JP4967356B2 - High strength seamless steel pipe and manufacturing method thereof - Google Patents

High strength seamless steel pipe and manufacturing method thereof Download PDF

Info

Publication number
JP4967356B2
JP4967356B2 JP2006022548A JP2006022548A JP4967356B2 JP 4967356 B2 JP4967356 B2 JP 4967356B2 JP 2006022548 A JP2006022548 A JP 2006022548A JP 2006022548 A JP2006022548 A JP 2006022548A JP 4967356 B2 JP4967356 B2 JP 4967356B2
Authority
JP
Japan
Prior art keywords
less
steel pipe
phase
seamless steel
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006022548A
Other languages
Japanese (ja)
Other versions
JP2007204789A (en
Inventor
義男 山崎
由紀夫 宮田
光男 木村
幸三 蛸島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006022548A priority Critical patent/JP4967356B2/en
Publication of JP2007204789A publication Critical patent/JP2007204789A/en
Application granted granted Critical
Publication of JP4967356B2 publication Critical patent/JP4967356B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、圧力容器用、機械構造用部品等で高寸法精度、高靭性を必要とする部材用として好適な、引張強さ600MPa以上を有する高強度継目無鋼管およびその製造方法に係り、とくに、冷間引抜き等の冷間加工後の靭性改善に関する。   The present invention relates to a high-strength seamless steel pipe having a tensile strength of 600 MPa or more, and a method for producing the same, particularly suitable for pressure vessels, parts for machine structural parts, etc. that require high dimensional accuracy and high toughness, and in particular. The invention relates to toughness improvement after cold working such as cold drawing.

マンネスマン−プラグミル方式、あるいはマンネスマン−マンドレルミル方式等の穿孔、延伸圧延、縮径圧延等からなる熱間の造管工程を経て製造される継目無鋼管は、その製造工程上、他の製造方法で製造された鋼管に比べて、偏肉が発生しやすいこと、さらに形状、寸法精度で劣るという問題がある。そのため、圧力容器向けや機械構造部品向けの場合には、冷間引抜きなどの冷間加工を施して表面性状等を矯正して使用に供しているのが現状である。とくに、偏肉が大きい場合には、電縫鋼管並みに矯正するために、減肉率が10%を超える冷間引抜きを行なう必要がある。しかし、多量の冷間加工の付与は、継目無鋼管の靭性劣化を招くことになる。この冷間加工による靭性劣化は、とくに高強度鋼管で顕著となる。   Seamless steel pipes manufactured through hot pipe forming processes such as Mannesmann-plug mill system or Mannesmann-Mandrel mill system drilling, stretching rolling, diameter reduction rolling, etc. Compared to the manufactured steel pipe, there is a problem that uneven thickness is likely to occur, and that the shape and dimensional accuracy are inferior. For this reason, in the case of pressure vessels and machine structural parts, the present situation is that cold working such as cold drawing is performed to correct surface properties and the like for use. In particular, when the uneven thickness is large, it is necessary to perform cold drawing with a thickness reduction rate exceeding 10% in order to correct the same as an ERW steel pipe. However, the application of a large amount of cold working causes toughness deterioration of the seamless steel pipe. This deterioration in toughness due to cold working is particularly noticeable in high-strength steel pipes.

また、高強度の継目無鋼管を、焼入れ焼戻処理を施すことなく、非調質で製造するためには、一般的に、C:0.2%を超えるような中炭素域〜高炭素域組成の鋼管素材を使用することが多く、そのため、造管まま継目無鋼管の靭性は低くなる。このような継目無鋼管に多量の冷間加工を施すと著しく靭性が劣化することになる。
このような問題に対し、例えば、特許文献1には、C:0.01〜0.20%、Si:0.50%以下、Mn:0.30〜2.00%、P:0.020%以下、S:0.020%以下、Al:0.10%以下を含み、あるいはさらにMo:0.50%以下、V:0.10%以下、Ni:0.50%以下、Cr:1.00%以下、Cu:0.50%以下、Ti:0.10%以下、Nb:0.10%以下、B:0.005 %以下のうち1種以上を含有し、残部Feおよび不可避的不純物からなる鋼を製管後、所定の寸法に冷間加工を施したまま、もしくは冷間加工後焼なまし、焼ならしまたは焼入れ焼戻し処理する、高強度高靭性エアーバック用鋼管の製造方法が提案されている。
In addition, in order to produce a high-strength seamless steel pipe without quenching and tempering without being tempered, generally, C: a medium carbon region to a high carbon region composition exceeding 0.2%. Steel pipe materials are often used, and as a result, the toughness of seamless steel pipes remains low. When such a seamless steel pipe is subjected to a large amount of cold working, the toughness is significantly deteriorated.
For such problems, for example, in Patent Document 1, C: 0.01 to 0.20%, Si: 0.50% or less, Mn: 0.30 to 2.00%, P: 0.020% or less, S: 0.020% or less, Al: 0.10 Or less: Mo: 0.50% or less, V: 0.10% or less, Ni: 0.50% or less, Cr: 1.00% or less, Cu: 0.50% or less, Ti: 0.10% or less, Nb: 0.10% or less, B : 0.005% or less, containing one or more of the remaining Fe and unavoidable impurities, after pipe making, cold working to the specified dimensions, or after cold working annealing A method of manufacturing a steel pipe for a high strength and high toughness air bag which is subjected to tempering or quenching and tempering is proposed.

また、特許文献2には、特許文献1に記載された組成と同様の組成の鋼を製管後、850〜1000℃で焼ならしたのち、所定の寸法に冷間加工を施したまま、もしくは冷間加工後焼なまし、焼ならしまたは焼入れ焼戻し処理する、高強度高靭性鋼管の製造方法が提案されている。
特開平10−140283号公報 特開平10−140249号公報
Further, in Patent Document 2, a steel having the same composition as that described in Patent Document 1 is piped, and after normalizing at 850 to 1000 ° C., cold working is performed to a predetermined dimension, or There has been proposed a method for producing a high-strength, high-toughness steel pipe that is annealed, normalized or quenched and tempered after cold working.
Japanese Patent Laid-Open No. 10-140283 Japanese Patent Laid-Open No. 10-140249

しかしながら、特許文献1、2に記載された技術では、冷間加工後に、高靭性を確保するためには、熱処理を必要とするため、生産能率が低下し、製造コストが高騰するという問題があった。
本発明は、かかる従来技術の問題を解決し、引張強さ600MPa以上の高強度を有し高靭性で、しかも冷間加工を施しても靭性劣化が少なく、冷間加工後の熱処理を必要としない、高強度継目無鋼管およびその製造方法を提案することを目的とする。
However, the techniques described in Patent Documents 1 and 2 have a problem that the production efficiency is reduced and the manufacturing cost is increased because heat treatment is required to ensure high toughness after cold working. It was.
The present invention solves such problems of the prior art, has a high strength of tensile strength of 600 MPa or more, has high toughness, and has little toughness deterioration even after cold working, and requires heat treatment after cold working. It aims at proposing a high-strength seamless steel pipe and its manufacturing method.

本発明者らは、上記した課題を達成するために、冷間加工後の靭性劣化に及ぼす各種要因について鋭意研究した。その結果、継目無鋼管の組織をベイナイト単相組織またはベイナイト相と少量の低温変態相との混合組織とすることにより、冷間引抜等の冷間加工を施しても靭性劣化の程度を少なくすることができることを知見した。
本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
In order to achieve the above-mentioned problems, the present inventors diligently studied various factors affecting toughness deterioration after cold working. The extent of the results, the seam by tissue or a bainite single phase structure of steel pipe is to be mixed structure of bainite phase and a small amount of low-temperature transformation phase, also the toughness deteriorates subjected to cold working of cold drawing, etc. It has been found that can be reduced.
The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.

(1)質量%で、C:0.02〜0.07%、Si:0.05〜1.0%、Mn:2.0%超4.5%以下、P:0.030%以下、S:0.015%以下、Al:0.01〜0.06%、N:0.007%以下、O:0.005%以下、Cr:0.05〜1.0%、Mo:0.05〜1.0%、Nb:0.005〜0.20%、Ti:0.005%以上0.03%未満、B:0.001〜0.004%を、次(1)式
Mn+1.3Cr+2.0Mo+0.3Ni+0.6Cu ≧ 3.0 ………(1)
(ここで、Mn、Cr、Mo、Ni、Cu:各元素の含有量(質量%))
を満足するように含み、残部Feおよび不可避的不純物からなる組成と、ベイナイト相からなる単相組織あるいは面積率で90%以上のベイナイト相と残部マルテンサイト相からなる混合組織を有することを特徴とする高強度継目無鋼管。
(1) By mass%, C: 0.02 to 0.07%, Si: 0.05 to 1.0%, Mn: more than 2.0%, 4.5% or less, P: 0.030% or less, S: 0.015% or less, Al: 0.01 to 0.06%, N : 0.007% or less, O: 0.005% or less, Cr: 0.05 to 1.0%, Mo: 0.05 to 1.0%, Nb: 0.005 to 0.20%, Ti: 0.005% or more and less than 0.03%, B: 0.001 to 0.004% (1) Formula
Mn + 1.3Cr + 2.0Mo + 0.3Ni + 0.6Cu ≧ 3.0 (1)
(Here, Mn, Cr, Mo, Ni, Cu: content of each element (mass%))
Wherein to satisfy a composition the balance being Fe and inevitable impurities, in that it has a mixed structure consisting of a single-phase structure, or a 90% or more of bainite phase in area ratio and the balance martensite phase consisting of bainite phase High strength seamless steel pipe.

(2)(1)において、前記組成に加えてさらに、質量%で、Ni:1.0%以下、Cu:1.0%以下、V:0.20%以下、Ca:0.005%以下のうちから選ばれた1種または2種以上を含有することを特徴とする高強度継目無鋼管。
(3)鋼管素材に、加熱と、それに続く穿孔、圧延からなる造管工程を施し継目無鋼管とする継目無鋼管の製造方法において、前記鋼管素材が、質量%で、C:0.02〜0.07%、Si:0.05〜1.0%、Mn:2.0%超4.5%以下、P:0.030%以下、S:0.015%以下、Al:0.01〜0.06%、N:0.007%以下、O:0.005%以下、Cr:0.05〜1.0%、Mo:0.05〜1.0%、Nb:0.005〜0.20%、Ti:0.005%以上0.03%未満、B:0.001〜0.004%を、次(1)式
Mn+1.3Cr+2.0Mo+0.3Ni+0.6Cu ≧ 3.0 ………(1)
(ここで、Mn、Cr、Mo、Ni、Cu:各元素の含有量(質量%))
を満足するように含み、残部Feおよび不可避的不純物からなる組成を有する鋼管素材とし、前記加熱が、Ac3変態点以上の温度への加熱であり、前記圧延が、750℃以上の圧延終了温度を有する圧延であることを特徴とするベイナイト相からなる単相組織あるいは面積率で90%以上のベイナイト相と残部マルテンサイト相からなる混合組織を有する高強度継目無鋼管の製造方法。
(2) In (1), in addition to the above-mentioned composition, by mass%, Ni: 1.0% or less, Cu: 1.0% or less, V: 0.20% or less, Ca: 0.005% or less Or the high strength seamless steel pipe characterized by containing 2 or more types.
(3) In the manufacturing method of the seamless steel pipe which makes the steel pipe raw material the pipe making process which consists of heating, the subsequent piercing | punching and rolling to the steel pipe raw material, the said steel pipe raw material is the mass%, and C: 0.02-0.07% , Si: 0.05 to 1.0%, Mn: more than 2.0%, 4.5% or less, P: 0.030% or less, S: 0.015% or less, Al: 0.01 to 0.06%, N: 0.007% or less, O: 0.005% or less, Cr: 0.05 to 1.0%, Mo: 0.05 to 1.0%, Nb: 0.005 to 0.20%, Ti: 0.005% or more and less than 0.03%, B: 0.001 to 0.004%, the following formula (1)
Mn + 1.3Cr + 2.0Mo + 0.3Ni + 0.6Cu ≧ 3.0 (1)
(Here, Mn, Cr, Mo, Ni, Cu: content of each element (mass%))
The steel pipe material having a composition comprising the balance Fe and inevitable impurities, the heating is heating to a temperature of the Ac 3 transformation point or higher, and the rolling is a rolling end temperature of 750 ° C. or higher. A method for producing a high-strength seamless steel pipe having a single-phase structure composed of a bainite phase or a mixed structure composed of a bainite phase having an area ratio of 90% or more and the remaining martensite phase, which is characterized by being rolled.

(4)(3)において、前記圧延が、900〜750℃の温度域での減面率が30%以上の圧延であることを特徴とする高強度継目無鋼管の製造方法。
(5)(3)または(4)において、前記造管工程後に、前記継目無鋼管に、(Ac3変態点+10℃)〜(Ac3変態点+90℃)の温度域に加熱し30min以下保持したのち空冷する熱処理を施すことを特徴とする高強度継目無鋼管の製造方法。
(4) The method for producing a high-strength seamless steel pipe according to (3), wherein the rolling is rolling with a reduction in area in a temperature range of 900 to 750 ° C. of 30% or more.
(5) In (3) or (4), after the pipe forming step, the seamless steel pipe is heated to a temperature range of (Ac 3 transformation point + 10 ° C) to (Ac 3 transformation point + 90 ° C) and held for 30 minutes or less. A method for producing a high-strength seamless steel pipe, which is then subjected to a heat treatment that is air-cooled.

(6)質量%で、C:0.02〜0.07%、Si:0.05〜1.0%、Mn:2.0%超4.5%以下、P:0.030%以下、S:0.015%以下、Al:0.01〜0.06%、N:0.007%以下、O:0.005%以下、Cr:0.05〜1.0%、Mo:0.05〜1.0%、Nb:0.005〜0.20%、Ti:0.005%以上0.03%未満、B:0.001〜0.004%を、次(1)式
Mn+1.3Cr+2.0Mo+0.3Ni+0.6Cu ≧ 3.0 ………(1)
(ここで、Mn、Cr、Mo、Ni、Cu:各元素の含有量(質量%))
を満足するように含み、残部Feおよび不可避的不純物からなる組成を有する継目無鋼管に、(Ac3変態点+10℃)〜(Ac3変態点+90℃)の温度域に加熱し30min以下保持したのち空冷する熱処理を施すことを特徴とするベイナイト相からなる単相組織あるいは面積率で90%以上のベイナイト相と残部マルテンサイト相からなる混合組織を有する高強度継目無鋼管の製造方法。
(6) By mass%, C: 0.02 to 0.07%, Si: 0.05 to 1.0%, Mn: more than 2.0%, 4.5% or less, P: 0.030% or less, S: 0.015% or less, Al: 0.01 to 0.06%, N : 0.007% or less, O: 0.005% or less, Cr: 0.05 to 1.0%, Mo: 0.05 to 1.0%, Nb: 0.005 to 0.20%, Ti: 0.005% or more and less than 0.03%, B: 0.001 to 0.004% (1) Formula
Mn + 1.3Cr + 2.0Mo + 0.3Ni + 0.6Cu ≧ 3.0 (1)
(Here, Mn, Cr, Mo, Ni, Cu: content of each element (mass%))
In a seamless steel pipe having a composition composed of the balance Fe and inevitable impurities, and heated to a temperature range of (Ac 3 transformation point + 10 ° C) to (Ac 3 transformation point + 90 ° C) and held for 30 min or less. A method for producing a high-strength seamless steel pipe having a single-phase structure composed of a bainite phase or a mixed structure composed of a bainite phase having an area ratio of 90% or more and the remaining martensite phase, which is characterized in that heat treatment is performed after air cooling.

(7)(3)ないし(6)のいずれかにおいて、前記組成に加えてさらに、質量%で、Ni:1.0%以下、Cu:1.0%以下、V:0.20%以下、Ca:0.005%以下のうちから選ばれた1種または2種以上を含有することを特徴とする高強度継目無鋼管の製造方法。   (7) In any one of (3) to (6), in addition to the above composition, in addition to mass, Ni: 1.0% or less, Cu: 1.0% or less, V: 0.20% or less, Ca: 0.005% or less A method for producing a high-strength seamless steel pipe, comprising one or more selected from among them.

本発明によれば、冷間引抜等の冷間加工を加えても靭性の劣化の程度が少ない、高靭性で高強度の継目無鋼管を安価に製造でき、産業上格段の効果を奏する。また、本発明によれば、圧延条件や冷却条件が広範囲に変化しても、強度変化や組織変化が少ないため、種々のサイズの継目無鋼管の製造に対処でき、生産性向上に寄与できるという効果もある。   According to the present invention, a high-toughness and high-strength seamless steel pipe can be manufactured at a low cost with little toughness deterioration even when cold working such as cold drawing is applied, and a remarkable industrial effect is achieved. In addition, according to the present invention, even if the rolling conditions and cooling conditions change over a wide range, the strength change and the structure change are small, so that it is possible to cope with the manufacture of seamless steel pipes of various sizes, and it can contribute to productivity improvement. There is also an effect.

本発明の継目無鋼管は、ベイナイト相からなる単相組織あるいは面積率で90%以上のベイナイト相と残部低温変態相からなる混合組織を有する。低温変態相としてはマルテンサイト相とすることが好ましい。
組織をベイナイト相単相または面積率で90%以上のベイナイト相と残部低温変態相からなる混合組織とすることにより、所望の強度と造管ままでの高靭性が確保できるとともに、冷間加工後の靭性劣化を抑制することができる。フェライト相およびパーライト相が形成されると、冷間引抜等の冷間加工後の靭性が顕著に低下する。
Seamless steel pipe of the present invention has a mixed structure consisting of a single-phase structure, or a 90% or more of bainite phase at an area ratio and the balance low temperature transformation phase comprising bainite phase. The low temperature transformation phase is preferably a martensite phase.
With tissue consisting bainite single phase or more than 90% of bainite phase at an area ratio and the balance low temperature transformation phase microstructure, it can be secured high toughness remains desired strength and pipe-making, cold Degradation of toughness after processing can be suppressed. When the ferrite phase and the pearlite phase are formed, the toughness after cold working such as cold drawing significantly decreases.

このようになる機構については、現在までのところ明確になっていないが、本発明者らはつぎのように考えている。フェライト相のような軟質相を含む場合には、強度差の大きい組織が同時に存在するため、軟質相中や、軟質相と硬質相との界面に加工歪が集中し、脆化が促進されるものと推察される。一方、ベイナイト相単相またはベイナイト相を主体とする組織とすることにより、微細炭化物が均一分散した均質組織となり、冷間加工による歪がおもに粒内に均一分散され、靭性低下が抑制されるものと推察される。
Although the mechanism which becomes like this has not been clarified so far, the present inventors consider as follows. When a soft phase such as a ferrite phase is included, a structure with a large strength difference exists at the same time, so that processing strain is concentrated in the soft phase or at the interface between the soft phase and the hard phase, and embrittlement is promoted. Inferred. On the other hand, by also bainite single phase to structure mainly a bainite phase becomes a homogeneous tissue fine carbides are uniformly dispersed, distortion due to cold working is mainly uniformly dispersed in grains, toughness decreases inhibition It is inferred that

このため、本発明ではCr、Mo、Nb、Bを必須含有する組成とし、さらに低炭素下での焼入れ性を確保するため、とくにMn、Cr、Mo、Ni、Cu含有量を次(1)式
Mn+1.3Cr+2.0Mo+0.3Ni+0.6Cu ≧ 3.0 ………(1)
(ここで、Mn、Cr、Mo、Ni、Cu:各元素の含有量(質量%))
に示す特定の関係を満足するように調整する。これにより、フェライト相およびパーライト相の形成を遅滞させることができ、組織をベイナイト相単相または面積率で90%以上のベイナイト相と残部低温変態相からなる混合組織とすることができる。(1)式の関係が満足されない場合には、造管ままで組織を所望の組織とすることができず、冷間加工後の靭性劣化を抑制することができなくなる。なお、(1)式左辺値の計算に際しては、含有しない元素は、零として計算するものとする。
For this reason, in the present invention, a composition containing Cr, Mo, Nb, and B is essential, and in order to ensure hardenability under low carbon, the contents of Mn, Cr, Mo, Ni, and Cu are particularly the following (1). formula
Mn + 1.3Cr + 2.0Mo + 0.3Ni + 0.6Cu ≧ 3.0 (1)
(Here, Mn, Cr, Mo, Ni, Cu: content of each element (mass%))
Adjust to satisfy the specific relationship shown in. Thus, it is possible to delay the formation of the ferrite phase and a pearlite phase, can be tissue consisting bainite single phase or more than 90% of bainite phase at an area ratio and the balance low-temperature transformation phase mixed structure. When the relationship of the formula (1) is not satisfied, the structure cannot be made as a desired structure as it is, and the toughness deterioration after cold working cannot be suppressed. In calculating the value on the left side of equation (1), elements not contained are calculated as zero.

上記した関係式以外の、本発明の高強度継目無鋼管の組成限定理由について説明する。なお、以下、組成における質量%は単に%で記す。
C:0.02〜0.07%
Cは、鋼の強度増加に寄与する元素であり、所望の組織、所望の600MPa以上の引張強さを確保するために本発明では0.02%以上の含有を必要とする。一方、0.07%を超えて過剰に含有すると、製造条件を広範囲に変化させた場合には、組織をベイナイト相とすることができず、冷間加工後の靭性低下が顕著となる。このため、本発明では、Cは0.02〜0.07%の範囲に限定した。なお、好ましくは0.02〜0.05%である。
The reasons for limiting the composition of the high-strength seamless steel pipe of the present invention other than the relational expressions described above will be described. Hereinafter, the mass% in the composition is simply expressed as%.
C: 0.02 to 0.07%
C is an element that contributes to an increase in the strength of steel, and in the present invention, it is necessary to contain 0.02% or more in order to ensure a desired structure and a desired tensile strength of 600 MPa or more. On the other hand, when excessive content exceeding 0.07%, in the case of widely varying the manufacturing conditions can not be organized bainite phase, decrease in toughness after cold working becomes conspicuous. For this reason, in this invention, C was limited to 0.02 to 0.07% of range. In addition, Preferably it is 0.02 to 0.05%.

Si:0.05〜1.0%
Siは、脱酸剤として作用するとともに、固溶強化で鋼の強度を増加させる元素であり、このような効果を得るには 0.05%以上含有する必要がある。一方、1.0%を超える過剰な含有は熱間加工性を著しく低下させるとともに、靭性を低下させる。このため、本発明では0.05〜1.0 %の範囲に限定した。なお、好ましくは0.1〜0.6%である。
Si: 0.05-1.0%
Si is an element that acts as a deoxidizer and increases the strength of the steel by solid solution strengthening. To obtain such an effect, it is necessary to contain 0.05% or more. On the other hand, an excessive content exceeding 1.0% significantly reduces hot workability and lowers toughness. For this reason, in this invention, it limited to 0.05 to 1.0% of range. In addition, Preferably it is 0.1 to 0.6%.

Mn:2.0%超4.5%以下
Mnは、強度を向上させるとともに、焼入れ性を向上させる安価な元素であり、所望の組織を確保するために、本発明では2.0%超の含有を必要とする。本発明では、冷間加工後の靭性劣化を抑制する目的で、組織をベイナイト相単相組織あるいはベイナイト相と少量の低温変態相との混合組織とするが、そのためにMnをCr、Mo、Ni、Cu量とのバランスで適正量含有させる。Mn含有量が2.0%以下では、焼入れ性向上のためにNi、Cr等の他の高価な元素を多量に含有させる必要があり、材料コストが高騰する。一方、4.5%を超えて含有すると、中心偏析起因の欠陥が発生する危険性が増大する。このため、Mnは2.0%超4.5%以下の範囲に限定した。なお、好ましくは2.5%超4.0%以下である。
Mn: more than 2.0% and 4.5% or less
Mn is an inexpensive element that improves strength and hardenability, and in the present invention, it needs to contain more than 2.0% in order to secure a desired structure. In the present invention, for the purpose of suppressing deterioration of toughness after cold working, tissue bainite single phase structure walk is a mixed structure of bainite phase and a small amount of low-temperature transformation phase, the Mn for the Cr , Mo, Ni, Cu is contained in an appropriate amount in balance. If the Mn content is 2.0% or less, it is necessary to contain a large amount of other expensive elements such as Ni and Cr in order to improve the hardenability, and the material cost increases. On the other hand, if the content exceeds 4.5%, the risk of occurrence of defects due to center segregation increases. For this reason, Mn was limited to the range of more than 2.0% and 4.5% or less. In addition, Preferably it is more than 2.5% and 4.0% or less.

P:0.030%以下
Pは、粒界に偏析しやすい元素であり、多量に含有すると粒界強度が著しく低下し、延性、靭性を低下させるため、できるだけ低減することが好ましいが、0.030%までは許容できる。なお、好ましくは0.015%以下である。
S:0.015%以下
Sは、鋼中では主としてMn系硫化物(非金属介在物)として存在するが、0.015%を超えて含有すると、粗大で伸展した非金属介在物となり、冷間引抜等の加工や、応力負荷に際して、これら非金属介在物を起点として亀裂が発生し、特性を著しく低下させる。このため、Sは0.015%以下に限定した。なお、好ましくは0.008%以下である。
P: 0.030% or less P is an element that is easily segregated at the grain boundary. When it is contained in a large amount, the grain boundary strength is remarkably lowered, and ductility and toughness are lowered. acceptable. In addition, Preferably it is 0.015% or less.
S: 0.015% or less S exists mainly as Mn sulfide (non-metallic inclusions) in steel, but if it exceeds 0.015%, it becomes coarse and extended non-metallic inclusions, such as cold drawing. During processing and stress loading, cracks are generated starting from these non-metallic inclusions, and the characteristics are remarkably deteriorated. For this reason, S was limited to 0.015% or less. In addition, Preferably it is 0.008% or less.

Al:0.01〜0.06%
Alは、脱酸剤として作用するとともに、AlNとしてNを固定する作用を有する元素であり、このような効果を得るためには0.01%以上の含有を必要とする。しかし、0.06%を超えて含有すると、アルミナ系介在物量が増加し清浄度が低下するとともに、靭性が低下する。このため、Alは0.01〜0.06%の範囲に限定した。なお、好ましくは0.02〜0.04%である。
Al: 0.01-0.06%
Al is an element that acts as a deoxidizing agent and also has an action of fixing N as AlN. To obtain such an effect, the content of 0.01% or more is required. However, if it exceeds 0.06%, the amount of alumina inclusions increases, the cleanliness decreases and the toughness decreases. For this reason, Al was limited to the range of 0.01 to 0.06%. In addition, Preferably it is 0.02 to 0.04%.

N:0.007%以下
Nは、不可避的不純物として鋼中に含まれるが、多量に鋼中に固溶されると熱間脆性を生じるため、Al、Ti等により窒化物として無害化することが好ましい。しかし、0.007%を超えて含有すると、粗大な窒化物を形成し、延性、靭性を低下させる。このため、Nは0.007%以下に限定した。なお、好ましくは0.005%以下である。
N: 0.007% or less N is contained in steel as an unavoidable impurity. However, since it becomes hot brittle when dissolved in a large amount in steel, it is preferably detoxified as nitride by Al, Ti or the like. . However, if it exceeds 0.007%, coarse nitrides are formed and ductility and toughness are lowered. For this reason, N was limited to 0.007% or less. In addition, Preferably it is 0.005% or less.

O:0.005%以下
Oは、鋼中では主として酸化物(非金属介在物)として存在し、清浄度を低下させるとともに、延性、靭性を低下させるため、できるだけ低減することが好ましい。0.005%以下に低減すれば上記した悪影響は少なくなるため、本発明ではOは0.005%以下に限定した。なお、好ましくは0.004%以下である。
O: 0.005% or less O is mainly present as an oxide (non-metallic inclusion) in steel, and lowers cleanliness and ductility and toughness. Therefore, it is preferable to reduce it as much as possible. If the content is reduced to 0.005% or less, the above-described adverse effects are reduced. Therefore, in the present invention, O is limited to 0.005% or less. In addition, Preferably it is 0.004% or less.

Cr:0.05〜1.0%
Crは、パーライト変態を遅滞させて、焼入れ性を向上させる元素であり、広い範囲で製造条件が変化しても、ベイナイト相単相組織、あるいはベイナイト相と少量の低温変態相との混合組織を確保するために必須の元素である。このような効果を得るため、0.05%以上の含有を必要とする。一方、1.0%を超える含有は、靭性を低下させる。このため、Crは0.05〜1.0%の範囲に限定した。好ましくは0.08〜0.5%である。なお、Crは、上記した範囲内で、かつMn、Mo、Ni、Cu量とのバランスで(1)式を満足するように適正量含有させる。
Cr: 0.05-1.0%
Cr is allowed to delay the pearlite transformation, an element improving the hardenability, even after changing the manufacturing conditions in a wide range, bainite single phase structure, there have in the bainite phase and a small amount of low-temperature transformation phase It is an essential element for securing a mixed structure. In order to acquire such an effect, 0.05% or more of content is required. On the other hand, the content exceeding 1.0% lowers the toughness. For this reason, Cr was limited to the range of 0.05 to 1.0%. Preferably it is 0.08 to 0.5%. In addition, Cr is contained in an appropriate amount so as to satisfy the formula (1) in the above range and in balance with the amounts of Mn, Mo, Ni, and Cu.

Mo:0.05〜1.0%
Moは、フェライト変態を遅滞させて、焼入れ性を向上させる元素であり、広い範囲で製造条件が変化しても、ベイナイト相単相組織、あるいはベイナイト相と少量の低温変態相との混合組織を確保するために必須の元素である。このような効果を得るため、0.05%以上の含有を必要とする。一方、1.0%を超える含有は、延性を低下させる。このため、Moは0.05〜1.0%の範囲に限定した。好ましくは0.08〜0.5%である。なお、Moは、上記した範囲内で、かつMn、Cr、Ni、Cu量とのバランスで(1)式を満足するように適正量含有させる。
Mo: 0.05-1.0%
Mo is by delay ferrite transformation, an element improving the hardenability, even after changing the manufacturing conditions in a wide range, bainite single phase structure, there have in the bainite phase and a small amount of low-temperature transformation phase It is an essential element for securing a mixed structure. In order to acquire such an effect, 0.05% or more of content is required. On the other hand, inclusion exceeding 1.0% reduces ductility. For this reason, Mo was limited to the range of 0.05 to 1.0%. Preferably it is 0.08 to 0.5%. In addition, Mo is contained in an appropriate amount so as to satisfy the formula (1) in the above range and in balance with the amounts of Mn, Cr, Ni, and Cu.

Ti:0.005%以上0.03%未満
Tiは、強い窒化物形成元素であり、Nによる熱間脆性、時効硬化等の悪影響を抑制する作用を有する。ために、0.005%以上の含有を必要とする。また、Tiは、Bの有効利用を促進するために、BNの形成を防止する作用も有する。このような効果を得るためには、0.005%以上の含有を必要とする。一方、0.03%以上の含有は、粗大な窒化物が形成しやすくなり、靭性が低下する。このため、Tiは0.005%以上0.03%未満に限定した。なお、好ましくは(48/14×N)%〜0.025%である。
Ti: 0.005% or more and less than 0.03%
Ti is a strong nitride-forming element and has an effect of suppressing adverse effects such as hot brittleness and age hardening due to N. Therefore, it needs to contain 0.005% or more. Ti also has the function of preventing the formation of BN in order to promote the effective use of B. In order to acquire such an effect, 0.005% or more of content is required. On the other hand, a content of 0.03% or more facilitates the formation of coarse nitrides and lowers toughness. For this reason, Ti was limited to 0.005% or more and less than 0.03%. In addition, Preferably it is (48 / 14xN)%-0.025%.

Nb:0.005〜0.20%
Nbは、拡散型変態を遅延させる有効な元素であり、広い範囲で製造条件が変化しても、ベイナイト相単相組織、あるいはベイナイト相と少量の低温変態相との混合組織を確保するために必須の元素である。また、Nbは、Bと複合含有させることにより、その効果が増大する。また、Nbは、結晶粒の粗大化を抑制する作用を有し、靭性向上に有効に寄与するとともに、微細な炭化物を形成して強度を増加させる。このような効果を得るためには、0.005%以上の含有を必要とする。一方、0.20%を超える含有は、延性、靭性を低下させる。このため、Nbは0.005〜0.20%の範囲に限定した。なお、好ましくは0.01〜0.10%である。
Nb: 0.005-0.20%
Nb is an effective element for delaying the diffusion type transformation, even after changing the manufacturing conditions in a wide range, bainite single phase structure, a certain stomach bainite phase and a small amount of mixed structure of low-temperature transformation phase It is an essential element for securing. The effect of Nb is increased by incorporating it in combination with B. Moreover, Nb has the effect | action which suppresses the coarsening of a crystal grain, contributes to a toughness improvement effectively, forms a fine carbide | carbonized_material, and increases intensity | strength. In order to acquire such an effect, 0.005% or more of content is required. On the other hand, if it exceeds 0.20%, ductility and toughness are lowered. For this reason, Nb was limited to 0.005 to 0.20% of range. In addition, Preferably it is 0.01 to 0.10%.

B:0.001〜0.004%
Bは、粒界強化元素として粒界割れの抑制に有効に作用する元素であり、靭性向上に寄与する。また、Bは、フェライト変態を遅延させ、さらにNbと複合して含有する場合には、Nbの拡散型変態の遅延をも向上させ、広い範囲で製造条件が変化しても、ベイナイト相単相組織、あるいはベイナイト相と少量の低温変態相との混合組織を確保するために必須の元素である。このような効果を得るためには、0.001%以上の含有を必要とする。一方、0.004%を超え含有しても上記した効果が飽和するとともに、延性が低下する。このため、Bは0.001〜0.004%に限定した。なお、好ましくは0.0015〜0.003%である。
B: 0.001 to 0.004%
B is an element that effectively acts as a grain boundary strengthening element in suppressing grain boundary cracking, and contributes to improvement in toughness. Also, B delays the ferrite transformation, when it contains further combined with Nb also improves the delay of diffusion type transformation Nb, even after changing the manufacturing conditions in a wide range, bainite phase single phase tissue, there have is an essential element for ensuring a mixed structure of bainite phase and a small amount of low-temperature transformation phase. In order to obtain such an effect, a content of 0.001% or more is required. On the other hand, even if the content exceeds 0.004%, the above effect is saturated and ductility is lowered. For this reason, B was limited to 0.001 to 0.004%. In addition, Preferably it is 0.0015 to 0.003%.

上記した成分が基本組成であるが、上記した基本組成に加えて加えてさらに、Ni:1.0%以下、Cu:1.0%以下のうちから選ばれた1種または2種、および/または、V:0.20%以下、および/または、Ca:0.005%以下を含有してもよい。
Ni、Cuは、強度、靭性、耐食性を向上させ、また、Mn、Cr、Moほどではないが焼入れ性を向上させる元素であり、必要に応じて選択して1種または2種を含有できる。このような効果はそれぞれ0.05%以上の含有で顕著となる。一方、Ni:1.0%、Cu:1.0%をそれぞれ超えて含有しても、上記した効果が飽和し経済的に不利となるとともに、熱間脆性を引き起こす場合がある。このため、Ni:1.0%以下、Cu:1.0%以下にそれぞれ限定することが好ましい。なお、Ni、Cuは、上記した範囲内で、かつMn、Cr、Mo量とのバランスで(1)式を満足するように適正量含有させることが好ましい。
The above-described components are basic compositions. In addition to the above basic compositions, Ni: 1.0% or less, Cu: 1.0% or less selected from 1.0% or less, and / or V: It may contain 0.20% or less and / or Ca: 0.005% or less.
Ni and Cu are elements that improve strength, toughness, and corrosion resistance, and improve hardenability, although not as much as Mn, Cr, and Mo, and can be selected as needed and contain one or two kinds. Such an effect becomes remarkable when the content is 0.05% or more. On the other hand, even if the content exceeds Ni: 1.0% and Cu: 1.0%, the above effects are saturated and disadvantageous economically, and hot brittleness may be caused. For this reason, it is preferable to limit to Ni: 1.0% or less and Cu: 1.0% or less, respectively. Ni and Cu are preferably contained in appropriate amounts so as to satisfy the formula (1) in the above range and in balance with the amounts of Mn, Cr and Mo.

Vは、炭窒化物を形成し、組織の微細化と、析出強化を介して強度を増加させる元素であり、必要に応じて含有できる。このような効果は0.005%以上の含有で認められる。一方、0.20%を超える含有は、延性、靭性が低下する。このため、Vは0.20%以下に限定することが好ましい。
Caは、非金属介在物の形態を球状とし、延性および靭性の向上に有効に作用する元素であり、本発明では必要に応じ選択して含有できる。このような効果は、Ca:0.001%以上の含有で認められる。一方、Caを0.005%を超えて含有すると、介在物量が多くなりすぎて清浄度が低下する。このため、Ca:0.005%以下に限定することが好ましい。
V is an element that forms carbonitride and increases the strength through refinement of the structure and precipitation strengthening, and can be contained as necessary. Such an effect is recognized when the content is 0.005% or more. On the other hand, if it exceeds 0.20%, ductility and toughness are lowered. For this reason, it is preferable to limit V to 0.20% or less.
Ca is an element that makes the form of non-metallic inclusions spherical and effectively acts to improve ductility and toughness, and can be selected and contained as necessary in the present invention. Such an effect is recognized when the content of Ca is 0.001% or more. On the other hand, when Ca is contained in excess of 0.005%, the amount of inclusions is excessively increased and the cleanliness is lowered. For this reason, it is preferable to limit to Ca: 0.005% or less.

上記した成分以外の残部は、Feおよび不可避的不純物である。
つぎに、本発明の高強度継目無鋼管の好ましい製造方法について説明する。
上記した組成の溶鋼を、転炉、電気炉等の公知の溶製方法により溶製し、連続鋳造法、造塊法等の公知の鋳造方法によりビレット等の鋼管素材とすることが好ましい。なお、連続鋳造法等によりスラブとし、該スラブを圧延によりビレットとしてもよい。
The balance other than the above components is Fe and inevitable impurities.
Below, the preferable manufacturing method of the high intensity | strength seamless steel pipe of this invention is demonstrated.
It is preferable that the molten steel having the above composition is melted by a known melting method such as a converter or an electric furnace, and used as a steel pipe material such as a billet by a known casting method such as a continuous casting method or an ingot casting method. Note that a slab may be formed by a continuous casting method or the like, and the slab may be formed into a billet by rolling.

本発明では、得られた鋼管素材に、Ac3変態点以上の温度への加熱と、それに続く穿孔、圧延からなる造管工程を施して、継目無鋼管とする。鋼管素材は、Ac3変態点以上の温度への加熱により、一旦オーステナイト化されたのち、マンネスマン−プラグミル方式、あるいはマンネスマンーマンドレルミル方式の製造設備を用いて、穿孔、圧延し、必要に応じて中間加熱を施されて、ストレッチレデューサー、サイジングミル等により、所望の寸法の継目無鋼管とされる。造管工程における圧延は、鋼管の機械的性質の均質化、寸法精度、圧延効率等の観点から、750℃以上の圧延終了温度を有する圧延とすることが好ましい。加熱温度がAc3変態点未満では、オーステナイト化が不十分であり所望の組織を得ることができなくなる。また、圧延終了温度が750℃未満では、鋼管素材の組成や圧延条件によっては、加工誘起フェライト変態が生じる場合があり、所望の組織を得ることができなくなる。なお、造管工程が上記した以外の方式、例えば熱間押し出し法による継目無鋼管であっても、一旦オーステナイト化したのち、750℃以上で熱間加工を終了すれば、何ら問題ががない。 In the present invention, the obtained steel pipe material is subjected to a pipe making process including heating to a temperature equal to or higher than the Ac 3 transformation point, followed by drilling and rolling to obtain a seamless steel pipe. The steel pipe material is once austenitized by heating to a temperature above the Ac 3 transformation point, and then drilled and rolled using Mannesmann-plug mill type or Mannesmann mandrel mill type manufacturing equipment, as necessary. Intermediate heating is performed to obtain a seamless steel pipe having a desired size by a stretch reducer, a sizing mill, or the like. Rolling in the pipe making process is preferably rolling having a rolling end temperature of 750 ° C. or higher from the viewpoint of homogenization of mechanical properties of the steel pipe, dimensional accuracy, rolling efficiency, and the like. When the heating temperature is less than the Ac 3 transformation point, austenitization is insufficient and a desired structure cannot be obtained. Further, when the rolling end temperature is less than 750 ° C., processing-induced ferrite transformation may occur depending on the composition of the steel pipe material and rolling conditions, and a desired structure cannot be obtained. It should be noted that even if the pipe making process is a method other than those described above, for example, a seamless steel pipe by a hot extrusion method, there is no problem if the hot working is finished at 750 ° C. or higher after it is once austenitized.

なお、Ac3変態点は、実測することが望ましいが、次式を用いて算出してもよい。
Ac3(℃)=910−230√C+44.7Si−20Mn−15.2Ni−20Cu−11Cr+31.5Mo+104V+700P+400Al+400Ti
(ここで、C、Si、Mn、Ni、Cu、Cr、Mo、V、P、Al、Ti:各元素の含有量(質量%))
とくに、上記した造管工程における圧延を750℃以上900℃以下の温度域での減面率が30%以上となる圧下を施す圧延とすることが、造管ままの靭性の確保という観点から好ましい。また、上記した圧延により未再結晶温度域での加工歪が蓄積し、ベイナイト変態時の組織(パケットサイズ)が微細化されるためと推察される。一方、減面率が30%未満では、ベイナイト変態時の組織(パケットサイズ)が微細化されない場合があり、圧延ままの靭性が低下する場合がある。しかし、減面率が30%未満の場合でも、本発明の組成、組織であれば、冷間加工を施したのちの靭性低下の程度は小さい。
The Ac 3 transformation point is preferably measured, but may be calculated using the following equation.
Ac 3 (° C.) = 910−230√C + 44.7Si−20Mn−15.2Ni−20Cu−11Cr + 31.5Mo + 104V + 700P + 400Al + 400Ti
(Here, C, Si, Mn, Ni, Cu, Cr, Mo, V, P, Al, Ti: content of each element (mass%))
In particular, it is preferable from the viewpoint of securing the toughness of the pipe forming that the rolling in the pipe forming step is a rolling that reduces the area reduction rate to 30% or more in the temperature range of 750 ° C. or more and 900 ° C. or less. . Further, it is presumed that the above-described rolling accumulates processing strains in the non-recrystallization temperature range and refines the structure (packet size) at the bainite transformation. On the other hand, if the area reduction is less than 30%, the structure (packet size) at the time of bainite transformation may not be refined, and the toughness as rolled may be reduced. However, even when the area reduction is less than 30%, the degree of toughness reduction after cold working is small if the composition and structure of the present invention are used.

また、本発明では、上記した造管工程を施し得られた継目無鋼管、あるいは上記した造管工程に続いて冷間加工等の成形加工を施された継目無鋼管に、さらに組織の調整および材質の均質化を目的とした熱処理を施してもよい。
また、上記した造管工程とは異なる造管工程を施された継目無鋼管、あるいは通常の造管工程とは異なる冷間加工等の成形加工で造管された継目無鋼管でも、上記した本発明範囲の組成を有する鋼管であれば、さらに組織の調整を目的とした熱処理を施すことにより、上記した所望の組織、材質を有する継目無鋼管とすることができる。
Further, in the present invention, the structure adjustment and the seamless steel pipe obtained by performing the above-described pipe forming process, or the seamless steel pipe subjected to the forming process such as cold working following the above-described pipe forming process, and Heat treatment for the purpose of homogenizing the material may be performed.
Also, the above-mentioned book can be applied to seamless steel pipes that have been subjected to a pipe making process that is different from the above-mentioned pipe making processes, or seamless steel pipes that have been piped by a forming process such as cold work different from the normal pipe making process. If it is a steel pipe which has a composition of the invention range, it can be set as the seamless steel pipe which has the above-mentioned desired structure | tissue and material by performing the heat processing aiming at the adjustment | control of a structure | tissue.

このような熱処理としては、(Ac3変態点+10℃)〜(Ac3変態点+90℃)の温度域に加熱し30min以下保持したのち空冷する熱処理とすることが好ましい。加熱温度が、(Ac3変態点+10℃)未満では、素材の不均質等により、十分にオーステナイト化が達成できない場合があり、フェライト相が生成し、所望の組織を確保することができなくなる。また、(Ac3変態点+90℃)を超える高温加熱、あるいは30minを超える長時間保持では、オーステナイト粒が粗大化し、靭性が低下する。 Such a heat treatment is preferably a heat treatment in which heating is carried out in a temperature range of (Ac 3 transformation point + 10 ° C.) to (Ac 3 transformation point + 90 ° C.) and maintained for 30 minutes or less, followed by air cooling. If the heating temperature is less than (Ac 3 transformation point + 10 ° C.), sufficient austenitization may not be achieved due to inhomogeneity of the material, etc., and a ferrite phase is generated, making it impossible to secure a desired structure. In addition, when heated at a high temperature exceeding (Ac 3 transformation point + 90 ° C.) or held for a long time exceeding 30 min, austenite grains become coarse and toughness decreases.

表1に示す組成の溶鋼を、真空溶解法で溶製したのち、鋳造し、小型鋼塊(100kgf:980N)とした。ついで、これら鋼塊に熱間鍛造を施して鋼管素材(ビレット)とした。鋼管素材を、加熱温度:1250℃に加熱したのち、モデルシームレス圧延機により、熱間で穿孔、圧延からなる造管工程を施し、継目無鋼管(外径:63.5mmφ×肉厚:5.0mm)とした。なお、圧延条件は表2に示す、900〜750℃の温度域での減面率、および圧延終了温度とした。また、一部の継目無鋼管については、表2に示すN処理(ノルマ処理)、あるいはQT処理の熱処理を施した。N処理は、900℃×5min加熱したのち空冷する処理とし、QT処理は、890℃×10min加熱したのち、水冷する焼入れと、500℃×15minの焼戻しを施す処理とした。   Molten steel having the composition shown in Table 1 was melted by a vacuum melting method and then cast into a small steel ingot (100 kgf: 980 N). Subsequently, these steel ingots were hot forged to obtain steel pipe materials (billets). After heating the steel pipe material to a heating temperature of 1250 ° C, it is subjected to a pipe making process consisting of hot drilling and rolling with a model seamless rolling mill, seamless steel pipe (outer diameter: 63.5mmφ x wall thickness: 5.0mm) It was. The rolling conditions were as shown in Table 2 in the area reduction in the temperature range of 900 to 750 ° C. and the rolling end temperature. Some of the seamless steel pipes were subjected to N treatment (normalization treatment) or QT treatment heat treatment as shown in Table 2. The N treatment was a treatment of heating at 900 ° C. for 5 minutes and then air cooling, and the QT treatment was a treatment of heating at 890 ° C. for 10 minutes, followed by water cooling and tempering at 500 ° C. for 15 minutes.

得られた継目無鋼管について、組織観察、引張試験、シャルピー衝撃試験を実施し、組織、引張特性、靭性を評価した。試験方法は次のとおりである。なお、Ac3変態点は前記した式を用いて算出した。
(1)組織観察
各継目無鋼管から、組織観察用試験片を採取し、光学顕微鏡および走査型電子顕微鏡を用いて組織観察し、組織の種類および画像解析装置を用いてベイナイト相の分率を測定した。
The obtained seamless steel pipe was subjected to a structure observation, a tensile test and a Charpy impact test to evaluate the structure, tensile properties and toughness. The test method is as follows. The Ac 3 transformation point was calculated using the above formula.
(1) from the tissue observed the seamless steel pipe, the tissue test piece for observation were taken, the tissue was observed using an optical microscope and scanning electron microscope, the fraction of bainite phase using tissue type and image analyzer Was measured.

(2)引張試験
各継目無鋼管からJIS Z 2201の規定に準拠した12A号試験片を切出し採取して、JIS Z 2241の規定に準拠して引張試験を実施し、降伏強さYS、引張強さTS、伸びElを求めた。
(3)シャルピー衝撃試験
各継目無鋼管から、図1に示すように、JIS Z 2202の規定に準拠した2.5mm厚のVノッチ試験片を採取し、JIS Z 2242の規定に準拠してシャルピー衝撃試験を実施して、エネルギー遷移温度vT(℃)を求め、靭性を評価した。
(2) Tensile test A 12A test piece conforming to the JIS Z 2201 standard was cut out from each seamless steel pipe and subjected to a tensile test based on the JIS Z 2241 standard. Yield strength YS, tensile strength I asked for TS and elongation El.
(3) Charpy impact test As shown in Fig. 1, a 2.5mm thick V-notch test piece was collected from each seamless steel pipe and Charpy impact was tested in accordance with JIS Z 2242. Tests were conducted to determine the energy transition temperature vT e (° C.) and toughness was evaluated.

なお、各継目無鋼管に、減面率25.6%の冷間引抜による冷間加工を施し、外径56.0mmφ×肉厚4.2mmの鋼管とした。これら鋼管について、シャルピー衝撃試験を同様に実施して、エネルギー遷移温度vT(℃)を求め、冷間加工後の靭性を評価した。
得られた結果を表3に示す。
Each seamless steel pipe was cold-worked by cold drawing with a surface reduction rate of 25.6% to obtain a steel pipe having an outer diameter of 56.0 mmφ and a wall thickness of 4.2 mm. These steel pipes, the Charpy impact test was performed similarly to obtain the energy transition temperature vT e C.), to evaluate the toughness after cold working.
The obtained results are shown in Table 3.

Figure 0004967356
Figure 0004967356

Figure 0004967356
Figure 0004967356

Figure 0004967356
Figure 0004967356

本発明例はいずれも、所望の組織を有し、圧延ままもしくはノルマ処理(N処理)後に、引張強さ:600MPa以上の高強度、およびvT:−40℃以下の高靭性を有し、しかも冷間加工後の靭性劣化が10℃以下と少ない鋼管となっている。一方、本発明の範囲を外れる比較例は、目標の高強度が得られないか、あるいは靭性が低下しているか、あるいは冷間加工後の靭性劣化が大きいかしている。 Each of the examples of the present invention has a desired structure, and after rolling or normal processing (N treatment), has a tensile strength: high strength of 600 MPa or more, and vT e : high toughness of −40 ° C. or less, In addition, the steel pipe has less toughness degradation of 10 ° C or less after cold working. On the other hand, in the comparative examples that are out of the scope of the present invention, the target high strength cannot be obtained, the toughness is lowered, or the toughness deterioration after cold working is large.

実施例で使用したシャルピー衝撃試験片の採取要領を模式的に示す説明図である。It is explanatory drawing which shows typically the extraction | collection point of the Charpy impact test piece used in the Example.

Claims (7)

質量%で、
C:0.02〜0.07%、 Si:0.05〜1.0%、
Mn:2.0%超4.5%以下、 P:0.030%以下、
S:0.015%以下、 Al:0.01〜0.06%、
N:0.007%以下、 O:0.005%以下、
Cr:0.05〜1.0%、 Mo:0.05〜1.0%、
Nb:0.005〜0.20%、 Ti:0.005%以上0.03%未満、
B:0.001〜0.004%
を、下記(1)式を満足するように含み、残部Feおよび不可避的不純物からなる組成と、ベイナイト相からなる単相組織あるいは面積率で90%以上のベイナイト相と残部マルテンサイト相からなる混合組織を有することを特徴とする高強度継目無鋼管。

Mn+1.3Cr+2.0Mo+0.3Ni+0.6Cu ≧ 3.0 ………(1)
ここで、Mn、Cr、Mo、Ni、Cu:各元素の含有量(質量%)
% By mass
C: 0.02 to 0.07%, Si: 0.05 to 1.0%,
Mn: more than 2.0% and 4.5% or less, P: 0.030% or less,
S: 0.015% or less, Al: 0.01 to 0.06%,
N: 0.007% or less, O: 0.005% or less,
Cr: 0.05-1.0%, Mo: 0.05-1.0%,
Nb: 0.005-0.20%, Ti: 0.005% or more and less than 0.03%,
B: 0.001 to 0.004%
Which contained so as to satisfy the following formula (1), a composition comprising the balance Fe and unavoidable impurities, from single-phase structure, or a 90% or more of bainite phase in area ratio and the balance martensite phase consisting of bainite phase A high-strength seamless steel pipe characterized by having a mixed structure.
Record
Mn + 1.3Cr + 2.0Mo + 0.3Ni + 0.6Cu ≧ 3.0 (1)
Here, Mn, Cr, Mo, Ni, Cu: Content of each element (mass%)
前記組成に加えてさらに、質量%で、Ni:1.0%以下、Cu:1.0%以下、V:0.20%以下、Ca:0.005%以下のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1に記載の高強度継目無鋼管。   In addition to the above composition, the composition further contains one or more selected from the group consisting of Ni: 1.0% or less, Cu: 1.0% or less, V: 0.20% or less, Ca: 0.005% or less. The high-strength seamless steel pipe according to claim 1. 鋼管素材に、加熱と、それに続く穿孔、圧延からなる造管工程を施し継目無鋼管とする継目無鋼管の製造方法において、前記鋼管素材が、質量%で、C:0.02〜0.07%、Si:0.05〜1.0%、Mn:2.0%超4.5%以下、P:0.030%以下、S:0.015%以下、Al:0.01〜0.06%、N:0.007%以下、O:0.005%以下、Cr:0.05〜1.0%、Mo:0.05〜1.0%、Nb:0.005〜0.20%、Ti:0.005%以上0.03%未満、B:0.001〜0.004%を、下記(1)式を満足するように含み、残部Feおよび不可避的不純物からなる組成を有する鋼管素材とし、前記加熱が、Ac3変態点以上の温度への加熱であり、前記圧延が、750℃以上の圧延終了温度を有する圧延であることを特徴とするベイナイト相からなる単相組織あるいは面積率で90%以上のベイナイト相と残部マルテンサイト相からなる混合組織を有する高強度継目無鋼管の製造方法。

Mn+1.3Cr+2.0Mo+0.3Ni+0.6Cu ≧ 3.0 ………(1)
ここで、Mn、Cr、Mo、Ni、Cu:各元素の含有量(質量%)
In the manufacturing method of the seamless steel pipe which makes the steel pipe raw material the pipe making process which consists of heating, the subsequent piercing | piercing and rolling to the steel pipe raw material, the said steel pipe raw material is the mass%, C: 0.02-0.07%, Si: 0.05 to 1.0%, Mn: more than 2.0% to 4.5% or less, P: 0.030% or less, S: 0.015% or less, Al: 0.01 to 0.06%, N: 0.007% or less, O: 0.005% or less, Cr: 0.05 to 1.0 %, Mo: 0.05 to 1.0%, Nb: 0.005 to 0.20%, Ti: 0.005% or more and less than 0.03%, B: 0.001 to 0.004% so as to satisfy the following formula (1), and the balance Fe and inevitable A bainite phase characterized by being a steel pipe material having a composition comprising impurities, wherein the heating is heating to a temperature not lower than the Ac 3 transformation point, and the rolling is a rolling having a rolling end temperature of 750 ° C. or higher. A single-phase structure consisting of or a mixed structure consisting of a bainite phase with an area ratio of 90% or more and the balance martensite phase A method for manufacturing high strength seamless steel pipes.
Record
Mn + 1.3Cr + 2.0Mo + 0.3Ni + 0.6Cu ≧ 3.0 (1)
Here, Mn, Cr, Mo, Ni, Cu: Content of each element (mass%)
前記圧延が、900〜750℃の温度域での減面率が30%以上の圧延であることを特徴とする請求項3に記載の高強度継目無鋼管の製造方法。   The method for producing a high-strength seamless steel pipe according to claim 3, wherein the rolling is rolling with a reduction in area of 30% or more in a temperature range of 900 to 750 ° C. 前記造管工程を施し得られた継目無鋼管に、さらに(Ac3変態点+10℃)〜(Ac3変態点+90℃)の温度域に加熱し30min以下保持したのち空冷する熱処理を施すことを特徴とする請求項3または4に記載の高強度継目無鋼管の製造方法。 The seamless steel pipe obtained by the pipe forming step is further heated to a temperature range of (Ac 3 transformation point + 10 ° C.) to (Ac 3 transformation point + 90 ° C.), held for 30 minutes or less, and then subjected to air cooling. The manufacturing method of the high strength seamless steel pipe according to claim 3 or 4 characterized by things. 質量%で、
C:0.02〜0.07%、 Si:0.05〜1.0%、
Mn:2.0%超4.5%以下、 P:0.030%以下、
S:0.015%以下、 Al:0.01〜0.06%、
N:0.007%以下、 O:0.005%以下、
Cr:0.05〜1.0%、 Mo:0.05〜1.0%、
Nb:0.005〜0.20%、 Ti:0.005%以上0.03%未満、
B:0.001〜0.004%
を、下記(1)式を満足するように含み、残部Feおよび不可避的不純物からなる組成を有する継目無鋼管に、(Ac3変態点+10℃)〜(Ac3変態点+90℃)の温度域に加熱し30min以下保持したのち空冷する熱処理を施すことを特徴とするベイナイト相からなる単相組織あるいは面積率で90%以上のベイナイト相と残部マルテンサイト相からなる混合組織を有する高強度継目無鋼管の製造方法。

Mn+1.3Cr+2.0Mo+0.3Ni+0.6Cu ≧ 3.0 ………(1)
ここで、Mn、Cr、Mo、Ni、Cu:各元素の含有量(質量%)
% By mass
C: 0.02 to 0.07%, Si: 0.05 to 1.0%,
Mn: more than 2.0% and 4.5% or less, P: 0.030% or less,
S: 0.015% or less, Al: 0.01 to 0.06%,
N: 0.007% or less, O: 0.005% or less,
Cr: 0.05-1.0%, Mo: 0.05-1.0%,
Nb: 0.005-0.20%, Ti: 0.005% or more and less than 0.03%,
B: 0.001 to 0.004%
In a temperature range from (Ac 3 transformation point + 10 ° C.) to (Ac 3 transformation point + 90 ° C.) in a seamless steel pipe having a composition comprising the balance Fe and inevitable impurities so as to satisfy the following formula (1) A high-strength seamless material having a single-phase structure consisting of a bainite phase or a mixed structure consisting of a bainite phase and a remaining martensite phase with an area ratio of 90% or more, characterized in that it is heated to 30 minutes or less and then air-cooled. Steel pipe manufacturing method.
Record
Mn + 1.3Cr + 2.0Mo + 0.3Ni + 0.6Cu ≧ 3.0 (1)
Here, Mn, Cr, Mo, Ni, Cu: Content of each element (mass%)
前記組成に加えてさらに、質量%で、Ni:1.0%以下、Cu:1.0%以下、V:0.20%以下、Ca:0.005%以下のうちから選ばれた1種または2種以上を含有することを特徴とする請求項3ないし6のいずれかに記載の高強度継目無鋼管の製造方法。
In addition to the above composition, the composition further contains one or more selected from the group consisting of Ni: 1.0% or less, Cu: 1.0% or less, V: 0.20% or less, Ca: 0.005% or less. A method for producing a high-strength seamless steel pipe according to any one of claims 3 to 6.
JP2006022548A 2006-01-31 2006-01-31 High strength seamless steel pipe and manufacturing method thereof Active JP4967356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006022548A JP4967356B2 (en) 2006-01-31 2006-01-31 High strength seamless steel pipe and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006022548A JP4967356B2 (en) 2006-01-31 2006-01-31 High strength seamless steel pipe and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007204789A JP2007204789A (en) 2007-08-16
JP4967356B2 true JP4967356B2 (en) 2012-07-04

Family

ID=38484508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006022548A Active JP4967356B2 (en) 2006-01-31 2006-01-31 High strength seamless steel pipe and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4967356B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107695626A (en) * 2017-10-09 2018-02-16 苏州宝新无缝钢管有限公司 A kind of construction technology of high-strength seamless steel pipe and products thereof and application

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5391656B2 (en) * 2008-11-07 2014-01-15 Jfeスチール株式会社 High tensile welded steel pipe for automobile parts and manufacturing method thereof
CN116926412A (en) * 2022-03-29 2023-10-24 宝山钢铁股份有限公司 Bainite seamless steel tube and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3250211B2 (en) * 1996-11-05 2002-01-28 住友金属工業株式会社 Manufacturing method of steel pipe for high strength and high toughness air bag
JP3220975B2 (en) * 1996-11-12 2001-10-22 住友金属工業株式会社 Manufacturing method of steel pipe for high strength and high toughness air bag
JP3960145B2 (en) * 2002-06-26 2007-08-15 Jfeスチール株式会社 Manufacturing method of high strength, high toughness, high workability seamless steel pipe for airbag
JP4079054B2 (en) * 2003-08-18 2008-04-23 Jfeスチール株式会社 High strength and high toughness welded steel pipe for airbag bottle and method for producing the same
JP4513496B2 (en) * 2003-10-20 2010-07-28 Jfeスチール株式会社 Seamless oil well steel pipe for pipe expansion and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107695626A (en) * 2017-10-09 2018-02-16 苏州宝新无缝钢管有限公司 A kind of construction technology of high-strength seamless steel pipe and products thereof and application

Also Published As

Publication number Publication date
JP2007204789A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP4475440B1 (en) Seamless steel pipe and manufacturing method thereof
JP4632000B2 (en) Seamless steel pipe manufacturing method
JP6107437B2 (en) Manufacturing method of low-alloy high-strength seamless steel pipe for oil wells with excellent resistance to sulfide stress corrosion cracking
JP5930140B1 (en) High strength seamless steel pipe for oil well and method for producing the same
JP5476763B2 (en) High tensile steel plate with excellent ductility and method for producing the same
JP5348386B2 (en) Thick high-strength steel sheet with excellent low yield ratio and brittle crack resistance and its manufacturing method
WO2016103538A1 (en) High-strength seamless steel pipe for oil wells, and production method for high-strength seamless steel pipe for oil wells
US20170369958A1 (en) Thick-walled high-toughness high-strength steel plate and method for manufacturing the same
JP6451874B2 (en) High strength seamless steel pipe for oil well and method for producing the same
WO2019181130A1 (en) Wear-resistant steel and method for producing same
JP2008297571A (en) Abrasion resistant steel sheet having excellent workability, and its production method
JP5668547B2 (en) Seamless steel pipe manufacturing method
JP5151693B2 (en) Manufacturing method of high-strength steel
JP6292366B1 (en) Seamless steel pipe and manufacturing method thereof
JP5266804B2 (en) Method for producing rolled non-heat treated steel
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
JP4967356B2 (en) High strength seamless steel pipe and manufacturing method thereof
JP2019044206A (en) Thick walled antifriction steel sheet, manufacturing method thereof, and manufacturing method of antifriction member
CN113166904A (en) High-strength steel sheet having excellent low-temperature fracture toughness and elongation and method for manufacturing same
CN112375997B (en) Manufacturing method of X70M pipeline steel plate used under low-cost and ultralow-temperature conditions
JP4123597B2 (en) Manufacturing method of steel with excellent strength and toughness
JP5151510B2 (en) Manufacturing method of high strength steel with excellent low temperature toughness and crack propagation stop properties
JP5194571B2 (en) Method for producing high-strength steel excellent in weld crack sensitivity with tensile strength of 570 N / mm2 or higher
JP2007246985A (en) Manufacturing method of high-toughness and high-tensile thick steel plate
JP2007277697A (en) High tensile strength thick steel plate having excellent fatigue crack propagation resistance and brittle crack propagation arrest property and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4967356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250