
  • Patent Document 1 and Patent Document 2 propose a composition of a mold steel having both hardness and thermal conductivity.
  • Patent Document 3 and Patent Document 4 are also useful as a material for dies used for hot pressing, die casting, hot forging, etc., and have excellent thermal conductivity and wear resistance. It is disclosed about tool steel.
  • Japanese Unexamined Patent Publication No. 2017-43814 Japanese Unexamined Patent Publication No. 2018-24931 Japanese Patent No. 5744300 JP-A-2017-53023
  • Patent Documents 1 and 2 and the hot tool steels of Patent Documents 3 and 4 are useful inventions capable of increasing hardness and thermal conductivity.
  • conventional mold steel and In the case of hot tool steel the hardness may be insufficient.
  • Patent Documents 1 to 3 indicate that a high hardness of 52 HRC or higher is stable. I can't get it.
  • the tempering temperature at which the maximum hardness of the mold steel can be obtained is generally around 575 ° C., but if the maximum hardness of the mold steel is less than 52 HRC, due to nitriding treatment or temperature rise during use, The hardness of the mold is further reduced from less than 52 HRC.
  • An object of the present invention is a die steel for hot working, which has a hardness and a thermal conductivity at a higher level than before, and can produce a die in which the hardness is maintained, and a steel for hot working. It is to provide a mold and a method for manufacturing the same.
  • the present inventor has found a component composition capable of controlling the amount of alloy, achieving high hardness and high thermal conductivity, and maintaining the achieved high hardness (that is, having a large softening resistance).
  • the steel for hot working dies of the present invention has been reached. Then, by using the above-mentioned steel for dies, a mold for hot working, which can achieve high hardness and high thermal conductivity and has excellent softening resistance, and a manufacturing method thereof have been found.
  • one aspect of the present invention is, in terms of mass%, C: 0.45 to 0.65%, Si: 0.1 to 0.6%, Mn: 0.1 to 2.5%, Cr: 1. 0 to 6.0%, Mo and W alone or in combination (Mo + 1 / 2W): 1.2 to 3.5%, V: 0.1 to 0.5%, Ni: 0.15 to 0.6 %, Cu: 0.1 to 0.6%, Al: 0.1 to 0.6% or less, and a steel for hot working molds having a component composition of the balance Fe and unavoidable impurities.
  • the hardness is 52 HRC or higher.
  • Another aspect of the present invention is, in mass%, C: 0.45 to 0.65%, Si: 0.1 to 0.6%, Mn: 0.1 to 2.5%, Cr: 1. 0 to 6.0%, Mo and W alone or in combination (Mo + 1 / 2W): 1.2 to 3.5%, V: 0.1 to 0.5%, Ni: 0.15 to 0.6 %, Cu: 0.1 to 0.6%, Al: 0.1 to 0.6% or less, and a hot working mold having a component composition of the balance Fe and unavoidable impurities.
  • the hardness is 52 HRC or more and the thermal conductivity is 25 W / (m ⁇ K) or more.
  • the working surface has a nitride layer.
  • Another aspect of the present invention is for hot working, wherein the above-mentioned steel for a hot working die is hardened and tempered at a quenching temperature of 1020 to 1080 ° C. and a tempering temperature of 540 to 620 ° C.
  • This is a mold manufacturing method.
  • the working surface is further subjected to nitriding treatment.
  • the optimum mold steel for hot working can be obtained. Further, by using this die steel, it is possible to provide a die for hot working, which has both high hardness and high thermal conductivity and maintains the high hardness, and a method for manufacturing the same.
  • FIG. 5 is a graph showing the thermal conductivity of the mold steels of the examples of the present invention and the comparative examples after being hardened and tempered to a hardness of 45 to 52 HRC.
  • the feature of the present invention is that the hot working die is manufactured by quenching and tempering the die steel, or by performing nitriding treatment on the working surface thereof. It has been found that there is an optimum composition of steel for dies to simultaneously achieve high hardness and high thermal conductivity of dies for quenching. In particular, it has been found that there is an optimum component for simultaneously achieving a high hardness of 52 HRC or higher and a high thermal conductivity of 25 W / (m ⁇ K) or higher. Further, in the composition of the optimum die steel, the optimum quenching and tempering conditions for achieving high hardness and high thermal conductivity at the same time have been identified. In particular, by setting the tempering temperature in the temperature range of 540 to 620 ° C.
  • the mold steel of the present invention having the optimum composition can achieve a high hardness of 52 HRC or more.
  • the mold is difficult to soften (the degree of softening is small) even in a temperature rising environment during treatment or use.
  • the hot working die of the present invention can be applied to, for example, a hot forging die, a die casting die, a hot extrusion die, and a hot stamping die, and particularly for a hot stamping die. It is preferable to apply.
  • a hot forging die a die casting die, a hot extrusion die, and a hot stamping die, and particularly for a hot stamping die. It is preferable to apply.
  • the steel for hot working dies of the present invention has a mass% (hereinafter, simply referred to as "%"), C: 0.45 to 0.65%, Si: 0.1 to 0.6%. , Mn: 0.1 to 2.5%, Cr: 1.0 to 6.0%, Mo and W alone or in combination (Mo + 1 / 2W): 1.2 to 3.5%, V: 0. 1 to 0.5%, Ni: 0.15 to 0.6%, Cu: 0.1 to 0.6%, Al: 0.1 to 0.6%, balance Fe and unavoidable impurity composition Have.
  • C is an element that is solid-solved in the substrate (matrix) by quenching to improve the hardness of the mold. Further, it is an element that improves the hardness of the mold by forming carbides with carbide-forming elements such as Cr, Mo, and V, which will be described later.
  • C is set to 0.45 to 0.65%. It is preferably 0.47% or more. More preferably, it is 0.49% or more. Further, it is preferably 0.63% or less. More preferably, it is 0.60% or less. More preferably, it is 0.58% or less.
  • Si 0.1-0.6%
  • Si is used as a deoxidizer in the melting process. It is an element that dissolves in the substrate to improve the hardness of the mold. However, if the amount of Si is too large, the segregation tendency in the steel becomes stronger after melting, and the solidified structure becomes coarse, which leads to a decrease in the toughness of the mold. It is an element that significantly lowers the thermal conductivity of the mold after quenching and tempering. Therefore, Si is set to 0.1 to 0.6%. It is preferably 0.14% or more. More preferably, it is 0.17% or more. Further, it is preferably 0.45% or less, and more preferably 0.4% or less. More preferably, it is 0.35% or less. Even more preferably, it is 0.3% or less.
  • Mn is used as a deoxidizing agent or a desulfurizing agent in the melting process. It is an element that contributes to strengthening the substrate and improving hardenability and toughness after quenching and tempering. However, if the amount of Mn is too large, the thermal conductivity of the mold is significantly lowered. Therefore, Mn is set to 0.1 to 2.5%. It is preferably 0.15% or more. Further, it is preferably 1.0% or less. More preferably, it is 0.35% or less. More preferably, it is 0.32% or less. Even more preferably, it is 0.3% or less.
  • Cr is an element that dissolves in the substrate to increase its hardness. It is also an element that increases hardness by forming carbides, and like Mo and V described later, it is an element that contributes to secondary curing during tempering.
  • Cr is an element that can increase the tempering softening resistance as compared with Mo and V (even if the tempering temperature is raised, the rate of decrease in hardness obtained by secondary curing can be reduced). be.
  • the mold is adjusted to the working hardness by quenching and tempering the mold steel, but in order to increase the thermal conductivity of the hot working mold, it is effective to raise the tempering temperature. Is.
  • the Cr content by setting the Cr content to 1.0% or more, a hardness of 52 HRC or more can be achieved even when the tempering temperature is high, and the thermal conductivity is 25 W / (m ⁇ K).
  • the above hot working dies can be obtained. Then, while maintaining the above hardness, it is also possible to obtain a hot working die in which the thermal conductivity is further improved to 28 W / (m ⁇ K) or more.
  • the above hardness and thermal conductivity are values measured at room temperature (normal temperature).
  • the nitriding characteristics of the mold steel can be improved. Therefore, for example, the working surface of the mold after quenching and tempering can be further nitrided to soften resistance. It is possible to improve the abrasion resistance (hardness of the work surface) of the mold while maintaining the hardness of the mold by improving the above.
  • Cr is set to 1.0 to 6.0%. It is preferably 1.5% or more. More preferably, it is 2.0% or more. Further, it is preferably 5.5% or less, more preferably 4.8% or less, still more preferably less than 4.5%. Then, when it is particularly important to improve the thermal conductivity, Cr can be set to 4.0% or less or 3.5% or less.
  • Mo and W are elements that dissolve in the substrate to increase hardness, and also elements that increase hardness by forming carbides, which contribute to secondary hardening during tempering. It is an element. It is also an element that improves hardenability. Since W has an atomic weight about twice that of Mo, it can be specified by (Mo + 1 / 2W) (of course, only one of them may be added, or both may be added). However, if the content of Mo or W is too large, the amount of alloy in the mold steel will increase, and the thermal conductivity of the mold will decrease.
  • Mo and W are 1.2 to 3.5% in the relational expression of the Mo equivalent of (Mo + 1 / 2W). It is preferably 1.5% or more. More preferably, it is 1.7% or more. More preferably, it is 1.9% or more. Further, it is preferably 3.4% or less. More preferably, it is 3.2% or less. In the case of the present invention, since W is an expensive element, all of W can be replaced with Mo. At this time, Mo: 1.2 to 3.5% (the same applies to the preferable range). However, W may be contained as an impurity.
  • V is an element that increases hardness by forming carbides, and is an element that contributes to secondary curing during tempering.
  • V is 0.1 to 0. Limiting to 5.5% is important to achieve both high thermal conductivity and high hardness properties. It is preferably 0.2% or more. Further, it is preferably 0.45% or less, and more preferably 0.4% or less.
  • Ni is an element that contributes to improving the toughness of the mold. Further, in the present embodiment, the strength characteristics of the mold steel can be improved by combining with Al to form and precipitate a Ni—Al intermetallic compound and secondary curing. However, if the amount of Ni is too large, the thermal conductivity may be significantly lowered due to the increase in the alloy amount of the mold steel, so the Ni is set to 0.15 to 0.6%. Preferably, it is 0.2% or more. Further, it is preferably 0.5% or less, and more preferably 0.45% or less.
  • Cu is an element that can improve the strength characteristics of mold steel by combining with Al to form and precipitate intermetallic compounds and secondary hardening.
  • Cu is set to 0.1 to 0.6%. It is preferably 0.2% or more. Further, it is preferably 0.5% or less, and more preferably 0.45% or less.
  • Al combines with Ni and Cu to form an intermetallic compound. If the Al content is too low, the intermetallic compound is not sufficiently formed and the strength improving effect cannot be obtained. On the other hand, if the Al content is too high, the thermal conductivity of the mold may be significantly reduced. There is. Therefore, Al is set to 0.1 to 0.6%. It is preferably 0.2% or more. Also. It is preferably 0.5% or less, and more preferably 0.4% or less.
  • Ni / Al is preferably 1.0 to 2.0 in order to form and precipitate the intermetallic compound in just proportion.
  • the more preferable upper limit of Ni / Al is 1.7, and the more preferable upper limit is 1.5.
  • it is preferable that Cu / Al is 1.0 to 2.0 in order to form and precipitate the intermetallic compound without excess or deficiency.
  • the more preferable upper limit of Cu / Al is 1.7, and the more preferable upper limit is 1.5.
  • the thermal conductivity of the mold decreases as the amount of alloy in the mold steel increases, it is preferable that the balance other than the above elemental species is substantially Fe. ..
  • elemental species not specified here for example, elemental species such as P, S, Ca, Mg, O (oxygen), N (nitrogen)
  • P is preferably regulated to 0.05% or less.
  • S is preferably regulated to 0.03% or less. If the amount of S is too large, the hot workability deteriorates when the steel ingot is agglomerated. Therefore, S is preferably regulated to 0.01% or less. More preferably, it is regulated to 0.008% or less.
  • the hardness of the hot working die of the present invention is a value measured at room temperature (normal temperature), and can achieve a sufficient hardness such as 52 HRC or more, which imparts excellent wear resistance to the die. be able to. Then, by adjusting the tempering temperature, the hardness of the mold can be preferably 53 HRC or more. In the present invention, it is not necessary to specify the upper limit of the hardness of the mold.
  • the mold of the present embodiment has a thermal conductivity of 25 W / (m ⁇ K) when the hardness of the mold is adjusted to 52 HRC by quenching and tempering the mold steel having the above-mentioned composition. That is all.
  • This thermal conductivity is a value measured at room temperature (normal temperature). It is preferably 28 W / (m ⁇ K) or more.
  • the mold of the present invention having the above-mentioned thermal conductivity can further increase the thermal conductivity by making the hardness less than 52 HRC when it is desired to increase the thermal conductivity. It is also possible to adjust the hardness of the mold to more than 52 HRC while having sufficient thermal conductivity.
  • the thermal conductivity is preferably 30 W / (m ⁇ K) or more, and 32 W / (m ⁇ K) or more. More preferably, it is 34 W / (m ⁇ K) or more.
  • the thermal conductivity is preferably 25 W / (m ⁇ K) or more, and more preferably 27 W / (m ⁇ K) or more.
  • Such a mold can be achieved by a mold steel having a heat treatment property showing a hardness of 52 HRC or more when tempered at 575 ° C.
  • the quenching temperature before tempering can be, for example, 1030 ° C.
  • the mold steel of the present invention has the above heat treatment characteristics. As a result, high hardness can be maintained and high thermal conductivity can be maintained in the mold used in, for example, the hot stamping method (for example, 100 to 400 ° C.).
  • the upper limit of the thermal conductivity of the mold it is not necessary to specify the upper limit of the thermal conductivity of the mold.
  • the hardness of the mold decreases as the tempering temperature is raised (for example, adjusted to a temperature exceeding 600 ° C.)
  • it is about 50 W / (m ⁇ K). Is realistic. It is preferably 47 W / (m ⁇ K) or less. More preferably, it is 45 W / (m ⁇ K) or less.
  • the upper limit of the thermal conductivity is about 40 W / (m ⁇ K). It is preferably 38 W / (m ⁇ K) or less.
  • the hot working die of the present invention preferably has a nitride layer on its working surface.
  • the hot working die of the present invention has both high hardness and high thermal conductivity. Then, when the working surface of the mold further has a nitrided layer, the wear resistance (hardness of the working surface) of the mold can be further improved. Further, due to the quenching and tempering characteristics of the mold steel of the present invention, it is possible to suppress a decrease in hardness of the mold body during the nitriding treatment.
  • the working surface is the surface of the mold that comes into contact with the work material being hot-worked.
  • the method for producing a hot working die of the present invention is to quench and temper the above-mentioned die steel.
  • the quenching temperature varies depending on the target hardness and the like, but can be, for example, approximately 1020 to 1080 ° C. It is preferably 1050 ° C. or lower.
  • the mold steel hardened at this quenching temperature is tempered at a tempering temperature of, for example, 540 to 620 ° C., thereby stably achieving a hardness of 52 HRC or more and a thermal conductivity of 25 W.
  • a mold of / (m ⁇ K) or more can be obtained.
  • the upper limit of the tempering temperature is preferably about 600 ° C. More preferably, it is 595 ° C. or lower. More preferably, it is 590 ° C. or lower.
  • the lower limit of the tempering temperature is preferably about 550 ° C. More preferably, it is 555 ° C. or higher. More preferably, it is 560 ° C. or higher.
  • the mold steel of the present invention that satisfies the heat treatment characteristics criteria is 540 to Hardness of 45 HRC or higher can be maintained even in a wide tempering temperature range of 620 ° C.
  • the peak hardness is higher than 52 HRC, for example, 53 HRC or higher, 54 HRC or higher, 55 HRC or higher, the hardness of 52 HRC or higher can be maintained in a wide tempering temperature range.
  • a thermal conductivity of 25 W / (m ⁇ K) or more can be obtained in this wide tempering temperature range, and the thermal conductivity can be improved particularly at a tempering temperature of 575 ° C. or higher.
  • the mold steel of the present invention is prepared into a hot working mold having a predetermined hardness by quenching and tempering. During this period, the mold steel is adjusted to the shape of the hot working mold by various machining such as cutting and drilling. The timing of this machining can be performed in a state where the hardness before quenching and tempering is low (that is, in an annealed state). Then, in this case, finishing processing may be performed after quenching and tempering. In some cases, the above machining may be performed in the pre-hardened state after quenching and tempering in combination with the above finishing process.
  • the working surface of the die after the above quenching and tempering is further subjected to nitriding treatment.
  • nitriding treatment for example, gold having a thermal conductivity of 25 W / (m ⁇ K) when the hardness is adjusted to 52 HRC. You can get the mold. Since the mold steel having the above-mentioned composition is also excellent in nitriding characteristics, the working surface of the mold after this quenching and tempering is further subjected to nitriding treatment to form the mold. Abrasion resistance (hardness of work surface) can be improved.
  • nitriding treatments such as gas nitriding treatment and salt bath nitriding treatment can be applied to the conditions of the nitriding treatment.
  • a 10 kg steel ingot having the component composition shown in Table 1 was melted. Then, the ingot was heated to 1160 ° C., forged by a hammer, and then allowed to cool, and the steel material after the cooling was allowed to be annealed at 870 ° C. to obtain No. 1 of the present invention. Steels 1 to 6 and No. 1 which is a comparative example. 7-9 steels were made.
  • No. which is an example of the present invention. 1 to 7 achieved a tempering hardness of 52 HRC or more within the range of the tempering temperature of 550 to 600 ° C. On the other hand, No. In each of 7 to 9, the tempering hardness was lower than 52HRC in the tempering temperature range of 500 to 650 ° C.
  • No. 1 which is an example of the present invention. It was confirmed that 1 to 6 achieved a thermal conductivity of 25 W / (m ⁇ K) or more.
  • No. The thermal conductivity of 7 to 9 is the same as that of the present invention, but the peak hardness does not reach 52 HRC in the first place. For this reason, in the case of mold steel as in the comparative example, the hardness is further reduced when the thermal conductivity is to be adjusted (specifically, when the tempering temperature is increased in order to increase the thermal conductivity). Therefore, it is not possible to handle molds with various required characteristics.
  • the mold steel of the present invention example has excellent temper softening resistance in addition to sufficient peak hardness. Therefore, the mold steel of the present invention example has higher thermal conductivity and high hardness characteristics. It was confirmed that it has advantageous characteristics for use in die processing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heat Treatment Of Articles (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Abstract

Provided are: a steel that is for a die and that enables production of a die being for hot working and having both high hardness and high thermal conductivity; a die for hot working; and a manufacturing method for the same. The steel for a hot working die has a compositional makeup containing, in mass%, 0.45-0.65% of C, 0.1-0.6% of Si, 0.1-2.5% of Mn, 1.0-6.0% of Cr, 1.2-3.5% of (Mo+1/2W) where Mo and W are contained independently or in combination, 0.1-0.5% of V, 0.15-0.6% of Ni, 0.1-0.6% of Cu, and 0.1-0.6% of Al, the balance being Fe and inevitable impurities. Further, this die for hot working has said compositional makeup, and this manufacturing method is for manufacturing said die for hot working.

Description

熱間加工用金型用鋼、熱間加工用金型およびその製造方法Steel for hot working dies, hot working dies and their manufacturing methods
 本発明は、熱間加工用金型用鋼、熱間加工用金型およびその製造方法に関するものである。 The present invention relates to steel for hot working dies, hot working dies, and a method for manufacturing the same.
 近年、自動車の軽量化と衝突安全性向上を目的に、引張強さが1GPaを超える超高張力鋼板のニーズが高まっている。しかし、引張強さが1.2GPa以上の鋼板を冷間プレスで成形しようとすると、成形荷重やスプリングバックの増大、成形性などの問題が発生する。そこで、最近ではホットスタンプ(ホットプレス、もしくはホットスタンピングとも称する)工法が注目されている。ホットスタンプ工法では、鋼板をオーステナイト温度以上に加熱後、プレス成形し、金型を下死点で保持し急冷して焼入れする。 In recent years, there has been an increasing need for ultra-high-strength steel sheets with a tensile strength of over 1 GPa for the purpose of reducing the weight of automobiles and improving collision safety. However, when an attempt is made to form a steel sheet having a tensile strength of 1.2 GPa or more by a cold press, problems such as an increase in forming load and springback, and formability occur. Therefore, recently, the hot stamping (also called hot stamping or hot stamping) method has attracted attention. In the hot stamping method, the steel sheet is heated to an austenite temperature or higher, press-formed, the mold is held at bottom dead center, and the steel sheet is rapidly cooled and quenched.
 ホットスタンプ工法の利点として、金型で急冷するダイクエンチングによる焼入れによって、1.5GPa程度の引張強さを持つ超高張力鋼板の成形品が得られることが挙げられる。また、スプリングバックがほとんど生じないなど成形性が優れているという利点も挙げられる。
 しかし、ホットスタンプ工法は生産性が低いという問題がある。つまり、ダイクエンチングのための下死点保持などに時間が必要となるため、生産性が低くなる。その対策として、高熱伝導率の金型が求められている。これは、ダイクエンチングでは鋼板の熱を金型に吸収させているが、金型の熱伝導率が高いほど、下死点保持の時間が短縮されて生産性が高くなるからである。また、ホットスタンプ用金型では、耐摩耗性を高めるために高硬度が求められており、ホットスタンプ用金型用鋼では、金型にしたときに高硬度と高熱伝導率とを合わせ持つことが要求される。
An advantage of the hot stamping method is that a molded product of an ultra-high-strength steel plate having a tensile strength of about 1.5 GPa can be obtained by quenching by die quenching in which the mold is rapidly cooled. Another advantage is that it has excellent moldability, such as almost no springback.
However, the hot stamping method has a problem of low productivity. That is, since it takes time to maintain the bottom dead center for diquenching, the productivity is lowered. As a countermeasure, a mold with high thermal conductivity is required. This is because in diquenching, the heat of the steel sheet is absorbed by the mold, but the higher the thermal conductivity of the mold, the shorter the time for holding the bottom dead point and the higher the productivity. In addition, hot stamping dies are required to have high hardness in order to improve wear resistance, and hot stamping die steel must have both high hardness and high thermal conductivity when made into a die. Is required.
 熱間鍛造やダイカストの分野においても、金型の長寿命化やさらなる製造効率の向上を達成するために、上述したような高熱伝導率と高硬度を合わせ持つ金型用鋼が要求される傾向にある。一般に、高硬度の金型を得るには金型用鋼の合金量を増やす必要があるが、合金量が多くなると金型の熱伝導率が下がるという問題があり、硬度と熱伝導率とはトレードオフの関係にある。そこで、合金量を制御することで最適な成分組成が検討されている。例えば、特許文献1および特許文献2では、硬さと熱伝導率を合わせもつ金型用鋼の成分組成が提案されている。また特許文献3および特許文献4にも、温熱間プレス、ダイカスト、又は温熱間鍛造等に使用される金型の素材として有用であり、熱伝導率が優れており耐摩耗性にも優れる熱間工具鋼について開示されている。 Also in the fields of hot forging and die casting, there is a tendency that die steel having both high thermal conductivity and high hardness as described above is required in order to achieve a longer die life and further improvement in manufacturing efficiency. It is in. Generally, in order to obtain a mold with high hardness, it is necessary to increase the alloy amount of the mold steel, but there is a problem that the thermal conductivity of the mold decreases as the alloy amount increases, so what is the hardness and thermal conductivity? There is a trade-off relationship. Therefore, the optimum composition of components is being investigated by controlling the amount of alloy. For example, Patent Document 1 and Patent Document 2 propose a composition of a mold steel having both hardness and thermal conductivity. Further, Patent Document 3 and Patent Document 4 are also useful as a material for dies used for hot pressing, die casting, hot forging, etc., and have excellent thermal conductivity and wear resistance. It is disclosed about tool steel.
特開2017-43814号公報Japanese Unexamined Patent Publication No. 2017-43814 特開2018-24931号公報Japanese Unexamined Patent Publication No. 2018-24931 特許第5744300号公報Japanese Patent No. 5744300 特開2017-53023号公報JP-A-2017-53023
 特許文献1、2の金型用鋼、および特許文献3、4の熱間工具鋼は、硬度と熱伝導率を高めることができる有用な発明である。しかし、金型用鋼や熱間工具鋼の焼入れ焼戻し特性や、ホットスタンプ用等の金型の作業面が窒化処理されて使用されること等を考えたときに、従来の金型用鋼や熱間工具鋼の場合、硬度が不足する場合があった。具体的には、最近ではホットスタンプ用等の金型として52HRC以上の高硬度化も達成できる金型用鋼が求められてきているが、特許文献1~3では52HRC以上の高硬度は安定的に得られない。また、金型用鋼の最高硬度が得られる焼戻し温度が、一般的に575℃付近にあるところ、金型用鋼の最高硬度が52HRCに満たないと、窒化処理や使用時の昇温によって、金型の硬度が52HRC未満から更に低下する。
 本発明の目的は、硬度と熱伝導率とを従来よりも高い水準で合わせ持ち、その硬度が維持される金型を作製することができる熱間加工用金型用鋼と、熱間加工用金型、およびその製造方法を提供することである。
The mold steels of Patent Documents 1 and 2 and the hot tool steels of Patent Documents 3 and 4 are useful inventions capable of increasing hardness and thermal conductivity. However, considering the quenching and tempering characteristics of mold steel and hot tool steel, and the fact that the work surface of the mold for hot stamping, etc. is nitrided and used, conventional mold steel and In the case of hot tool steel, the hardness may be insufficient. Specifically, recently, there has been a demand for mold steel capable of achieving a hardness of 52 HRC or higher as a mold for hot stamping, etc., but Patent Documents 1 to 3 indicate that a high hardness of 52 HRC or higher is stable. I can't get it. Further, the tempering temperature at which the maximum hardness of the mold steel can be obtained is generally around 575 ° C., but if the maximum hardness of the mold steel is less than 52 HRC, due to nitriding treatment or temperature rise during use, The hardness of the mold is further reduced from less than 52 HRC.
An object of the present invention is a die steel for hot working, which has a hardness and a thermal conductivity at a higher level than before, and can produce a die in which the hardness is maintained, and a steel for hot working. It is to provide a mold and a method for manufacturing the same.
 かかる実状に鑑み、本発明者は、合金量を制御し、高硬度および高熱伝導率を達成できて、かつ、その達成した高硬度を維持できる(つまり、軟化抵抗が大きい)成分組成を見出し、本発明の熱間加工用金型用鋼に到達した。そして、上記の金型用鋼を用いることで、高硬度および高熱伝導率を達成できて、軟化抵抗にも優れる熱間加工用金型と、その製造方法を見いだした。 In view of such circumstances, the present inventor has found a component composition capable of controlling the amount of alloy, achieving high hardness and high thermal conductivity, and maintaining the achieved high hardness (that is, having a large softening resistance). The steel for hot working dies of the present invention has been reached. Then, by using the above-mentioned steel for dies, a mold for hot working, which can achieve high hardness and high thermal conductivity and has excellent softening resistance, and a manufacturing method thereof have been found.
 すなわち、本発明の一態様は、質量%で、C:0.45~0.65%、Si:0.1~0.6%、Mn:0.1~2.5%、Cr:1.0~6.0%、MoおよびWは単独または複合で(Mo+1/2W):1.2~3.5%、V:0.1~0.5%、Ni:0.15~0.6%、Cu:0.1~0.6%、Al:0.1~0.6%以下、残部Feおよび不可避的不純物の成分組成を有することを特徴とする熱間加工用金型用鋼である。
 好ましくは、575℃で焼戻したとき、硬さが52HRC以上である。
That is, one aspect of the present invention is, in terms of mass%, C: 0.45 to 0.65%, Si: 0.1 to 0.6%, Mn: 0.1 to 2.5%, Cr: 1. 0 to 6.0%, Mo and W alone or in combination (Mo + 1 / 2W): 1.2 to 3.5%, V: 0.1 to 0.5%, Ni: 0.15 to 0.6 %, Cu: 0.1 to 0.6%, Al: 0.1 to 0.6% or less, and a steel for hot working molds having a component composition of the balance Fe and unavoidable impurities. be.
Preferably, when tempered at 575 ° C, the hardness is 52 HRC or higher.
 本発明の他の一態様は、質量%で、C:0.45~0.65%、Si:0.1~0.6%、Mn:0.1~2.5%、Cr:1.0~6.0%、MoおよびWは単独または複合で(Mo+1/2W):1.2~3.5%、V:0.1~0.5%、Ni:0.15~0.6%、Cu:0.1~0.6%、Al:0.1~0.6%以下、残部Feおよび不可避的不純物の成分組成を有することを特徴とする熱間加工用金型である。
 好ましくは、硬さが52HRC以上であり、熱伝導率が25W/(m・K)以上である。好ましくは、作業面に窒化層を有する。
Another aspect of the present invention is, in mass%, C: 0.45 to 0.65%, Si: 0.1 to 0.6%, Mn: 0.1 to 2.5%, Cr: 1. 0 to 6.0%, Mo and W alone or in combination (Mo + 1 / 2W): 1.2 to 3.5%, V: 0.1 to 0.5%, Ni: 0.15 to 0.6 %, Cu: 0.1 to 0.6%, Al: 0.1 to 0.6% or less, and a hot working mold having a component composition of the balance Fe and unavoidable impurities.
Preferably, the hardness is 52 HRC or more and the thermal conductivity is 25 W / (m · K) or more. Preferably, the working surface has a nitride layer.
 本発明の他の一態様は、上記の熱間加工用金型用鋼に、1020~1080℃の焼入れ温度および540~620℃の焼戻し温度による焼入れ焼戻しを行うことを特徴とする熱間加工用金型の製造方法である。
 好ましくは、前記焼入れ焼戻しを行った後に、さらに、作業面に窒化処理を行うことを特徴とする。
Another aspect of the present invention is for hot working, wherein the above-mentioned steel for a hot working die is hardened and tempered at a quenching temperature of 1020 to 1080 ° C. and a tempering temperature of 540 to 620 ° C. This is a mold manufacturing method.
Preferably, after the quenching and tempering, the working surface is further subjected to nitriding treatment.
 本発明によれば、熱間加工用に最適な金型用鋼が得られる。また、この金型用鋼を用いることで、高硬度と高熱伝導率とを併せ持ち、その高硬度が維持される熱間加工用金型と、その製造方法を提供できる。 According to the present invention, the optimum mold steel for hot working can be obtained. Further, by using this die steel, it is possible to provide a die for hot working, which has both high hardness and high thermal conductivity and maintains the high hardness, and a method for manufacturing the same.
本発明例および比較例の金型用鋼を焼入れ後、500~650℃で焼戻して、その焼戻し温度毎の硬度を示すグラフ図である。It is a graph which shows the hardness for each tempering temperature by tempering the mold steel of this invention example and comparative example at 500 to 650 ° C. after quenching. 本発明例および比較例の金型用鋼を焼入れ後、45~52HRCの硬さに焼戻して、その熱伝導率を示すグラフ図である。FIG. 5 is a graph showing the thermal conductivity of the mold steels of the examples of the present invention and the comparative examples after being hardened and tempered to a hardness of 45 to 52 HRC.
 本発明の特徴は、熱間加工用金型が、金型用鋼に焼入れ焼戻しを行って作製されることや、その作業面に窒化処理を行って作製されることを考えたときに、熱間加工用金型の高硬度と高熱伝導率とを同時に達成するのに最適な金型用鋼の成分組成があることをつきとめたところにある。特に52HRC以上の高硬度と、25W/(m・K)以上の高熱伝導率を同時に達成するのに最適な成分があることをつきとめたところにある。
 また、この最適な金型用鋼の成分組成において、高硬度と高熱伝導率とを同時に達成するのに最適な焼入れ焼戻し条件をつきとめたところにある。特に焼戻し温度について540~620℃の温度範囲(好ましくは575℃付近)とすることで、最適な成分組成を有する本発明の金型用鋼は52HRC以上の高硬度を達成できることから、その後の窒化処理や使用中の昇温環境でも金型が軟化し難い(軟化の程度が小さい)ところにある。
 本発明の熱間加工用金型は、例えば、熱間鍛造用金型、ダイカスト用金型、熱間押し出し金型、ホットスタンプ用金型に適用することができ、特にホットスタンプ用金型に適用することが好ましい。以下に、本発明の各構成要件について説明する。
The feature of the present invention is that the hot working die is manufactured by quenching and tempering the die steel, or by performing nitriding treatment on the working surface thereof. It has been found that there is an optimum composition of steel for dies to simultaneously achieve high hardness and high thermal conductivity of dies for quenching. In particular, it has been found that there is an optimum component for simultaneously achieving a high hardness of 52 HRC or higher and a high thermal conductivity of 25 W / (m · K) or higher.
Further, in the composition of the optimum die steel, the optimum quenching and tempering conditions for achieving high hardness and high thermal conductivity at the same time have been identified. In particular, by setting the tempering temperature in the temperature range of 540 to 620 ° C. (preferably around 575 ° C.), the mold steel of the present invention having the optimum composition can achieve a high hardness of 52 HRC or more. The mold is difficult to soften (the degree of softening is small) even in a temperature rising environment during treatment or use.
The hot working die of the present invention can be applied to, for example, a hot forging die, a die casting die, a hot extrusion die, and a hot stamping die, and particularly for a hot stamping die. It is preferable to apply. Hereinafter, each constituent requirement of the present invention will be described.
 本発明の熱間加工用金型用鋼は、質量%(以下、単に「%」と表記する。)で、C:0.45~0.65%、Si:0.1~0.6%、Mn:0.1~2.5%、Cr:1.0~6.0%、MoおよびWは単独または複合で(Mo+1/2W):1.2~3.5%、V:0.1~0.5%、Ni:0.15~0.6%、Cu:0.1~0.6%、Al:0.1~0.6%、残部Feおよび不可避的不純物の成分組成を有する。 The steel for hot working dies of the present invention has a mass% (hereinafter, simply referred to as "%"), C: 0.45 to 0.65%, Si: 0.1 to 0.6%. , Mn: 0.1 to 2.5%, Cr: 1.0 to 6.0%, Mo and W alone or in combination (Mo + 1 / 2W): 1.2 to 3.5%, V: 0. 1 to 0.5%, Ni: 0.15 to 0.6%, Cu: 0.1 to 0.6%, Al: 0.1 to 0.6%, balance Fe and unavoidable impurity composition Have.
・C:0.45~0.65%
 Cは、焼入れにより素地(マトリックス)に固溶して、金型の硬さを向上させる元素である。また、後述するCrやMo、Vなどの炭化物形成元素と炭化物を形成して、金型の硬さを向上させる元素である。しかし、C量が多すぎると、一次炭化物の粗大化などにより、金型の靭性が低下する。よって、Cは、0.45~0.65%とする。好ましくは0.47%以上である。より好ましくは0.49%以上である。また、好ましくは0.63%以下である。より好ましくは0.60%以下である。さらに好ましくは0.58%以下である。
・ C: 0.45 to 0.65%
C is an element that is solid-solved in the substrate (matrix) by quenching to improve the hardness of the mold. Further, it is an element that improves the hardness of the mold by forming carbides with carbide-forming elements such as Cr, Mo, and V, which will be described later. However, if the amount of C is too large, the toughness of the mold is lowered due to the coarsening of the primary carbide and the like. Therefore, C is set to 0.45 to 0.65%. It is preferably 0.47% or more. More preferably, it is 0.49% or more. Further, it is preferably 0.63% or less. More preferably, it is 0.60% or less. More preferably, it is 0.58% or less.
・Si:0.1~0.6%
 Siは、溶製工程で脱酸剤として使用される。そして、素地に固溶して金型の硬さを向上させる元素である。しかし、Siが多すぎると、溶製後において鋼中の偏析傾向が強まり、また凝固組織も粗大になって、金型の靭性低下につながる。そして、焼入れ焼戻し後の金型の熱伝導率を著しく下げる元素である。よって、Siは、0.1~0.6%とする。好ましくは0.14%以上である。より好ましくは0.17%以上である。また、好ましくは0.45%以下であり、より好ましくは0.4%以下である。さらに好ましくは0.35%以下である。よりさらに好ましくは0.3%以下である。
・ Si: 0.1-0.6%
Si is used as a deoxidizer in the melting process. It is an element that dissolves in the substrate to improve the hardness of the mold. However, if the amount of Si is too large, the segregation tendency in the steel becomes stronger after melting, and the solidified structure becomes coarse, which leads to a decrease in the toughness of the mold. It is an element that significantly lowers the thermal conductivity of the mold after quenching and tempering. Therefore, Si is set to 0.1 to 0.6%. It is preferably 0.14% or more. More preferably, it is 0.17% or more. Further, it is preferably 0.45% or less, and more preferably 0.4% or less. More preferably, it is 0.35% or less. Even more preferably, it is 0.3% or less.
・Mn:0.1~2.5%
 Mnは、溶製工程で脱酸剤や脱硫剤として使用される。そして、素地の強化や、焼入れ性、焼入れ焼戻し後の靭性の向上に寄与する元素である。しかし、Mnが多すぎると、金型の熱伝導率が著しく低下する。よって、Mnは、0.1~2.5%とする。好ましくは0.15%以上である。また、好ましくは1.0%以下である。より好ましくは0.35%以下である。さらに好ましくは0.32%以下である。よりさらに好ましくは0.3%以下である。
-Mn: 0.1 to 2.5%
Mn is used as a deoxidizing agent or a desulfurizing agent in the melting process. It is an element that contributes to strengthening the substrate and improving hardenability and toughness after quenching and tempering. However, if the amount of Mn is too large, the thermal conductivity of the mold is significantly lowered. Therefore, Mn is set to 0.1 to 2.5%. It is preferably 0.15% or more. Further, it is preferably 1.0% or less. More preferably, it is 0.35% or less. More preferably, it is 0.32% or less. Even more preferably, it is 0.3% or less.
・Cr:1.0~6.0%
 Crは、素地に固溶して硬さを上昇させる元素である。また、炭化物を形成することでも硬さを上昇させる元素であり、後述するMo、Vと同様、焼戻し時における二次硬化に寄与する元素である。特にCrは、Mo、Vに比べて、焼戻し軟化抵抗を大きくすることができる(焼戻し温度を高くしても、二次硬化で得られた硬さの低下割合を小さくすることができる)元素である。通常、金型は、金型用鋼に焼入れ焼戻しを行って使用硬さに調整されるところ、熱間加工用金型の熱伝導率を高めるためには、焼戻し温度を高くするのが効果的である。そして、本発明においては、Crの含有量を1.0%以上とすることで、焼戻し温度が高い場合でも52HRC以上の硬さを達成できて、かつ、熱伝導率が25W/(m・K)以上の熱間加工用金型を得ることができる。そして、上記の硬さを維持した上で、熱伝導率が、さらに、28W/(m・K)以上にまで向上された熱間加工用金型を得ることもできる。なお、上記の硬度および熱伝導率は、室温(常温)で測定したときの値である。
 また、Crの含有量を高くすることで、金型用鋼の窒化特性を向上させることができるので、例えば、焼入れ焼戻し後の金型の作業面に、さらに窒化処理を行うことで、軟化抵抗の向上による金型の硬さの維持も図られた上で、金型の耐摩耗性(作業面の硬さ)を向上させることができる。
-Cr: 1.0 to 6.0%
Cr is an element that dissolves in the substrate to increase its hardness. It is also an element that increases hardness by forming carbides, and like Mo and V described later, it is an element that contributes to secondary curing during tempering. In particular, Cr is an element that can increase the tempering softening resistance as compared with Mo and V (even if the tempering temperature is raised, the rate of decrease in hardness obtained by secondary curing can be reduced). be. Normally, the mold is adjusted to the working hardness by quenching and tempering the mold steel, but in order to increase the thermal conductivity of the hot working mold, it is effective to raise the tempering temperature. Is. In the present invention, by setting the Cr content to 1.0% or more, a hardness of 52 HRC or more can be achieved even when the tempering temperature is high, and the thermal conductivity is 25 W / (m · K). ) The above hot working dies can be obtained. Then, while maintaining the above hardness, it is also possible to obtain a hot working die in which the thermal conductivity is further improved to 28 W / (m · K) or more. The above hardness and thermal conductivity are values measured at room temperature (normal temperature).
Further, by increasing the Cr content, the nitriding characteristics of the mold steel can be improved. Therefore, for example, the working surface of the mold after quenching and tempering can be further nitrided to soften resistance. It is possible to improve the abrasion resistance (hardness of the work surface) of the mold while maintaining the hardness of the mold by improving the above.
 但し、Crの含有量が多すぎると、金型用鋼の合金量が多くなるということ自体によって、金型の熱伝導率を高くするのが難しくなる。よって、Crは、1.0~6.0%とする。好ましくは1.5%以上である。より好ましくは2.0%以上である。また、好ましくは5.5%以下であり、より好ましくは4.8%以下、さらに好ましくは4.5%未満である。そして、特に熱伝導率の向上を重視したい場合、Crは、4.0%以下や、3.5以下にすることもできる。 However, if the Cr content is too high, it becomes difficult to increase the thermal conductivity of the mold due to the fact that the alloy content of the mold steel increases. Therefore, Cr is set to 1.0 to 6.0%. It is preferably 1.5% or more. More preferably, it is 2.0% or more. Further, it is preferably 5.5% or less, more preferably 4.8% or less, still more preferably less than 4.5%. Then, when it is particularly important to improve the thermal conductivity, Cr can be set to 4.0% or less or 3.5% or less.
・MoおよびWは単独または複合で(Mo+1/2W):1.2~3.5%
 MoおよびWは、Crと同様、素地に固溶して硬さを上昇させる元素であり、また、炭化物を形成することでも硬さを上昇させる元素であり、焼戻し時における二次硬化に寄与する元素である。また、焼入れ性を向上させる元素でもある。WはMoの約2倍の原子量であることから(Mo+1/2W)で規定することができる(当然、いずれか一方のみの添加としてもよいし、両方を添加することもできる)。但し、MoやWの含有量が多すぎると、金型用鋼の合金量が多くなるということ自体によって、金型の熱伝導率が低くなる。よって、MoおよびWは、(Mo+1/2W)のMo当量の関係式で、1.2~3.5%とする。好ましくは1.5%以上である。より好ましくは1.7%以上である。さらに好ましくは1.9%以上である。また、好ましくは3.4%以下である。より好ましくは3.2%以下である。
 なお、本発明の場合、Wは高価な元素であることから、Wの全てをMoに替えることができる。このとき、Mo:1.2~3.5%となる(好ましい範囲についても同じである)。但し、Wは不純物として含まれ得る。
-Mo and W alone or in combination (Mo + 1 / 2W): 1.2-3.5%
Like Cr, Mo and W are elements that dissolve in the substrate to increase hardness, and also elements that increase hardness by forming carbides, which contribute to secondary hardening during tempering. It is an element. It is also an element that improves hardenability. Since W has an atomic weight about twice that of Mo, it can be specified by (Mo + 1 / 2W) (of course, only one of them may be added, or both may be added). However, if the content of Mo or W is too large, the amount of alloy in the mold steel will increase, and the thermal conductivity of the mold will decrease. Therefore, Mo and W are 1.2 to 3.5% in the relational expression of the Mo equivalent of (Mo + 1 / 2W). It is preferably 1.5% or more. More preferably, it is 1.7% or more. More preferably, it is 1.9% or more. Further, it is preferably 3.4% or less. More preferably, it is 3.2% or less.
In the case of the present invention, since W is an expensive element, all of W can be replaced with Mo. At this time, Mo: 1.2 to 3.5% (the same applies to the preferable range). However, W may be contained as an impurity.
・V:0.1~0.5%
 Vは、Crと同様、炭化物を形成することでも硬さを上昇させる元素であり、焼戻し時における二次硬化に寄与する元素である。但し、V量が多すぎると、金型用鋼の合金量が多くなるということ自体によって、金型の熱伝導率が低くなる。特に本実施形態では後述するように金型の強度特性を向上させるためにNi、Cu、Alを添加している影響で、熱伝導率が低くなる傾向にあるため、Vを0.1~0.5%に制限することが、高熱伝導率と高硬度特性を両立させるために重要である。好ましくは0.2%以上である。また、好ましくは0.45%以下であり、より好ましくは0.4%以下である。
・ V: 0.1-0.5%
Like Cr, V is an element that increases hardness by forming carbides, and is an element that contributes to secondary curing during tempering. However, if the amount of V is too large, the amount of alloy in the mold steel increases, and the thermal conductivity of the mold becomes low. In particular, in the present embodiment, as will be described later, the thermal conductivity tends to be low due to the effect of adding Ni, Cu, and Al in order to improve the strength characteristics of the mold, so V is 0.1 to 0. Limiting to 5.5% is important to achieve both high thermal conductivity and high hardness properties. It is preferably 0.2% or more. Further, it is preferably 0.45% or less, and more preferably 0.4% or less.
・Ni:0.15~0.6%
 Niは、金型の靭性向上に寄与する元素である。また本実施形態において、Alと結合してNi-Al系金属間化合物を形成・析出し、二次硬化することで金型用鋼の強度特性を向上させることができる。但し、Ni量が多すぎると、金型用鋼の合金量増加により熱伝導率が大幅に低くなる可能性があるため、Niは0.15~0.6%とする。好ましくは、0.2%以上である。また好ましくは、0.5%以下であり、より好ましくは0.45%以下である。
・ Ni: 0.15 to 0.6%
Ni is an element that contributes to improving the toughness of the mold. Further, in the present embodiment, the strength characteristics of the mold steel can be improved by combining with Al to form and precipitate a Ni—Al intermetallic compound and secondary curing. However, if the amount of Ni is too large, the thermal conductivity may be significantly lowered due to the increase in the alloy amount of the mold steel, so the Ni is set to 0.15 to 0.6%. Preferably, it is 0.2% or more. Further, it is preferably 0.5% or less, and more preferably 0.45% or less.
・Cu:0.1~0.6%
 CuもNiと同様に、Alと結合して金属間化合物を形成・析出し、二次硬化することで金型用鋼の強度特性を向上させることができる元素である。但し、Cu量が多すぎると、Niと同様に金型用鋼の合金量が多くなるということ自体によって、金型の熱伝導率が低くなる。よって、Cuは0.1~0.6%とする。好ましくは0.2%以上である。また好ましくは、0.5%以下であり、より好ましくは0.45%以下である。
・ Cu: 0.1-0.6%
Like Ni, Cu is an element that can improve the strength characteristics of mold steel by combining with Al to form and precipitate intermetallic compounds and secondary hardening. However, if the amount of Cu is too large, the amount of alloy in the mold steel will be large as in Ni, and the thermal conductivity of the mold will be low. Therefore, Cu is set to 0.1 to 0.6%. It is preferably 0.2% or more. Further, it is preferably 0.5% or less, and more preferably 0.45% or less.
・Al:0.1~0.6%以下
 上述したようにAlは、NiやCuと結合して金属間化合物を形成する。このAlの含有量が低すぎると金属間化合物が十分に形成されないため強度向上効果が得られず、一方でAlの含有量が高すぎると、金型の熱伝導率が大幅に低下する可能性がある。そのため、Alは0.1~0.6%とする。好ましくは0.2%以上である。また。好ましくは0.5%以下であり、より好ましくは0.4%以下である。
-Al: 0.1 to 0.6% or less As described above, Al combines with Ni and Cu to form an intermetallic compound. If the Al content is too low, the intermetallic compound is not sufficiently formed and the strength improving effect cannot be obtained. On the other hand, if the Al content is too high, the thermal conductivity of the mold may be significantly reduced. There is. Therefore, Al is set to 0.1 to 0.6%. It is preferably 0.2% or more. Also. It is preferably 0.5% or less, and more preferably 0.4% or less.
 さらに本実施形態では、金属間化合物を過不足なく形成・析出させるために、Ni/Alが1.0~2.0であることが、好ましい。より好ましいNi/Alの上限は1.7であり、さらに好ましい上限は1.5である。
 または、さらに本実施形態では、金属間化合物を過不足なく形成・析出させるために、Cu/Alが1.0~2.0であることが、好ましい。より好ましいCu/Alの上限は1.7であり、さらに好ましい上限は1.5である。
Further, in the present embodiment, Ni / Al is preferably 1.0 to 2.0 in order to form and precipitate the intermetallic compound in just proportion. The more preferable upper limit of Ni / Al is 1.7, and the more preferable upper limit is 1.5.
Further, in the present embodiment, it is preferable that Cu / Al is 1.0 to 2.0 in order to form and precipitate the intermetallic compound without excess or deficiency. The more preferable upper limit of Cu / Al is 1.7, and the more preferable upper limit is 1.5.
・残部Feおよび不可避的不純物
 金型用鋼の合金量が多くなると、金型の熱伝導率が低くなることを考えれば、上記の元素種以外の残部は、実質的にFeでなることが好ましい。但し、ここに明示しない元素種(例えば、P,S、Ca、Mg、O(酸素)、N(窒素)等の元素種)は、不可避的に鋼中に残留する可能性がある元素であり、これらの元素を不純物として含むことは許容される。このとき、Pは、多すぎると、焼戻しなどの熱処理時に旧オーステナイト粒界に偏析して、金型の靭性が劣化する。よって、Pは、0.05%以下に規制することが好ましい。より好ましくは0.03%以下に規制する。そして、Sは、多すぎると、鋼塊を分塊するときなどにおいて熱間加工性が劣化する。よって、Sは、0.01%以下に規制することが好ましい。より好ましくは0.008%以下に規制する。
-Remaining Fe and unavoidable impurities Considering that the thermal conductivity of the mold decreases as the amount of alloy in the mold steel increases, it is preferable that the balance other than the above elemental species is substantially Fe. .. However, elemental species not specified here (for example, elemental species such as P, S, Ca, Mg, O (oxygen), N (nitrogen)) are elements that may inevitably remain in steel. , It is permissible to include these elements as impurities. At this time, if the amount of P is too large, it segregates at the old austenite grain boundaries during heat treatment such as tempering, and the toughness of the mold deteriorates. Therefore, P is preferably regulated to 0.05% or less. More preferably, it is regulated to 0.03% or less. If the amount of S is too large, the hot workability deteriorates when the steel ingot is agglomerated. Therefore, S is preferably regulated to 0.01% or less. More preferably, it is regulated to 0.008% or less.
 上記の成分組成を有した金型用鋼に焼入れ焼戻しを行うことで、硬さと熱伝導率に優れた本発明の熱間加工用金型を得ることができる。本発明の熱間加工用金型の硬さは、室温(常温)で測定した値で、例えば52HRC以上といった、十分な硬度を達成することができ、金型に優れた耐摩耗性を付与させることができる。そして焼戻し温度を調整することで、金型の硬さを、好ましくは53HRC以上にすることができる。
 なお、本発明において、金型の硬さの上限を規定することは要しない。但し、上記の成分組成を有した金型用鋼の場合、その二次硬化のピーク硬さ(概ね540~620℃の焼戻し温度の範囲にある)から、60HRC程度であることが現実的である。そして、この硬さの上限について、二次硬化のピーク硬さが60HRC程度であることに関わらず、58HRC以下とすることが、すなわち、上記のピーク硬さを超えて焼戻し温度を高くできる点で(すなわち、熱伝導率を高くできる点で)、好ましい。
By quenching and tempering the die steel having the above-mentioned composition, it is possible to obtain the hot working die of the present invention having excellent hardness and thermal conductivity. The hardness of the hot working die of the present invention is a value measured at room temperature (normal temperature), and can achieve a sufficient hardness such as 52 HRC or more, which imparts excellent wear resistance to the die. be able to. Then, by adjusting the tempering temperature, the hardness of the mold can be preferably 53 HRC or more.
In the present invention, it is not necessary to specify the upper limit of the hardness of the mold. However, in the case of a mold steel having the above-mentioned composition, it is realistic that it is about 60 HRC from the peak hardness of the secondary hardening (generally in the range of tempering temperature of 540 to 620 ° C.). .. The upper limit of this hardness should be 58 HRC or less regardless of the peak hardness of the secondary hardening being about 60 HRC, that is, the tempering temperature can be raised beyond the above peak hardness. (That is, it is preferable in that the thermal conductivity can be increased).
 そして本実施形態の金型は、上記の成分組成を有した金型用鋼に焼入れ焼戻しを行って金型の硬さを52HRCに調整した際の、熱伝導率が25W/(m・K)以上である。なお、この熱伝導率は、室温(常温)で測定した値である。好ましくは28W/(m・K)以上である。上述したような熱伝導率を有する本発明の金型は、より熱伝導率を高くしたい場合硬さを52HRC未満にすることで熱伝導率をさらに高めることができる。また、十分な熱伝導率を有した上で、金型の硬さを52HRC超に調質することも可能である。具体的には、金型の硬さが45HRC以上48HRC以下であるときに、熱伝導率が30W/(m・K)以上であることが好ましく、32W/(m・K)以上であることがより好ましく、34W/(m・K)以上であることがさらに好ましい。また、金型の硬さが53HRC以上55HRC以下であるときに、熱伝導率が25W/(m・K)以上であることが好ましく、27W/(m・K)以上であることがより好ましい。
 このような金型は、575℃で焼戻したときに52HRC以上の硬度を示す熱処理特性を有した金型用鋼によって達成が可能である。この熱処理特性を確認するとき、焼戻し前の焼入れ温度は、例えば、1030℃とすることができる。そして、本発明の金型用鋼は、上記の熱処理特性を有する。このことによって、例えばホットスタンプ工法に使用中(例えば、100~400℃)の金型で高硬度を維持できてかつ、高い熱伝導率をも維持することができる。
The mold of the present embodiment has a thermal conductivity of 25 W / (m · K) when the hardness of the mold is adjusted to 52 HRC by quenching and tempering the mold steel having the above-mentioned composition. That is all. This thermal conductivity is a value measured at room temperature (normal temperature). It is preferably 28 W / (m · K) or more. The mold of the present invention having the above-mentioned thermal conductivity can further increase the thermal conductivity by making the hardness less than 52 HRC when it is desired to increase the thermal conductivity. It is also possible to adjust the hardness of the mold to more than 52 HRC while having sufficient thermal conductivity. Specifically, when the hardness of the mold is 45 HRC or more and 48 HRC or less, the thermal conductivity is preferably 30 W / (m · K) or more, and 32 W / (m · K) or more. More preferably, it is 34 W / (m · K) or more. Further, when the hardness of the mold is 53 HRC or more and 55 HRC or less, the thermal conductivity is preferably 25 W / (m · K) or more, and more preferably 27 W / (m · K) or more.
Such a mold can be achieved by a mold steel having a heat treatment property showing a hardness of 52 HRC or more when tempered at 575 ° C. When confirming this heat treatment characteristic, the quenching temperature before tempering can be, for example, 1030 ° C. The mold steel of the present invention has the above heat treatment characteristics. As a result, high hardness can be maintained and high thermal conductivity can be maintained in the mold used in, for example, the hot stamping method (for example, 100 to 400 ° C.).
 本発明の場合、金型の熱伝導率の上限を特定する必要はない。但し、焼戻し温度を高くしていって(例えば、600℃を超える温度に調整して)、金型の硬さが低下していくことを考えれば、凡そ50W/(m・K)程度であることが現実的である。好ましくは47W/(m・K)以下である。より好ましくは45W/(m・K)以下である。そして、金型が52HRC以上の硬さを維持しているときであれば、熱伝導率の上限は凡そ40W/(m・K)程度であることが現実的である。好ましくは38W/(m・K)以下である。 In the case of the present invention, it is not necessary to specify the upper limit of the thermal conductivity of the mold. However, considering that the hardness of the mold decreases as the tempering temperature is raised (for example, adjusted to a temperature exceeding 600 ° C.), it is about 50 W / (m · K). Is realistic. It is preferably 47 W / (m · K) or less. More preferably, it is 45 W / (m · K) or less. When the mold maintains a hardness of 52 HRC or higher, it is realistic that the upper limit of the thermal conductivity is about 40 W / (m · K). It is preferably 38 W / (m · K) or less.
 本発明の熱間加工用金型は、好ましくは、その作業面に窒化層を有するものである。
 上述の通り、本発明の熱間加工用金型は、高硬度および高熱伝導率を合わせ持ったものである。そして、この金型の作業面が、さらに窒化層を有することで、金型の耐摩耗性(作業面の硬さ)を、さらに向上させることができる。そして、本発明の金型用鋼が有する焼入れ焼戻し特性によって、窒化処理の際の金型本体の硬度低下も抑制できる。なお、作業面とは、熱間加工中の被加工材と接する金型の面のことである。
The hot working die of the present invention preferably has a nitride layer on its working surface.
As described above, the hot working die of the present invention has both high hardness and high thermal conductivity. Then, when the working surface of the mold further has a nitrided layer, the wear resistance (hardness of the working surface) of the mold can be further improved. Further, due to the quenching and tempering characteristics of the mold steel of the present invention, it is possible to suppress a decrease in hardness of the mold body during the nitriding treatment. The working surface is the surface of the mold that comes into contact with the work material being hot-worked.
 本発明の熱間加工用金型の製造方法は、上記の金型用鋼に、焼入れ焼戻しを行うものである。
 上記の成分組成を有した金型用鋼に焼入れ焼戻しを行うとき、焼入れ温度は、狙い硬さ等によって異なるが、例えば、概ね1020~1080℃とすることができる。好ましくは1050℃以下である。
 そして、この焼入れ温度による焼入れを行った金型用鋼に、例えば、540~620℃の焼戻し温度による焼戻しを行うことで、安定して52HRC以上の硬さを達成しつつ、熱伝導率が25W/(m・K)以上の金型を得ることができる。このとき、52HRC以上の硬さを維持する上で、焼戻し温度の上限は600℃程度とすることが好ましい。より好ましくは595℃以下である。さらに好ましくは590℃以下である。また焼戻し温度の下限は550℃程度とすることが好ましい。より好ましく555℃以上である。さらに好ましくは560℃以上である。
 二次硬化のピーク硬度を示す575℃付近の焼戻し温度で52HRC以上の硬度が達成できる熱処理特性を基準とすることで、この熱処理特性の基準を満たした本発明の金型用鋼は、540~620℃の広い焼戻し温度域でも45HRC以上の硬度を維持できる。そして、上記のピーク硬度が、例えば、53HRC以上、54HRC以上、55HRC以上といったように、52HRCを超えて高いことで、広い焼戻し温度域で52HRC以上の硬さを維持することができる。そして、この広い焼戻し温度域で25W/(m・K)以上の熱伝導率を得ることができて、特に575℃以上の焼戻し温度で熱伝導率を向上させることができる。
The method for producing a hot working die of the present invention is to quench and temper the above-mentioned die steel.
When quenching and tempering a mold steel having the above-mentioned composition, the quenching temperature varies depending on the target hardness and the like, but can be, for example, approximately 1020 to 1080 ° C. It is preferably 1050 ° C. or lower.
Then, the mold steel hardened at this quenching temperature is tempered at a tempering temperature of, for example, 540 to 620 ° C., thereby stably achieving a hardness of 52 HRC or more and a thermal conductivity of 25 W. A mold of / (m · K) or more can be obtained. At this time, in order to maintain a hardness of 52 HRC or higher, the upper limit of the tempering temperature is preferably about 600 ° C. More preferably, it is 595 ° C. or lower. More preferably, it is 590 ° C. or lower. The lower limit of the tempering temperature is preferably about 550 ° C. More preferably, it is 555 ° C. or higher. More preferably, it is 560 ° C. or higher.
By using the heat treatment characteristics that can achieve a hardness of 52 HRC or higher at a tempering temperature of around 575 ° C, which indicates the peak hardness of secondary hardening, as the standard, the mold steel of the present invention that satisfies the heat treatment characteristics criteria is 540 to Hardness of 45 HRC or higher can be maintained even in a wide tempering temperature range of 620 ° C. When the peak hardness is higher than 52 HRC, for example, 53 HRC or higher, 54 HRC or higher, 55 HRC or higher, the hardness of 52 HRC or higher can be maintained in a wide tempering temperature range. Then, a thermal conductivity of 25 W / (m · K) or more can be obtained in this wide tempering temperature range, and the thermal conductivity can be improved particularly at a tempering temperature of 575 ° C. or higher.
 本発明の金型用鋼は、焼入れ焼戻しによって所定の硬さを有した熱間加工用金型に整えられる。そして、この間で、金型用鋼は、切削や穿孔といった各種の機械加工等によって、熱間加工用金型の形状に整えられる。この機械加工のタイミングは、焼入れ焼戻し前の硬さが低い状態(つまり、焼鈍状態)で行うことができる。そして、この場合、焼入れ焼戻し後に仕上げ加工を行ってもよい。また、場合によっては、上記の仕上げ加工も合わせて、焼入れ焼戻しを行った後のプリハードン状態で、上記の機械加工を行ってもよい。 The mold steel of the present invention is prepared into a hot working mold having a predetermined hardness by quenching and tempering. During this period, the mold steel is adjusted to the shape of the hot working mold by various machining such as cutting and drilling. The timing of this machining can be performed in a state where the hardness before quenching and tempering is low (that is, in an annealed state). Then, in this case, finishing processing may be performed after quenching and tempering. In some cases, the above machining may be performed in the pre-hardened state after quenching and tempering in combination with the above finishing process.
本発明の熱間加工用金型の製造方法は、好ましくは、上記の焼入れ焼戻しを行った後の金型の作業面に、さらに、窒化処理を行うものである。
 上述の通り、上記の成分組成を有した金型用鋼に焼入れ焼戻しを行うことで、例えば、硬さを52HRCに調質した際の、熱伝導率が25W/(m・K)である金型を得ることができる。そして、上記の成分組成を有した金型用鋼は、窒化特性にも優れているので、この焼入れ焼戻しを行った後の金型の作業面に、さらに、窒化処理を行うことで、金型の耐摩耗性(作業面の硬さ)を向上させることができる。そして、本発明の金型用鋼が有する焼入れ焼戻し特性によって、窒化処理の際の金型本体の硬度低下も抑制できる。このとき、窒化処理の条件には、例えば、ガス窒化処理や塩浴窒化処理といった、既知の各種窒化処理のものを適用することができる。
In the method for producing a hot working die of the present invention, preferably, the working surface of the die after the above quenching and tempering is further subjected to nitriding treatment.
As described above, by quenching and tempering the mold steel having the above-mentioned composition, for example, gold having a thermal conductivity of 25 W / (m · K) when the hardness is adjusted to 52 HRC. You can get the mold. Since the mold steel having the above-mentioned composition is also excellent in nitriding characteristics, the working surface of the mold after this quenching and tempering is further subjected to nitriding treatment to form the mold. Abrasion resistance (hardness of work surface) can be improved. Further, due to the quenching and tempering characteristics of the mold steel of the present invention, it is possible to suppress a decrease in hardness of the mold body during the nitriding treatment. At this time, various known nitriding treatments such as gas nitriding treatment and salt bath nitriding treatment can be applied to the conditions of the nitriding treatment.
 表1の成分組成を有する、10kgの鋼塊を溶製した。そして、この鋼塊を1160℃に加熱してハンマー鍛伸した後に放冷し、この放冷後の鋼材に870℃の焼鈍処理を行って、本発明例であるNo.1~6の鋼、および比較例であるNo.7~9の鋼を作製した。 A 10 kg steel ingot having the component composition shown in Table 1 was melted. Then, the ingot was heated to 1160 ° C., forged by a hammer, and then allowed to cool, and the steel material after the cooling was allowed to be annealed at 870 ° C. to obtain No. 1 of the present invention. Steels 1 to 6 and No. 1 which is a comparative example. 7-9 steels were made.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<焼戻し硬さの評価>
 No.1~9の金型用鋼に、1030℃の焼入れ温度による焼入れを実施した。このとき、冷却条件は、本発明鋼および比較鋼といった金型用鋼が実際のホットスタンプ用金型の大きさであるときの冷却速度を想定して、半冷時間を40分とした(半冷時間とは、焼入れ温度から、(焼入れ温度+室温)/2の温度までの冷却に要する時間のことである)。そして、この焼入れ後の金型用鋼に、500~650℃の焼戻し温度による焼戻しを行った。焼戻しは2回実施し、それぞれの温度で2時間保持した。焼戻し温度は、25℃刻みの、計7条件とした。そして、No.1~9のそれぞれについて、焼戻し温度毎に、その中心部の室温におけるロックウェル硬さ(Cスケール)を測定した。結果を図1~図3に示す。
<Evaluation of tempering hardness>
No. The mold steels 1 to 9 were quenched at a quenching temperature of 1030 ° C. At this time, the cooling condition was set to a semi-cooling time of 40 minutes, assuming a cooling rate when the die steel such as the steel of the present invention and the comparative steel is the size of the actual hot stamping die (half). The cooling time is the time required for cooling from the quenching temperature to the temperature of (quenching temperature + room temperature) / 2. Then, the hardened steel for the mold was tempered at a tempering temperature of 500 to 650 ° C. Tempering was performed twice and kept at each temperature for 2 hours. The tempering temperature was set to a total of 7 conditions in increments of 25 ° C. And No. For each of 1 to 9, the Rockwell hardness (C scale) at room temperature was measured at the center of each tempering temperature. The results are shown in FIGS. 1 to 3.
 本発明例であるNo.1~7は、550~600℃の焼戻し温度の範囲内で、52HRC以上の焼戻し硬さを達成した。これに対して、比較例であるNo.7~9は、500~650℃の焼戻し温度範囲において、何れも焼戻し硬さが52HRCを下回っていた。 No. which is an example of the present invention. 1 to 7 achieved a tempering hardness of 52 HRC or more within the range of the tempering temperature of 550 to 600 ° C. On the other hand, No. In each of 7 to 9, the tempering hardness was lower than 52HRC in the tempering temperature range of 500 to 650 ° C.
<熱伝導率の評価>
 続いて、No.1~9の熱伝導率を測定した。熱伝導率測定時の試料の焼戻し硬さは、本発明例であるNo.1~6が52HRC、比較例であるNo.7、8、9がそれぞれ51HRC、50HRC、45HRCであった。測定要領は、まず、金型を直径10mm×厚さ2mmの円盤状の試験片に加工して、この試験片の熱拡散率および比熱をレーザーフラッシュ法により測定した。そして、この測定した熱拡散率および比熱の値を用いて、下記の式より室温における熱伝導率を算出した。結果を図2に示す。
  熱伝導率λ(W/(m・K))=ρ・α・C
   (ρ:室温密度、α:熱拡散率、C:比熱)
<Evaluation of thermal conductivity>
Then, No. The thermal conductivity of 1 to 9 was measured. The tempering hardness of the sample at the time of measuring the thermal conductivity is No. 1 which is an example of the present invention. 1 to 6 are 52HRC, No. 1 which is a comparative example. 7, 8 and 9 were 51 HRC, 50 HRC and 45 HRC, respectively. First, the mold was processed into a disk-shaped test piece having a diameter of 10 mm and a thickness of 2 mm, and the thermal diffusivity and specific heat of this test piece were measured by a laser flash method. Then, using the measured thermal diffusivity and specific heat values, the thermal conductivity at room temperature was calculated from the following formula. The results are shown in FIG.
Thermal conductivity λ (W / (m ・ K)) = ρ ・ α ・ C p
(Ρ: Room temperature density, α: Thermal diffusivity, C p : Specific heat)
 図2の結果より、本発明例であるNo.1~6は、25W/(m・K)以上の熱伝導率を達成していることを確認した。一方で比較例であるNo.7~9も、熱伝導率は本発明と同水準だが、そもそも、ピーク硬さが52HRCに達していない。このため、比較例のような金型用鋼であると、熱伝導率を調整したいときに(具体的には、熱伝導率を上げるために焼戻し温度を高めたときに)、硬度がさらに低下して、様々な要求特性の金型に対応できない。これに対して、本発明例の金型用鋼は、十分なピーク硬度に加えて、焼戻し軟化抵抗にも優れることから、高熱伝導率と高硬度特性を合わせ持つ本発明例の方が、熱間加工用金型用途に有利な特性を有していることが確認できた。 From the result of FIG. 2, No. 1 which is an example of the present invention. It was confirmed that 1 to 6 achieved a thermal conductivity of 25 W / (m · K) or more. On the other hand, No. The thermal conductivity of 7 to 9 is the same as that of the present invention, but the peak hardness does not reach 52 HRC in the first place. For this reason, in the case of mold steel as in the comparative example, the hardness is further reduced when the thermal conductivity is to be adjusted (specifically, when the tempering temperature is increased in order to increase the thermal conductivity). Therefore, it is not possible to handle molds with various required characteristics. On the other hand, the mold steel of the present invention example has excellent temper softening resistance in addition to sufficient peak hardness. Therefore, the mold steel of the present invention example has higher thermal conductivity and high hardness characteristics. It was confirmed that it has advantageous characteristics for use in die processing.

Claims (7)

  1. 質量%で、C:0.45~0.65%、Si:0.1~0.6%、Mn:0.1~2.5%、Cr:1.0~6.0%、MoおよびWは単独または複合で(Mo+1/2W):1.2~3.5%、V:0.1~0.5%、Ni:0.15~0.6%、Cu:0.1~0.6%、Al:0.1~0.6%、残部Feおよび不可避的不純物の成分組成を有することを特徴とする熱間加工用金型用鋼。 By mass%, C: 0.45 to 0.65%, Si: 0.1 to 0.6%, Mn: 0.1 to 2.5%, Cr: 1.0 to 6.0%, Mo and W alone or in combination (Mo + 1 / 2W): 1.2 to 3.5%, V: 0.1 to 0.5%, Ni: 0.15 to 0.6%, Cu: 0.1 to 0 A steel for a mold for hot working, which has a component composition of 0.6%, Al: 0.1 to 0.6%, a balance Fe and unavoidable impurities.
  2. 575℃で焼戻したとき、硬さが52HRC以上であることを特徴とする、請求項1に記載の熱間加工用金型用鋼。 The steel for hot working dies according to claim 1, wherein the hardness is 52 HRC or more when tempered at 575 ° C.
  3. 質量%で、C:0.45~0.65%、Si:0.1~0.6%、Mn:0.1~2.5%、Cr:1.0~6.0%、MoおよびWは単独または複合で(Mo+1/2W):1.2~3.5%、V:0.1~0.5%、Ni:0.15~0.6%、Cu:0.1~0.6%、Al:0.1~0.6%、残部Feおよび不可避的不純物の成分組成を有することを特徴とする熱間加工用金型。 By mass%, C: 0.45 to 0.65%, Si: 0.1 to 0.6%, Mn: 0.1 to 2.5%, Cr: 1.0 to 6.0%, Mo and W alone or in combination (Mo + 1 / 2W): 1.2 to 3.5%, V: 0.1 to 0.5%, Ni: 0.15 to 0.6%, Cu: 0.1 to 0 A mold for hot working, characterized by having a component composition of 0.6%, Al: 0.1 to 0.6%, a balance Fe and unavoidable impurities.
  4. 硬さが52HRC以上であり、熱伝導率が25W/(m・K)以上であることを特徴とする、請求項3に記載の熱間加工用金型。 The hot working die according to claim 3, wherein the die has a hardness of 52 HRC or more and a thermal conductivity of 25 W / (m · K) or more.
  5. 作業面に窒化層を有することを特徴とする請求項3または4に記載の熱間加工用金型。 The hot working die according to claim 3 or 4, wherein the work surface has a nitride layer.
  6. 請求項1または2に記載の熱間加工用金型用鋼に、1020~1080℃の焼入れ温度および540~620℃の焼戻し温度による焼入れ焼戻しを行うことを特徴とする熱間加工用金型の製造方法。 A hot working die according to claim 1 or 2, wherein the steel for hot working is hardened and tempered at a quenching temperature of 1020 to 1080 ° C. and a tempering temperature of 540 to 620 ° C. Production method.
  7. 前記焼入れ焼戻しを行った後に、さらに、作業面に窒化処理を行うことを特徴とする請求項6に記載の熱間加工用金型の製造方法。 The method for manufacturing a hot working die according to claim 6, wherein the work surface is further subjected to a nitriding treatment after the quenching and tempering.
PCT/JP2021/010616 2020-03-16 2021-03-16 Steel for hot working die, die for hot working, and manufacturing method for same WO2021187484A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21772321.2A EP4123047A1 (en) 2020-03-16 2021-03-16 Steel for hot working die, die for hot working, and manufacturing method for same
US17/911,411 US20230099300A1 (en) 2020-03-16 2021-03-16 Steel for hot working die, die for hot working, and manufacturing method for same
CN202180020353.6A CN115279932B (en) 2020-03-16 2021-03-16 Steel for hot working die, and method for producing same
KR1020227031729A KR20220143067A (en) 2020-03-16 2021-03-16 Steel for hot working mold, hot working mold and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-045361 2020-03-16
JP2020045361A JP2021147624A (en) 2020-03-16 2020-03-16 Steel for hot working die, hot working die, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2021187484A1 true WO2021187484A1 (en) 2021-09-23

Family

ID=77771594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010616 WO2021187484A1 (en) 2020-03-16 2021-03-16 Steel for hot working die, die for hot working, and manufacturing method for same

Country Status (6)

Country Link
US (1) US20230099300A1 (en)
EP (1) EP4123047A1 (en)
JP (1) JP2021147624A (en)
KR (1) KR20220143067A (en)
CN (1) CN115279932B (en)
WO (1) WO2021187484A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116145029B (en) * 2022-12-22 2024-05-14 本钢板材股份有限公司 Corrosion-resistant cutting tool steel and preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120886A (en) * 2007-11-13 2009-06-04 Kobe Steel Ltd Steel for cold working die, and die
JP2009242319A (en) * 2008-03-31 2009-10-22 Daikin Ind Ltd Polyfunctional fluorine-containing compound, and method of producing the same
JP5744300B1 (en) 2014-11-11 2015-07-08 日本高周波鋼業株式会社 Hot work tool steel
JP2017043814A (en) 2015-08-28 2017-03-02 大同特殊鋼株式会社 Die steel and die
JP2017053023A (en) 2015-09-11 2017-03-16 大同特殊鋼株式会社 Steel for mold and molding tool
JP2018024931A (en) 2015-09-02 2018-02-15 大同特殊鋼株式会社 Steel for mold and molding tool
JP2020026567A (en) * 2018-08-17 2020-02-20 日立金属株式会社 Hot stamp die steel, hot stamp die and method for producing the same
JP2021011618A (en) * 2019-07-08 2021-02-04 山陽特殊製鋼株式会社 Hot work tool steel having excellent thermal conductivity

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548358A (en) 1978-10-03 1980-04-07 Minamoto:Kk "sushi" wrapped with "konbu", sea tangle, and its making method
JP2009242819A (en) * 2008-03-28 2009-10-22 Daido Steel Co Ltd Steel, steel for die and die using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120886A (en) * 2007-11-13 2009-06-04 Kobe Steel Ltd Steel for cold working die, and die
JP2009242319A (en) * 2008-03-31 2009-10-22 Daikin Ind Ltd Polyfunctional fluorine-containing compound, and method of producing the same
JP5744300B1 (en) 2014-11-11 2015-07-08 日本高周波鋼業株式会社 Hot work tool steel
JP2017043814A (en) 2015-08-28 2017-03-02 大同特殊鋼株式会社 Die steel and die
JP2018024931A (en) 2015-09-02 2018-02-15 大同特殊鋼株式会社 Steel for mold and molding tool
JP2017053023A (en) 2015-09-11 2017-03-16 大同特殊鋼株式会社 Steel for mold and molding tool
JP2020026567A (en) * 2018-08-17 2020-02-20 日立金属株式会社 Hot stamp die steel, hot stamp die and method for producing the same
JP2021011618A (en) * 2019-07-08 2021-02-04 山陽特殊製鋼株式会社 Hot work tool steel having excellent thermal conductivity

Also Published As

Publication number Publication date
KR20220143067A (en) 2022-10-24
EP4123047A1 (en) 2023-01-25
US20230099300A1 (en) 2023-03-30
CN115279932A (en) 2022-11-01
JP2021147624A (en) 2021-09-27
CN115279932B (en) 2023-12-29

Similar Documents

Publication Publication Date Title
JP5143531B2 (en) Cold mold steel and molds
JP5076683B2 (en) High toughness high speed tool steel
JP5929963B2 (en) Hardening method of steel
JP7172275B2 (en) Hot stamping die steel, hot stamping die and manufacturing method thereof
WO2016075951A1 (en) Hot work tool steel
JP5029942B2 (en) Hot work tool steel with excellent toughness
JP6977414B2 (en) Mold
US6841122B2 (en) Hot working die steel excelling in molten corrosion resistance and strength at elevated temperature and member for high temperature use formed of the hot working die steel
WO2021187484A1 (en) Steel for hot working die, die for hot working, and manufacturing method for same
KR20190115423A (en) Steel for mold, and mold
JP5351528B2 (en) Cold mold steel and molds
WO2004059023A1 (en) Cold die steel excellent in characteristic of suppressing dimensional change
KR20140087279A (en) A cold-work tool steel with excellent hardness and impact toughness
JP2000226635A (en) Hot tool steel excellent in high temperature strength and toughness
JPH0555585B2 (en)
JP5212772B2 (en) Hot work tool steel with excellent toughness and high temperature strength
JP2005336553A (en) Hot tool steel
JP5345415B2 (en) Steel for cold press dies and press dies excellent in machinability, heat treatment sizing characteristics and impact characteristics
WO2020246099A1 (en) Steel for hot stamp die, hot stamp die and manufacturing method thereof
JP2001158937A (en) Tool steel for hot working, method for producing same and method for producing tool for hot working
JP2009221594A (en) Hot-working tool steel having excellent toughness
JP4305891B2 (en) Hot forging die steel and hot forging die
JP3191008B2 (en) Hot tool steel
JP2002088450A (en) Hot work tool steel
JP2602903B2 (en) Tool steel for warm and hot working

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21772321

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227031729

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021772321

Country of ref document: EP

Effective date: 20221017