JP2000026934A - Steel excellent in delayed fracture characteristic and its production - Google Patents

Steel excellent in delayed fracture characteristic and its production

Info

Publication number
JP2000026934A
JP2000026934A JP11758599A JP11758599A JP2000026934A JP 2000026934 A JP2000026934 A JP 2000026934A JP 11758599 A JP11758599 A JP 11758599A JP 11758599 A JP11758599 A JP 11758599A JP 2000026934 A JP2000026934 A JP 2000026934A
Authority
JP
Japan
Prior art keywords
delayed fracture
steel material
hydrogen
ppm
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11758599A
Other languages
Japanese (ja)
Other versions
JP4267126B2 (en
Inventor
Shingo Yamazaki
真吾 山崎
Hitoshi Asahi
均 朝日
Toshizo Tarui
敏三 樽井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11758599A priority Critical patent/JP4267126B2/en
Publication of JP2000026934A publication Critical patent/JP2000026934A/en
Application granted granted Critical
Publication of JP4267126B2 publication Critical patent/JP4267126B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make better the delayed fracture characteristics of steel and to increase its strength, at the time of immersing steel into an acidic soln., by allowing it to occulude a specified amt. of hydrogen to be eliminated by activation energy. SOLUTION: Diffusible hydrogen causing delayed fracture is generated by corrosion and electroplating and intrudes into a steel at room temp. Therefore, its structure is controlled to the one capable of occuluding >=0.1 wt.ppm hydrogen of 25 to 50 kJ/mol trap energy in an acidic soln. of pH <=4.0. As for hydrogen in which trap energy lies in this range, in the case the steel sheet is heated at a rate of 100 deg.C/hr, the emission peak can be obtd. in the temp. range of 180 to 600 deg.C. Moreover, the structure is controlled to the one essentially consisting of martensite or tempered martensite and contg. at least one kind among the single or composite precipitates of oxides, carbides and nitrides essentially consisting of Si, Mn, Ti or the like, in which the average grain size is 0.05 to 1.0 μm and the average grain interval is 3 to 30 times that of the average grain size.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明は、耐遅れ破壊特性の
優れた鋼材、特に、1200MPa以上の引張強度を有
する耐遅れ破壊特性の優れた高強度部材用鋼材に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel material having excellent delayed fracture resistance, and more particularly to a steel material for high strength members having a tensile strength of 1200 MPa or more and having excellent delayed fracture resistance.

【0001】[0001]

【従来の技術】機械、自動車、橋、建物に数多く使用さ
れている高強度鋼は、例えばJISG 4104,JI
S G 4105に規定されているSCr,SCM等の
C量が0.20〜0.35%の中炭素鋼を用いて焼入れ
・焼戻し処理をすることによって製造されている。しか
し、どの品種についても引張強度が1300MPaを超
えると遅れ破壊の危険性が高まることがよく知られてお
り、例えば現在使用されている建築用鋼の強度は115
0MPa級が上限となっているのが現状である。
2. Description of the Related Art High-strength steels widely used in machines, automobiles, bridges and buildings are, for example, JISG 4104, JI.
It is manufactured by quenching and tempering using medium carbon steel with a C content of 0.20 to 0.35% such as SCr and SCM specified in SG4105. However, it is well known that when any one of the varieties has a tensile strength exceeding 1300 MPa, the risk of delayed fracture increases. For example, the strength of building steel currently used is 115.
At present, the 0 MPa class is the upper limit.

【0002】高強度鋼の遅れ破壊特性を向上させる従来
の知見として、例えば、特公平3−243744号公報
では、旧オーステナイト粒を微細化させること、組織を
ベイナイト化させることが有効であると提案している。
確かに、ベイナイト組織は遅れ破壊に対して有効である
が、ベイナイト化処理は製造コストが高くなる。旧オー
ステナイト粒の微細化に関しては、特公昭64−456
6号公報や特公平3−243745号公報でも提案され
ている。また、特公昭61−64815号公報は、Ca
を添加することを提案している。しかしながら、いずれ
の提案も本発明者らの試験では、大幅な遅れ破壊特性の
改善には至っていない。
[0002] As conventional knowledge for improving delayed fracture characteristics of high-strength steel, for example, Japanese Patent Publication No. 3-243744 proposes that it is effective to make old austenite grains fine and to make the structure bainite. are doing.
Certainly, the bainite structure is effective against delayed fracture, but the bainite treatment increases the manufacturing cost. Regarding the refinement of old austenite grains, see JP-B-64-456.
No. 6 and Japanese Patent Publication No. 3-243745. Japanese Patent Publication No. 61-64815 discloses Ca
It is proposed to add However, none of the proposals has led to a significant improvement in delayed fracture characteristics in the tests of the present inventors.

【0003】以上のように、従来の技術では、遅れ破壊
特性を抜本的に向上させた高強度鋼を製造することには
限界があった。
[0003] As described above, in the prior art, there is a limit in producing a high-strength steel with drastically improved delayed fracture characteristics.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記の如き実
状に鑑みてなされたものであって、遅れ破壊特性の良好
な鋼材、特に、遅れ破壊特性が良好で且つ強度が120
0MPa以上の高強度鋼を実現すると共に、その製造方
法を提供することを目的とするものである。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and is intended to provide a steel material having good delayed fracture characteristics, in particular, a steel material having good delayed fracture characteristics and a strength of 120.
It is an object of the present invention to realize a high-strength steel of 0 MPa or more and to provide a method for producing the steel.

【0005】[0005]

【課題を解決するための手段】本発明者らは、まず焼入
れ・焼戻し処理によって製造した種々の強度レベルの鋼
材を用いて、遅れ破壊挙動を詳細に解析した。遅れ破壊
は外部環境から鋼材中に侵入し、鋼材中を室温で拡散し
うる拡散性水素に起因して発生していることは既に明ら
かである。そして拡散性水素は、鋼材を100℃/ho
urの速度で加熱した際に得られる温度−鋼材からの水
素放出速度の曲線において、約100℃の温度にピーク
を有する曲線として測定できる。図1はその測定の一例
を示すもので、●水素チャージ直後、□は水素チャージ
48hour、○は水素チャージ後72hour放置し
た試料を示している。
Means for Solving the Problems The present inventors first analyzed in detail the delayed fracture behavior using steel materials of various strength levels manufactured by quenching and tempering. It is already evident that delayed fracture has entered the steel from the external environment and has been caused by diffusible hydrogen that can diffuse through the steel at room temperature. And the diffusible hydrogen is used to make the steel material 100 ° C / ho.
In the curve of the temperature obtained when heating at the rate of ur and the hydrogen release rate from the steel material, it can be measured as a curve having a peak at a temperature of about 100 ° C. FIG. 1 shows an example of the measurement. ● Immediately after the hydrogen charge, □ indicates a hydrogen charge of 48 hours, and 試 料 indicates a sample left for 72 hours after the hydrogen charge.

【0006】したがって、環境から侵入した水素を鋼材
中の何らかの部分に捕捉することによって拡散しないよ
うにすれば、水素を無害化することが可能になり、より
多量の環境からの侵入水素量に対し、遅れ破壊が抑制さ
れる。なお、試料中の侵入水素量は、水素チャージ前後
の10mmφの鋼材を100℃/hourで加熱して得
られた水素放出曲線の面積分値の差によって求めた。ま
た水素の捕捉サイト(以後水素トラップサイト)の存在
は、上記の水素放出曲線のピーク温度・ピーク高さから
判定でき、ある水素トラップサイトに捕捉された水素の
量(以後水素トラップ容量)はピークの面積積分値によ
って、水素がトラップサイトから脱離するのに必要な活
性化エネルギー(以後水素トラップエネルギー)Eは、
鋼材からの水素放出挙動を記述する次式から求めること
ができる。 Eφ/RT2=Aexp(-E/RT) 式(1) ここでφは加熱速度、Aは水素のトラップ脱離の反応定
数、Rは気体定数、Tは水素放出曲線のピーク温度であ
る。水素トラップエネルギーEは材料によって決まる定
数であるため、式(1)において変数はφとTになる。
式(1)の対数をとって整理すると、 ln(φ/T2)=−(E/R)/T+ln(AR/E) 式(2) 従って、複数の加熱速度で水素分析を行い、その際の水
素放出ピーク温度を測定し、ln(φ/T2)と−1/T
の関係を示す直線の傾きを求めることによって、Eを求
めることができる。
[0006] Therefore, if hydrogen invading from the environment is prevented from diffusing by trapping it in some part of the steel material, it is possible to make the hydrogen harmless, and it is possible to reduce the amount of hydrogen invading from a larger amount of the environment. , Delayed fracture is suppressed. The amount of invading hydrogen in the sample was determined by the difference between the area values of a hydrogen release curve obtained by heating a 10 mmφ steel material before and after hydrogen charging at 100 ° C./hour. The presence of a hydrogen trapping site (hereinafter referred to as a hydrogen trapping site) can be determined from the peak temperature and peak height of the above hydrogen release curve, and the amount of hydrogen trapped at a certain hydrogen trapping site (hereinafter referred to as a hydrogen trapping capacity) is a peak. The activation energy (hereinafter referred to as hydrogen trap energy) E required for hydrogen to desorb from the trap site is given by
It can be determined from the following equation describing the hydrogen release behavior from steel. Eφ / RT2 = Aexp (−E / RT) Equation (1) where φ is the heating rate, A is the reaction constant of trap desorption of hydrogen, R is the gas constant, and T is the peak temperature of the hydrogen release curve. Since the hydrogen trap energy E is a constant determined by the material, the variables in equation (1) are φ and T.
By taking the logarithm of equation (1) and rearranging it, ln (φ / T2) = − (E / R) / T + ln (AR / E) Equation (2) Accordingly, hydrogen analysis is performed at a plurality of heating rates. Was measured, and ln (φ / T2) and -1 / T
By calculating the slope of the straight line indicating the relationship, E can be obtained.

【0007】そこで、遅れ破壊特性について、遅れ破壊
が発生しない「侵入水素量」を求めることにより評価し
た。この方法は、切欠き付き丸棒試験片に電解水素チャ
ージ、塩酸浸漬、水素焼鈍炉により種々のレベルの拡散
性水素量を含有させた後、遅れ破壊試験中に試料から大
気中に水素が抜けることを防止するためにCdめっきを
施し、その後、大気中で所定の荷重を負荷し、遅れ破壊
が発生しなくなる侵入水素量を評価するものである。
[0007] Therefore, the delayed fracture characteristics were evaluated by determining the "invasive hydrogen amount" at which delayed fracture does not occur. In this method, after a notched round bar specimen contains various levels of diffusible hydrogen by electrolytic hydrogen charging, hydrochloric acid immersion, and a hydrogen annealing furnace, hydrogen escapes from the sample to the atmosphere during the delayed fracture test. In order to prevent this, Cd plating is performed, and thereafter, a predetermined load is applied in the atmosphere, and the amount of invading hydrogen at which delayed fracture does not occur is evaluated.

【0008】図2に侵入水素量と遅れ破壊に至るまでの
破断時間の関係について解析した一例を示す。試料中に
含まれる侵入水素量が少なくなるほど遅れ破壊に至るま
での時間が長くなり、侵入水素量がある値以下では遅れ
破壊が発生しなくなる。この水素量を「限界侵入水素
量」と定義する。限界侵入水素量が高いほど鋼材の耐遅
れ破壊特性は良好であり、鋼材の成分、熱処理等の製造
条件によって決まる鋼材固有の値である。なお、試料中
の侵入水素量は、水素チャージ前後の鋼材を100℃/
hourで加熱して得られた水素放出曲線の面積分値の
差によって求めており、水素トラップサイトに捕捉され
た水素量も含んだ値である。
FIG. 2 shows an example in which the relationship between the amount of invading hydrogen and the rupture time until delayed fracture is analyzed. The smaller the amount of invading hydrogen contained in the sample, the longer the time required for delayed fracture is reached. If the amount of invading hydrogen is below a certain value, delayed fracture does not occur. This amount of hydrogen is defined as "critical intrusion hydrogen amount". The higher the critical penetration hydrogen amount, the better the delayed fracture resistance properties of the steel material, which is a value specific to the steel material determined by the steel composition and the manufacturing conditions such as heat treatment. The amount of invading hydrogen in the sample was 100 ° C. /
The value is obtained from the difference between the area values of the hydrogen release curve obtained by heating with an hour, and includes the amount of hydrogen captured at the hydrogen trap site.

【0009】その結果、水素トラップエネルギーが25
〜50kJ/molであり、かつ水素トラップ容量が
0.1wt.ppm以上であるような、水素トラップサ
イトとなりうる酸化物、炭化物、窒化物の単独あるいは
複合析出物の少なくとも1種を有する組織を形成させれ
ば、1200MPaを超えるような高強度域でも限界侵
入水素量が増加し、耐遅れ破壊特性が格段に向上すると
いう知見を見出したのである。また、鋼材成分を選択す
ることによって、上記水素トラップサイトとなりうる種
類、形態の酸化物、炭化物、窒化物の単独あるいは複合
析出物を有する組織を形成させることが可能である技術
を確立した。
As a result, the hydrogen trap energy becomes 25
5050 kJ / mol and a hydrogen trapping capacity of 0.1 wt. ppm or more, if a structure having at least one of oxides, carbides, and nitrides that can be hydrogen trap sites alone or as a composite precipitate is formed, the critical intrusion hydrogen even in a high-strength region exceeding 1200 MPa. It was found that the amount increased and the delayed fracture resistance was significantly improved. In addition, a technique was established in which it was possible to form a structure having a single or complex precipitate of oxides, carbides, and nitrides of the type and form that could serve as the hydrogen trap site by selecting the steel material component.

【0010】以上の検討結果に基づき、鋼材組成、組織
形態を最適に選択すれば、遅れ破壊特性に優れた高強度
ボルトを実現できるという結論に達し、本発明をなした
ものである。
[0010] Based on the above examination results, it was concluded that a high-strength bolt excellent in delayed fracture characteristics can be realized by optimally selecting a steel material composition and a structure form, and made the present invention.

【0011】本発明は以上の知見に基づいてなされたも
のであって、その要旨とするところは、下記の通りであ
る。すなわち、 (1)鋼材をpH4.0以下の酸性溶液中に浸漬した場
合に、25〜50kJ/molの活性化エネルギーによ
って脱離するような水素を、0.1wt.ppm以上吸
蔵することを特徴とする遅れ破壊特性の優れた鋼材。
The present invention has been made based on the above findings, and the gist thereof is as follows. That is, (1) When a steel material is immersed in an acidic solution having a pH of 4.0 or less, hydrogen that is desorbed by an activation energy of 25 to 50 kJ / mol is 0.1 wt. A steel material excellent in delayed fracture characteristics characterized by storing at least ppm.

【0012】(2)pH4.0以下の酸性溶液中に浸漬
した後に、100℃/hourの速度で加熱した際に、
180℃以上600℃以下の温度域で水素の放出ピーク
が得られ、かつ放出される水素の量が0.1wt.pp
m以上であることを特徴とする遅れ破壊特性の優れた鋼
材。
(2) When immersed in an acidic solution having a pH of 4.0 or less and then heated at a rate of 100 ° C./hour,
A hydrogen release peak is obtained in a temperature range of 180 ° C. to 600 ° C., and the amount of released hydrogen is 0.1 wt. pp
m or more, which is excellent in delayed fracture characteristics.

【0013】(3)水素トラップエネルギーが25〜5
0kJ/molであり、かつ水素トラップ容量が0.1
wt.ppm以上であるような、水素トラップサイトと
なりうる酸化物、炭化物、窒化物の単独あるいは複合析
出物の少なくとも1種を有することを特徴とする、遅れ
破壊特性の優れた鋼材。
(3) The hydrogen trap energy is 25 to 5
0 kJ / mol, and the hydrogen trap capacity is 0.1
wt. A steel material having excellent delayed fracture characteristics, characterized in that it has at least one of oxides, carbides, and nitrides that can serve as hydrogen trap sites, alone or in combination, which is at least ppm.

【0014】(4)マルテンサイトあるいは焼戻しマル
テンサイトを主体とした組織からなり、平均粒径が0.
05μm以上1.0μm以下であり、かつ平均粒子間隔
が平均粒径の3倍以上30倍以下であるような、Si,
Mn,Ti,Ai,Vを主体とした酸化物、炭化物、窒
化物の単独あるいは複合析出物の少なくとも1種を有す
ることを特徴とする請求項1乃至3のいずれか1項に記
載の遅れ破壊特性の優れた鋼材
(4) It has a structure mainly composed of martensite or tempered martensite, and has an average particle size of 0.1.
Si, which is not less than 05 μm and not more than 1.0 μm and whose average particle interval is not less than 3 times and not more than 30 times the average particle diameter.
The delayed fracture according to any one of claims 1 to 3, characterized in that it has at least one of oxides, carbides and nitrides mainly composed of Mn, Ti, Ai and V, or a composite precipitate. Steel with excellent properties

【0015】(5)ベイナイトあるいは焼戻しベイナイ
トを主体とした組織からなり、平均粒径が0.05μm
以上1.0μm以下であり、かつ平均粒子間隔が平均粒
径の3倍以上30倍以下であるような、Si,Mn,T
i,Ai,Vを主体とした酸化物、炭化物、窒化物の単
独あるいは複合析出物の少なくとも1種を有することを
特徴とする請求項1乃至3のいずれか1項に記載の遅れ
破壊特性の優れた鋼材
(5) It has a structure mainly composed of bainite or tempered bainite, and has an average particle size of 0.05 μm.
Si, Mn, T having an average particle size of 3 to 30 times the average particle size.
The delayed fracture characteristic according to any one of claims 1 to 3, further comprising at least one of oxides, carbides, and nitrides mainly composed of i, Ai, and V, or composite precipitates. Excellent steel material

【0016】(6)重量%で、C :0.15〜0.5
0%、Si:0.05〜2.0%、Mn:0.2〜2.
0%、Al:0.005〜0.1%、Ti:0.005
〜0.05%、O :1〜500ppm、N :20〜
150ppmを含有し、残部がFe及び不可避的不純物
よりなることを特徴とする請求項1乃至5のいずれか1
項に記載の耐遅れ破壊特性の優れた高強度鋼材。
(6) C: 0.15 to 0.5% by weight
0%, Si: 0.05-2.0%, Mn: 0.2-2.
0%, Al: 0.005 to 0.1%, Ti: 0.005
-0.05%, O: 1-500 ppm, N: 20-
6. The composition according to claim 1, wherein the composition contains 150 ppm, with the balance being Fe and unavoidable impurities.
High-strength steel material with excellent delayed fracture resistance described in the item.

【0017】(7)重量%で、C :0.15〜0.5
0%、Si:0.05〜2.0%、Mn:0.2〜2.
0%、Al:0.005〜0.1%、Ti:0.005
〜0.05%、Mg:0.1〜100ppm、O :1
〜500ppm、N :20〜150ppmを含有し、
残部がFe及び不可避的不純物よりなることを特徴とす
る請求項1乃至5のいずれか1項に記載の耐遅れ破壊特
性の優れた高強度鋼材。
(7) In weight%, C: 0.15 to 0.5
0%, Si: 0.05-2.0%, Mn: 0.2-2.
0%, Al: 0.005 to 0.1%, Ti: 0.005
To 0.05%, Mg: 0.1 to 100 ppm, O: 1
500500 ppm, N: 20-150 ppm,
The high-strength steel material excellent in delayed fracture resistance according to any one of claims 1 to 5, wherein the balance consists of Fe and unavoidable impurities.

【0018】(8)重量%で、Cr:0.05〜2.0
%、Mo:0.05〜1.0%、Ni:0.05〜5.
0%、Cu:0.05〜1.0%の1種または2種以上
を、さらに含有することを特徴とする請求項6もしくは
7のいずれか1項に記載の耐遅れ破壊特性の優れた高強
度鋼材。
(8) Cr: 0.05 to 2.0% by weight
%, Mo: 0.05-1.0%, Ni: 0.05-5.
8. Excellent delayed fracture resistance according to claim 6, further comprising one or more of 0% and Cu: 0.05 to 1.0%. High strength steel.

【0019】(9)重量%で、V :0.05〜0.5
%、Nb:0.005〜0.2%、Ta:0.005〜
0.5%の1種または2種以上を含有することを特徴と
する請求項6乃至8のいずれか1項に記載の耐遅れ破壊
特性の優れた高強度鋼材。
(9) V: 0.05-0.5% by weight
%, Nb: 0.005 to 0.2%, Ta: 0.005 to
The high-strength steel material excellent in delayed fracture resistance according to any one of claims 6 to 8, comprising one or more kinds of 0.5%.

【0020】(10)重量%で、W :0.05〜0.
5%、B :0.0003〜0.0050%の1種また
は2種以上を含有することを特徴とする請求項6乃至9
のいずれか1項に記載の耐遅れ破壊特性の優れた高強度
鋼材。
(10) By weight%, W: 0.05-0.
10% or more of B: 0.0003% to 0.0050%.
A high-strength steel material excellent in delayed fracture resistance according to any one of the above.

【0021】(11)重量%で、C :0.15〜0.
50%、Si:0.05〜2.0%、Mn:0.2〜
2.0%、Al:0.005〜0.1%、N :20〜
150ppmを含有し、残部がFeおよび不可避不純物
からなる溶鋼を脱酸処理によって、溶存酸素量を1〜5
00重量ppmに調整後、さらにTi脱酸し、Ti含有
量が0.005〜0.05重量%で、かつ−0.04≦
Ti%−O%≦0.04の関係を満たす溶鋼とし、該溶
鋼を鋳造し、鋳片の凝固温度から1000℃までの間を
0.5℃/sec以上の冷却速度で冷却することを特徴
とする請求項6に記載の耐遅れ破壊特性に優れた高強度
鋼材の製造方法。
(11) C: 0.15-0.
50%, Si: 0.05 to 2.0%, Mn: 0.2 to
2.0%, Al: 0.005 to 0.1%, N: 20 to
A molten steel containing 150 ppm, the balance being Fe and unavoidable impurities, was subjected to a deoxidation treatment to reduce the amount of dissolved oxygen from 1 to 5
After being adjusted to 00 ppm by weight, Ti is further deoxidized, the Ti content is 0.005 to 0.05% by weight, and -0.04 ≦
A molten steel satisfying a relationship of Ti% -O% ≦ 0.04 is cast, and the molten steel is cast and cooled from a solidification temperature of a slab to 1000 ° C at a cooling rate of 0.5 ° C / sec or more. The method for producing a high-strength steel material having excellent delayed fracture resistance according to claim 6.

【0022】(12)重量%で、C :0.15〜0.
50%、Si:0.05〜2.0%、Mn:0.2〜
2.0%、Al:0.005〜0.1%、Mg:0.1
〜100ppm、N :20〜150ppmを含有し、
残部がFeおよび不可避不純物からなる溶鋼を脱酸処理
によって、溶存酸素量を1〜500重量ppmに調整
後、さらにTi脱酸し、Ti含有量が0.005〜0.
05重量%で、かつ−0.04≦Ti%−O%≦0.0
4の関係を満たす溶鋼とし、該溶鋼を鋳造し、鋳片の凝
固温度から1000℃までの間を0.5℃/sec以上
の冷却速度で冷却することを特徴とする請求項7に記載
の耐遅れ破壊特性に優れた高強度鋼材の製造方法。
(12) C: 0.15-0.
50%, Si: 0.05 to 2.0%, Mn: 0.2 to
2.0%, Al: 0.005 to 0.1%, Mg: 0.1
-100 ppm, N: 20-150 ppm,
The molten steel whose balance consists of Fe and inevitable impurities is adjusted to a dissolved oxygen content of 1 to 500 ppm by weight by deoxidation treatment, and then further deoxidized with Ti to obtain a Ti content of 0.005 to 0.5 wt.
05% by weight, and -0.04 ≦ Ti% -O% ≦ 0.0
8. The molten steel according to claim 7, wherein the molten steel is cast, and the molten steel is cast and cooled from a solidification temperature of the slab to 1000 ° C. at a cooling rate of 0.5 ° C./sec or more. A method for manufacturing high-strength steel with excellent delayed fracture resistance.

【0023】(13)請求項11もしくは12のいずれ
か1項に記載の製造方法において、溶鋼が、重量%で、
Cr:0.05〜2.0%、Mo:0.05〜1.0
%、Ni:0.05〜5.0%、Cu:0.05〜1.
0%の1種または2種以上を、さらに含有することを特
徴とする請求項8に記載の耐遅れ破壊特性に優れた高強
度鋼材の製造方法。
(13) In the production method according to any one of (11) and (12), the molten steel is
Cr: 0.05 to 2.0%, Mo: 0.05 to 1.0
%, Ni: 0.05-5.0%, Cu: 0.05-1.
9. The method for producing a high-strength steel material excellent in delayed fracture resistance according to claim 8, further comprising 0% or one or more types.

【0024】(14)請求項11乃至13のいずれか1
項に記載の製造方法において、溶鋼が、重量%で、V
:0.05〜0.5%、Nb:0.005〜0.2
%、Ta:0.005〜0.5%の1種または2種以上
を、さらに含有することを特徴とする請求項9に記載の
耐遅れ破壊特性に優れた高強度鋼材の製造方法。
(14) Any one of claims 11 to 13
In the production method described in the paragraph, the molten steel is V
: 0.05-0.5%, Nb: 0.005-0.2
The method for producing a high-strength steel material having excellent delayed fracture resistance according to claim 9, further comprising one or more of Ta and 0.005 to 0.5% of Ta.

【0025】(15)請求項11乃至14のいずれか1
項に記載の製造方法において、溶鋼が、重量%で、W
:0.05〜0.5%、B :0.0003〜0.0
050%の1種または2種以上を、さらに含有すること
を特徴とする請求項10に記載の耐遅れ破壊特性に優れ
た高強度鋼材の製造方法。
(15) Any one of claims 11 to 14
In the production method described in the paragraph, the molten steel is W
: 0.05-0.5%, B: 0.0003-0.0
The method for producing a high-strength steel material having excellent delayed fracture resistance according to claim 10, further comprising one or more of 050%.

【0026】 〔発明の詳細な説明〕[Detailed Description of the Invention]

【発明の属する技術分野】本発明は、耐遅れ破壊特性の
優れた鋼材、特に、1200MPa以上の引張強度を有
する耐遅れ破壊特性の優れた高強度部材用鋼材に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel material having excellent delayed fracture resistance, and more particularly to a steel material for high strength members having a tensile strength of 1200 MPa or more and having excellent delayed fracture resistance.

【0027】[0027]

【発明の実施の形態】次に、本発明の実施の形態につい
て説明する。 (水素トラップサイト)まず、本発明の目的である高強
度鋼の遅れ破壊特性の向上に対して最も重要な点である
水素トラップサイトの限定理由について述べる。遅れ破
壊を引き起こす拡散性水素は腐食あるいは電気めっきに
よって発生し、室温で鋼材中に侵入する。腐食による水
素侵入を想定してpH4.0以下の20℃の酸性溶液中
に、好ましくは6時間以上浸漬することによって、水素
を鋼材中に侵入させた場合、トラップエネルギーが25
〜50kJ/mol、望ましくは30kJ/mol〜5
0kJ/molの水素を、0.1wt.ppm以上、好
ましくは0.3wt.ppm以上、さらに好ましくは
0.5wt.ppm以上吸蔵しうるような組織に制御す
ることによって、遅れ破壊特性を向上させることが可能
になる。なお、トラップエネルギーが25〜50kJ/
molの水素は、100℃/hourの速度で鋼材を加
熱した場合、180℃以上600℃以下の温度域で、3
0kJ/mol〜50kJ/molの水素は200℃以
上600℃以下の温度域で放出ピークが得られる。遅れ
破壊特性に及ぼす水素トラップエネルギーおよび水素ト
ラップ容量の影響を解析した例を図3(a)、(b)に
示す。
Next, an embodiment of the present invention will be described. (Hydrogen Trap Site) First, the reason for limiting the hydrogen trap site, which is the most important point for improving the delayed fracture characteristics of high-strength steel, which is the object of the present invention, will be described. Diffusible hydrogen causing delayed fracture is generated by corrosion or electroplating and penetrates into steel at room temperature. When hydrogen is allowed to penetrate into steel by immersing in a 20 ° C. acidic solution having a pH of 4.0 or less, preferably for 6 hours or more, assuming hydrogen intrusion due to corrosion, the trap energy becomes 25%.
5050 kJ / mol, desirably 30 kJ / mol〜5
0 kJ / mol of hydrogen at 0.1 wt. ppm or more, preferably 0.3 wt. ppm or more, more preferably 0.5 wt. By controlling the structure to be capable of storing at least ppm, delayed fracture characteristics can be improved. Note that the trap energy is 25 to 50 kJ /
mol of hydrogen, when a steel material is heated at a rate of 100 ° C./hour, 3% in a temperature range of 180 ° C. to 600 ° C.
For hydrogen at 0 kJ / mol to 50 kJ / mol, an emission peak is obtained in a temperature range from 200 ° C. to 600 ° C. FIGS. 3A and 3B show examples of analyzing the effects of the hydrogen trap energy and the hydrogen trap capacity on the delayed fracture characteristics.

【0028】(組織形態)平均粒径が0.05μm以上
1.0μm以下であり、かつ平均粒子間隔が平均粒径の
3以上30倍以下であるような、Si,Mn,Ti,A
i,Vを主体とした酸化物、炭化物、窒化物の単独ある
いは複合析出物の少なくとも1種を有するマルテンサイ
トもしくは焼戻しマルテンサイト、あるいはベイナイト
もしくは焼戻しベイナイト組織を主体とした組織に制御
することによって、遅れ破壊特性を向上させることが可
能になる。高強度で且つ遅れ破壊特性を向上させるため
には、上記の組織中に存在する析出物は、平均粒径が
0.05μm以上1.0μm以下であり、かつ平均粒子
間隔が平均粒径の3倍以上30倍以下であることが望ま
しい。これは、平均粒径が1μm超では機械的性質の低
下の原因となるためであり、平均粒子間隔が平均粒径の
30倍超では水素トラップ効果が小さいためである。よ
り望ましい条件は、平均粒径が0.3μm以下であり、
かつ平均粒子間隔が平均粒径の10倍以下である。
(Structure morphology) Si, Mn, Ti, A having an average particle size of 0.05 to 1.0 μm and an average particle interval of 3 to 30 times the average particle size.
By controlling to a structure mainly composed of martensite or tempered martensite having at least one of oxides, carbides and nitrides alone or composite precipitates mainly composed of i and V, or bainite or tempered bainite structure, It is possible to improve delayed fracture characteristics. In order to improve the strength and the delayed fracture characteristics, the precipitates present in the above structure have an average particle size of 0.05 μm or more and 1.0 μm or less and an average particle interval of 3 μm or less of the average particle size. It is desirably at least twice and at most 30 times. This is because if the average particle size is more than 1 μm, the mechanical properties are reduced, and if the average particle size is more than 30 times the average particle size, the hydrogen trapping effect is small. More desirable conditions are that the average particle size is 0.3 μm or less,
And the average particle interval is 10 times or less of the average particle diameter.

【0029】(鋼材成分)次に、本発明の対象とする鋼
の成分の限定理由について述べる。 C:Cは鋼材の強度を確保する上で必須の元素である
が、0.15%未満では所要の強度が得られず、一方、
0.50%を超えると靭性を劣化させると共に、耐遅れ
破壊特性も劣化させるために、0.15〜0.50%の
範囲に制限した。
(Steel Material Components) Next, the reasons for limiting the components of the steel to which the present invention is applied will be described. C: C is an essential element for securing the strength of the steel material, but if it is less than 0.15%, the required strength cannot be obtained.
If the content exceeds 0.50%, the toughness is deteriorated and the delayed fracture resistance is also deteriorated. Therefore, the range is limited to 0.15 to 0.50%.

【0030】Si:Siは固溶体硬化作用によって強度
を高める作用がある。0.05%未満では前記作用が発
揮できず、一方、2.0%を超えると添加量に見合う効
果が期待できないために、0.05〜2.0%の範囲に
制限した。
Si: Si has an effect of increasing the strength by a solid solution hardening effect. If it is less than 0.05%, the above effect cannot be exerted. On the other hand, if it exceeds 2.0%, an effect commensurate with the added amount cannot be expected. Therefore, the content is limited to the range of 0.05 to 2.0%.

【0031】Mn:Mnは脱酸、脱硫のために必要であ
るばかりでなく、マルテンサイト組織を得るための焼入
性を高めるために有効な元素であるが、0.2%未満で
は上記の効果が得られず、一方、2.0%を超えるとオ
ーステナイト域加熱時に粒界に偏析し、粒界を脆化させ
ると共に、耐遅れ破壊特性を劣化させるために、0.2
〜2.0%の範囲に制限した。
Mn: Mn is an element not only necessary for deoxidation and desulfurization but also effective for enhancing hardenability for obtaining a martensitic structure. On the other hand, if the content exceeds 2.0%, segregation at the grain boundary during heating in the austenite region causes embrittlement of the grain boundary and deterioration of the delayed fracture resistance.
Limited to the range of 2.02.0%.

【0032】Al:Alは脱酸および熱処理時において
AlNを形成することによりオーステナイト粒の粗大化
を防止する効果とともにNを固定する効果も有している
が、0.005%未満ではこれらの効果が発揮されず、
0.1%を超えても効果が飽和するため0.005〜
0.1%の範囲に限定した。
Al: Al has an effect of preventing austenite grains from coarsening by forming AlN during deoxidation and heat treatment, and also has an effect of fixing N, but if it is less than 0.005%, these effects are obtained. Is not exhibited,
Even if it exceeds 0.1%, the effect is saturated,
The range was limited to 0.1%.

【0033】Ti:TiはAlと同様に脱酸および熱処
理時においてTiNを形成することによりオーステナイ
ト粒の粗大化を防止する効果と共に、Nを固定する効果
も有しているが、0.005%未満ではこれらの効果が
発揮されず、0.05%を超えても効果が飽和するため
0.005〜0.05%の範囲に限定した。
Ti: Like Ti, Ti forms TiN during deoxidation and heat treatment, thereby preventing the austenite grains from becoming coarser and also has the effect of fixing N, but 0.005% If it is less than 0.05%, these effects are not exhibited, and if it exceeds 0.05%, the effect is saturated. Therefore, the range is limited to 0.005 to 0.05%.

【0034】O:OはSi,Mn,Ti,Al、Mgと
酸化物を形成し、水素のトラップサイトとなるが、1p
pm未満ではその効果が小さく、500ppmを超えて
も効果が飽和するため、1〜500ppmに限定した。
なお、望ましい条件は5〜500ppmである。
O: O forms an oxide with Si, Mn, Ti, Al, and Mg and serves as a hydrogen trap site.
If it is less than pm, the effect is small, and if it exceeds 500 ppm, the effect is saturated.
Desirable conditions are 5 to 500 ppm.

【0035】N:Nについては、Al、V、Nb、Ti
の窒化物を形成することによって旧オーステナイト粒の
微細化、降伏強度の増加の効果がある。20ppm未満
ではその効果が小さく、150ppmを超えても効果が
飽和するため、20〜150ppmに限定した。好まし
くは50〜100ppmとする。
N: For N, Al, V, Nb, Ti
The formation of the nitride has the effect of refining the prior austenite grains and increasing the yield strength. If it is less than 20 ppm, the effect is small, and if it exceeds 150 ppm, the effect is saturated. Preferably, it is 50 to 100 ppm.

【0036】以上が本発明の対象とする鋼の基本成分で
あるが、本発明においては、さらにこの鋼に、 第1群 Mg:0.1〜100ppm 第2群 Cr:0.05〜2.0%、 Mo:0.05〜1.0%、 Ni:0.05〜5.0%、 Cu:0.05〜1.0%、 第3群 V :0.05〜0.5%、 Nb:0.005〜0.2%、 Ta:0.005〜0.5% 第4群 W :0.05〜0.5%、 B :0.0003〜0.0050% の1または2群以上の各1種以上を含有せしめることが
できる。
The above are the basic components of the steel which is the subject of the present invention. In the present invention, the steel is further added with a first group Mg: 0.1 to 100 ppm and a second group Cr: 0.05 to 2.0. 0%, Mo: 0.05 to 1.0%, Ni: 0.05 to 5.0%, Cu: 0.05 to 1.0%, Third group V: 0.05 to 0.5%, Nb: 0.005 to 0.2%, Ta: 0.005 to 0.5% Fourth group W: 0.05 to 0.5%, B: 0.0003 to 0.0050% 1 or 2 groups One or more of each of the above can be included.

【0037】Mg:Mgは脱硫効果を有すると共に、微
細な酸化物となり、Tiの酸化物あるいは窒化物を微細
に分散させる効果がある。0.1ppm以下ではこの効
果は発揮されず、100ppmを超えても効果が飽和す
るため、0.1〜100ppmに限定した。Tiの酸化
物を有効に微細化するためにTiと共存させて添加する
ことが非常に好ましい。
Mg: Mg has a desulfurizing effect and also becomes a fine oxide, and has an effect of finely dispersing an oxide or nitride of Ti. This effect is not exhibited at 0.1 ppm or less, and the effect saturates at more than 100 ppm. It is highly preferable to add Ti coexisting with Ti in order to effectively reduce the size of the oxide.

【0038】第2群の添加元素は強度を高めるために有
効な元素群である。 Cr:Crは焼入性の向上および焼戻し処理時の軟化抵
抗を増加させるために有効な元素であるが、0.05%
未満ではその効果が十分に発揮できず、一方、2.0%
を超えると靭性の劣化、冷間加工性の劣化を招くため
に、0.05〜2.0%に限定した。
The second group of additional elements is an element group effective for increasing the strength. Cr: Cr is an element effective for improving hardenability and increasing softening resistance at the time of tempering treatment.
If the amount is less than 2.0%, the effect cannot be sufficiently exhibited.
If it exceeds 0.005%, the toughness and the cold workability are deteriorated.

【0039】Mo:MoはCrと同様に強い焼戻し軟化
抵抗を有し熱処理後の引張強さを高めるために有効な元
素であるが、0.05%未満ではその効果が少なく、一
方、1.0%を超えるとその効果は飽和し、コストの上
昇を招くために、0.05〜1.0%に制限した。
Mo: Mo, like Cr, has a strong tempering softening resistance and is an effective element for increasing the tensile strength after heat treatment. If it exceeds 0%, the effect is saturated and the cost is increased, so that it is limited to 0.05 to 1.0%.

【0040】Ni:Niは高強度化に伴って劣化する延
性を向上させるとともに熱処理時の焼入性を向上させて
引張強さを増加させるために添加されるが、0.05%
未満ではその効果が少なく、一方、5.0%を超えても
添加量に見合う効果が発揮できないため、0.05〜
5.0%の範囲に制限した。
Ni: Ni is added in order to improve ductility, which deteriorates with increasing strength, to improve hardenability during heat treatment, and to increase tensile strength.
If it is less than 0.05%, the effect is small. On the other hand, if it exceeds 5.0%, the effect corresponding to the added amount cannot be exhibited.
Limited to 5.0% range.

【0041】Cu:Cuは焼戻し軟化抵抗を高めるため
に有効な元素であるが、0.05%未満では効果が発揮
できず、1.0%を超えると熱間加工性が劣化するた
め、0.05〜1.0%に制限した。
Cu: Cu is an effective element for increasing the tempering softening resistance. However, if it is less than 0.05%, the effect cannot be exhibited, and if it exceeds 1.0%, hot workability is deteriorated. 0.05% to 1.0%.

【0042】第3群の添加元素は、主に酸化物以外の微
細析出物を生成させるのに有効な元素群である。 V:Vは焼入れ処理時において炭窒化物を生成すること
により、オーステナイト粒を微細化させる効果がある
が、0.05%未満では前記作用の効果が得られず、一
方、0.5%を超えても効果が飽和するため、0.05
〜0.5%に限定した。
The third group of additional elements is a group of elements that are effective mainly for generating fine precipitates other than oxides. V: V has the effect of reducing the size of austenite grains by forming carbonitrides during the quenching treatment, but if less than 0.05%, the effect of the above-mentioned effects cannot be obtained, while 0.5% Since the effect is saturated even if it exceeds, 0.05
0.50.5%.

【0043】Nb:NbもVと同様に炭窒化物を生成す
ることにより、オーステナイト粒を微細化させるために
有効な元素であるが、0.005%未満では上記効果が
不十分であり、一方、0.2%を超えるとこの効果が飽
和するため、0.005〜0.2%に制限した。
Nb: Like V, Nb is an effective element for forming carbonitrides to refine austenite grains, but if it is less than 0.005%, the above effect is insufficient. , 0.2%, the effect saturates, so it was limited to 0.005 to 0.2%.

【0044】Ta:TaもNbと同様にオーステナイト
粒の微細化効果を有しているが、0.005%未満では
前記の効果が発揮されず、0.5%を超えて添加しても
効果が飽和するため、0.005〜0.5%に限定し
た。
Ta: Ta also has an effect of refining austenite grains like Nb. However, if it is less than 0.005%, the above-mentioned effect is not exhibited. Is saturated, so the content is limited to 0.005 to 0.5%.

【0045】第4群の元素は、粒界を強化し遅れ破壊特
性を向上させるのに有効な元素群である。 W:Wは高強度ボルトの遅れ破壊特性を向上させるため
に有効な元素であるが、0.05%未満では前記の効果
が発揮されず、一方、0.5%を超えて添加しても効果
が飽和するため、0.05〜0.5%の範囲に限定し
た。
The fourth group of elements is an effective group of elements for strengthening grain boundaries and improving delayed fracture characteristics. W: W is an element effective for improving delayed fracture characteristics of high-strength bolts. However, if it is less than 0.05%, the above-mentioned effect is not exhibited. Since the effect is saturated, the range is limited to 0.05 to 0.5%.

【0046】B:Bは粒界破壊を抑制し遅れ破壊特性を
向上させる効果がある。更に、Bはオーステナイト粒界
に偏析することにより、焼入性を著しく高めるが、0.
0003%未満では前記の効果が発揮されず、0.00
50%を超えても効果が飽和するため、0.0003〜
0.0050%に制限した。
B: B has the effect of suppressing grain boundary fracture and improving delayed fracture characteristics. Further, B segregates at austenite grain boundaries to significantly enhance hardenability.
If it is less than 0003%, the above effect is not exhibited, and
Even if it exceeds 50%, the effect is saturated.
It was limited to 0.0050%.

【0047】P、Sについては特に制限しないものの、
遅れ破壊特性を向上させる観点から、それぞれ0.01
5%以下が好ましい範囲である。
Although P and S are not particularly limited,
From the viewpoint of improving delayed fracture characteristics,
A preferred range is 5% or less.

【0048】(製造方法)製造方法は、上記成分の鋼を
Ti脱酸する工程において、Tiと酸素を上記成分規定
範囲内とすると同時に、溶鋼におけるTiと酸素のバラ
ンスを−0.04≦Ti%−O%≦0.04の関係を満
たすように調整した上で、凝固から1000℃までの冷
却を0.5℃/sec以上の冷却速度で行うものであ
る。溶鋼におけるTiと酸素のバランスを−0.04≦
Ti%−O%≦0.04の関係を満たさない場合、水素
トラップサイトとなるべき複合析出物の平均粒子間隔
が、平均粒径の3〜30倍の範囲に入らない。また、凝
固から1000℃までの冷却速度が0.5℃/sec未
満であると、複合析出物の平均粒径が1.0μmを超え
てしまう、このため冷却速度は0.5℃/sec以上と
する必要があり、好ましくは20℃/sec以上とする
ことにより、複合析出物の平均粒径を0.3μm以下と
することができる。
(Manufacturing method) In the manufacturing method, in the step of deoxidizing steel having the above components, Ti and oxygen are set within the above-specified range of the components, and at the same time, the balance between Ti and oxygen in the molten steel is -0.04 ≦ Ti. After adjusting so as to satisfy the relationship of% -O% ≦ 0.04, cooling from solidification to 1000 ° C. is performed at a cooling rate of 0.5 ° C./sec or more. -0.04 ≦ balance of Ti and oxygen in molten steel
When the relationship of Ti% -O% ≦ 0.04 is not satisfied, the average particle spacing of the composite precipitate to be a hydrogen trap site does not fall within the range of 3 to 30 times the average particle diameter. If the cooling rate from solidification to 1000 ° C. is less than 0.5 ° C./sec, the average particle size of the composite precipitate exceeds 1.0 μm. Therefore, the cooling rate is 0.5 ° C./sec or more. The average particle size of the composite precipitate can be made 0.3 μm or less by preferably setting the temperature to 20 ° C./sec or more.

【0049】[0049]

【実施例】以下、実施例により本発明の効果をさらに具
体的に説明する。表1に示す化学組成を有する供試材を
種々の条件で熱処理してマルテンサイト、焼き戻しマル
テンサイト、ベイナイト、焼戻しベイナイトの組織に調
整した後、様々な温度に加熱した。上記の試料を用い
て、機械的性質、組織形態、遅れ破壊特性について評価
した結果を表2に示す。遅れ破壊特性は、前に述べた限
界侵入水素量で評価を行い、負荷応力は引張強さの90
%の条件で実施した。なお水素チャージは、腐食による
水素侵入を想定してpH4.0以下の20℃の酸性溶液
中に100hour以上浸漬することによって行った。
EXAMPLES Hereinafter, the effects of the present invention will be described more specifically with reference to examples. Test materials having the chemical compositions shown in Table 1 were heat-treated under various conditions to adjust the structure to martensite, tempered martensite, bainite, and tempered bainite, and then heated to various temperatures. Table 2 shows the results of evaluation of the mechanical properties, microstructure, and delayed fracture characteristics using the above samples. The delayed fracture characteristics were evaluated based on the above-mentioned limit amount of invading hydrogen, and the applied stress was 90% of the tensile strength.
%. The hydrogen charge was performed by immersing in an acidic solution at 20 ° C. having a pH of 4.0 or less for 100 hours or more, assuming hydrogen intrusion due to corrosion.

【0050】[0050]

【表1】 [Table 1]

【0051】[0051]

【表2】 [Table 2]

【0052】表2の試験No.1〜12が本発明例で、
その他は比較例である。同表に見られるように本発明例
はいずれもボルトの引張強さが1200MPa以上であ
り、且つマルテンサイト、焼き戻しマルテンサイト、ベ
イナイト、焼戻しベイナイト組織である。これらは遅れ
破壊形が粒内割れとなっており、限界侵入水素量が従来
のボルトに比べ高く、遅れ破壊特性の優れたボルトが実
現されている。
Test No. 2 in Table 2 1 to 12 are examples of the present invention,
Others are comparative examples. As can be seen from the table, all of the examples of the present invention have a tensile strength of the bolt of 1200 MPa or more and have a martensite, tempered martensite, bainite, and tempered bainite structure. In these, the delayed fracture type is transgranular cracking, the critical penetration hydrogen amount is higher than that of the conventional bolt, and a bolt having excellent delayed fracture characteristics is realized.

【0053】これに対して比較例であるNo.13はC
含有量が低すぎるために本発明で目的とする1200M
Pa以上の高強度のボルトが実現できていない。
On the other hand, the comparative example No. 13 is C
1200M which is the object of the present invention because the content is too low
A high-strength bolt of Pa or higher has not been realized.

【0054】比較例であるNo.14、17はOの含有
量が規定より少ない、あるいはTiが添加されていない
ため、所定の析出物分散密度が得られておらず、水素ト
ラップ効果が確認できなかった。このため、遅れ破壊形
態が粒界割れであり、限界拡散性水素量が低く、遅れ破
壊特性が悪い例である。
The comparative example No. In Nos. 14 and 17, since the O content was lower than the specified value or Ti was not added, the predetermined precipitate dispersion density was not obtained, and the hydrogen trapping effect could not be confirmed. Therefore, the delayed fracture mode is grain boundary cracking, the critical diffusible hydrogen content is low, and the delayed fracture characteristic is poor.

【0055】比較例であるNo.15はTiの含有量が
規定より少なく、所定の析出物分散密度が得られておら
ず、水素トラップ効果が非常に小さかった。このため、
遅れ破壊形態が粒界割れであり、限界拡散性水素量が低
く、遅れ破壊特性が悪い例である。
The comparative example No. In No. 15, the Ti content was lower than the prescribed value, the predetermined precipitate dispersion density was not obtained, and the hydrogen trapping effect was extremely small. For this reason,
This is an example in which the delayed fracture mode is grain boundary cracking, the critical diffusible hydrogen content is low, and the delayed fracture characteristics are poor.

【0056】比較例であるNo.16はMnの含有量が
規定より多く、所定の析出物分散密度が得られていたに
もかかわらず、遅れ破壊形態が粒界割れであり、限界拡
散性水素量が低く、遅れ破壊特性が悪い例である。
The comparative example No. In No. 16, although the Mn content was higher than the specified value and a predetermined precipitate dispersion density was obtained, the delayed fracture mode was grain boundary cracking, the critical diffusible hydrogen content was low, and the delayed fracture characteristics were poor. It is an example.

【0057】比較例であるNo.18〜20は成分的に
は規定を満足しているが、鋳片の冷却速度が規定より小
さかったため、所定の析出物平均粒径が得られず、ま
た、その結果所定の分散密度も得られていないため、水
素トラップ効果が小さく、限界侵入水素量が低く、遅れ
破壊特性が悪い例である。
In the comparative example No. Nos. 18 to 20 satisfy the requirements in terms of components, but because the cooling rate of the slab was lower than the requirement, a predetermined average particle size of the precipitate was not obtained, and as a result, a predetermined dispersion density was also obtained. This is an example in which the hydrogen trapping effect is small, the critical amount of invading hydrogen is low, and the delayed fracture characteristics are poor.

【0058】[0058]

【発明の効果】以上の実施例からも明かなごとく、本発
明はフェライトとマルテンサイトもしくは焼き戻しマル
テンサイトの層状組織を微細化させることによって、ボ
ルトの遅れ破壊形態を粒界割れから粒内割れにさせて、
引張強さが1200MPa以上の高強度ボルトの遅れ破
壊特性を大幅に向上させることを可能にすると共に、鋼
の化学成分、熱処理条件および熱処置前の組織を最適に
選択することによって、その製造方法を確立したもので
あり、産業上の効果は極めて顕著なものがある。
As is clear from the above embodiments, the present invention reduces the layered structure of ferrite and martensite or tempered martensite to reduce the delayed fracture mode of bolts from intergranular cracks to intragranular cracks. Let me
A method for manufacturing the high-strength bolt having a tensile strength of 1200 MPa or more, by greatly improving the delayed fracture characteristics of the high-strength bolt, and by optimally selecting the chemical composition of the steel, the heat treatment conditions, and the structure before the heat treatment. The industrial effects are extremely remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】加熱時の水素放出曲線を示す図である。FIG. 1 is a diagram showing a hydrogen release curve during heating.

【図2】侵入水素量と破断時間の関係を模式的にを示す
図である。
FIG. 2 is a diagram schematically showing the relationship between the amount of invading hydrogen and the rupture time.

【図3】(a)、(b)は水素トラップエネルギー、水
素トラップ容量と限界侵入水素量の関係を示す図であ
る。
FIGS. 3A and 3B are diagrams showing a relationship between hydrogen trapping energy, hydrogen trapping capacity, and a limit intrusion hydrogen amount.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 鋼材をpH4.0以下の酸性溶液中に浸
漬した場合に、25〜50kJ/molの活性化エネル
ギーによって脱離するような水素を、0.1wt.pp
m以上吸蔵することを特徴とする遅れ破壊特性の優れた
鋼材。
1. A method in which a steel material is immersed in an acidic solution having a pH of 4.0 or less and contains 0.1 wt. pp
A steel material with excellent delayed fracture characteristics, characterized in that it absorbs at least m.
【請求項2】 pH4.0以下の酸性溶液中に浸漬した
後に、100℃/hourの速度で加熱した際に、18
0℃以上600℃以下の温度域で水素の放出ピークが得
られ、かつ放出される水素の量が0.1wt.ppm以
上であることを特徴とする遅れ破壊特性の優れた鋼材。
2. After immersion in an acidic solution having a pH of 4.0 or less and heating at a rate of 100 ° C./hour, 18
A peak of hydrogen release is obtained in a temperature range of 0 ° C. to 600 ° C., and the amount of released hydrogen is 0.1 wt. A steel material excellent in delayed fracture characteristics, characterized in that it is not less than ppm.
【請求項3】 水素トラップエネルギーが25〜50k
J/molであり、かつ水素トラップ容量が0.1w
t.ppm以上であるような、水素トラップサイトとな
りうる酸化物、炭化物、窒化物の単独あるいは複合析出
物の少なくとも1種を有することを特徴とする、遅れ破
壊特性の優れた鋼材。
3. A hydrogen trap energy of 25 to 50 k.
J / mol and a hydrogen trap capacity of 0.1 w
t. A steel material having excellent delayed fracture characteristics, characterized in that it has at least one of oxides, carbides, and nitrides that can serve as hydrogen trap sites, alone or in combination, which is at least ppm.
【請求項4】 マルテンサイトあるいは焼戻しマルテン
サイトを主体とした組織からなり、平均粒径が0.05
μm以上1.0μm以下であり、かつ平均粒子間隔が平
均粒径の3倍以上30倍以下であるような、Si,M
n,Ti,Ai,Vを主体とした酸化物、炭化物、窒化
物の単独あるいは複合析出物の少なくとも1種を有する
ことを特徴とする請求項1乃至3のいずれか1項に記載
の遅れ破壊特性の優れた鋼材
4. A structure mainly composed of martensite or tempered martensite and having an average particle size of 0.05.
Si, M having an average particle size of not less than 3 μm and not more than 30 times the average particle size.
The delayed fracture according to any one of claims 1 to 3, further comprising at least one of oxides, carbides, and nitrides mainly composed of n, Ti, Ai, and V, or composite precipitates. Steel with excellent properties
【請求項5】 ベイナイトあるいは焼戻しベイナイトを
主体とした組織からなり、平均粒径が0.05μm以上
1.0μm以下であり、かつ平均粒子間隔が平均粒径の
3倍以上30倍以下であるような、Si,Mn,Ti,
Ai,Vを主体とした酸化物、炭化物、窒化物の単独あ
るいは複合析出物の少なくとも1種を有することを特徴
とする請求項1乃至3のいずれか1項に記載の遅れ破壊
特性の優れた鋼材
5. A structure mainly composed of bainite or tempered bainite, having an average particle size of 0.05 μm or more and 1.0 μm or less, and an average particle interval of 3 to 30 times the average particle size. Na, Si, Mn, Ti,
4. An excellent delayed fracture characteristic according to any one of claims 1 to 3, characterized in that it has at least one of oxides, carbides and nitrides mainly composed of Ai and V, or composite precipitates. Steel
【請求項6】 重量%で、 C :0.15〜0.50%、 Si:0.05〜2.0%、 Mn:0.2〜2.0%、 Al:0.005〜0.1%、 Ti:0.005〜0.05%、 O :1〜500ppm、 N :20〜150ppm を含有し、残部がFe及び不可避的不純物よりなること
を特徴とする請求項1乃至5のいずれか1項に記載の耐
遅れ破壊特性の優れた高強度鋼材。
6. In% by weight, C: 0.15 to 0.50%, Si: 0.05 to 2.0%, Mn: 0.2 to 2.0%, Al: 0.005 to 0.5%. The composition according to any one of claims 1 to 5, comprising 1%, Ti: 0.005 to 0.05%, O: 1 to 500 ppm, and N: 20 to 150 ppm, with the balance being Fe and unavoidable impurities. 2. A high-strength steel material having excellent delayed fracture resistance according to item 1.
【請求項7】 重量%で、 C :0.15〜0.50%、 Si:0.05〜2.0%、 Mn:0.2〜2.0%、 Al:0.005〜0.1%、 Ti:0.005〜0.05%、 Mg:0.1〜100ppm、 O :1〜500ppm、 N :20〜150ppm を含有し、残部がFe及び不可避的不純物よりなること
を特徴とする請求項1乃至5のいずれか1項に記載の耐
遅れ破壊特性の優れた高強度鋼材。
7. In% by weight, C: 0.15 to 0.50%, Si: 0.05 to 2.0%, Mn: 0.2 to 2.0%, Al: 0.005 to 0.5%. 1%, Ti: 0.005 to 0.05%, Mg: 0.1 to 100 ppm, O: 1 to 500 ppm, N: 20 to 150 ppm, the balance being Fe and unavoidable impurities. The high-strength steel material having excellent delayed fracture resistance according to any one of claims 1 to 5.
【請求項8】 重量%で、 Cr:0.05〜2.0%、 Mo:0.05〜1.0%、 Ni:0.05〜5.0%、 Cu:0.05〜1.0% の1種または2種以上を、さらに含有することを特徴と
する請求項6もしくは7のいずれか1項に記載の耐遅れ
破壊特性の優れた高強度鋼材。
8. In weight%, Cr: 0.05-2.0%, Mo: 0.05-1.0%, Ni: 0.05-5.0%, Cu: 0.05-1. The high-strength steel material excellent in delayed fracture resistance according to any one of claims 6 and 7, further comprising one or more of 0%.
【請求項9】 重量%で、 V :0.05〜0.5%、 Nb:0.005〜0.2%、 Ta:0.005〜0.5% の1種または2種以上を含有することを特徴とする請求
項6乃至8のいずれか1項に記載の耐遅れ破壊特性の優
れた高強度鋼材。
9. One or more of V: 0.05 to 0.5%, Nb: 0.005 to 0.2%, and Ta: 0.005 to 0.5% by weight%. The high-strength steel material according to any one of claims 6 to 8, wherein the high-strength steel material has excellent delayed fracture resistance.
【請求項10】 重量%で、 W :0.05〜0.5%、 B :0.0003〜0.0050% の1種または2種以上を含有することを特徴とする請求
項6乃至9のいずれか1項に記載の耐遅れ破壊特性の優
れた高強度鋼材。
10. The composition according to claim 6, comprising one or more of W: 0.05 to 0.5% and B: 0.0003 to 0.0050% by weight. A high-strength steel material excellent in delayed fracture resistance according to any one of the above.
【請求項11】 重量%で、 C :0.15〜0.50%、 Si:0.05〜2.0%、 Mn:0.2〜2.0%、 Al:0.005〜0.1%、 N :20〜150ppm を含有し、残部がFeおよび不可避不純物からなる溶鋼
を脱酸処理によって、溶存酸素量を1〜500重量pp
mに調整後、さらにTi脱酸し、Ti含有量が0.00
5〜0.05重量%で、かつ−0.04≦Ti%−O%
≦0.04の関係を満たす溶鋼とし、該溶鋼を鋳造し、
鋳片の凝固温度から1000℃までの間を0.5℃/s
ec以上の冷却速度で冷却することを特徴とする請求項
6に記載の耐遅れ破壊特性に優れた高強度鋼材の製造方
法。
11. In% by weight, C: 0.15 to 0.50%, Si: 0.05 to 2.0%, Mn: 0.2 to 2.0%, Al: 0.005 to 0.5%. 1%, N: 20 to 150 ppm, and the balance of molten steel consisting of Fe and unavoidable impurities is deoxidized to reduce the dissolved oxygen content to 1 to 500 wt pp.
m, and further deoxidized with Ti so that the Ti content is 0.00
5 to 0.05% by weight, and -0.04 ≦ Ti% -O%
A molten steel satisfying a relationship of ≦ 0.04, casting the molten steel,
0.5 ° C / s between the solidification temperature of the slab and 1000 ° C
The method for producing a high-strength steel material excellent in delayed fracture resistance according to claim 6, wherein cooling is performed at a cooling rate of ec or more.
【請求項12】 重量%で、 C :0.15〜0.50%、 Si:0.05〜2.0%、 Mn:0.2〜2.0%、 Al:0.005〜0.1%、 Mg:0.1〜100ppm、 N :20〜150ppm を含有し、残部がFeおよび不可避不純物からなる溶鋼
を脱酸処理によって、溶存酸素量を1〜500重量pp
mに調整後、さらにTi脱酸し、Ti含有量が0.00
5〜0.05重量%で、かつ−0.04≦Ti%−O%
≦0.04の関係を満たす溶鋼とし、該溶鋼を鋳造し、
鋳片の凝固温度から1000℃までの間を0.5℃/s
ec以上の冷却速度で冷却することを特徴とする請求項
7に記載の耐遅れ破壊特性に優れた高強度鋼材の製造方
法。
12. In% by weight, C: 0.15 to 0.50%, Si: 0.05 to 2.0%, Mn: 0.2 to 2.0%, Al: 0.005 to 0.5%. 1%, Mg: 0.1 to 100 ppm, N: 20 to 150 ppm, and the balance of molten steel consisting of Fe and unavoidable impurities is deoxidized to reduce the dissolved oxygen content to 1 to 500 parts per weight pp.
m, and further deoxidized with Ti so that the Ti content is 0.00
5 to 0.05% by weight, and -0.04 ≦ Ti% -O%
A molten steel satisfying a relationship of ≦ 0.04, casting the molten steel,
0.5 ° C / s between the solidification temperature of the slab and 1000 ° C
The method for producing a high-strength steel material excellent in delayed fracture resistance according to claim 7, wherein the cooling is performed at a cooling rate of ec or more.
【請求項13】 請求項11もしくは12のいずれか1
項に記載の製造方法において、溶鋼が、重量%で、 Cr:0.05〜2.0%、 Mo:0.05〜1.0%、 Ni:0.05〜5.0%、 Cu:0.05〜1.0% の1種または2種以上を、さらに含有することを特徴と
する請求項8に記載の耐遅れ破壊特性に優れた高強度鋼
材の製造方法。
13. The method according to claim 11, wherein:
In the production method described in the section, the molten steel is, by weight%, Cr: 0.05 to 2.0%, Mo: 0.05 to 1.0%, Ni: 0.05 to 5.0%, Cu: The method for producing a high-strength steel material having excellent delayed fracture resistance according to claim 8, further comprising one or more of 0.05 to 1.0%.
【請求項14】 請求項11乃至13のいずれか1項に
記載の製造方法において、溶鋼が、重量%で、 V :0.05〜0.5%、 Nb:0.005〜0.2%、 Ta:0.005〜0.5% の1種または2種以上を、さらに含有することを特徴と
する請求項9に記載の耐遅れ破壊特性に優れた高強度鋼
材の製造方法。
14. The manufacturing method according to claim 11, wherein the molten steel is V: 0.05 to 0.5%, and Nb: 0.005 to 0.2% by weight%. The method for producing a high-strength steel material having excellent delayed fracture resistance according to claim 9, further comprising one or more of Ta: 0.005 to 0.5%.
【請求項15】 請求項11乃至14のいずれか1項に
記載の製造方法において、溶鋼が、重量%で、 W :0.05〜0.5%、 B :0.0003〜0.0050% の1種または2種以上を、さらに含有することを特徴と
する請求項10に記載の耐遅れ破壊特性に優れた高強度
鋼材の製造方法。 【0001】
15. The manufacturing method according to claim 11, wherein W: 0.05 to 0.5% and B: 0.0003 to 0.0050% by weight of the molten steel. The method for producing a high-strength steel material having excellent delayed fracture resistance according to claim 10, further comprising one or more of the following. [0001]
JP11758599A 1998-05-01 1999-04-26 Steel material excellent in delayed fracture resistance and method for producing the same Expired - Fee Related JP4267126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11758599A JP4267126B2 (en) 1998-05-01 1999-04-26 Steel material excellent in delayed fracture resistance and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-122582 1998-05-01
JP12258298 1998-05-01
JP11758599A JP4267126B2 (en) 1998-05-01 1999-04-26 Steel material excellent in delayed fracture resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000026934A true JP2000026934A (en) 2000-01-25
JP4267126B2 JP4267126B2 (en) 2009-05-27

Family

ID=26455679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11758599A Expired - Fee Related JP4267126B2 (en) 1998-05-01 1999-04-26 Steel material excellent in delayed fracture resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP4267126B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288539A (en) * 2000-04-05 2001-10-19 Nippon Steel Corp Spring steel excellent in hydrogen fatigue resistance and its production method
EP1637618A1 (en) * 2003-05-27 2006-03-22 Nippon Steel Corporation High strength thin steel sheet excellent in resistance to delayed fracture after forming and method for preparation thereof, and automobile parts requiring strength manufactured from high strength thin steel sheet
EP1746177A1 (en) 2005-07-22 2007-01-24 Nippon Steel Corporation High strength bolt excellent in delayed fracture resistance and method of production of same
JP2007031736A (en) * 2005-07-22 2007-02-08 Nippon Steel Corp Method for manufacturing high strength bolt excellent in delayed fracture resistance
JP2007154289A (en) * 2005-12-08 2007-06-21 Nippon Steel Corp METHOD FOR PRODUCING HIGH IMPACT RESISTANT STEEL PIPE EXCELLENT IN DELAYED FRACTURING CHARACTERISTIC OF 1,700 MPa OR MORE OF TENSILE STRENGTH
WO2011037210A1 (en) 2009-09-25 2011-03-31 株式会社日本製鋼所 High-strength high-toughness cast steel material and manufacturing method therefor
JP2013127104A (en) * 2011-12-19 2013-06-27 Kobe Steel Ltd Steel material superior in spalling resistance for rolling roll for galvanized steel sheet, and rolling roll for galvanized steel sheet
US8557060B2 (en) 2003-02-20 2013-10-15 Nippon Steel & Sumitomo Metal Corporation High-strength steel material with excellent hydrogen embrittlement resistance
WO2014142238A1 (en) * 2013-03-14 2014-09-18 新日鐵住金株式会社 High strength steel plate with excellent delayed destruction resistance characteristics and low temperature toughness, and high strength member manufactured using same
WO2018235962A1 (en) 2017-06-23 2018-12-27 新日鐵住金株式会社 High-strength steel member
CN115386784A (en) * 2022-09-15 2022-11-25 哈尔滨工程大学 Metallurgical method for effectively improving hydrogen damage resistance of pipeline steel

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288539A (en) * 2000-04-05 2001-10-19 Nippon Steel Corp Spring steel excellent in hydrogen fatigue resistance and its production method
US8557060B2 (en) 2003-02-20 2013-10-15 Nippon Steel & Sumitomo Metal Corporation High-strength steel material with excellent hydrogen embrittlement resistance
EP1637618A1 (en) * 2003-05-27 2006-03-22 Nippon Steel Corporation High strength thin steel sheet excellent in resistance to delayed fracture after forming and method for preparation thereof, and automobile parts requiring strength manufactured from high strength thin steel sheet
EP1637618A4 (en) * 2003-05-27 2006-10-18 Nippon Steel Corp High strength thin steel sheet excellent in resistance to delayed fracture after forming and method for preparation thereof, and automobile parts requiring strength manufactured from high strength thin steel sheet
EP1746177A1 (en) 2005-07-22 2007-01-24 Nippon Steel Corporation High strength bolt excellent in delayed fracture resistance and method of production of same
JP2007031736A (en) * 2005-07-22 2007-02-08 Nippon Steel Corp Method for manufacturing high strength bolt excellent in delayed fracture resistance
JP4485424B2 (en) * 2005-07-22 2010-06-23 新日本製鐵株式会社 Manufacturing method of high-strength bolts with excellent delayed fracture resistance
JP2007154289A (en) * 2005-12-08 2007-06-21 Nippon Steel Corp METHOD FOR PRODUCING HIGH IMPACT RESISTANT STEEL PIPE EXCELLENT IN DELAYED FRACTURING CHARACTERISTIC OF 1,700 MPa OR MORE OF TENSILE STRENGTH
JP4621123B2 (en) * 2005-12-08 2011-01-26 新日本製鐵株式会社 Method for producing a high impact resistant steel pipe excellent in delayed fracture characteristics with a tensile strength of 1700 MPa or more
US9797034B2 (en) 2009-09-25 2017-10-24 The Japan Steel Works, Ltd. High strength and high toughness cast steel material and method for producing the same
WO2011037210A1 (en) 2009-09-25 2011-03-31 株式会社日本製鋼所 High-strength high-toughness cast steel material and manufacturing method therefor
JP2013127104A (en) * 2011-12-19 2013-06-27 Kobe Steel Ltd Steel material superior in spalling resistance for rolling roll for galvanized steel sheet, and rolling roll for galvanized steel sheet
WO2014142238A1 (en) * 2013-03-14 2014-09-18 新日鐵住金株式会社 High strength steel plate with excellent delayed destruction resistance characteristics and low temperature toughness, and high strength member manufactured using same
JP5880777B2 (en) * 2013-03-14 2016-03-09 新日鐵住金株式会社 High-strength steel sheet with excellent delayed fracture resistance and low-temperature toughness, and high-strength members manufactured using it
US9353424B2 (en) 2013-03-14 2016-05-31 Nippon Steel & Sumitomo Metal Corporation High strength steel sheet excellent in delayed fracture resistance and low temperature toughness, and high strength member manufactured using the same
JPWO2014142238A1 (en) * 2013-03-14 2017-02-16 新日鐵住金株式会社 High-strength steel sheet with excellent delayed fracture resistance and low-temperature toughness, and high-strength members manufactured using it
RU2625366C2 (en) * 2013-03-14 2017-07-13 Ниппон Стил Энд Сумитомо Метал Корпорейшн High impact steel sheet with high stability to delayed failure and low-temperature shock viscosity, and high impact part, manufactured with its use
CN105189798A (en) * 2013-03-14 2015-12-23 新日铁住金株式会社 High strength steel plate with excellent delayed destruction resistance characteristics and low temperature toughness, and high strength member manufactured using same
WO2018235962A1 (en) 2017-06-23 2018-12-27 新日鐵住金株式会社 High-strength steel member
CN115386784A (en) * 2022-09-15 2022-11-25 哈尔滨工程大学 Metallurgical method for effectively improving hydrogen damage resistance of pipeline steel
CN115386784B (en) * 2022-09-15 2023-08-01 哈尔滨工程大学 Metallurgical method for effectively improving hydrogen damage resistance of pipeline steel

Also Published As

Publication number Publication date
JP4267126B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
JP5177323B2 (en) High-strength steel material and high-strength bolt excellent in delayed fracture resistance
JP5135557B2 (en) High-strength steel material and high-strength bolt excellent in delayed fracture resistance
JP4267376B2 (en) High strength PC steel wire with excellent delayed fracture characteristics and method for producing the same
KR20070047691A (en) Spring steel with excellent resistance to hydrogen embrittlement and steel wire and spring obtained from the steel
JP2010132945A (en) High-strength thick steel plate having excellent delayed fracture resistance and weldability, and method for producing the same
JPH05117804A (en) Bearing steel having excellent workability and rolling fatigue property
JP4267126B2 (en) Steel material excellent in delayed fracture resistance and method for producing the same
JP3494799B2 (en) High strength bolt excellent in delayed fracture characteristics and method of manufacturing the same
JP4411253B2 (en) Hot forged parts with excellent delayed fracture resistance and method for producing the same
JP3793391B2 (en) High strength bolt excellent in delayed fracture resistance with a tensile strength of 1300 MPa or more and method for producing the same
JPH10110247A (en) Spring steel excellent in hydrogen embrittlement resistance and fatigue characteristic
JP4430559B2 (en) High strength bolt steel and high strength bolt with excellent delayed fracture resistance
JP5233307B2 (en) High-strength steel and metal bolts with excellent corrosion resistance and cold forgeability that prevent hydrogen from entering the environment
JP2020084276A (en) Steel for high-strength bolt and method for manufacturing the same
EP1832666B1 (en) High-strength steel material with excellent hydrogen embrittlement resistance
JP4146271B2 (en) High strength PC steel wire with excellent delayed fracture resistance and method for producing the same
JP6992535B2 (en) High-strength bolts and their manufacturing methods
JP3644217B2 (en) Induction-hardened parts and manufacturing method thereof
JP3358679B2 (en) High tension bolt with excellent delayed fracture resistance
JPH10121201A (en) High strength spring excellent in delayed fracture resistance
JP4975261B2 (en) Manufacturing method of high strength steel with excellent delayed fracture resistance
JPH11270531A (en) High strength bolt having good delayed fracture characteristic and manufacture thereof
JP4515347B2 (en) Method for determining fatigue resistance of spring steel wires and spring steel wires
JPH06185513A (en) High strength bolt excellent in delay destruction resistance characteristic and manufacture thereof
JP4261760B2 (en) High strength spring steel excellent in hydrogen fatigue fracture resistance and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090218

R151 Written notification of patent or utility model registration

Ref document number: 4267126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees