JPH10121201A - High strength spring excellent in delayed fracture resistance - Google Patents

High strength spring excellent in delayed fracture resistance

Info

Publication number
JPH10121201A
JPH10121201A JP27103096A JP27103096A JPH10121201A JP H10121201 A JPH10121201 A JP H10121201A JP 27103096 A JP27103096 A JP 27103096A JP 27103096 A JP27103096 A JP 27103096A JP H10121201 A JPH10121201 A JP H10121201A
Authority
JP
Japan
Prior art keywords
less
delayed fracture
amount
strength
strength spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27103096A
Other languages
Japanese (ja)
Inventor
Masaki Shimotsusa
正貴 下津佐
Nobuhiko Ibaraki
信彦 茨木
Takenori Nakayama
武典 中山
Takashi Iwata
多加志 岩田
Hiroshi Kakou
浩 家口
Shigenobu Nanba
茂信 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP27103096A priority Critical patent/JPH10121201A/en
Publication of JPH10121201A publication Critical patent/JPH10121201A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high strength spring having extremely excellent delayed fracture resistance even if strength is increased to such a degree as to have >=HRC 50 material hardness after quench-and-temper treatment and also stress is increased. SOLUTION: This high strength spring has a tempered martensitic structure having >=HRC 50 hardness after quench-and-temper treatment. At this time, the amount of segregation of P in old austenitic grain boundaries, fractured in a chamber of the Auger apparatus and measured with this apparatus, is controlled to <=3.0 atomic %. As to steel components, it is desirable that this steel contains, from the standpoint of strength and toughness, 0.3-0.7% C, 0.1-3.0% Si, and 0.1-2.0% Mn and also contains 0.001-0.5% Ti and/or 0.001-0.5% Nb.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車用の懸架ば
ねや内燃機関の弁ばね等に使用される高強度ばねに関
し、詳細にはばねの要求特性として重要な耐遅れ破壊性
に優れた高強度ばねに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength spring used for a suspension spring for an automobile, a valve spring for an internal combustion engine, and the like. It relates to a strength spring.

【0002】[0002]

【従来の技術】ばねを製造するにあたっては、JIS
(G 3565〜3567及び4801等) に規定されているばね用鋼
に熱間圧延を施すことにより線材とした圧延材を用い
て、これを所定の線径まで引抜加工しオイルテンパー処
理を行ってからばね加工する方法(冷間成形)を採用す
るか、或いは上記圧延材に引抜加工を施した後に加熱し
てばね成形し次いで焼入焼戻しを行う方法(熱間成形)
等を採用することが一般的である。
2. Description of the Related Art When manufacturing springs, JIS
(G 3565-3567 and 4801 etc.) Using a rolled material as a wire by applying hot rolling to the spring steel specified in, drawn out to a predetermined wire diameter and subjected to oil tempering Method of applying cold working to the rolled material, or subjecting the rolled material to drawing and then heating to form a spring and then quenching and tempering (hot forming)
It is common to adopt such as.

【0003】近年では、各種部材の軽量化の要望を背景
にして、ばねに関しても単位重量当りの高応力化が求め
られており、例えば焼入焼戻し後の強度で1800MP
a以上の高強度ばね用鋼が要望されている。但し、ばね
用鋼の強度が高まり硬度が上昇するとばね表面に欠陥が
発生し易くなり、しかも欠陥感受性が高まり周囲からの
悪影響も受け易くなる。特に腐食環境下では、表面欠陥
に起因して表面に腐食ピットが形成されるとこれが応力
集中源となり、更に腐食反応において生成される水素を
吸蔵することにより素材が脆化し易くなり、それに伴い
粒界において遅れ破壊が生じ早期切損を招くという問題
が指摘されていた。
[0003] In recent years, against the background of the demand for weight reduction of various members, high stress per unit weight of springs has been required. For example, the strength after quenching and tempering is 1800 MPa.
There is a demand for high-strength steels for springs of a or higher. However, when the strength of the spring steel is increased and the hardness is increased, defects are easily generated on the surface of the spring, and moreover, the sensitivity of the defects is increased and the surroundings are easily affected. Particularly in a corrosive environment, when corrosion pits are formed on the surface due to surface defects, they become a source of stress concentration, and furthermore, the material is easily embrittled by absorbing hydrogen generated in the corrosion reaction, and as a result, the particles become grainy. It has been pointed out that delayed destruction in the world causes early cut-off.

【0004】この様な遅れ破壊を防止する方法として
は、水素による脆化防止を目的として結晶粒を微細化す
ることや、微細な化合物を析出させる等の方法が有効で
あることから、炭窒化物形成元素を添加することが考え
られる。
[0004] As a method of preventing such delayed fracture, it is effective to reduce the size of crystal grains for the purpose of preventing embrittlement by hydrogen or to precipitate a fine compound. It is conceivable to add a substance forming element.

【0005】しかしながら、炭窒化物形成元素を添加す
ることにより、巨大な介在物が出現し易く、ばねの要求
特性である耐久性を劣化させる傾向があり、また腐食環
境で用いられる懸架ばねにおいては、特性改善に大きな
効果が認められず、ばねの高応力化は期待される程進ん
でいないのが現状である。
However, by adding a carbonitride forming element, huge inclusions are likely to appear, and the durability, which is a required property of the spring, tends to deteriorate. In addition, in a suspension spring used in a corrosive environment, At present, no great effect has been observed in improving the characteristics, and the increase in the stress of the spring has not progressed as expected.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記事情に着
目してなされたものであって、焼入れ焼戻し後の素材硬
さでHRC50以上に高強度化・高応力化しても非常に
優れた耐遅れ破壊性を発揮する高強度ばねを提供しよう
とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has a very excellent material resistance after quenching and tempering. An object of the present invention is to provide a high-strength spring exhibiting delayed fracture.

【0007】[0007]

【課題を解決するための手段】上記課題を解決した本発
明の高強度ばねとは、焼入れ焼戻し処理後の硬さがHR
C50以上である焼戻しマルテンサイト組織を有する高
強度ばねにおいて、オージェ装置のチャンバー内で破壊
させ当該装置で測定された旧オーステナイト粒界のP偏
析量が3.0at%以下であることを要旨とするもので
あり、鋼成分としては、強度及び靭性の観点からC :
0.3〜0.7%、Si:0.1〜3.0%、Mn:
0.1〜2.0%を含有すると共に、Ti:0.001
〜0.5%及び/又はNb:0.001〜0.5%を含
有することが望ましい。
A high-strength spring according to the present invention which has solved the above-mentioned problems has a hardness of HR after quenching and tempering.
In a high-strength spring having a tempered martensite structure of C50 or more, the point is that the amount of P segregation of the old austenite grain boundary measured in the chamber of an Auger device and broken down by the device is 3.0 at% or less. And as a steel component, from the viewpoint of strength and toughness, C:
0.3-0.7%, Si: 0.1-3.0%, Mn:
0.1 to 2.0%, and Ti: 0.001
-0.5% and / or Nb: 0.001-0.5%.

【0008】また耐遅れ破壊性の向上を目的として、V
を1.0%以下添加することが推奨され、或いはTa:
0.1%以下、Zr:0.1%以下、Hf:0.1%以
下よりなる群から選択される1種以上を含有させても良
い。
For the purpose of improving delayed fracture resistance, V
Is recommended to be added to 1.0% or less, or Ta:
One or more selected from the group consisting of 0.1% or less, Zr: 0.1% or less, and Hf: 0.1% or less may be contained.

【0009】更に鋼成分としてCr:5.0%以下を含
有させれば、耐食性の向上に有効である。また、Ni:
3.0%以下、Mo:3.0%以下、Cu:1.0%以
下よりなる群から選択される1種以上を含有させれば、
強度上昇及び耐食性向上に有効である。
Further, if Cr: 5.0% or less is contained as a steel component, it is effective in improving corrosion resistance. Also, Ni:
3.0% or less, Mo: 3.0% or less, and Cu: 1.0% or less.
Effective for increasing strength and improving corrosion resistance.

【0010】更に、耐へたり性の向上を目的としてAl
を1.0%以下含有させても良く、或いは焼入性の向上
の為にBを50ppm以下の範囲で含有させても良い。
また、強度や耐食性の向上を目的として、Coを5.0
%以下添加しても良く、Wを1.0%以下含有させても
良い。
[0010] Further, for the purpose of improving sag resistance, Al
May be contained in an amount of 1.0% or less, or B may be contained in a range of 50 ppm or less for improving hardenability.
In addition, for the purpose of improving strength and corrosion resistance, 5.0% Co is used.
% Or less, and may contain 1.0% or less of W.

【0011】[0011]

【発明の実施の形態】本発明者らは、腐食環境における
耐久性の向上を目的として、腐食により発生する水素に
対する抵抗力の強い懸架ばね用鋼の研究を鋭意重ねてき
た。その結果、焼入れ焼戻し処理後の素材の硬さがHR
C50以上である焼戻しマルテンサイト組織を有する鋼
の耐遅れ破壊性を向上させるには、Tiなどの炭窒化物
形成元素を含有させることにより微細な炭窒硫化物を分
散して析出させるだけでは十分ではなく、Pの粒界偏析
を積極的に防止して粒界の強度を高めることによっては
じめて実現できることを突き止め、本発明に想到した。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have intensively studied a spring steel having a high resistance to hydrogen generated by corrosion for the purpose of improving durability in a corrosive environment. As a result, the hardness of the material after quenching and tempering is HR
In order to improve the delayed fracture resistance of steel having a tempered martensitic structure of C50 or more, it is sufficient to disperse and precipitate fine carbonitrides by adding a carbonitride forming element such as Ti. Instead, the present inventors have found out that this can be realized only by positively preventing the segregation of P at the grain boundaries and increasing the strength of the grain boundaries, and have reached the present invention.

【0012】水素による脆性破壊は腐食反応により発生
した水素が鋼中に侵入して、旧オーステナイト粒界を拡
散することにより、粒界の結合エネルギーを弱めること
が大きな要因である。本発明ではTi等の炭窒化物形成
元素を添加することにより、炭窒化物を微細に析出させ
水素のトラップサイトとして作用させることにより耐遅
れ破壊性の改善を図るものである。但し、本発明では拡
散性水素に対する上記炭窒硫化物のトラップ効果を有効
に発揮させる上で、粒界の強度を高めることが不可欠で
ある。粒界強度を低下させる原因のひとつは、Pの粒界
偏析であると言われており、Pを多く含む鋼の、延性や
靭性が低く、焼戻し脆性を誘発し易いのは、粒界にPが
偏析することに関係があると考えられている。
The major cause of the brittle fracture due to hydrogen is that the hydrogen generated by the corrosion reaction penetrates into the steel and diffuses the old austenite grain boundaries, thereby weakening the bond energy of the grain boundaries. In the present invention, by adding a carbonitride forming element such as Ti, the carbonitride is finely precipitated and acts as a hydrogen trap site to improve delayed fracture resistance. However, in the present invention, it is indispensable to increase the strength of the grain boundary in order to effectively exhibit the above-mentioned effect of trapping carbon sulfide on diffusible hydrogen. It is said that one of the causes of lowering the grain boundary strength is the segregation of P at the grain boundary. The steel containing a large amount of P has low ductility and low toughness and easily induces temper embrittlement due to the presence of P at the grain boundary. Is thought to be related to segregation.

【0013】しかしながら、従来の方法では必ずしも明
確な相関関係が明らかにされていなかった。その理由
は、従来の方法では、粒界のP含有量を測定するにあた
ってはX線回折で分析することが一般的であって、粒界
に偏析するPのみを測定することは困難であり、結晶粒
内のPまでも測定することに起因するものと考えられ
る。
However, the conventional method has not always revealed a clear correlation. The reason is that in the conventional method, when measuring the P content of the grain boundary, it is general to analyze by X-ray diffraction, and it is difficult to measure only P segregated at the grain boundary, This is considered to be due to the measurement of P in the crystal grains.

【0014】そこで本発明者らは、オージェ装置のチャ
ンバー内で焼入焼戻を行った鋼に水素を吸蔵させて破壊
する粒界破壊を行った後、旧オーステナイト粒界のP量
を求めるという方法により定量的に評価し、鋼中のP量
が遅れ破壊に及ぼす影響と、旧オーステナイト粒界(以
下、単に粒界という)のP偏析量が遅れ破壊に及ぼす影
響について調べた。その結果、遅れ破壊感受性は、鋼中
全体のP量とは相関が乏しく、粒界のPの偏析量が遅れ
破壊感受性に本質的に悪影響を及ぼすことを見出した。
図1に、後述する実施例において用いたばね用鋼No.
1,2,3について粒界P偏析量を変化させて遅れ破壊
寿命を調べた結果を示す。
Therefore, the inventors of the present invention determine that the amount of P in the former austenite grain boundary is obtained after the steel which has been quenched and tempered in the chamber of the Auger apparatus undergoes grain boundary destruction in which hydrogen is absorbed and destroyed. The effect of P content in steel on delayed fracture and the effect of P segregation of prior austenite grain boundaries (hereinafter simply referred to as grain boundaries) on delayed fracture were investigated by a method. As a result, it has been found that the delayed fracture susceptibility is poorly correlated with the total P content in the steel, and that the segregation amount of P at the grain boundaries has a substantial adverse effect on the delayed fracture susceptibility.
FIG. 1 shows spring steel Nos. Used in Examples described later.
The results of examining delayed fracture life for 1, 2, and 3 by changing the amount of segregation of grain boundary P are shown.

【0015】粒界P偏析量が3.0at%以下にするこ
とにより耐遅れ破壊性を高めることが可能であることが
分かる。粒界P偏析量は2.0at%以下が望ましく、
1.0at%以下であればより望ましい。特に、C量が
多い鋼等であって素材靭性が低い鋼においては、Pの粒
界偏析量が1.0at%以上でその傾向は顕著になる。
尚、破壊形態はいずれも旧オーステナイト粒界における
粒界破壊であった。
It is understood that the delayed fracture resistance can be enhanced by setting the segregation amount of the grain boundary P to 3.0 at% or less. The segregation amount of grain boundary P is desirably 2.0 at% or less,
It is more preferable that the content is 1.0 at% or less. In particular, in steels having a high C content and low material toughness, the tendency becomes remarkable when the grain boundary segregation amount of P is 1.0 at% or more.
Note that the fracture modes were all grain boundary fractures at the former austenite grain boundary.

【0016】本発明は、Pの粒界偏析量を制御する方法
を限定するものではないが、以下の方法を組み合わせる
ことで達成可能である。Pの粒界偏析量は、成分組成と
共に、結晶粒の大きさによっても左右される。
The present invention does not limit the method for controlling the amount of segregation of P at the grain boundary, but can be achieved by combining the following methods. The amount of P segregated at the grain boundary depends on the size of the crystal grains as well as the component composition.

【0017】鋼中のP量は必ずしも耐遅れ破壊性と相関
しないが、Pの粒界偏析量を少なくする上で全体のP量
を低減しておくことは有効であり、製鋼段階で鋼中のP
量を低減しておくことが推奨される。具体的には製鋼段
階における鋼中のP量を0.030重量%以下とするこ
とが望ましく、0.015重量%以下に制御することが
より望ましい。
Although the amount of P in steel does not always correlate with delayed fracture resistance, it is effective to reduce the amount of P as a whole in reducing the amount of segregation of P at the grain boundary. P
It is recommended that the amount be reduced. Specifically, the amount of P in the steel at the steelmaking stage is preferably set to 0.030% by weight or less, and more preferably controlled to 0.015% by weight or less.

【0018】また結晶粒径が小さくなるほど、Pの粒界
偏析量が大きくなっても遅れ破壊をおこしにくく、一方
結晶粒径が大きい場合には、Pの粒界偏析量が少ない場
合でも遅れ破壊が起こり易い。従って、旧オーステナイ
ト結晶粒径は50μm以下であることが望ましく、20
μm以下であればより望ましい。また、焼入温度が高く
なり過ぎると旧オーステナイト結晶粒径が大きくなり、
しかもPの粒界偏析量も大きくなって遅れ破壊を起こし
易くなる。従って焼入温度は1000℃以下のオーステ
ナイト化温度域とすることが望ましい。
Further, as the crystal grain size becomes smaller, delayed fracture is less likely to occur even if the amount of P grain boundary segregation becomes larger. On the other hand, when the crystal grain size is larger, delayed fracture occurs even when the amount of P grain boundary segregation is smaller. Is easy to occur. Therefore, the prior austenite crystal grain size is desirably 50 μm or less,
It is more desirable that the thickness be less than μm. Also, if the quenching temperature is too high, the prior austenite crystal grain size increases,
In addition, the segregation amount of P at the grain boundary is increased, and delayed fracture is likely to occur. Therefore, the quenching temperature is desirably in the austenitizing temperature range of 1000 ° C. or less.

【0019】また、熱間圧延時やばね製造時のオーステ
ナイト化温度を1000℃以下にすることで、Pの粒界
偏析は防止できる。また、これによってオーステナイト
結晶粒径が粗大にならず、結果的に粒界強度の低下を防
止することができる。次に、本発明に係る高強度ばね用
鋼における化学成分の限定理由を説明する。
The grain boundary segregation of P can be prevented by setting the austenitizing temperature at the time of hot rolling or spring production to 1000 ° C. or less. This also prevents the austenite crystal grain size from becoming coarse, thereby preventing a decrease in grain boundary strength. Next, the reasons for limiting the chemical components in the high-strength spring steel according to the present invention will be described.

【0020】C:0.3〜0.7% Cは焼入焼戻後の強度(硬さ)を確保するために不可欠
な元素であり、0.3%以上必要であり、0.35%以
上であると好ましい。但し、多量に添加すると焼入れ焼
戻し後の靭性・延性が劣化するのみならず、耐食性にも
悪影響を及ぼすことになるので、上限を0.7%とし
た。0.55%以下が好ましく、0.5%以下であると
より好ましい。
C: 0.3 to 0.7% C is an element indispensable for securing strength (hardness) after quenching and tempering, and is required to be 0.3% or more, and 0.35% It is preferable that it is above. However, if added in a large amount, not only deteriorates the toughness and ductility after quenching and tempering, but also adversely affects the corrosion resistance, so the upper limit was made 0.7%. It is preferably at most 0.55%, more preferably at most 0.5%.

【0021】Si:0.1〜3.0% Siは固溶強化元素であり、少な過ぎるとマトリックス
の強度が不十分になるので、0.1%以上必要であり、
1.0%以上であると好ましい。しかしながら、過剰に
添加すると、焼入れ加熱時に炭化物の溶け込みが不十分
となるので、均一にオーステナイト化させるには高温度
域での加熱が必要になり、結果として、表面に過度の脱
炭が生じてばねの疲労特性が悪くなる。従ってSi添加
量は3.0%以下であることが必要であり、2.5%以
下であると望ましく、2.0%以下であるとより好まし
い。
Si: 0.1 to 3.0% Si is a solid solution strengthening element. If the content is too small, the strength of the matrix becomes insufficient.
It is preferable that it is 1.0% or more. However, if added in excess, the carbides will not sufficiently dissolve during quenching and heating, so heating in a high temperature range is required to uniformly austenitize, resulting in excessive decarburization on the surface. The fatigue characteristics of the spring deteriorate. Therefore, the Si addition amount needs to be 3.0% or less, desirably 2.5% or less, and more preferably 2.0% or less.

【0022】Mn:0.05〜2.0% Mnは焼入れ性を向上させる元素であるので、0.05
%以上添加することが必要である。多過ぎると、焼入れ
時に残留オーステナイトが多量に出現して所定の強度及
び硬度を得られなくなるので2.0%を上限とした。更
に、Mnは遅れ破壊を助長する傾向があるので、特にC
やSi等の元素を多く含む場合(高強度・高硬度の場
合)は、1.0%以下とすることが好ましく、0.5%
以下であればより望ましい。
Mn: 0.05 to 2.0% Since Mn is an element for improving hardenability, 0.05 %
% Must be added. If the amount is too large, a large amount of retained austenite appears during quenching and it becomes impossible to obtain a predetermined strength and hardness. Therefore, the upper limit is set to 2.0%. Furthermore, since Mn tends to promote delayed fracture,
In the case of containing many elements such as Si and Si (in the case of high strength and high hardness), the content is preferably 1.0% or less, and 0.5% or less.
The following is more desirable.

【0023】Ti:0.001〜0.5% Nb:0.001〜0.5% Ti及びNbは、粒内や粒界に超微細な炭窒化物を多量
に析出させる炭窒化物形成元素であり、Pの粒界偏析が
少ない場合には遅れ破壊性に有害な拡散性水素のトラッ
プサイトとして作用することにより、耐遅れ破壊性を格
段に向上させることができる。更に上記炭窒化物によっ
て結晶粒の微細化が図れ、素材の靭性を向上することが
可能であり、しかもばねの耐へたり性を改善できる。こ
のような効果は0.001%以上の添加で認められる
が、より顕著な効果を発揮させるためには、0.005
%以上添加することが望ましい。
Ti: 0.001 to 0.5% Nb: 0.001 to 0.5% Ti and Nb are carbonitride forming elements that precipitate a large amount of ultrafine carbonitrides in grains and at grain boundaries. When P segregation at the grain boundary is small, by acting as a trap site for diffusible hydrogen harmful to delayed fracture, the delayed fracture resistance can be remarkably improved. Further, the carbonitride can reduce the size of crystal grains, improve the toughness of the material, and improve the sag resistance of the spring. Such an effect is observed when the content is 0.001% or more. However, in order to exhibit a more remarkable effect, 0.005% or more is required.
% Or more is desirable.

【0024】但し、添加量が多過ぎる場合には凝固過程
で粗大な炭窒化物が生成し、粗大な炭窒化物が多量に形
成されると、ばねの疲労特性は著しく劣化する。従っ
て、0.5%以下にすることが必要であり、0.3%以
下とすることが好ましく、0.1%以下であればより望
ましい。
However, if the amount of addition is too large, coarse carbonitrides are formed during the solidification process, and if a large amount of coarse carbonitrides is formed, the fatigue characteristics of the spring are significantly deteriorated. Therefore, the content needs to be 0.5% or less, preferably 0.3% or less, and more preferably 0.1% or less.

【0025】V :1.0%以下(0%を含まない) Ta:0.1%以下(0%を含まない) Zr:0.1%以下(0%を含まない) Hf:0.1%以下(0%を含まない) V,Ta,Zr,Hfはいずれも、耐遅れ破壊性に対し
て同様の作用効果を発揮するものであり、0.001%
以上添加することが望ましく、0.005%以上の添加
がより望ましい。但し、上限値は元素の種類に応じて設
定されるべきであり、Vの場合には、比較的多量に添加
することにより効果は発揮されるので、その添加量は、
1.0%以下の範囲であれば、疲労折損に有害な粗大且
つ多量な介在物を生成することなく、上記効果を得るこ
とができる。また、Ta,Zr,Hfに関しては、多過
ぎると粗大な炭窒化物が生成されることにより疲労特性
が損なわれるので上限値を0.1%以下に設定すること
が望ましい。更に、本発明では、Cr,Ni,Mo,C
u,Al,B,Co,W等の元素を添加することによっ
て耐疲労破壊性以外の特性の向上も可能である。
V: 1.0% or less (excluding 0%) Ta: 0.1% or less (excluding 0%) Zr: 0.1% or less (excluding 0%) Hf: 0.1 % Or less (excluding 0%) V, Ta, Zr, and Hf all exert the same effect on delayed fracture resistance, and 0.001%
It is desirable to add above, and more desirable to add 0.005% or more. However, the upper limit should be set according to the type of element. In the case of V, the effect is exhibited by adding a relatively large amount.
When the content is in the range of 1.0% or less, the above-described effect can be obtained without generating coarse and large amounts of inclusions harmful to fatigue breakage. Further, with respect to Ta, Zr, and Hf, if the amount is too large, coarse carbonitrides are generated, thereby impairing the fatigue characteristics. Therefore, it is desirable to set the upper limit to 0.1% or less. Further, in the present invention, Cr, Ni, Mo, C
By adding elements such as u, Al, B, Co, and W, it is possible to improve characteristics other than fatigue fracture resistance.

【0026】Cr:5.0%以下(0%を含まない) Crは耐食性向上作用を有すると共に、上記Mnと同
様、焼入れ性の向上に寄与する元素である。この様な作
用を有効に発揮させるには0.05%以上を添加するこ
とが望ましい。但し、多過ぎると焼入れ加熱時に炭化物
が溶け込みにくくなり、かえって強度・硬さが低下する
こととなるので、5.0%以下にすることが必要であ
る。またCrは素材靭性を低下させる作用も有している
ので、上限は1.5%とすることが推奨される。Ni,
Mo,Cuは強度上昇及び耐食性向上を目的として添加
しても良い。
Cr: 5.0% or less (excluding 0%) Cr is an element having an effect of improving corrosion resistance and contributing to an improvement in hardenability similarly to Mn. In order to effectively exert such an effect, it is desirable to add 0.05% or more. However, if the amount is too large, the carbides are less likely to dissolve during quenching and heating, and the strength and hardness are rather reduced. Therefore, the content needs to be 5.0% or less. Since Cr also has the effect of lowering the material toughness, it is recommended that the upper limit be 1.5%. Ni,
Mo and Cu may be added for the purpose of increasing strength and improving corrosion resistance.

【0027】Ni:3.0%以下(0%を含まない) Niは焼入れ焼戻し後の素材靭性および耐食性を向上さ
せる作用を有すると共に、ばね特性として重要なへたり
特性を大幅に改善する作用も有する。これらの作用を有
効に発揮させるには、0.05%以上の添加が好まし
い。但し、添加量が多過ぎても焼入性が増大し、圧延後
に過冷組織が出現し易くなるので、上限は3.0%とす
ることが望ましく、1.0%以下がより好ましい。
Ni: 3.0% or less (excluding 0%) Ni has an effect of improving the toughness and corrosion resistance of the material after quenching and tempering, and also has an effect of significantly improving the sag property, which is important as a spring property. Have. In order to effectively exert these effects, it is preferable to add 0.05% or more. However, even if the addition amount is too large, the hardenability increases and a supercooled structure easily appears after rolling, so the upper limit is preferably 3.0%, more preferably 1.0% or less.

【0028】Mo:3.0%以下(0%を含まない) Moは焼入性を向上させると共に、腐食溶解時にモリブ
デン酸イオンを形成して耐食性を高める元素である。ま
た、粒界強度を高めて耐遅れ破壊性を改善する効果も認
められる。焼入性及び耐遅れ破壊性を向上させるために
は少なくとも0.05%以上の添加が必要となる。3.
0%以上添加してもその効果は飽和するばかりでなく、
高価な元素であるため、3.0%以下とした。
Mo: 3.0% or less (excluding 0%) Mo is an element that improves hardenability and forms molybdate ions during corrosion dissolution to enhance corrosion resistance. Further, the effect of increasing the grain boundary strength to improve delayed fracture resistance is also recognized. In order to improve hardenability and delayed fracture resistance, it is necessary to add at least 0.05% or more. 3.
Addition of 0% or more not only saturates the effect,
Since it is an expensive element, the content is set to 3.0% or less.

【0029】Cu:1.0%以下(0%を含まない) Cuは電気化学的に鉄より貴な元素であり、生成錆を緻
密化して耐食性を高める作用を有する。この様な作用は
0.01%以上の添加により有効に発揮されるが、1.
0%を超えて含有させてもそれ以上の効果は得られず、
むしろ熱間圧延時に素材の脆化を招く恐れがあるので、
1.0%以下の範囲で添加することが推奨される。更
に、本発明のばね用鋼では、Al,B,Co,Wを以下
の範囲内で添加しても良い。
Cu: 1.0% or less (excluding 0%) Cu is an element electrochemically more noble than iron, and has an effect of densifying generated rust and increasing corrosion resistance. Such an effect is effectively exhibited by adding 0.01% or more.
Even if the content exceeds 0%, no further effect is obtained,
Rather, the material may be embrittled during hot rolling,
It is recommended to add in the range of 1.0% or less. Further, in the spring steel of the present invention, Al, B, Co, W may be added within the following range.

【0030】Al:1.0%以下(0%を含まない) Alは、結晶粒を微細化して耐力比を向上させ、耐へた
り性の向上に寄与する元素である。その様な効果は0.
005%以上の添加により有効に発揮される。但し、
1.0%を超えて添加してもそれ以上の効果は得られ
ず、むしろ酸化物系介在物(Al23等)が多量に生成
して粗大化してしまい、かえって遅れ破壊寿命は短くな
るので上限は1.0%とすることが望ましい。
Al: 1.0% or less (excluding 0%) Al is an element that refines crystal grains to improve a proof stress ratio and contributes to an improvement in sag resistance. Such an effect is 0.
Effectively exhibited by addition of 005% or more. However,
Even if added in excess of 1.0%, no further effect is obtained, but rather a large amount of oxide-based inclusions (such as Al 2 O 3 ) is formed and coarsened, and the delayed fracture life is rather short. Therefore, the upper limit is desirably set to 1.0%.

【0031】B:50ppm以下(0ppmを含まな
い) Bは微量添加により焼入性を向上させ、しかも粒界強度
を高める元素であるので、1ppm以上含有させること
が推奨される。尚、50ppm以上添加しても、焼入性
向上効果は飽和するので、添加量は50ppm以下で良
い。
B: 50 ppm or less (excluding 0 ppm )
B ) Since B is an element that improves hardenability by adding a small amount and increases grain boundary strength, it is recommended to contain B in an amount of 1 ppm or more. The effect of improving hardenability saturates even if 50 ppm or more is added, so the addition amount may be 50 ppm or less.

【0032】Co:5.0%以下(0%を含まない) Coは焼入れ焼戻し後の強度・硬さを向上させ、しかも
生成錆を緻密化して耐食性を向上させる元素であるの
で、0.01%以上添加することが望ましい。但し、多
過ぎても効果は飽和すると共に、高価な元素でもあるの
で添加量は5.0%以下とすることが好ましい。
Co: 5.0% or less (excluding 0%) Co is an element that improves the strength and hardness after quenching and tempering, and also densifies generated rust to improve corrosion resistance. % Or more is desirable. However, if the amount is too large, the effect is saturated and it is also an expensive element. Therefore, the addition amount is preferably set to 5.0% or less.

【0033】W:1.0%以下(0%を含まない) Wは焼入れ焼戻し後の強度・硬さを向上させると共に、
腐食溶解時にタングステン酸イオンを形成して耐食性を
高める元素であるので、0.01%以上添加することが
好ましい。但し、過度に添加すると素材靭性を低下させ
る傾向があるので1.0%以下とすることが好ましい。
W: 1.0% or less (excluding 0%) W improves strength and hardness after quenching and tempering,
Since it is an element which forms tungstate ions during corrosion dissolution to increase corrosion resistance, it is preferable to add 0.01% or more. However, if added excessively, the toughness of the material tends to decrease, so that it is preferably 1.0% or less.

【0034】以下本発明を実施例によってさらに詳細に
説明するが、下記実施例は本発明を限定する性質のもの
ではなく、前・後記の趣旨に適合し得る範囲で適当に変
更して実施することはいずれも本発明の技術的範囲に含
まれるものである。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and are carried out with appropriate modifications within a range that can conform to the above and subsequent points. All of these are included in the technical scope of the present invention.

【0035】[0035]

【実施例】表1に示す種々の化学成分からなる鋼を真空
溶製炉で溶製した。
EXAMPLES Steels having various chemical components shown in Table 1 were melted in a vacuum melting furnace.

【0036】[0036]

【表1】 [Table 1]

【0037】得られた鋼を熱間鍛造し、HRCが50以
上となる様に焼入れ焼戻しを行った後、機械加工によ
り、板状の4点曲げ試験片(65mm×15mm×1.5 mm)を作
製した。得られた試験片を陰極チャージ環境下で4点曲
げ試験を行うことにより破断するまでの時間を測定し
た。
The obtained steel is hot forged, quenched and tempered so that the HRC becomes 50 or more, and a plate-shaped four-point bending test piece (65 mm × 15 mm × 1.5 mm) is prepared by machining. did. The time until the test piece was broken was measured by performing a four-point bending test on the obtained test piece in a cathode charge environment.

【0038】一方、粒界のP偏析量の測定は4点曲げ試
験片から切り出して、予め陰極チャージにより水素を多
量に吸蔵させることにより、オージェ装置のチャンバー
内で粒界破壊させ、その粒界に偏析しているP量を測定
するという方法でPの粒界偏析量を測定した。焼入焼戻
し後の硬さ,鋼中P含有量,粒界P偏析量,遅れ破壊寿
命の結果を表2及び表3に示す。
On the other hand, the amount of P segregation at the grain boundary was measured by cutting out from a four-point bending test piece and preliminarily absorbing a large amount of hydrogen by cathodic charging to break the grain boundary in the chamber of the Auger apparatus. The amount of P segregated at the grain boundary was measured by a method of measuring the amount of P segregated in P. Tables 2 and 3 show the results of hardness, P content in steel, P segregation at grain boundaries, and delayed fracture life after quenching and tempering.

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【表3】 [Table 3]

【0041】No.1a〜1d、No.2a〜2d、N
o.3a〜3dは夫々P含有量以外は、同一成分であ
る。表2の結果から遅れ破壊寿命は鋼中P含有量より
は、粒界のP偏析量との相関が高いことが分かる。
No. 1a to 1d, No. 2a-2d, N
o. 3a to 3d are the same components except for the P content. The results in Table 2 show that the delayed fracture life has a higher correlation with the amount of P segregation at the grain boundary than the P content in steel.

【0042】表3におけるNo.4〜14は本発明例で
あり、焼入れ焼戻し後の硬さがHRCで50以上である
と共に、耐遅れ破壊性に優れている。No.15,16
は従来例(JIS SUP7,SAE9254) であり、遅れ破壊寿命が
短いことが分かる。No.17,19,21は、Tiま
たはNbを含有していない比較例であり、遅れ破壊寿命
が短い。No.18,20,22は、C,Si,Mn量
が少な過ぎる場合の比較例であり、所定の硬さが得られ
ない。No.23〜26は、Mn,Ni,Cr,Mo量
が高過ぎる場合の比較例であり、多量の残留オーステナ
イトの生成により、HRCが50未満であり、所定の強
度が得られなかった。
No. 3 in Table 3 Nos. 4 to 14 are examples of the present invention, and have a hardness after quenching and tempering of 50 or more in terms of HRC and are excellent in delayed fracture resistance. No. 15,16
Is a conventional example (JIS SUP7, SAE9254), and it can be seen that the delayed fracture life is short. No. 17, 19 and 21 are comparative examples not containing Ti or Nb, and have a short delayed fracture life. No. Nos. 18, 20, and 22 are comparative examples in which the amounts of C, Si, and Mn are too small, and a predetermined hardness cannot be obtained. No. Nos. 23 to 26 are comparative examples in which the amounts of Mn, Ni, Cr, and Mo were too high, and HRC was less than 50 due to generation of a large amount of retained austenite, and the predetermined strength was not obtained.

【0043】[0043]

【発明の効果】本発明は以上の様に構成されているの
で、焼入れ焼戻し後の素材硬さでHRC50以上に高強
度化しても非常に優れた耐遅れ破壊性を発揮する高強度
ばねが提供できることとなった。
As described above, according to the present invention, there is provided a high-strength spring which exhibits extremely excellent delayed fracture resistance even if the material hardness after quenching and tempering is increased to HRC 50 or more. It can be done.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ばね用鋼の粒界P偏析量と遅れ破壊寿命の関係
を示すグラフである。
FIG. 1 is a graph showing the relationship between the amount of segregation of grain boundaries P and delayed fracture life of spring steel.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩田 多加志 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 (72)発明者 家口 浩 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 (72)発明者 難波 茂信 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takashi Iwata 1-5-5 Takatsukadai, Nishi-ku, Kobe City Inside Kobe Research Institute, Kobe Steel Ltd. (72) Inventor Hiroshi Ieguchi 1-chome, Takatsukadai, Nishi-ku, Kobe-shi No. 5-5 Kobe Steel, Ltd.Kobe Research Institute (72) Inventor Shigenobu Namba 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Kobe Steel Research Institute Kobe Research Institute

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 焼入れ焼戻し処理後の硬さがHRC50
以上である焼戻しマルテンサイト組織を有する高強度ば
ねにおいて、 オージェ装置のチャンバー内で破壊させ当該装置で測定
された旧オーステナイト粒界のP偏析量が3.0at%
以下であることを特徴とする耐遅れ破壊性に優れた高強
度ばね。
The hardness after quenching and tempering is HRC50.
In the high-strength spring having a tempered martensitic structure as described above, the amount of P segregation of the prior austenite grain boundaries measured in the chamber of the Auger device after being broken is 3.0 at%.
A high-strength spring having excellent delayed fracture resistance, characterized in that:
【請求項2】C :0.3〜0.7%(質量%、以下
同じ)、 Si:0.1〜3.0%、 Mn:0.1〜2.0%を含有すると共に、 Ti:0.001〜0.5%及び/又はNb:0.00
1〜0.5%を含有する鋼からなる請求項1に記載の高
強度ばね。
2. C: contains 0.3 to 0.7% (mass%, the same applies hereinafter), Si: 0.1 to 3.0%, Mn: 0.1 to 2.0%, and Ti : 0.001 to 0.5% and / or Nb: 0.00
2. The high-strength spring according to claim 1, comprising a steel containing 1 to 0.5%.
【請求項3】 前記鋼が、更にV :1.0%以下(0
%を含まない)を含有する請求項2に記載の高強度ば
ね。
3. The steel according to claim 1, further comprising V: 1.0% or less (0%).
% Of the high-strength spring according to claim 2.
【請求項4】 前記鋼が、更にTa:0.1%以下(0
%を含まない)、 Zr:0.1%以下(0%を含まない)、 Hf:0.1%以下(0%を含まない)よりなる群から
選択される1種以上を含有する請求項2または3に記載
の高強度ばね。
4. The steel according to claim 1, further comprising Ta: 0.1% or less (0%).
%, Zr: 0.1% or less (excluding 0%), Hf: 0.1% or less (excluding 0%), at least one selected from the group consisting of: 4. The high-strength spring according to 2 or 3.
【請求項5】 前記鋼が、更にCr:5.0%以下(0
%を含まない)を含有する請求項2〜4のいずれかに記
載の高強度ばね。
5. The steel according to claim 5, further comprising Cr: 5.0% or less (0%).
% Of the high-strength spring according to any one of claims 2 to 4.
【請求項6】 更に、 Ni:3.0%以下(0%を含まない)、 Mo:3.0%以下(0%を含まない)、 Cu:1.0%以下(0%を含まない)よりなる群から
選択される1種以上を含有する請求項2〜5のいずれか
に記載の高強度ばね。
6. Ni: 3.0% or less (excluding 0%), Mo: 3.0% or less (excluding 0%), Cu: 1.0% or less (excluding 0%) The high-strength spring according to any one of claims 2 to 5, comprising at least one member selected from the group consisting of:
JP27103096A 1996-10-14 1996-10-14 High strength spring excellent in delayed fracture resistance Pending JPH10121201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27103096A JPH10121201A (en) 1996-10-14 1996-10-14 High strength spring excellent in delayed fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27103096A JPH10121201A (en) 1996-10-14 1996-10-14 High strength spring excellent in delayed fracture resistance

Publications (1)

Publication Number Publication Date
JPH10121201A true JPH10121201A (en) 1998-05-12

Family

ID=17494433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27103096A Pending JPH10121201A (en) 1996-10-14 1996-10-14 High strength spring excellent in delayed fracture resistance

Country Status (1)

Country Link
JP (1) JPH10121201A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2894987A1 (en) * 2005-12-15 2007-06-22 Ascometal Sa Spring steel with high hardness, elevated fatigue properties in air or under corrosion and with a high resistance to cyclic flexion
JP2008280612A (en) * 2007-04-12 2008-11-20 Nippon Steel Corp High-strength steel sheet having excellent internal fatigue damage resistance, and method for producing the same
EP2196553A1 (en) 2008-12-05 2010-06-16 Böhler Edelstahl GmbH & Co KG Steel alloy for machine components
US8038934B2 (en) 2006-01-23 2011-10-18 Kobe Steel, Ltd. High-strength spring steel excellent in brittle fracture resistance and method for producing same
EP2465963A1 (en) * 2004-11-30 2012-06-20 Nippon Steel Corporation High strength spring steel and steel wire
JP2013224471A (en) * 2012-04-23 2013-10-31 Nippon Steel & Sumitomo Metal Corp Rail excellent in delayed-fracture resistance characteristics
EP2803742A4 (en) * 2012-01-11 2016-06-15 Kobe Steel Ltd Steel for bolts, bolt, and method for producing bolt

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2465963A1 (en) * 2004-11-30 2012-06-20 Nippon Steel Corporation High strength spring steel and steel wire
US10131973B2 (en) 2004-11-30 2018-11-20 Nippon Steel & Sumitomo Metal Corporation High strength spring steel and steel wire
FR2894987A1 (en) * 2005-12-15 2007-06-22 Ascometal Sa Spring steel with high hardness, elevated fatigue properties in air or under corrosion and with a high resistance to cyclic flexion
WO2007080256A1 (en) * 2005-12-15 2007-07-19 Ascometal Spring steel, method for producing a spring using said steel and a spring made from such steel
US8038934B2 (en) 2006-01-23 2011-10-18 Kobe Steel, Ltd. High-strength spring steel excellent in brittle fracture resistance and method for producing same
JP2008280612A (en) * 2007-04-12 2008-11-20 Nippon Steel Corp High-strength steel sheet having excellent internal fatigue damage resistance, and method for producing the same
EP2196553A1 (en) 2008-12-05 2010-06-16 Böhler Edelstahl GmbH & Co KG Steel alloy for machine components
US20100147423A1 (en) * 2008-12-05 2010-06-17 Boehler Edelstahl Gmbh & Co. Kg Steel alloy for machine components
US9328405B2 (en) 2008-12-05 2016-05-03 Boehler Edelstahl Gmbh & Co Kg Steel alloy for machine components
EP2803742A4 (en) * 2012-01-11 2016-06-15 Kobe Steel Ltd Steel for bolts, bolt, and method for producing bolt
US9695488B2 (en) 2012-01-11 2017-07-04 Kobe Steel, Ltd. Steel for bolt use, bolt, and method for manufacturing bolt
JP2013224471A (en) * 2012-04-23 2013-10-31 Nippon Steel & Sumitomo Metal Corp Rail excellent in delayed-fracture resistance characteristics

Similar Documents

Publication Publication Date Title
US7510614B2 (en) High strength bolt excellent in delayed fracture resistance and method of production of same
JP4423254B2 (en) High strength spring steel wire with excellent coiling and hydrogen embrittlement resistance
US5776267A (en) Spring steel with excellent resistance to hydrogen embrittlement and fatigue
KR101768785B1 (en) High-strength spring steel wire with excellent hydrogen embrittlement resistance, manufacturing process therefor, and high-strength spring
WO2011111872A1 (en) High-strength steel and high-strength bolt with excellent resistance to delayed fracture, and manufacturing method therefor
JP2842579B2 (en) High strength spring steel with excellent fatigue strength
EP1491647B1 (en) Steel wire for hard drawn spring excellent in fatigue strength and resistance to settling, and hard drawn spring
JP2003105485A (en) High strength spring steel having excellent hydrogen fatigue cracking resistance, and production method therefor
JP4464524B2 (en) Spring steel excellent in hydrogen fatigue resistance and method for producing the same
JP4116762B2 (en) High strength spring steel excellent in hydrogen fatigue resistance and method for producing the same
JP5251632B2 (en) High strength steel material with excellent delayed fracture resistance, high strength bolt and manufacturing method thereof
JPH05117804A (en) Bearing steel having excellent workability and rolling fatigue property
EP3999667B1 (en) Method for producing a steel part and steel part
JP3494799B2 (en) High strength bolt excellent in delayed fracture characteristics and method of manufacturing the same
JP3494798B2 (en) High strength bolt excellent in delayed fracture characteristics and method of manufacturing the same
Reguly et al. Quench embrittlement of hardened 5160 steel as a function of austenitizing temperature
JPH10110247A (en) Spring steel excellent in hydrogen embrittlement resistance and fatigue characteristic
JP4267126B2 (en) Steel material excellent in delayed fracture resistance and method for producing the same
JPH10121201A (en) High strength spring excellent in delayed fracture resistance
JP4430559B2 (en) High strength bolt steel and high strength bolt with excellent delayed fracture resistance
EP1598437B1 (en) High strength steel product excellent in characteristics of resistance to hydrogen embrittlement
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JP3358679B2 (en) High tension bolt with excellent delayed fracture resistance
JP2002327235A (en) Steel for machine structure superior in hydrogen fatigue fracture resistance, and manufacturing method therefor
JPH11270531A (en) High strength bolt having good delayed fracture characteristic and manufacture thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030415