JP2002327235A - Steel for machine structure superior in hydrogen fatigue fracture resistance, and manufacturing method therefor - Google Patents

Steel for machine structure superior in hydrogen fatigue fracture resistance, and manufacturing method therefor

Info

Publication number
JP2002327235A
JP2002327235A JP2001129122A JP2001129122A JP2002327235A JP 2002327235 A JP2002327235 A JP 2002327235A JP 2001129122 A JP2001129122 A JP 2001129122A JP 2001129122 A JP2001129122 A JP 2001129122A JP 2002327235 A JP2002327235 A JP 2002327235A
Authority
JP
Japan
Prior art keywords
hydrogen
steel
fatigue
less
fracture resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001129122A
Other languages
Japanese (ja)
Other versions
JP4173958B2 (en
Inventor
Masaharu Oka
正春 岡
Toshizo Tarui
敏三 樽井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001129122A priority Critical patent/JP4173958B2/en
Publication of JP2002327235A publication Critical patent/JP2002327235A/en
Application granted granted Critical
Publication of JP4173958B2 publication Critical patent/JP4173958B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel for machine structure superior in hydrogen fatigue fracture resistance having tensile strength of 1800 MPa or higher, and a manufacturing method therefor. SOLUTION: The steel for machine structure superior in hydrogen fatigue fracture resistance, is characterized by including, by mass%, 0.1-0.6% C, less than 0.5% Si, 0.1-0.5% Mn, 0.4-3.0% Mo, 0.02-0.5% V, 0.02% or less P, and 0.02% or less S, satisfying 5<=(Mo/V)<=20, and further including a predetermined amount of one or more sort among Cr, Ni, Cu, Al, Ti, Nb, B, or N, as needed, and the balance Fe with unavoidable impurities. The method for manufacturing the steel for machine structure superior in hydrogen fatigue fracture resistance is characterized by quenching the steel consisting of the above components, and then tempering it at 500 deg.C or higher.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車部品などに
用いられる1800MPa以上の引張強度を有し、かつ耐水素
疲労特性に優れた機械構造用鋼、及びその製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel for machine structural use which has a tensile strength of 1800 MPa or more and is excellent in hydrogen fatigue resistance and is used for automobile parts and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、環境問題への対応のため炭酸ガス
排出低減や燃費低減を目的に自動車の軽量化が望まれて
いる。自動車の軽量化のためには鋼材の高強度化が有効
な手段であり、焼入れ焼戻し後の引張強度を1800MPa以
上に高めた機械構造用鋼が要望されている。
2. Description of the Related Art In recent years, it has been desired to reduce the weight of automobiles for the purpose of reducing carbon dioxide emission and fuel efficiency in order to respond to environmental problems. Increasing the strength of steel is an effective means for reducing the weight of automobiles, and there is a demand for steel for machine structural use in which the tensile strength after quenching and tempering is increased to 1800 MPa or more.

【0003】しかしながら、一般に鋼材を高強度化する
と、切欠き感受性が高まり環境の悪影響を受けやすくな
る。特に腐食環境下では表面に腐食ピットが形成される
とこれが応力集中源となり、さらに腐食反応の進行に伴
って発生する水素により脆化するため、疲労特性が劣化
し早期折損を招くという問題があった。水素による脆化
を防止する方法としては、結晶粒を微細化させる方法
や、微細析出物を生成させる方法が考えられているが、
いずれの方法も本発明者らの試験では大幅な耐水素疲労
特性の改善には至っていない。
[0003] However, in general, when the strength of a steel material is increased, notch sensitivity is increased and the steel material is easily affected by the environment. Particularly in a corrosive environment, if corrosion pits are formed on the surface, they become a source of stress concentration, and they become brittle due to hydrogen generated as the corrosion reaction progresses. Was. As a method of preventing embrittlement due to hydrogen, a method of refining crystal grains and a method of generating fine precipitates have been considered,
Neither method has led to any significant improvement in hydrogen fatigue resistance in the tests of the present inventors.

【0004】以上のように、従来の技術では、1800MPa
以上の引張強度を有し、かつ耐水素疲労特性に優れた機
械構造用鋼を製造することは困難であった。
[0004] As described above, in the conventional technology, 1800 MPa
It has been difficult to produce a mechanical structural steel having the above tensile strength and excellent hydrogen fatigue resistance.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記したよ
うな問題点を解決しようとするものであって、1800MPa
以上の引張強度を有し、かつ耐水素疲労特性に優れた機
械構造用鋼、及びその製造方法を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention is to solve the above-mentioned problems, and is intended to solve the above-mentioned problems.
It is an object of the present invention to provide a mechanical structural steel having the above tensile strength and excellent hydrogen fatigue resistance, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明者らは、係る課題
を解決するため、成分の異なる種々の素材に対して後述
する疲労限界拡散性水素量を求める手法により耐水素疲
労特性について研究を重ねた結果、(Mo,V)2Cが
水素トラップサイトとして非常に有効であり疲労限界拡
散性水素量を大幅に高めることを見出した。また、Si
を低減することにより疲労限界拡散性水素量を高めるこ
とができることを見出した。さらに研究を進めた結果、
MoとVの添加比率(Mo/V)を5〜20とし、さら
にSiを0.5%未満とし、さらに粒界強度を低下させ
るMnを0.5%以下とすることにより、1800MPa
以上の引張強度を有しかつ耐水素疲労特性に優れた鋼が
得られることを知見した。
Means for Solving the Problems In order to solve the above problems, the present inventors conducted research on hydrogen fatigue resistance characteristics of various materials having different components by a method of obtaining a fatigue limit diffusible hydrogen amount described later. As a result, they found that (Mo, V) 2 C is very effective as a hydrogen trap site and greatly increases the amount of diffusible hydrogen at the fatigue limit. In addition, Si
It has been found that reducing the amount of hydrogen can increase the amount of diffusible hydrogen at the fatigue limit. As a result of further research,
The addition ratio of Mo and V (Mo / V) is set to 5 to 20, the content of Si is set to less than 0.5%, and the content of Mn, which lowers the grain boundary strength, is set to 0.5% or less.
It has been found that a steel having the above tensile strength and excellent in hydrogen fatigue resistance can be obtained.

【0007】本発明はこのような知見に基づいて構成し
たものであり、その要旨は、 (1)質量%で、C :0.1〜0.6%、Si:0.
5%未満、Mn:0.1〜0.5%、Mo:0.4〜
3.0%、V:0.02〜0.5%、P:0.02%以
下、S:0.02以下、を含有し、かつ 5≦(Mo/V)≦20 を満足し、残部がFe及び不可避的不純物からなること
を特徴とする耐水素疲労破壊特性に優れた機械構造用
鋼。 (2)前記(1)記載の成分を含有し、さらに質量%
で、Cr:0.05〜3.0%、Ni:0.05〜5.
0%、Cu:0.05〜2.0%、の1種または2種以
上を含有することを特徴とする耐水素疲労破壊特性に優
れた機械構造用鋼。 (3)前記(1)又は(2)記載の成分を含有し、さら
に質量%で、Al:0.005〜0.1%、Ti:0.
005〜0.3%、Nb:0.005〜0.3%、B:
0.0003〜0.05%、N:0.001〜0.05
%、の1種または2種以上を含有することを特徴とする
耐水素疲労破壊特性に優れた機械構造用鋼。(4)疲労
限界拡散性水素量が0.2ppm以上であることを特徴
とする前記(1)〜(3)のいずれか1項に記載の耐水
素疲労破壊特性に優れた機械構造用鋼。 (5)前記(1)〜(3)の何れか1項に記載の成分か
らなる鋼を焼き入れた後に、500℃以上で焼き戻すこ
とを特徴とする耐水素疲労破壊特性に優れた機械構造用
鋼の製造方法。にある。
The present invention has been made based on such findings, and the gist thereof is as follows: (1) In mass%, C: 0.1 to 0.6%;
Less than 5%, Mn: 0.1-0.5%, Mo: 0.4-
3.0%, V: 0.02 to 0.5%, P: 0.02% or less, S: 0.02 or less, satisfying 5 ≦ (Mo / V) ≦ 20, and the balance Is a steel for machine structural use having excellent resistance to hydrogen fatigue fracture, characterized in that it is composed of Fe and unavoidable impurities. (2) The composition according to the above (1), further containing
, Cr: 0.05-3.0%, Ni: 0.05-5.
A steel for machine structural use having excellent hydrogen fatigue fracture resistance, characterized by containing one or more of 0% and Cu: 0.05 to 2.0%. (3) The composition according to (1) or (2), further containing 0.005 to 0.1% of Al and 0.1 to 0.1% by mass of Al.
005-0.3%, Nb: 0.005-0.3%, B:
0.0003-0.05%, N: 0.001-0.05
%, Characterized in that the steel for machine structural use has excellent resistance to hydrogen fatigue fracture. (4) The steel for machine structural use having excellent hydrogen fatigue fracture resistance according to any one of the above (1) to (3), wherein the fatigue limit diffusible hydrogen amount is 0.2 ppm or more. (5) A mechanical structure excellent in hydrogen fatigue fracture resistance, characterized in that after quenching a steel comprising the component according to any one of (1) to (3), the steel is tempered at 500 ° C. or more. Method of manufacturing steel. It is in.

【0008】[0008]

【発明の実施の形態】本発明者らは、まず焼入れ・焼戻
し処理によって製造した種々の強度レベルの機械構造用
鋼を用いて、水素疲労挙動を詳細に解析した。その結
果、疲労限以下の応力で、疲労寿命が鋼材中の水素によ
って低下することを明らかにした。また、疲労寿命の低
下は、外部環境から鋼材中に侵入し、室温下において鋼
材中を拡散しうる拡散性水素に起因して発生しているこ
とを明らかにした。拡散性水素は、鋼材を100℃/h
ourの速度で加熱した際に得られる「温度−鋼材から
の水素放出速度」の曲線において、約100℃の温度に
ピークを有する曲線として測定できる(図1)。従っ
て、外部環境から侵入した水素を鋼材中の何らかの部分
に捕捉することによって、鋼材中で拡散しないようにす
れば、水素を無害化することが可能になり、疲労寿命低
下が抑制される。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors first analyzed in detail the hydrogen fatigue behavior using mechanical strength steels of various strength levels manufactured by quenching and tempering. As a result, it has been clarified that the fatigue life is reduced by hydrogen in steel at the stress less than the fatigue limit. In addition, it was clarified that the decrease in fatigue life is caused by diffusible hydrogen that can enter the steel from the external environment and diffuse in the steel at room temperature. Diffusible hydrogen is used for steel at 100 ° C / h.
In the curve of “temperature-hydrogen release rate from steel material” obtained when heating at a rate of our, it can be measured as a curve having a peak at a temperature of about 100 ° C. (FIG. 1). Therefore, if hydrogen that has invaded from the external environment is trapped in some part of the steel material so as not to diffuse in the steel material, the hydrogen can be rendered harmless, and a reduction in fatigue life can be suppressed.

【0009】そこで、耐水素疲労特性について、水素疲
労が発生しない「疲労限界拡散性水素量」を求めること
により評価した。この方法は、電解水素チャージにより
種々のレベルの拡散性水素量を含有させた後、回転曲げ
疲労試験中に試料から大気中に水素が抜けることを防止
するためにCdめっきを施し、その後、大気中で所定の
荷重を負荷し、疲労破壊が発生しなくなる拡散性水素量
を評価するものである。図2に拡散性水素量と疲労寿命
の関係について解析した一例を示す。試料中に含まれる
拡散性水素量が少なくなるほど疲労寿命が長くなり、拡
散性水素量がある値以下では疲労破壊が発生しなくな
る。この水素量を「疲労限界拡散性水素量」と定義す
る。(Mo,V)2C等によってトラップされている水
素は疲労特性に悪影響を与えにくいので、このようなト
ラップサイトを含んだ鋼材は「拡散性水素量」が高くて
も水素による疲労強度の低下が起こりにくくなる。従っ
て、このような鋼材は疲労限界拡散性水素量が高くな
る。実環境で鋼中に侵入する拡散性水素量は環境が厳し
いほど多くなるので、疲労限界拡散性水素量が高い鋼材
ほどより厳しい環境(拡散性水素量:大)でも水素によ
る疲労強度の低下が起こらないので、疲労限界拡散性水
素量が高いほど鋼材の耐水素疲労特性は良好であり、鋼
材の成分、熱処理等の製造条件によって決まる鋼材固有
の値である。
Therefore, the hydrogen fatigue resistance was evaluated by determining the "fatigue limit diffusible hydrogen amount" at which hydrogen fatigue does not occur. In this method, various levels of diffusible hydrogen are contained by electrolytic hydrogen charging, and then Cd plating is applied to prevent hydrogen from leaking from the sample into the atmosphere during the rotating bending fatigue test. A predetermined load is applied in the inside, and the amount of diffusible hydrogen at which fatigue fracture does not occur is evaluated. FIG. 2 shows an example of analyzing the relationship between the amount of diffusible hydrogen and the fatigue life. The fatigue life becomes longer as the amount of diffusible hydrogen contained in the sample decreases, and when the amount of diffusible hydrogen is less than a certain value, fatigue fracture does not occur. This amount of hydrogen is defined as “the fatigue limit diffusible hydrogen amount”. Since hydrogen trapped by (Mo, V) 2 C or the like is unlikely to adversely affect the fatigue properties, the steel containing such trap sites has a reduced fatigue strength due to hydrogen even if the “diffusible hydrogen amount” is high. Is less likely to occur. Therefore, such a steel material has a high fatigue limit diffusible hydrogen amount. In a real environment, the amount of diffusible hydrogen that penetrates into steel in an actual environment increases as the environment becomes harsher. Therefore, steel with higher fatigue limit diffusible hydrogen has a lower fatigue strength due to hydrogen even in a more severe environment (diffusible hydrogen: large). Since this does not occur, the higher the fatigue limit diffusible hydrogen content, the better the hydrogen fatigue resistance characteristics of the steel material, which is a value specific to the steel material determined by the steel composition, heat treatment, and other manufacturing conditions.

【0010】以下に、本発明における各要件の意義及び
限定理由について具体的に説明する。
Hereinafter, the significance of each requirement and the reason for limitation in the present invention will be specifically described.

【0011】本発明者らは、0.5%C−0.06%S
i−0.2%Mnをベース成分としMoとVの添加比率
を種々に変えた鋼を焼入れ焼戻し処理により同一強度レ
ベルに調質し、疲労限界拡散性水素量を測定した。Mo
とVの添加比率(Mo/V)と疲労限界拡散性水素量の
関係を図3に示す。図3より、Mo/Vが5以上20以
下のとき疲労限界拡散性水素量が大幅に向上することを
知見した。従って、Mo/Vを5以上20以下とした。
The present inventors have found that 0.5% C-0.06% S
Steel having i-0.2% Mn as a base component and various addition ratios of Mo and V was tempered to the same strength level by quenching and tempering, and the fatigue limit diffusible hydrogen content was measured. Mo
FIG. 3 shows the relationship between the addition ratio of Mo and V (Mo / V) and the amount of diffusible hydrogen at the fatigue limit. From FIG. 3, it has been found that when Mo / V is 5 or more and 20 or less, the amount of diffusible hydrogen at the fatigue limit is significantly improved. Therefore, Mo / V is set to 5 or more and 20 or less.

【0012】次に、本発明における高強度ばね用鋼の成
分限定理由について説明する。
Next, the reasons for limiting the components of the high-strength spring steel according to the present invention will be described.

【0013】C; Cは鋼の強度を増加させる元素とし
て添加されるものである。0.1%未満では機械構造用
鋼に必要な強度の確保が困難であり、0.6%を超える
過剰の添加は靭性を著しく劣化させる。従って、C含有
量は0.1〜0.6%とした。
C: C is added as an element for increasing the strength of steel. If it is less than 0.1%, it is difficult to secure the strength required for the steel for machine structural use, and if it is added in excess of 0.6%, the toughness is significantly deteriorated. Therefore, the C content is set to 0.1 to 0.6%.

【0014】Si; Siは脱酸剤として添加される
が、0.5%以上の過剰の添加は疲労限界拡散性水素量
を減少させて水素疲労特性を劣化させる。従って、Si
含有量は少ないほど好ましく、0.5%未満とした。
Si: Si is added as a deoxidizing agent, but an excessive addition of 0.5% or more decreases the amount of diffusible hydrogen at the fatigue limit, thereby deteriorating the hydrogen fatigue characteristics. Therefore, Si
The smaller the content, the better, the content being less than 0.5%.

【0015】Mn; Mnは焼入れ性を高めるために有
効な元素であるが、一方で粒界を脆化させ耐水素疲労破
壊特性を劣化させる有害な元素である。0.1%未満で
は焼入れ性を高める効果が発現されず、0.5%を超え
る過剰の添加は耐水素破壊疲労特性を劣化させる。従っ
て、Mn含有量は0.1〜0.5%とした。より良好な
耐水素疲労破壊特性を得るためには、Mn含有量を0.
3%以下とすることが望ましく、0.2%以下とすれば
さらに望ましい。
Mn: Mn is an element effective for enhancing hardenability, but is a harmful element that, on the other hand, embrittles grain boundaries and deteriorates hydrogen fatigue fracture resistance. If it is less than 0.1%, the effect of enhancing hardenability will not be exhibited, and if it is added in excess of 0.5%, the hydrogen fracture fatigue resistance will deteriorate. Therefore, the Mn content is set to 0.1 to 0.5%. In order to obtain better hydrogen fatigue fracture resistance, the Mn content should be set to 0.1.
The content is desirably 3% or less, and more desirably 0.2% or less.

【0016】Mo; MoはV、Cとともに(Mo,
V)2Cを形成し拡散性水素をトラップすることにより
耐水素疲労破壊特性を向上させる必須の元素であるが、
0.4%未満ではその効果が発現されず、3.0%を超
える過剰の添加は靭性を低下させるため、Mo含有量は
0.4〜3.0%とした。
Mo; Mo together with V and C (Mo,
V) An essential element for improving hydrogen fatigue fracture resistance by forming 2 C and trapping diffusible hydrogen.
If the content is less than 0.4%, the effect is not exhibited, and an excessive addition exceeding 3.0% lowers the toughness. Therefore, the Mo content is set to 0.4 to 3.0%.

【0017】V; VはMo、Cとともに(Mo,V)
2Cを形成し拡散性水素をトラップすることにより耐水
素疲労破壊特性を向上させる必須の元素であるが、0.
02%未満ではその効果が発現されず、0.5%を超え
る過剰の添加は靭性を低下させるため、V含有量は0.
02〜0.5%とした。
V; V is Mo and V together with (Mo, V)
It is an essential element that improves hydrogen fatigue fracture resistance by forming 2 C and trapping diffusible hydrogen.
If the content is less than 02%, the effect is not exhibited, and if the addition exceeds 0.5%, the toughness is reduced.
02 to 0.5%.

【0018】P; Pは粒界に偏析して粒界強度を低下
させ、靱性を劣化させる不純物元素であり、可及的低レ
ベルが望ましいが、現状精錬技術の到達可能レベルとコ
ストを考慮して、上限を0.02%とした。
P: P is an impurity element that segregates at the grain boundaries to lower the grain boundary strength and degrades the toughness, and it is desirable that the level be as low as possible. Therefore, the upper limit was made 0.02%.

【0019】S; Sは熱間加工性及び靭性を劣化させ
る不純物元素であり、可及的低レベルが望ましいが、現
状精錬技術の到達可能レベルとコストを考慮して、上限
を0.02%とした。
S: S is an impurity element that deteriorates hot workability and toughness, and is desirably as low as possible. However, considering the achievable level and cost of the current refining technology, the upper limit is 0.02%. And

【0020】以上が本発明の基本成分であり、通常は上
記以外はFe及び不可避的不純物からなるが、所望の強
度レベルやその他の必要特性に応じて、Cr、Ni、C
u、Al、Ti、Nb、B、Nの1種または2種以上を
添加しても良い。
The above are the basic components of the present invention. Usually, other than the above, Fe and unavoidable impurities, but depending on the desired strength level and other necessary properties, Cr, Ni, C
One or more of u, Al, Ti, Nb, B, and N may be added.

【0021】Cr、Ni、Cu:Cr、Ni、Cuはい
ずれも耐食性及び強度を向上させる有効な元素である。
この効果はそれぞれ0.05%未満では発現されず、C
rは3%、Niは5%、Cuは2%を超える過剰添加は
靭性を劣化させる。従って、Crの含有量を0.05〜
3.0%、Niの含有量を0.05〜5.0%、Cuの
含有量を0.05〜2.0%、とした。
Cr, Ni, Cu: Cr, Ni and Cu are all effective elements for improving corrosion resistance and strength.
This effect is not manifested at less than 0.05%, respectively.
An excessive addition of more than 3% of r, 5% of Ni and 2% of Cu deteriorates toughness. Therefore, the content of Cr is set to 0.05 to
3.0%, the content of Ni was set to 0.05 to 5.0%, and the content of Cu was set to 0.05 to 2.0%.

【0022】Al; Alは脱酸剤として、またAlN
を形成し結晶粒粗大化を抑制する効果があるが、0.0
05%未満ではその効果が発現されず、0.1%を超え
て過剰添加すると靭性が劣化するため、Alの含有量を
0.005〜0.1%とした。
Al; Al is used as a deoxidizing agent and AlN
Has the effect of suppressing crystal grain coarsening.
If the content is less than 05%, the effect is not exhibited. If the content exceeds 0.1%, the toughness is deteriorated. Therefore, the content of Al is set to 0.005 to 0.1%.

【0023】Ti; TiはTiNを形成し結晶粒粗大
化を抑制する効果があるが、0.005%未満ではその
効果が発現されず、0.3%を超えて過剰添加すると靭
性が劣化するため、Tiの含有量を0.005〜0.3
%とした。
Ti: Ti has the effect of forming TiN and suppressing the coarsening of the crystal grains, but the effect is not exhibited if it is less than 0.005%, and the toughness is deteriorated if it is excessively added in excess of 0.3%. Therefore, the content of Ti is 0.005 to 0.3
%.

【0024】Nb; Nbは微細な炭窒化物を形成し結
晶粒粗大化を抑制する効果があるが、0.005%未満
ではその効果が発現されず、0.3%を超えて過剰添加
すると靭性が劣化するため、Nbの含有量を0.005
〜0.3%とした。
Nb: Nb forms fine carbonitrides and has the effect of suppressing the coarsening of crystal grains. However, if less than 0.005%, the effect is not exhibited. Since the toughness is deteriorated, the Nb content is set to 0.005.
-0.3%.

【0025】B; Bは自ら粒界に偏析することにより
粒界結合力を向上させるとともにP、S及びCuの粒界
偏析を抑制し、粒界強度を高め、遅れ破壊特性や靭性を
向上させるのに有効な元素であり、また焼入れ性を高め
るのに有効な元素でも有る。これらの効果は0.000
3%未満では発現されず、0.05%を超えて過剰添加
すると粒界に粗大な析出物が生成し熱間加工性や靭性が
劣化するため、Bの含有量を0.0003〜0.05%
とした。
B; B itself segregates at the grain boundaries to improve the grain boundary bonding force, suppresses the grain boundary segregation of P, S and Cu, increases the grain boundary strength, and improves the delayed fracture characteristics and toughness. It is also an element effective for improving the hardenability. These effects are 0.000
If it is less than 3%, it is not expressed, and if it exceeds 0.05%, coarse precipitates are formed at the grain boundaries to deteriorate hot workability and toughness. 05%
And

【0026】N; Nは窒化物を形成し結晶粒粗大化を
抑制する効果があるが、0.001%未満ではその効果
が発現されず、0.05%を超えて添加すると靭性が劣
化するため、N含有量を0.001〜0.05%とし
た。
N: N has the effect of forming nitrides and suppressing the coarsening of crystal grains. However, if less than 0.001%, the effect is not exhibited, and if more than 0.05% is added, toughness is deteriorated. Therefore, the N content is set to 0.001 to 0.05%.

【0027】疲労限界拡散性水素量については0.2p
pm未満であると、耐水素破壊特性が十分ではなく実際
に使用される代表的な環境で水素疲労破壊を生じる場合
があるため、0.2ppm以上とする。
The fatigue limit diffusible hydrogen content is 0.2 p
If it is less than pm, the resistance to hydrogen destruction is not sufficient, and hydrogen fatigue destruction may occur in a typical environment actually used.

【0028】次に製造条件の限定理由について述べる。
本発明においては、焼入れ焼戻し処理を施す際の焼戻し
温度を500℃以上とすることが重要であり、その他の
製造条件は特に制限する必要はない。これは焼戻し温度
が500℃未満では水素トラップサイトとなる(Mo,
V)2Cの析出量が十分に得られないために疲労限界拡
散性水素量が低くなるためである。より好ましい条件は
550℃以上である。焼戻し温度の上限は特に定める必
要はないが、焼戻し温度が650℃以上になると析出物
が粗大化し水素トラップサイトとしての効果が低下する
ため、650℃以下とすることが望ましい。
Next, the reasons for limiting the manufacturing conditions will be described.
In the present invention, it is important that the tempering temperature at the time of performing the quenching and tempering treatment is 500 ° C. or higher, and other manufacturing conditions do not need to be particularly limited. This becomes a hydrogen trap site when the tempering temperature is lower than 500 ° C. (Mo,
V) fatigue critical diffusible hydrogen amount to the amount deposited of 2 C is not sufficiently obtained is becomes lower. More preferred conditions are 550 ° C. or higher. The upper limit of the tempering temperature does not need to be particularly defined. However, when the tempering temperature is 650 ° C. or higher, the precipitates are coarsened and the effect as a hydrogen trap site is reduced.

【0029】[0029]

【実施例】以下、実施例により本発明の効果をさらに具
体的に説明する。
EXAMPLES Hereinafter, the effects of the present invention will be described more specifically with reference to examples.

【0030】表1に示す組成を有する鋼を焼入れた後、
表1に示す温度で焼戻しを行った。熱処理後の各鋼片の
引張強度を表1に合わせて示す。いずれも1800MP
a以上の引張強度が得られている。これらの鋼片の耐水
素疲労破壊特性について前述した疲労限界拡散性水素量
で評価した。なお、疲労試験を行う際の負荷応力は大気
中疲労限の90%の条件で実施した。
After quenching steel having the composition shown in Table 1,
Tempering was performed at the temperatures shown in Table 1. Table 1 shows the tensile strength of each steel slab after the heat treatment. All are 1800MP
The tensile strength of a or more is obtained. The hydrogen fatigue fracture resistance of these steel slabs was evaluated by the above-mentioned fatigue limit diffusible hydrogen content. In addition, the load stress at the time of performing the fatigue test was performed under the condition of 90% of the fatigue limit in the atmosphere.

【0031】[0031]

【表1】 [Table 1]

【0032】表1より、本発明例(No.1〜5)では
いずれも疲労限界拡散性水素量が0.2ppm以上であ
り、耐水素疲労破壊特性が優れている。特に、焼戻し温
度が550℃以上のもの(No.1,4,5)はいずれ
も疲労限界拡散性水素量が1.0ppm以上であり、耐
水素疲労破壊特性が格段に優れている。
From Table 1, it can be seen that all of the examples of the present invention (Nos. 1 to 5) have a fatigue limit diffusible hydrogen content of 0.2 ppm or more and are excellent in hydrogen fatigue fracture resistance. In particular, those having a tempering temperature of 550 ° C. or higher (Nos. 1, 4, and 5) all have a fatigue limit diffusible hydrogen amount of 1.0 ppm or higher, and have excellent hydrogen fatigue fracture resistance.

【0033】一方、Mo量、V量、又は(Mo/V)の
いずれか一つ以上が本発明の範囲から逸脱している比較
例(No.6,7,8)ではいずれも疲労限界拡散性水
素量が0.1ppm以下と低く、耐水素疲労破壊特性に
劣ることがわかる。また、Mo量、V量、(Mo/V)
は本発明の範囲内にあるがSi量及びMn量が本発明で
示した成分範囲から逸脱している比較例(No.9)で
は疲労限界拡散性水素量が0.1ppm以下と低く、耐
水素疲労破壊特性に劣ることがわかる。また、Mo量及
び焼戻し温度が本発明の範囲から逸脱している比較例
(No.10)では疲労限界拡散性水素量が0.1pp
m以下と低く、耐水素疲労破壊特性に劣ることがわか
る。
On the other hand, in the comparative examples (Nos. 6, 7, and 8) in which one or more of the Mo amount, the V amount, and (Mo / V) deviate from the range of the present invention, the fatigue limit diffusion is all. It can be seen that the amount of reactive hydrogen is as low as 0.1 ppm or less, and the hydrogen fatigue fracture resistance is poor. In addition, Mo amount, V amount, (Mo / V)
Is in the range of the present invention, but in the comparative example (No. 9) in which the amounts of Si and Mn deviate from the component ranges shown in the present invention, the fatigue limit diffusible hydrogen amount is as low as 0.1 ppm or less, It turns out that it is inferior in hydrogen fatigue fracture characteristics. Further, in the comparative example (No. 10) in which the amount of Mo and the tempering temperature were out of the range of the present invention, the amount of fatigue-limited diffusible hydrogen was 0.1 pp.
m or less, which indicates that the resistance to hydrogen fatigue fracture is inferior.

【0034】以上より、Mo、V、Si、Mnの量及び
MoとVの添加比率(Mo/V)を本発明で示した範囲
に特定し、本発明で示した焼戻し条件で製造することに
より、1800MPa以上の引張強度を有しかつ耐水素疲
労特性に優れた鋼が得られることが明らかである。
As described above, the amounts of Mo, V, Si, Mn and the addition ratio of Mo and V (Mo / V) are specified in the range shown in the present invention, and the alloy is manufactured under the tempering conditions shown in the present invention. It is apparent that a steel having a tensile strength of 1,800 MPa or more and excellent in hydrogen fatigue resistance can be obtained.

【0035】[0035]

【発明の効果】以上のように本発明によれば、1800
MPa以上の引張強度を有し、かつ耐水素疲労特性に優
れた機械構造用鋼を得ることができる。
As described above, according to the present invention, 1800
A steel for machine structural use having a tensile strength of not less than MPa and excellent hydrogen fatigue resistance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】昇温分析による水素放出曲線と、拡散性水素量
を示す図である。
FIG. 1 is a diagram showing a hydrogen release curve by a temperature rise analysis and a diffusible hydrogen amount.

【図2】拡散性水素量と疲労寿命の関係の一例を示す図
である。
FIG. 2 is a diagram showing an example of the relationship between the amount of diffusible hydrogen and fatigue life.

【図3】MoとVの添加比率(Mo/V)と疲労限界拡
散性水素量の関係を示す図である。
FIG. 3 is a graph showing the relationship between the addition ratio of Mo and V (Mo / V) and the amount of diffusible hydrogen at the fatigue limit.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C :0.1〜0.6%、 Si:0.5%未満、 Mn:0.1〜0.5%、 Mo:0.4〜3.0%、 V :0.02〜0.5%、 P :0.02%以下、 S :0.02%以下、を含有し、かつ 5≦(Mo/V)≦20 を満足し、残部がFe及び不可避的不純物からなること
を特徴とする耐水素疲労破壊特性に優れた機械構造用
鋼。
C: 0.1 to 0.6%, Si: less than 0.5%, Mn: 0.1 to 0.5%, Mo: 0.4 to 3.0% by mass%. V: 0.02 to 0.5%, P: 0.02% or less, S: 0.02% or less, and satisfying 5 ≦ (Mo / V) ≦ 20, with the balance being Fe and inevitable Steel for machine structural use, which is excellent in hydrogen fatigue fracture resistance, characterized by being composed of chemical impurities.
【請求項2】 さらに質量%で、 Cr:0.05〜3.0%、 Ni:0.05〜5.0%、 Cu:0.05〜2.0%、の1種または2種以上を含
有することを特徴とする請求項1記載の耐水素疲労破壊
特性に優れた機械構造用鋼。
2. One or more of Cr: 0.05 to 3.0%, Ni: 0.05 to 5.0%, Cu: 0.05 to 2.0% by mass%. The steel for machine structural use excellent in hydrogen fatigue fracture resistance according to claim 1, characterized in that it contains:
【請求項3】 さらに質量%で、 Al:0.005〜0.1%、 Ti:0.005〜0.3%、 Nb:0.005〜0.3%、 B :0.0003〜0.05%、 N :0.001〜0.05%、の1種または2種以上
を含有することを特徴とする請求項1又は2記載の耐水
素疲労破壊特性に優れた機械構造用鋼。
Further, in mass%, Al: 0.005 to 0.1%, Ti: 0.005 to 0.3%, Nb: 0.005 to 0.3%, B: 0.0003 to 0 The steel for machine structural use having excellent hydrogen fatigue fracture resistance according to claim 1 or 2, comprising one or more of 0.05% and N: 0.001 to 0.05%.
【請求項4】 疲労限界拡散性水素量が0.2ppm以
上であることを特徴とする請求項1〜3のいずれか1項
に記載の耐水素疲労破壊特性に優れた機械構造用鋼。
4. The steel for machine structural use excellent in hydrogen fatigue fracture resistance according to claim 1, wherein the fatigue limit diffusible hydrogen content is 0.2 ppm or more.
【請求項5】 請求項1〜3の何れか1項に記載の成分
からなる鋼を焼き入れた後に、500℃以上で焼き戻す
ことを特徴とする耐水素疲労破壊特性に優れた機械構造
用鋼の製造方法。
5. A mechanical structure excellent in hydrogen fatigue fracture resistance, characterized in that after quenching a steel comprising the component according to claim 1, the steel is tempered at 500 ° C. or more. Steel production method.
JP2001129122A 2001-04-26 2001-04-26 Mechanical structural steel with excellent hydrogen fatigue fracture resistance and method for producing the same Expired - Fee Related JP4173958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001129122A JP4173958B2 (en) 2001-04-26 2001-04-26 Mechanical structural steel with excellent hydrogen fatigue fracture resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001129122A JP4173958B2 (en) 2001-04-26 2001-04-26 Mechanical structural steel with excellent hydrogen fatigue fracture resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002327235A true JP2002327235A (en) 2002-11-15
JP4173958B2 JP4173958B2 (en) 2008-10-29

Family

ID=18977696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001129122A Expired - Fee Related JP4173958B2 (en) 2001-04-26 2001-04-26 Mechanical structural steel with excellent hydrogen fatigue fracture resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP4173958B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005344199A (en) * 2004-06-07 2005-12-15 Kobe Steel Ltd Steel material to be cold-bent
JP4362319B2 (en) * 2003-06-02 2009-11-11 新日本製鐵株式会社 High strength steel plate with excellent delayed fracture resistance and method for producing the same
WO2009139420A1 (en) * 2008-05-13 2009-11-19 株式会社日本製鋼所 High‑strength low‑alloy steel with excellent environmental embrittlement resistance in high‑pressure hydrogen environments, and method of manufacture thereof
US20100212785A1 (en) * 2007-08-21 2010-08-26 The Japan Steel Works, Ltd. High-strength low-alloy steel excellent in high-pressure hydrogen environment embrittlement resistance characteristics and method for producing the same
US20120003117A1 (en) * 2006-08-03 2012-01-05 Aubert & Duval Process for manufacturing steel blanks
CN103451544A (en) * 2013-09-10 2013-12-18 内蒙古包钢钢联股份有限公司 Boracic 140 ksi steel grade petroleum casing pipe for deep well and extra-deep well and production method thereof
CN114875308A (en) * 2022-04-08 2022-08-09 鞍钢股份有限公司 Steel for thin-gauge high-strength nuclear reactor containment vessel and manufacturing method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4362319B2 (en) * 2003-06-02 2009-11-11 新日本製鐵株式会社 High strength steel plate with excellent delayed fracture resistance and method for producing the same
JP2005344199A (en) * 2004-06-07 2005-12-15 Kobe Steel Ltd Steel material to be cold-bent
JP4608242B2 (en) * 2004-06-07 2011-01-12 株式会社神戸製鋼所 Steel for cold bending
US20120003117A1 (en) * 2006-08-03 2012-01-05 Aubert & Duval Process for manufacturing steel blanks
US8551397B2 (en) * 2006-08-03 2013-10-08 Aubert & Duval Process for manufacturing steel blanks
US8313589B2 (en) * 2007-08-21 2012-11-20 The Japan Steel Works, Ltd. High-strength low-alloy steel excellent in high-pressure hydrogen environment embrittlement resistance characteristics and method for producing the same
US20100212785A1 (en) * 2007-08-21 2010-08-26 The Japan Steel Works, Ltd. High-strength low-alloy steel excellent in high-pressure hydrogen environment embrittlement resistance characteristics and method for producing the same
EP2180074A4 (en) * 2007-08-21 2014-10-15 Japan Steel Works Ltd High-strength low-alloy steel excellent in the resistance to high-pressure hydrogen environment embrittlement and process for manufacturing the steel
WO2009139420A1 (en) * 2008-05-13 2009-11-19 株式会社日本製鋼所 High‑strength low‑alloy steel with excellent environmental embrittlement resistance in high‑pressure hydrogen environments, and method of manufacture thereof
US8974612B2 (en) 2008-05-13 2015-03-10 The Japan Steel Works, Ltd. High-strength low-alloy steel excellent in high-pressure hydrogen environment embrittlement resistance characteristics and method for producing the same
US10227682B2 (en) 2008-05-13 2019-03-12 The Japan Steel Works, Ltd. High-strength low-alloy steel excellent in high-pressure hydrogen environment embrittlement resistance characteristics and method for producing the same
CN103451544A (en) * 2013-09-10 2013-12-18 内蒙古包钢钢联股份有限公司 Boracic 140 ksi steel grade petroleum casing pipe for deep well and extra-deep well and production method thereof
CN114875308A (en) * 2022-04-08 2022-08-09 鞍钢股份有限公司 Steel for thin-gauge high-strength nuclear reactor containment vessel and manufacturing method thereof

Also Published As

Publication number Publication date
JP4173958B2 (en) 2008-10-29

Similar Documents

Publication Publication Date Title
JP4464524B2 (en) Spring steel excellent in hydrogen fatigue resistance and method for producing the same
JP3817105B2 (en) High strength steel with excellent fatigue characteristics and method for producing the same
JP2003105485A (en) High strength spring steel having excellent hydrogen fatigue cracking resistance, and production method therefor
JP4116762B2 (en) High strength spring steel excellent in hydrogen fatigue resistance and method for producing the same
JP4267376B2 (en) High strength PC steel wire with excellent delayed fracture characteristics and method for producing the same
JPS63230847A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
JP3494799B2 (en) High strength bolt excellent in delayed fracture characteristics and method of manufacturing the same
JP3793391B2 (en) High strength bolt excellent in delayed fracture resistance with a tensile strength of 1300 MPa or more and method for producing the same
JP3494798B2 (en) High strength bolt excellent in delayed fracture characteristics and method of manufacturing the same
JP4267126B2 (en) Steel material excellent in delayed fracture resistance and method for producing the same
JP2002327235A (en) Steel for machine structure superior in hydrogen fatigue fracture resistance, and manufacturing method therefor
JP3512463B2 (en) High strength mechanical structural steel excellent in delayed fracture resistance and hydrogen penetration resistance and method for producing the same
JP4054179B2 (en) High-strength pearlite steel with excellent delayed fracture resistance
JP4261760B2 (en) High strength spring steel excellent in hydrogen fatigue fracture resistance and manufacturing method thereof
JP4146271B2 (en) High strength PC steel wire with excellent delayed fracture resistance and method for producing the same
JP2008266782A (en) Steel for spring excellent in hydrogen embrittlement resistance and corrosion fatigue strength and high strength spring part using the same
JP2004360022A (en) HIGH-STRENGTH Al-PLATED WIRE OR BOLT EXCELLENT IN DELAYED FRACTURE RESISTANCE AND METHOD FOR PRODUCING THE SAME
JP3358679B2 (en) High tension bolt with excellent delayed fracture resistance
WO2004074529A1 (en) High strength steel product excellent in characteristics of resistance to hydrogen embrittlement
JPH10121201A (en) High strength spring excellent in delayed fracture resistance
JP3233829B2 (en) High-strength PC steel rod excellent in delayed fracture characteristics of spot welds and method of manufacturing the same
JP4975261B2 (en) Manufacturing method of high strength steel with excellent delayed fracture resistance
JP4081234B2 (en) High strength steel with excellent hydrogen embrittlement resistance
JP3429258B2 (en) Spring steel with excellent environmental resistance
JP4332446B2 (en) High strength steel with excellent cold workability and delayed fracture resistance, and high strength steel parts with excellent delayed fracture resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080206

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080815

R151 Written notification of patent or utility model registration

Ref document number: 4173958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees