JP2020084276A - Steel for high-strength bolt and method for manufacturing the same - Google Patents

Steel for high-strength bolt and method for manufacturing the same Download PDF

Info

Publication number
JP2020084276A
JP2020084276A JP2018221563A JP2018221563A JP2020084276A JP 2020084276 A JP2020084276 A JP 2020084276A JP 2018221563 A JP2018221563 A JP 2018221563A JP 2018221563 A JP2018221563 A JP 2018221563A JP 2020084276 A JP2020084276 A JP 2020084276A
Authority
JP
Japan
Prior art keywords
less
steel
strength
mass
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018221563A
Other languages
Japanese (ja)
Other versions
JP7200627B2 (en
Inventor
木南 俊哉
Toshiya Kinami
俊哉 木南
井上 圭介
Keisuke Inoue
圭介 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2018221563A priority Critical patent/JP7200627B2/en
Publication of JP2020084276A publication Critical patent/JP2020084276A/en
Application granted granted Critical
Publication of JP7200627B2 publication Critical patent/JP7200627B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a method for producing steel for high-strength bolts having high tensile strength and excellent delayed fracture resistance, with a reduced content of Ni.SOLUTION: The method for producing high-strength steel mainly consisting of a tempered martensite structure is to provide high-strength bolts having a tensile strength of 1,400 MPa or more and a local critical hydrogen concentration measured by the conventional strain rate technique (CSRT method) of 1.5 ppm or more. A steel ingot made of steel having a composition containing, by mass%, C: more than 0.55% and 0.80% or less, Si: more than 1.0% and 2.9% or less, Cr: 0.80% or more and 1.50% or less, Al: 0.010% or more and 0.060% or less, and N: 0.005% or more and 0.030% or less is prepared. The tempered martensite structure is obtained by performing plastic working at a working rate of 50% or more at a processing temperature equal to or lower than a predetermined temperature at which recrystallization does not occur but equal to or higher than the martensitic transformation start temperature, after raising to a heating temperature which is in the austenite zone.SELECTED DRAWING: None

Description

本発明は、引張強度を800MPa超とする高強度ボルト用鋼及びその製造方法に関し、特に、1400MPa以上の引張強度を有するとともに耐遅れ破壊性に優れる高強度ボルト用鋼及びその製造方法に関する。 The present invention relates to a high-strength bolt steel having a tensile strength of more than 800 MPa and a manufacturing method thereof, and more particularly to a high-strength bolt steel having a tensile strength of 1400 MPa or more and excellent delayed fracture resistance and a manufacturing method thereof.

引張強度において800MPaを超える高強度ボルト(高力ボルト)が土木・建築分野などで用いられている。このような高力ボルトにおいては、しばしば水素の拡散に起因する遅れ破壊が問題となる。特に、引張強度を1400MPa程度以上までに高めた高強度ボルトの開発も求められており、このような高強度化に併せて遅れ破壊を抑制するこが高強度ボルトの素材である高強度ボルト用鋼に求められる。 High-strength bolts (high-strength bolts) having a tensile strength exceeding 800 MPa are used in the fields of civil engineering and construction. In such high strength bolts, delayed fracture due to hydrogen diffusion is often a problem. In particular, the development of high-strength bolts whose tensile strength has been increased to approximately 1400 MPa or more is required. For high-strength bolts, which are the material of high-strength bolts, it is possible to suppress delayed fracture along with such higher strength Required for steel.

例えば、特許文献1では、引張強度120〜140kgf/mm級の高強度ボルト用鋼に関して、一般に引張強度120kgf/mmを超えると耐遅れ破壊性が著しく劣化することを述べている。ここでは、C:0.3〜0.5%、Si:0.1%以下、Mn:0.1〜0.5%、P:0.015%以下、S:0.010%以下、Cr:0.3〜1.5%、Mo:0.1〜0.5%の成分組成を有する鋼を用いて、造塊、鍛造、焼きならしを施した後、850℃から焼入れした後に焼き戻す高強度ボルト用鋼の製造方法を開示している。酸素との親和力の強いSi及びMnを減じて粒界酸化を抑制して耐遅れ破壊性を向上させるとしている。 For example, Patent Document 1, with respect to the tensile strength 120~140kgf / mm 2 class high strength bolts for steel generally exceeds the tensile strength of 120 kgf / mm 2 when the delayed fracture resistance is described to be markedly deteriorated. Here, C: 0.3 to 0.5%, Si: 0.1% or less, Mn: 0.1 to 0.5%, P: 0.015% or less, S: 0.010% or less, Cr : 0.3-1.5%, Mo: 0.1-0.5% of steel is used, and after ingot, forging, and normalizing, the steel is quenched from 850°C and then quenched. Disclosed is a method of manufacturing a high strength bolt steel to be returned. It is said that Si and Mn, which have a strong affinity with oxygen, are reduced to suppress grain boundary oxidation and improve delayed fracture resistance.

また、特許文献2では引張強度1500MPa以上の高い引張強度を有する高強度ボルト用鋼について、耐遅れ破壊性を高める製造方法を開示している。少なくとも、Ni:0.8〜2.4%、V:0.15〜0.40%を含ませた鋼について、1175K(902℃)以上の温度から焼入れ、850K(577℃)以上の温度で焼き戻しをする。二次硬化に寄与するVの炭化物に水素を捕捉させるようにしたことで、耐遅れ破壊性を向上させ得る。 Further, Patent Document 2 discloses a manufacturing method for enhancing delayed fracture resistance of high-strength bolt steel having a high tensile strength of 1500 MPa or more. At least for steel containing Ni: 0.8 to 2.4% and V: 0.15 to 0.40%, quenched from a temperature of 1175K (902°C) or higher, at a temperature of 850K (577°C) or higher. Temper. The delayed fracture resistance can be improved by making the V carbides that contribute to the secondary hardening trap hydrogen.

このような引張強度1400MPa以上の高強度鋼に関し、耐遅れ破壊性を向上させることについて研究がなされている。 With respect to such high-strength steel having a tensile strength of 1400 MPa or more, research has been conducted on improving delayed fracture resistance.

例えば、非特許文献1では、圧延によるオースフォーミングを用いた高強度炭素鋼の製造方法を開示している。ここでは、0.42%のCを含有するJIS SCM440鋼を用い、1050℃に加熱して810℃を仕上げ温度とした減面率50%の圧延をして水焼入れを行うオースフォーミングの後、焼き戻しによって引張強度を1450MPaに調整している。オースフォーミングをしない場合に比べて、旧オーステナイト粒界上のフィルム状セメンタイトを低減させ、粒界を強化することで耐遅れ破壊性を向上させることができるとしている。 For example, Non-Patent Document 1 discloses a method for producing high-strength carbon steel using ausforming by rolling. Here, JIS SCM440 steel containing 0.42% C was used, and after the ausforming in which water quenching was performed by rolling at 50% reduction with 810° C. as the finishing temperature and heating to 1050° C., The tensile strength is adjusted to 1450 MPa by tempering. It is said that delayed fracture resistance can be improved by reducing film-like cementite on the former austenite grain boundaries and strengthening the grain boundaries, as compared with the case where ausforming is not performed.

ところで、破壊は統計処理によって確率的に評価されるが、遅れ破壊については、浸入水素量と破壊頻度に基づく限界散性水素濃度によって評価されることになる。また、遅れ破壊が顕著となる鋼においては、鋼材全体の平均水素量である限界拡散性水素濃度に代えて、破壊起点となり得る部位の水素濃度に着目した局所限界水素濃度によって遅れ破壊に対する耐性を考慮することも提案されている。かかる局所限界水素濃度の取得方法としては、定荷重試験(CLT:Constant Load Test)、低ひずみ速度法(SSRT:Slow Strain Rate Technique)、通常速度法(CSRT:Conventional Strain Rate Technique)、4点曲げ法(4 Point Bending method)などが提案されている(非特許文献2及び3)。 By the way, the fracture is probabilistically evaluated by statistical processing, but the delayed fracture is evaluated by the limit diffuse hydrogen concentration based on the amount of infiltrated hydrogen and the fracture frequency. In addition, in steel where delayed fracture becomes noticeable, resistance to delayed fracture is improved by the local critical hydrogen concentration focusing on the hydrogen concentration at the site that can be the fracture initiation point, instead of the critical diffusible hydrogen concentration that is the average hydrogen content of the entire steel material. It is also proposed to consider. As a method for obtaining the local limit hydrogen concentration, a constant load test (CLT: Constant Load Test), a low strain rate method (SSRT: Slow Strain Rate Technique), a normal rate method (CSRT: Conventional Strain Rate Technique), four-point bending A method (4 Point Bending method) and the like have been proposed (Non-patent documents 2 and 3).

特開昭61−117248号公報Japanese Patent Laid-Open No. 61-117248 特開平8−225845号公報JP-A-8-225845

S.Yusa,K.Tsuzaki and T.Takahashi共著、「オースフォーム処理を行った高強度炭素鋼の遅れ破壊特性に及ぼす焼戻し条件の影響」、CAMP-ISIJ、一般社団法人日本鉄鋼協会、Vol.12(1999)-1296S. Yusa, K. Tsuzaki and T. Takahashi, "Effect of tempering conditions on delayed fracture properties of ausform-treated high-strength carbon steel," CAMP-ISIJ, Japan Iron and Steel Institute, Vol.12. (1999)-1296 「高力ボルトの遅れ破壊特性評価ガイドブック」、日本鋼構造協会JSSCテクニカルレポート、No.91(2010)"Delayed Fracture Evaluation Guidebook for High Strength Bolts", Japan Steel Structure Association JSSC Technical Report, No. 91 (2010) 「高力ボルトの遅れ破壊評価法ガイドライン」、日本鋼構造協会(2014)"Guideline for delayed fracture evaluation of high strength bolts", Japan Steel Structure Association (2014)

ここまで引張強度1400MPa以上の高強度ボルト用鋼については、特許文献2に示すように、Niの添加によって機械強度を得た上で耐遅れ破壊性を確保していた。しかし、Niは材料としては高価であり、これを低減したいとの要望がある。 With respect to the high-strength steel for bolts having a tensile strength of 1400 MPa or more, delayed fracture resistance was secured after obtaining mechanical strength by adding Ni, as shown in Patent Document 2. However, Ni is expensive as a material, and there is a demand to reduce it.

本発明は、上記したような状況に鑑みてなされたものであって、その目的とするところは、Ni量を減じつつ、1400MPa以上の高い引張強度と優れた耐遅れ破壊性を得られる高強度ボルト用鋼及びその製造方法を提供することにある。 The present invention has been made in view of the above situation, and an object thereof is to obtain high tensile strength of 1400 MPa or more and excellent delayed fracture resistance while reducing the amount of Ni. It is to provide a steel for bolts and a manufacturing method thereof.

本願発明者らは、Ni量を減じ、または、これを添加せずとも高い引張強度と優れた耐遅れ破壊性を得られる高強度ボルト用鋼を得るべく、オースフォーミングの適用の可能性について鋭意検討した。その結果、0.55質量%を超えて多くCを含有させた鋼においてはオースフォーミングの適用で上記したような特性を有する高強度ボルト用鋼を得られることを見出した。 The inventors of the present application have keenly studied the possibility of applying ausforming in order to obtain a high-strength steel for bolts that can obtain high tensile strength and excellent delayed fracture resistance without reducing the amount of Ni or adding Ni. investigated. As a result, it has been found that in steel containing a large amount of C in excess of 0.55 mass %, high strength bolt steel having the above-mentioned properties can be obtained by applying ausforming.

すなわち、本発明による高強度ボルト用鋼の製造方法は、主として焼き戻しマルテンサイト組織からなり引張強度を1400MPa以上とするとともに通常速度法(CSRT法)により計測された局所限界水素濃度を1.5ppm以上とする高強度ボルト用鋼の製造方法であって、質量%で、C:0.55%を超えて0.80%以下、Si:1.0%を超えて2.9%以下、Cr:0.80%以上1.50%以下、Al:0.010%以上0.060%以下、N:0.005%以上0.030%以下、残部Fe及び不可避的不純物からなる成分組成を有する鋼からなる鋼塊を準備し、オーステナイト領域である加熱温度に昇温した上で再結晶化をさせない所定温度以下かつマルテンサイト変態開始温度以上の加工温度で加工率50%以上の塑性加工を与えてから焼入れし、さらに焼き戻しをすることで前記焼き戻しマルテンサイト組織を得ることを特徴とする。 That is, the method for producing a high-strength bolt steel according to the present invention is mainly composed of a tempered martensite structure and has a tensile strength of 1400 MPa or more and a local limit hydrogen concentration of 1.5 ppm measured by a normal velocity method (CSRT method). The method for producing a high-strength steel for bolts as described above, wherein C: more than 0.55% and 0.80% or less, Si: more than 1.0% and 2.9% or less, and Cr in mass %. : 0.80% to 1.50%, Al: 0.010% to 0.060%, N: 0.005% to 0.030%, balance Fe and inevitable impurities A steel ingot made of steel is prepared and subjected to plastic working with a working rate of 50% or more at a working temperature not higher than a predetermined temperature at which the temperature is raised to a heating temperature in an austenite region and recrystallization is not performed and at a martensite transformation start temperature or higher. It is characterized in that the tempered martensite structure is obtained by quenching, tempering and tempering.

かかる発明によれば、Niを添加せずとも高い引張強度と優れた耐遅れ破壊性を有する高強度ボルト用鋼を製造できる。 According to this invention, a high-strength bolt steel having high tensile strength and excellent delayed fracture resistance can be manufactured without adding Ni.

上記した発明において、前記加熱温度は900℃以上、前記所定温度は850℃であることを特徴としてもよい。かかる発明によれば、加工温度での加工によって確実に粒界を強化させて耐遅れ破壊性を向上させ得る。 In the above invention, the heating temperature may be 900° C. or higher, and the predetermined temperature may be 850° C. According to this invention, it is possible to surely strengthen the grain boundary and improve the delayed fracture resistance by working at the working temperature.

上記した発明において、前記焼き戻しは500℃以上の温度で保持することを特徴としてもよい。かかる発明によれば、焼き戻しマルテンサイト組織を確実に得て、引張強度と耐遅れ破壊性を確保し向上させ得る。 In the above invention, the tempering may be held at a temperature of 500° C. or higher. According to this invention, a tempered martensite structure can be reliably obtained, and tensile strength and delayed fracture resistance can be secured and improved.

上記した発明において、前記成分組成において、質量%で、Mo:0.80%以上1.50%以下、及び/又は、V:0.05%以上0.50%以下、をさらに含むことを特徴としてもよい。また、前記成分組成において、質量%で、Mn:0.80%以下、Nb:0.10%以下、Ti:0.10%以下、P:0.015%以下、S:0.010%以下で含み得ることを特徴としてもよい。かかる発明によれば、上記した引張強度と耐遅れ破壊性とのそれぞれを確保した上で、さらに引張強度及び/又は耐遅れ破壊性を向上させ得る。 In the above-mentioned invention, the component composition further contains, by mass %, Mo: 0.80% or more and 1.50% or less, and/or V: 0.05% or more and 0.50% or less. May be Moreover, in the said component composition, in mass %, Mn: 0.80% or less, Nb: 0.10% or less, Ti: 0.10% or less, P: 0.015% or less, S: 0.010% or less. May be included. According to this invention, the tensile strength and/or the delayed fracture resistance can be further improved while ensuring the above-mentioned tensile strength and delayed fracture resistance.

さらに、本発明による高強度ボルト用鋼は、主として焼き戻しマルテンサイト組織からなり引張強度を1400MPa以上とする高強度ボルト用鋼であって、質量%で、C:0.55%を超えて0.80%以下、Si:1.0%を超えて2.9%以下、Cr:0.80%以上1.50%以下、Al:0.010%以上0.060%以下、N:0.005%以上0.030%以下、残部Fe及び不可避的不純物からなる成分組成を有し、通常速度法(CSRT法)により計測された局所限界水素濃度を1.5ppm以上とすることを特徴とする。 Further, the high-strength bolt steel according to the present invention is a high-strength bolt steel mainly composed of tempered martensite structure and having a tensile strength of 1400 MPa or more, and in mass%, C: exceeds 0.55% and 0 80% or less, Si: more than 1.0% and 2.9% or less, Cr: 0.80% or more and 1.50% or less, Al: 0.010% or more and 0.060% or less, N:0. It is characterized by having a component composition of 005% or more and 0.030% or less, the balance being Fe and unavoidable impurities, and having a local limit hydrogen concentration measured by a normal velocity method (CSRT method) of 1.5 ppm or more. ..

かかる発明によれば、Niを添加せずとも高い引張強度と優れた耐遅れ破壊性を有する高強度ボルト用鋼とし得る。 According to this invention, a high-strength bolt steel having high tensile strength and excellent delayed fracture resistance can be obtained without adding Ni.

上記した発明において、前記成分組成において、質量%で、Mo:0.80%以上1.50%以下、及び/又は、V:0.05%以上0.50%以下、をさらに含むことを特徴としてもよい。また、前記成分組成において、質量%で、Mn:0.80%以下、Nb:0.10%以下、Ti:0.10%以下、P:0.015%以下、S:0.010%以下で含み得ることを特徴としてもよい。かかる発明によれば、上記した引張強度と耐遅れ破壊性とのそれぞれを確保した上で、さらに引張強度及び/又は耐遅れ破壊性を向上させ得る。 In the above-mentioned invention, the component composition further contains, by mass %, Mo: 0.80% or more and 1.50% or less, and/or V: 0.05% or more and 0.50% or less. May be Moreover, in the said component composition, in mass %, Mn: 0.80% or less, Nb: 0.10% or less, Ti: 0.10% or less, P: 0.015% or less, S: 0.010% or less. May be included. According to this invention, the tensile strength and/or the delayed fracture resistance can be further improved while ensuring the above-mentioned tensile strength and delayed fracture resistance.

実施例及び比較例に用いた鋼種A〜Dの成分組成の表である。It is a table of composition of steel types A to D used in Examples and Comparative Examples. 実施例及び比較例の製造条件と各種試験結果の一覧表である。3 is a list of manufacturing conditions and various test results of Examples and Comparative Examples. CSRT法用試験片の側面図(a)及び部分拡大図(b)である。It is a side view (a) and a partial enlarged view (b) of a test piece for the CSRT method. 曲げ遅れ破壊試験片の側面図(a)及び部分拡大図(b)である。It is a side view (a) and a partial enlarged view (b) of a bending delay fracture test piece. 曲げ遅れ破試験の説明図である。It is explanatory drawing of a bending delay fracture test.

本発明による1つの実施例としての高強度ボルト用鋼の製造方法について、図1を用いて説明する。 A method for manufacturing high-strength bolt steel according to one embodiment of the present invention will be described with reference to FIG.

本実施例における高強度ボルト用鋼の製造方法においては、まず、所定の成分組成の鋼塊を準備する。かかる成分組成は、詳細には、質量%で、C:0.55%を超えて0.80%以下、Si:1.0%を超えて2.9%以下、Mn:0.8%以下、P:0.015%以下、S:0.010%以下、Cr:0.8%以上1.5%以下、Al:0.01%以上0.06%以下、N:0.005%以上0.03%以下を含有する。このような成分組成の鋼として鋼種Aを図1に例示した。 In the method for manufacturing high strength bolt steel according to the present embodiment, first, a steel ingot having a predetermined composition is prepared. Specifically, the composition of the components is, in mass %, C: more than 0.55% and 0.80% or less, Si: more than 1.0% and 2.9% or less, and Mn: 0.8% or less. , P: 0.015% or less, S: 0.010% or less, Cr: 0.8% or more and 1.5% or less, Al: 0.01% or more and 0.06% or less, N: 0.005% or more Contains 0.03% or less. Steel type A is illustrated in FIG. 1 as a steel having such a composition.

また、かかる成分組成としては、さらに、質量%で、Mo:0.8%以上1.5%以下、V:0.005%以上0.5%以下、Nb:0.1%以下、Ti:0.1%以下、のうち1種又は2種以上を含むこととしてもよい。このような成分組成の鋼として鋼種Bを図1に例示した。 Further, as such a component composition, in mass%, Mo: 0.8% or more and 1.5% or less, V: 0.005% or more and 0.5% or less, Nb: 0.1% or less, Ti: One or more of 0.1% or less may be contained. Steel type B is illustrated in FIG. 1 as a steel having such a composition.

続いて、オースフォーミングを施す。詳細には、上記した鋼塊をオーステナイト領域である900℃以上の加熱温度まで加熱する。特に、加熱温度については、焼入れ前の炭化物を固溶させて母相のC濃度を高め、オーステナイト単相組織を得るようになされる。続いて、所定範囲の加工温度において加工率50%以上で塑性加工する。加工温度はオーステナイトの加工硬化を得られるように再結晶化をさせない温度、例えば850℃以下とされるとともに、オーステナイト相での塑性加工をさせるためにマルテンサイト変態開始温度以上とされる。例えば、加熱した鋼塊を上記した加熱温度から空冷し、加工温度に達したところで加工するとよい。棒状体であれば熱間押出加工などを用い得る。加工後の冷却は水焼入れなどの焼入れとする。 Subsequently, ausforming is performed. Specifically, the above steel ingot is heated to a heating temperature of 900° C. or higher which is an austenite region. In particular, regarding the heating temperature, the carbide before quenching is solid-dissolved to increase the C concentration of the matrix and obtain an austenite single phase structure. Then, plastic working is performed at a working rate of 50% or more at a working temperature within a predetermined range. The working temperature is set to a temperature at which recrystallization is not performed so as to obtain work hardening of austenite, for example, 850° C. or lower, and is set to a martensite transformation start temperature or higher for plastic working in the austenite phase. For example, the heated steel ingot may be air-cooled from the heating temperature described above, and may be processed when the processing temperature is reached. For a rod-shaped body, hot extrusion processing or the like can be used. Cooling after processing shall be quenching such as water quenching.

次いで、焼き戻しを行って焼き戻しマルテンサイト組織を得る。焼き戻しでは例えば保持温度を500℃以上とし得る。ここでは2次炭化物を析出させることが好適であり、これによって耐遅れ破壊性を向上させ得る。 Then, tempering is performed to obtain a tempered martensite structure. In tempering, for example, the holding temperature may be 500°C or higher. Here, it is preferable to precipitate secondary carbides, which can improve delayed fracture resistance.

以上のような製造方法によれば、1400MPa以上の引張強度と1.5ppm以上の局所限界水素濃度を有し、耐遅れ破壊性に優れる高強度ボルト用鋼を得ることができる。 According to the manufacturing method as described above, it is possible to obtain a high-strength bolt steel having a tensile strength of 1400 MPa or more and a local limit hydrogen concentration of 1.5 ppm or more and excellent in delayed fracture resistance.

[製造試験]
上記した製造方法により製造した高強度ボルト用鋼について引張強度、局所限界水素濃度、曲げ遅れ破壊強度を測定した結果について説明する。
[Manufacturing test]
The results of measuring the tensile strength, the local critical hydrogen concentration, and the bending delayed fracture strength of the high-strength bolt steel manufactured by the above-described manufacturing method will be described.

図1に示す鋼種A〜Dを用い、図2の実施例1及び2、比較例1乃至6に示す製造条件でそれぞれ試験片を作製した。 Using the steel types A to D shown in FIG. 1, test pieces were produced under the production conditions shown in Examples 1 and 2 and Comparative Examples 1 to 6 of FIG.

まず、鋼種A〜Dの鋼塊を50kgの真空溶解炉で溶製し、熱間鍛造により直径32mmの棒鋼とした。次いで、焼きならし処理として920℃に加熱して2時間保持した後に空冷し、さらに球状化焼きなまし処理として760℃に加熱して3時間保持した後に−15℃/時間の冷却速度で650℃まで冷却した後空冷した。得られた素材から直径23.7mm長さ48mmの試験片用の素材を切り出した。 First, steel ingots of steel types A to D were melted in a 50 kg vacuum melting furnace and hot-forged to form a steel bar having a diameter of 32 mm. Then, as normalizing treatment, heating to 920° C. and holding for 2 hours, then air cooling, and further as spheroidizing annealing, heating to 760° C. and holding for 3 hours, and then to 650° C. at a cooling rate of −15° C./hour. After cooling, it was air-cooled. A material for a test piece having a diameter of 23.7 mm and a length of 48 mm was cut out from the obtained material.

切り出した素材のそれぞれにオースフォーミング加工を施した。詳細には、電気加熱炉を用いて素材を所定の加熱温度で30分間保持した後、空冷しつつ所定の加工温度に達したところで熱間押し出し加工を行い所定の加工率を与え、ダイスからのノックアウト後に直ちに水焼入れを行った。熱間押出加工には600トンクランクプレス機を使用し、80〜100mm/sの加工速度とし、ダイスとの間の潤滑には水溶性黒鉛及び二硫化モリブデンを用いた。また、素材の温度は放射温度計を用いて測定した。ここで、所定の加熱温度、加工温度、加工率は上記したように図2に示す通りである。なお、比較例1及び2の加工率「0」はオースフォーミング加工をしていないことを示すものである。また、加工率は押し出し加工による減面率を表す。 Each material cut out was subjected to ausforming processing. In detail, after holding the material at a predetermined heating temperature for 30 minutes using an electric heating furnace, when it reaches a predetermined processing temperature while air cooling, hot extrusion processing is performed to give a predetermined processing rate, Immediately after knocking out, water quenching was performed. A 600-ton crank press was used for hot extrusion, a processing speed of 80 to 100 mm/s was used, and water-soluble graphite and molybdenum disulfide were used for lubrication with the die. The temperature of the material was measured using a radiation thermometer. Here, the predetermined heating temperature, processing temperature, and processing rate are as shown in FIG. 2 as described above. The processing rate "0" in Comparative Examples 1 and 2 indicates that the ausforming process was not performed. In addition, the processing rate represents the area reduction rate due to extrusion processing.

さらに、それぞれの素材を焼き戻しした。保持温度は、図2に焼き戻し温度として示す温度である。 Furthermore, each material was tempered. The holding temperature is the temperature shown as the tempering temperature in FIG.

この素材から、図3に示すCSRT法用試験片10、図4に示す曲げ遅れ破壊試験片20、引張試験片(図示せず)をそれぞれ切り出した。CSRT法用試験片10は、切り欠き底φ6mm、切り欠き半径0.25mmの環状切り欠き11を有する環状切り欠き試験片とした。曲げ遅れ破壊試験片20は、切り欠き底φ4mm、切り欠き半径0.1mmの環状切り欠き21を有する環状切り欠き試験片とした。引張試験片は平行部の直径を6mmとするJIS14A号平滑引張試験片とした。 From this material, the CSRT method test piece 10 shown in FIG. 3, the bending-delayed fracture test piece 20 and the tensile test piece (not shown) shown in FIG. 4 were cut out. The test piece 10 for the CSRT method was an annular notch test piece having an annular notch 11 with a notch bottom φ6 mm and a notch radius 0.25 mm. The bending-delayed fracture test piece 20 was an annular notch test piece having an annular notch 21 with a notch bottom φ4 mm and a notch radius 0.1 mm. The tensile test piece was a JIS No. 14A smooth tensile test piece in which the diameter of the parallel portion was 6 mm.

CSRT法用試験片10を用いて、CSRT法(A conventional strain rate technique)によって局所限界水素濃度(Hc)を測定した。120時間の陰極チャージによって水素を試験片内に侵入・拡散させ、直ちにクロスヘッド速度1mm/minでの引張試験を行い、破断応力を測定した。破断直後に試験片の破面から10mmの位置で切断して得た切断片についてガスクロマトグラフを用いて拡散性水素量を求めた。拡散性水素量としては、昇温速度100℃/hで600℃までの昇温脱離水素分析を行い、300℃までに放出される水素量とした。得られた破断応力と拡散性水素量の両対数をとり両者の関係を線形近似し、水素を侵入させなかった未チャージ材の破断応力の0.6倍の破断応力となる拡散性水素量を局所限界水素濃度Hcとして図2に示した。 The local limiting hydrogen concentration (Hc * ) was measured by the CSRT method (A conven- tional strain rate technique) using the test piece 10 for the CSRT method. Hydrogen was allowed to penetrate and diffuse into the test piece by the cathode charge for 120 hours, and a tensile test was immediately performed at a crosshead speed of 1 mm/min to measure the breaking stress. Immediately after the fracture, the amount of diffusible hydrogen was determined using a gas chromatograph for the cut piece obtained by cutting the test piece at a position 10 mm from the fracture surface. The amount of diffusible hydrogen was determined as the amount of hydrogen released up to 300° C. by conducting a temperature programmed desorption hydrogen analysis up to 600° C. at a temperature rise rate of 100° C./h. Taking the logarithm of the obtained breaking stress and diffusible hydrogen amount and linearly approximating the relationship between them, the diffusible hydrogen amount that gives a breaking stress of 0.6 times the breaking stress of the uncharged material that did not penetrate hydrogen was calculated. The local limit hydrogen concentration Hc * is shown in FIG.

図5に示すように、遅れ破壊強度は曲げ遅れ破壊試験によって測定した。モーメントアーム31によって錘32による曲げ応力を曲げ遅れ破壊試験片20に付与して、曲げ強度を測定する。まず、静曲げ強度を測定した上で、0.1規定の塩酸を滴下して静曲げ強度の0.8〜0.2倍の応力を負荷し、遅れ破壊の破断時間を求めた。なお、破断しない場合は試験の打ち切り時間を100hとした。遅れ破壊強度は30h破断強度と静曲げ強度との比をとって30h曲げ遅れ破壊強度比として図2に示した。なお、30h曲げ遅れ破壊強度比を0.6以上とするときに耐遅れ破壊性に優れるものとして合格とした。 As shown in FIG. 5, the delayed fracture strength was measured by a bending delayed fracture test. Bending stress due to the weight 32 is applied to the bending-delayed fracture test piece 20 by the moment arm 31, and the bending strength is measured. First, after measuring the static bending strength, 0.1N hydrochloric acid was dropped to apply a stress 0.8 to 0.2 times the static bending strength to determine the fracture time of delayed fracture. In addition, when it did not break, the test termination time was set to 100 h. The delayed fracture strength is shown in FIG. 2 as the 30h bending delayed fracture strength ratio obtained by taking the ratio of the 30h fracture strength and the static bending strength. In addition, when the 30 h bending delay fracture strength ratio was set to 0.6 or more, it was judged as excellent in delayed fracture resistance and passed.

また、上記した引張試験片を用いた引張試験においては、破断応力を引張強度として図2に示した。 Further, in the tensile test using the tensile test piece described above, the breaking stress is shown in FIG. 2 as the tensile strength.

図2に示すように、実施例1及び2のいずれも引張強度は1400MPa以上であり、通常速度法(CSRT法)により計測された局所限界水素濃度は1.5ppm以上であった。つまり、引張強度と耐遅れ破壊性の両者において優れている。 As shown in FIG. 2, in each of Examples 1 and 2, the tensile strength was 1400 MPa or more, and the local limiting hydrogen concentration measured by the normal velocity method (CSRT method) was 1.5 ppm or more. That is, it is excellent in both tensile strength and delayed fracture resistance.

これに対し、比較例1及び2では、引張強度は1400MPa以上であるものの、同様に計測された局所限界水素濃度は1.5ppmを下回り、曲げ遅れ破壊強度比においても劣る。これは、オースフォーミング加工を行わなかったためと考えられる。 On the other hand, in Comparative Examples 1 and 2, although the tensile strength is 1400 MPa or more, the similarly measured local limit hydrogen concentration is less than 1.5 ppm, and the bending delay fracture strength ratio is also poor. It is considered that this is because the ausforming process was not performed.

比較例3及び4でも、局所限界水素濃度は1.5ppmを下回り、曲げ遅れ破壊強度比においても劣る。オースフォーミングの加工温度を850℃超としたため、加工中の再結晶化が進んだものと考えられる。 Also in Comparative Examples 3 and 4, the local limit hydrogen concentration is less than 1.5 ppm, and the bending delay fracture strength ratio is also inferior. Since the processing temperature of ausforming was over 850° C., it is considered that recrystallization during processing progressed.

比較例5及び6は、局所限界水素濃度及び曲げ遅れ破壊強度比では優れるものの、引張強度が1400MPaに満たなかった。それぞれ、Siの含有量の少ない鋼種C、及び、Cの含有量の少ない鋼種D(図1参照)を用いているためと考えられる。つまり、鋼種C又は鋼種Dでは高強度ボルト用鋼としては適さないものと考えられる。 In Comparative Examples 5 and 6, although the local limit hydrogen concentration and the bending delay fracture strength ratio were excellent, the tensile strength was less than 1400 MPa. It is considered that this is because the steel type C having a low Si content and the steel type D having a low C content (see FIG. 1) are used, respectively. That is, it is considered that steel type C or steel type D is not suitable as high strength bolt steel.

ところで、ボルトに外部から侵入する水素による局所侵入水素濃度(H )は、一般に高々1ppm程度であり、局所限界水素濃度Hcが1.5ppm以上あれば遅れ破壊の発生する確率は相当低いことになる。この点、上記したように実施例1及び2では、局所限界水素濃度を1.5ppm以上とできて、良好な結果であったことが判る。 Meanwhile, local invasion of hydrogen concentration by the hydrogen entering from the outside to the bolt (H E *) is generally at most 1ppm or so, the probability * local limit hydrogen concentration Hc is generated delayed fracture if more 1.5ppm is considerably less It will be. In this respect, as described above, in Examples 1 and 2, it was found that the local limit hydrogen concentration could be 1.5 ppm or more, which was a good result.

以上のように、実施例1及び2の製造方法であれば、1400MPa以上の引張強度を有し耐遅れ破壊性に優れる高強度ボルト用鋼を得ることができる。 As described above, according to the manufacturing methods of Examples 1 and 2, it is possible to obtain high-strength bolt steel having a tensile strength of 1400 MPa or more and excellent delayed fracture resistance.

ところで、上記した実施例を含む耐遅れ破壊性に優れる高強度ボルト用鋼とほぼ同等の引張強度と局所限界水素濃度とを与え得る鋼の組成範囲は以下のように定められる。 By the way, the composition range of the steel which can give the tensile strength and the local limit hydrogen concentration almost equivalent to the steel for high strength bolts excellent in delayed fracture resistance including the above-mentioned examples is defined as follows.

まずは、必須添加元素について説明する。 First, the essential additive element will be described.

Cは、焼入れ焼き戻し後の鋼の硬さを高めて、1400MPa以上の引張強度を確保するために必要である。一方で、過剰に含有させると延性や靭性を低下させ、さらに耐遅れ破壊性も低下させ、ボルト成型時の鍛造性や転造性などの製造性も低下させてしまう。これらを考慮して、Cは、質量%で、0.55%を超えて0.80%以下の範囲内である。 C is necessary to increase the hardness of steel after quenching and tempering and to secure a tensile strength of 1400 MPa or more. On the other hand, if it is contained excessively, the ductility and toughness are lowered, the delayed fracture resistance is lowered, and the manufacturability such as forgeability and rolling property at the time of bolt forming is also lowered. Taking these into consideration, C is in the range of more than 0.55% and 0.80% or less by mass %.

Siは、鋼を溶製する際に脱酸剤として用いられるとともに固溶強化によって鋼の機械強度を向上させる。一方で、過剰に添加すると粒界酸化を助長して耐遅れ破壊性を低下させるとともに熱間加工性も低下させてしまう。これらを考慮して、Siは、質量%で、1.0%を超えて2.9%以下の範囲内である。 Si is used as a deoxidizing agent when producing steel, and improves the mechanical strength of steel by solid solution strengthening. On the other hand, if added excessively, it promotes intergranular oxidation to reduce delayed fracture resistance and hot workability. Considering these, Si is in the range of more than 1.0% and 2.9% or less by mass %.

Crは、焼入れ性を高めてマルテンサイト組織を得るため、焼き戻し処理時における軟化抵抗を高め、またパーライト組織及びベイナイト組織の変態温度を低下させて機械強度を高めるために有効な元素である。一方で、過剰に含有させると、加工性や靭性を低下させてしまうことがあり、粒界酸化を促進させて遅れ破壊強度を低下させてしまう。これらを考慮して、Crは、質量%で、0.80%以上1.50%以下の範囲内である。 Cr is an element effective for enhancing the hardenability and obtaining the martensite structure, thus enhancing the softening resistance during the tempering treatment, and for lowering the transformation temperature of the pearlite structure and the bainite structure to enhance the mechanical strength. On the other hand, when it is contained excessively, workability and toughness may be deteriorated, which accelerates the grain boundary oxidation and deteriorates the delayed fracture strength. Considering these, Cr is in the range of 0.80% to 1.50% in mass %.

Alは、鋼の脱酸剤として用いられるとともに酸化物や窒化物を形成することで結晶粒の微細化に寄与して靭性を向上させ、耐遅れ破壊性の低下を抑制できる。一方、過剰に含有させると硬質の非金属介在物を生成し疲労破壊の起点となって疲労寿命を低下させてしまう。これらを考慮して、Alは、質量%で、0.010%以上0.060%以下の範囲内である。 Al is used as a deoxidizing agent for steel, forms an oxide or a nitride, contributes to the refinement of crystal grains, improves toughness, and can suppress a decrease in delayed fracture resistance. On the other hand, if it is contained excessively, hard non-metallic inclusions are generated, which becomes the starting point of fatigue fracture and reduces the fatigue life. Considering these, Al is in the range of 0.010% to 0.060% by mass.

Nは、Alと窒化物や炭窒化物を形成して結晶粒の微細化に寄与して機械強度を向上させ得る。また、拡散性水素のトラップサイトの形成に寄与して耐遅れ破壊性を向上させ得る。一方で、過剰に含有させると非金属介在物を生成して疲労破壊の起点となって疲労寿命を低下させてしまう。これらを考慮して、Nは、質量%で、0.005%以上0.030%以下の範囲内である。 N can form a nitride or carbonitride with Al, contribute to the refinement of crystal grains, and improve mechanical strength. In addition, the delayed fracture resistance can be improved by contributing to the formation of diffusible hydrogen trap sites. On the other hand, if it is contained excessively, non-metallic inclusions are generated, which becomes the starting point of fatigue fracture and reduces the fatigue life. Considering these, N is in the range of 0.005% or more and 0.030% or less by mass %.

次に、任意添加元素について説明する。 Next, the optional additional element will be described.

Moは、炭化物を形成し析出させることで鋼の焼入れ性を改善して機械強度を向上させるとともに、焼き戻し時の硬さの低下を抑制する。また、その析出物の界面を拡散性水素のトラップサイトとし、耐遅れ破壊性を向上させ得る。よって、任意に添加されてもよい。一方で、過剰に含有させると材料コストを増大させ、熱間加工性や切削性を低下させてしまう。これらを考慮して、添加する場合において、Moは、質量%で、0.80%以上1.50%以下の範囲内である。 Mo improves the hardenability of steel by forming and precipitating carbides to improve the mechanical strength and suppresses the decrease in hardness during tempering. Further, the interface of the precipitate can be used as a diffusible hydrogen trap site to improve delayed fracture resistance. Therefore, it may be added arbitrarily. On the other hand, if it is contained excessively, the material cost is increased and the hot workability and the machinability are deteriorated. When these are taken into consideration, Mo is in the range of 0.80% or more and 1.50% or less by mass%.

Vは、微細な炭化物として析出することで、機械強度を高めるとともに拡散性水素のトラップサイトを形成し、耐遅れ破壊性を向上させ得る。よって、任意に添加されてもよい。一方で、過剰に含有させると材料コストを増大させ、熱間加工性や切削性を低下させてしまう。これらを考慮して、添加する場合において、Vは、質量%で、0.05%以上0.50%以下の範囲内である。 V precipitates as fine carbides to increase mechanical strength and form diffusible hydrogen trap sites, which can improve delayed fracture resistance. Therefore, it may be added arbitrarily. On the other hand, if it is contained excessively, the material cost is increased and the hot workability and the machinability are deteriorated. When these are taken into consideration, V is in the range of 0.05% or more and 0.50% or less in mass%.

Mnは、焼入れ性を向上させて機械強度や靭性の確保のために任意に添加され得るが、過剰に含有させると、過剰な機械強度の上昇による旋削加性等の製造性の低下や、ミクロ偏析の増大などによる靭性の低下をもたらしてしまう。これらを考慮して、Mnは、質量%で、0.80%以下の範囲内である。 Mn can be optionally added to improve hardenability and ensure mechanical strength and toughness. However, if it is contained excessively, manufacturability such as turning machinability is deteriorated due to excessive increase in mechanical strength, and Mn is This causes a decrease in toughness due to an increase in segregation. Considering these, Mn is in the range of 0.80% or less in mass %.

Nbは、VやTiとともに又は単独で炭窒化物を形成し析出させて析出強化に寄与するとともに、かかる炭窒化物を拡散性水素のトラップサイトとすることで耐遅れ破壊性を向上させ得る。一方で、過剰に添加してもその効果は飽和してしまう。これらを考慮して、Nbは、質量%で、0.10%以下の範囲内である。 Nb forms a carbonitride together with V or Ti or alone and contributes to precipitation strengthening, and by using such a carbonitride as a diffusible hydrogen trap site, delayed fracture resistance can be improved. On the other hand, even if added excessively, the effect will be saturated. Considering these, Nb is in the range of 0.10% or less in mass %.

Tiは、VやNbとともに又は単独で炭窒化物を形成し析出強化に寄与するとともに、かかる炭窒化物を拡散性水素のトラップサイトとすることで耐遅れ破壊性を向上させ得る。一方で、過剰に添加すると窒化物を形成して非金属介在物として疲労破壊の起点となって疲労寿命を低下させてしまう。これらを考慮して、Tiは、質量%で、0.10%以下の範囲内である。 Ti forms carbonitrides alone or together with V and Nb to contribute to precipitation strengthening, and by using such carbonitrides as trap sites for diffusible hydrogen, delayed fracture resistance can be improved. On the other hand, if added excessively, it forms a nitride and becomes a starting point of fatigue fracture as a non-metallic inclusion to reduce the fatigue life. Considering these, Ti is in the range of 0.10% or less in mass %.

Pは、オーステナイト粒界に偏析し結晶粒界を脆化させて機械強度を低下させるため含有量を低下させることが好ましい。一方で、過度の精錬はコスト増につながる。これらを考慮して、Pは、質量%で、0.015%以下の範囲内である。 P is preferably segregated at the austenite grain boundaries, embrittles the crystal grain boundaries, and lowers the mechanical strength, so the content is preferably reduced. On the other hand, excessive refining leads to increased costs. Considering these, P is in the range of 0.015% or less by mass %.

Sは、熱間加工性を害し、Mnなどと結合して非金属介在物を生成し靭性や耐遅れ破壊性を低下させるため含有量を低下させることが好ましい。一方で、切削加工性を向上する効果を有するとともに過度の精錬はコスト増につながる。これらを考慮して、Sは、質量%で、0.010%以下の範囲内である。 Since S impairs the hot workability and combines with Mn and the like to form non-metallic inclusions to reduce toughness and delayed fracture resistance, it is preferable to reduce the content. On the other hand, it has an effect of improving machinability and excessive refining leads to an increase in cost. Considering these, S is in the range of 0.010% or less by mass %.

以上、本発明の代表的な実施例を説明したが、本発明は必ずしもこれらに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、種々の代替実施例及び改変例を見出すことができるであろう。

Although the typical embodiments of the present invention have been described above, the present invention is not necessarily limited to these, and a person skilled in the art can deviate from the gist of the present invention or the scope of the appended claims. , It will be possible to find various alternatives and modifications.

Claims (8)

主として焼き戻しマルテンサイト組織からなり引張強度を1400MPa以上とするとともに通常速度法(CSRT法)により計測された局所限界水素濃度を1.5ppm以上とする高強度ボルト用鋼の製造方法であって、
質量%で、
C:0.55%を超えて0.80%以下、
Si:1.0%を超えて2.9%以下、
Cr:0.80%以上1.50%以下、
Al:0.010%以上0.060%以下、
N:0.005%以上0.030%以下、
残部Fe及び不可避的不純物からなる成分組成を有する鋼からなる鋼塊を準備し、
オーステナイト領域である加熱温度に昇温した上で再結晶化をさせない所定温度以下かつマルテンサイト変態開始温度以上の加工温度で加工率50%以上の塑性加工を与えてから焼入れし、さらに焼き戻しをすることで前記焼き戻しマルテンサイト組織を得ることを特徴とする高強度ボルト用鋼の製造方法。
A method for producing high-strength steel for bolts, which mainly comprises tempered martensite structure and has a tensile strength of 1400 MPa or more and a local limit hydrogen concentration of 1.5 ppm or more measured by a normal velocity method (CSRT method),
In mass %,
C: more than 0.55% and 0.80% or less,
Si: more than 1.0% and 2.9% or less,
Cr: 0.80% or more and 1.50% or less,
Al: 0.010% or more and 0.060% or less,
N: 0.005% or more and 0.030% or less,
A steel ingot made of steel having a composition consisting of the balance Fe and unavoidable impurities is prepared,
After heating to a heating temperature in the austenite region, and subjecting it to plastic working with a working rate of 50% or more at a working temperature below a predetermined temperature at which recrystallization does not occur and above the martensite transformation start temperature, quenching and further tempering are performed. The tempered martensite structure is obtained by doing so.
前記加熱温度は900℃以上、前記所定温度は850℃であることを特徴とする請求項1記載の高強度ボルト用鋼の製造方法。 The method for producing high-strength bolt steel according to claim 1, wherein the heating temperature is 900°C or higher and the predetermined temperature is 850°C. 前記焼き戻しは500℃以上の温度で保持することを特徴とする請求項1又は2に記載の高強度ボルト用鋼の製造方法。 The method for producing high-strength bolt steel according to claim 1 or 2, wherein the tempering is performed at a temperature of 500°C or higher. 前記成分組成において、質量%で、
Mo:0.80%以上1.50%以下、及び/又は、
V:0.05%以上0.50%以下、
をさらに含むことを特徴とする請求項1乃至3のうちの1つに記載の高強度ボルト用鋼の製造方法。
In the above component composition, in mass%,
Mo: 0.80% or more and 1.50% or less, and/or
V: 0.05% or more and 0.50% or less,
The method for producing high-strength bolt steel according to any one of claims 1 to 3, further comprising:
前記成分組成において、質量%で、Mn:0.80%以下、Nb:0.10%以下、Ti:0.10%以下、P:0.015%以下、S:0.010%以下で含み得ることを特徴とする請求項1乃至4のうちの1つに記載の高強度ボルト用鋼の製造方法。 In the above component composition, in mass%, Mn: 0.80% or less, Nb: 0.10% or less, Ti: 0.10% or less, P: 0.015% or less, S: 0.010% or less The method for producing a high-strength steel for bolts according to any one of claims 1 to 4, which is obtained. 主として焼き戻しマルテンサイト組織からなり引張強度を1400MPa以上とする高強度ボルト用鋼であって、
質量%で、
C:0.55%を超えて0.80%以下、
Si:1.0%を超えて2.9%以下、
Cr:0.80%以上1.50%以下、
Al:0.010%以上0.060%以下、
N:0.005%以上0.030%以下、
残部Fe及び不可避的不純物からなる成分組成を有し、
通常速度法(CSRT法)により計測された局所限界水素濃度を1.5ppm以上とすることを特徴とする高強度ボルト用鋼。
A high-strength bolt steel mainly comprising a tempered martensite structure and having a tensile strength of 1400 MPa or more,
In mass %,
C: more than 0.55% and 0.80% or less,
Si: more than 1.0% and 2.9% or less,
Cr: 0.80% or more and 1.50% or less,
Al: 0.010% or more and 0.060% or less,
N: 0.005% or more and 0.030% or less,
It has a composition of the balance Fe and unavoidable impurities,
Steel for high-strength bolts, which has a local limit hydrogen concentration of 1.5 ppm or more measured by the normal velocity method (CSRT method).
前記成分組成において、質量%で、
Mo:0.80%以上1.50%以下、及び/又は、
V:0.05%以上0.50%以下、
をさらに含むことを特徴とする請求項6記載の高強度ボルト用鋼。
In the above component composition, in mass%,
Mo: 0.80% or more and 1.50% or less, and/or
V: 0.05% or more and 0.50% or less,
The steel for high-strength bolts according to claim 6, further comprising:
前記成分組成において、質量%で、Mn:0.80%以下、Nb:0.10%以下、Ti:0.10%以下、P:0.015%以下、S:0.010%以下で含み得ることを特徴とする請求項6又は7に記載の高強度ボルト用鋼。

In the above component composition, in mass%, Mn: 0.80% or less, Nb: 0.10% or less, Ti: 0.10% or less, P: 0.015% or less, S: 0.010% or less The steel for high-strength bolts according to claim 6 or 7, which is obtained.

JP2018221563A 2018-11-27 2018-11-27 High-strength bolt steel and its manufacturing method Active JP7200627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018221563A JP7200627B2 (en) 2018-11-27 2018-11-27 High-strength bolt steel and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018221563A JP7200627B2 (en) 2018-11-27 2018-11-27 High-strength bolt steel and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2020084276A true JP2020084276A (en) 2020-06-04
JP7200627B2 JP7200627B2 (en) 2023-01-10

Family

ID=70906725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018221563A Active JP7200627B2 (en) 2018-11-27 2018-11-27 High-strength bolt steel and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7200627B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115852241A (en) * 2021-09-24 2023-03-28 宝山钢铁股份有限公司 High-homogeneity high-hardenability wind power bolt steel, bar and manufacturing method thereof
WO2023184782A1 (en) * 2022-04-01 2023-10-05 南京钢铁股份有限公司 Manufacturing method for hot forging-formed, composite-quenched and structure-refined high-strength bolt

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692535B2 (en) * 1986-03-07 1994-11-16 日本ジーイープラスチックス株式会社 Resin composition
JP2003147480A (en) * 2001-11-14 2003-05-21 Nippon Steel Corp Non-heatteated high strength and high toughness forging, and production method therefor
JP2005029870A (en) * 2003-07-11 2005-02-03 Kobe Steel Ltd High strength steel having excellent hydrogen embrittlement resistance, and its production method
JP2005082820A (en) * 2003-09-04 2005-03-31 National Institute For Materials Science Fatigue strength-improved steel and its production method
JP2007254774A (en) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd Method for manufacturing self-piercing rivet
JP2013139631A (en) * 2011-12-09 2013-07-18 National Institute For Materials Science High tensile bolt and method of manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6992535B2 (en) 2018-01-18 2022-02-04 大同特殊鋼株式会社 High-strength bolts and their manufacturing methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692535B2 (en) * 1986-03-07 1994-11-16 日本ジーイープラスチックス株式会社 Resin composition
JP2003147480A (en) * 2001-11-14 2003-05-21 Nippon Steel Corp Non-heatteated high strength and high toughness forging, and production method therefor
JP2005029870A (en) * 2003-07-11 2005-02-03 Kobe Steel Ltd High strength steel having excellent hydrogen embrittlement resistance, and its production method
JP2005082820A (en) * 2003-09-04 2005-03-31 National Institute For Materials Science Fatigue strength-improved steel and its production method
JP2007254774A (en) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd Method for manufacturing self-piercing rivet
JP2013139631A (en) * 2011-12-09 2013-07-18 National Institute For Materials Science High tensile bolt and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115852241A (en) * 2021-09-24 2023-03-28 宝山钢铁股份有限公司 High-homogeneity high-hardenability wind power bolt steel, bar and manufacturing method thereof
WO2023184782A1 (en) * 2022-04-01 2023-10-05 南京钢铁股份有限公司 Manufacturing method for hot forging-formed, composite-quenched and structure-refined high-strength bolt

Also Published As

Publication number Publication date
JP7200627B2 (en) 2023-01-10

Similar Documents

Publication Publication Date Title
JP5135557B2 (en) High-strength steel material and high-strength bolt excellent in delayed fracture resistance
JP5728836B2 (en) Manufacturing method of high strength seamless steel pipe for oil wells with excellent resistance to sulfide stress cracking
JP5177323B2 (en) High-strength steel material and high-strength bolt excellent in delayed fracture resistance
KR101768785B1 (en) High-strength spring steel wire with excellent hydrogen embrittlement resistance, manufacturing process therefor, and high-strength spring
JP6729823B2 (en) Method of manufacturing wear-resistant steel
JP6027302B2 (en) High strength tempered spring steel
JP2006037147A (en) Steel material for oil well pipe
JP5913214B2 (en) Bolt steel and bolts, and methods for producing the same
JP6631640B2 (en) Case hardened steel, carburized parts and method of manufacturing case hardened steel
TW201538747A (en) Rolled steel material for high-strength spring and wire for high-strength spring using same
CN109790602B (en) Steel
JP4411253B2 (en) Hot forged parts with excellent delayed fracture resistance and method for producing the same
JP2015183266A (en) Steel for high strength bolt excellent in delayed fracture resistance and high strength bolt
JPH06116635A (en) Production of high strength low alloy steel for oil well use, excellent in sulfide stress corrosion cracking resistance
JP7200627B2 (en) High-strength bolt steel and its manufacturing method
JP6766362B2 (en) Skin-baked steel with excellent coarse grain prevention characteristics, fatigue characteristics, and machinability during carburizing and its manufacturing method
JP2009256771A (en) High strength spring steel having excellent delayed fracture resistance, and method for producing the same
JP2001288538A (en) High strength steel for bolt excellent in delayed fracture resistance, bolt and method for producing the bolt
CN110462083B (en) Steel having high hardness and excellent toughness
JP5233307B2 (en) High-strength steel and metal bolts with excellent corrosion resistance and cold forgeability that prevent hydrogen from entering the environment
JP4967356B2 (en) High strength seamless steel pipe and manufacturing method thereof
JPH11131187A (en) Rapidly graphitizable steel and its production
JP6992535B2 (en) High-strength bolts and their manufacturing methods
JP2020128592A (en) Bolt, steel for bolt, and manufacturing method of bolt
JPH11131135A (en) Induction-hardened parts and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221205

R150 Certificate of patent or registration of utility model

Ref document number: 7200627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150