JP3960145B2 - Manufacturing method of high strength, high toughness, high workability seamless steel pipe for airbag - Google Patents

Manufacturing method of high strength, high toughness, high workability seamless steel pipe for airbag Download PDF

Info

Publication number
JP3960145B2
JP3960145B2 JP2002186550A JP2002186550A JP3960145B2 JP 3960145 B2 JP3960145 B2 JP 3960145B2 JP 2002186550 A JP2002186550 A JP 2002186550A JP 2002186550 A JP2002186550 A JP 2002186550A JP 3960145 B2 JP3960145 B2 JP 3960145B2
Authority
JP
Japan
Prior art keywords
less
steel pipe
seamless steel
strength
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002186550A
Other languages
Japanese (ja)
Other versions
JP2004027303A (en
Inventor
由紀夫 宮田
幸三 蛸島
崇男 河手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002186550A priority Critical patent/JP3960145B2/en
Priority to US10/514,765 priority patent/US20060070687A1/en
Priority to MXPA04010403A priority patent/MXPA04010403A/en
Priority to PCT/JP2003/007435 priority patent/WO2004003241A1/en
Priority to CA002476546A priority patent/CA2476546A1/en
Priority to EP03733377A priority patent/EP1516935A4/en
Publication of JP2004027303A publication Critical patent/JP2004027303A/en
Application granted granted Critical
Publication of JP3960145B2 publication Critical patent/JP3960145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高強度継目無鋼管に係り、とくにエアバッグ用として好適な、靭性、加工性に優れた高強度継目無鋼管に関する。
【0002】
【従来の技術】
近年、自動車の衝突安全性の向上が熱望され、とくに衝突時に乗員を保護する安全装置の導入が積極的に進められている。なかでも、衝突時、乗員と、ハンドルやインストルメントパネルとの間に展開し、乗員の運動エネルギーを吸収して乗員の損傷低減を図るエアバッグの搭載が、 一般化しつつある。とくに、ハンドル内に装填される運転席用エアバッグや、インストルメントパネル内に装填される助手席用エアバッグは標準装備化されつつある。さらに、最近では、これらに加え、側面衝突時に乗員を保護するため、座席にサイドエアバッグ、あるいはサイドウインドウを覆うカーテン式エアバッグなどを搭載する自動車が多くなっている。
【0003】
従来から、エアバッグには、火薬を使用してガスを発生させる方式が多く採用されてきた。しかし、 最近では、リサイクル性や環境への配慮から、火薬の使用に替えて、アルゴンなどの不活性ガスをインフレータに高圧で充填する方式が採用されるようになっている。この方式では、不活性ガスをインフレータ内に常時高圧に保つ必要があることから、インフレータには、十分な強度を有することが望まれている。
【0004】
一般に、エアバッグ用インフレータは鋼管を加工して製造されている。不活性ガスを充填する方式のエアバッグでは、不活性ガスはインフレータ内に高圧で充填されるため、シームの信頼性の観点から、インフレータ用鋼管としては、もっぱら継目無鋼管が使用される。通常、継目無鋼管に冷間引抜き加工を施し所定寸法とし、所定の長さに切断したのち、両管端をプレス加工などにより加工し封板を溶接して、製品(インフレータ)とされる。
【0005】
このようなことから、インフレータ用鋼管として、十分な強度と靭性を有し、加工性に優れ、さらに溶接性にも優れた継目無鋼管が要望されている。
このような要望に対し、例えば、特開平10−140283号公報には、C:0.01〜0.20%、Si:0.50%以下、Mn:0.30〜2.00%、P:0.020 %以下、S:0.020 %以下、Al:0.10%以下を含み、あるいはさらにMo:0.50%以下、V:0.10%以下、Ni:0.50%以下、Cr:1.00%以下、Cu:0.50%以下、Ti:0.10%以下、Nb:0.10%以下、B:0.005 %以下のうち1種以上を含有し、残部Feおよび不可避的不純物からなる鋼を製管後、冷間加工を施したまま、もしくは冷間加工後、 焼なまし、 焼ならし、または焼入れ焼戻し処理する高強度高靭性エアーバッグ用鋼管の製造方法が提案されている。
【0006】
また、特開平10-140249 号公報には、特開平10−140283号公報に記載された組成と同様の組成の鋼を製管後、850 〜1000℃で焼ならしたのち、所定の寸法に冷間加工を施したまま、もしくは応力除去焼鈍、焼ならし、または焼入れ焼戻し処理を施す高強度高靭性エアーバッグ用鋼管の製造方法が提案されている。
また、特開平10-140250 号公報には、特開平10−140283号公報に記載された組成と同様の組成の鋼を製管後、850 〜1000℃での焼入れ、あるいはさらに450 ℃以上Ac1 変態点未満での焼戻しを行なったのち、所定の寸法に冷間加工を施したまま、もしくは冷間加工後焼なまし処理を施す高強度高靭性エアーバッグ用鋼管の製造方法が提案されている。
【0007】
特開平10−140283号公報、特開平10-140249 号公報、特開平10-140250 号公報に記載された技術によれば、高寸法精度で加工性と溶接性に優れ、かつ引張強さ:590 N/mm2 以上の高強度高靭性のエアバッグ用鋼管が製造できるとしている。
【0008】
【発明が解決しようとする課題】
最近では、エアバッグシステムに対する小型化、軽量化が要求されるようになっており、エアバッグのインフレータ用の継目無鋼管として、更なる高強度化が要求されている。とくに、カーテン式エアバッグでは、エアバッグが前後のサイドウインドウを覆うことができるように、大容量のガスを必要とし、しかも50MPa 以上の充填圧力が要求されている。このような要求を満足するには、冷間引抜きや熱処理等を施したのち、最終的にインフレータとして900MPa以上の引張強さが得られる継目無鋼管が要望されている。
【0009】
特開平10−140283号公報、特開平10-140249 号公報、特開平10-140250 号公報に記載された技術では590MPa級の高強度継目無鋼管の製造を目的としており、上記したインフレータ用鋼管として望まれている、更なる高強度化要求には対応できないという問題がある。また、特開平10−140283号公報、特開平10-140249 号公報、特開平10-140250 号公報に記載された技術において冷間加工後の熱処理を必要とする場合には、スケール生成による表面粗さの劣化、さらに冷間加工時に導入された残留応力が熱処理により開放され、寸法精度、とくに真円度が低下するという製品特性上大きな問題があり、さらには、曲がりによる製造上の問題もある。
【0010】
本発明は、上記した従来技術の問題を有利に解決し、高寸法精度を有し、インフレータ製造時の加工性、溶接性に優れ、さらにインフレータとして、900MPa以上の引張強さと、半割りにした鋼管に対する−60℃における落重試験で延性を示す高靭性とが得られる、高強度高靭性高加工性継目無鋼管の製造方法を提案することを目的とする。
【0011】
【課題を解決するための手段】
本発明者らは、上記した課題を達成するために、強度、靭性、加工性におよぼす各種要因について鋭意研究した。その結果、C含有量を低減し、CrおよびMoを適量含有した鋼組成とし、継目無鋼管に造管したのち、焼入れ焼戻し処理、あるいは焼ならし処理を施し、その後、冷間引抜きを行なうことで、高寸法精度化、高強度化が図れ、とくに周方向強度の低下が小さく異方性の少ない継目無鋼管となることを見出した。
【0012】
本発明は、 上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)質量%で、C:0.01〜0.08%、Si:0.5 %以下、Mn:0.10〜2.00%、Cr:1.0 %超〜 2.0%、Mo:0.5 %以下を含有し、残部 Fe および不可避的不純物からなる組成の鋼管素材を造管し継目無鋼管としたのち、該継目無鋼管に、Ac3 変態点以上、1050℃以下の範囲内の温度に加熱したのち焼入れし、ついで450 ℃以上、Ac1 変態点以下の範囲内の温度で焼戻しする焼入れ焼戻し処理を施し、その後、冷間引抜きして所定寸法の鋼管とすることを特徴とするエアバッグ用高強度高靭性高加工性継目無鋼管の製造方法。
(2)(1)において、前記組成に加えてさらに、質量%で、Cu:1.0 %以下、Ni:1.0 %以下、Nb:0.10%以下、V:0.10%以下、Ti:0.10%以下、B:0.005 %以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とするエアバッグ用高強度高靱性高加工性継目無鋼管の製造方法。
(3)(1)または(2)において、前記焼入れ焼戻し処理に代えて、前記継目無鋼管に、850 〜1000℃の範囲内の温度に加熱し空冷する焼ならし処理を施すことを特徴とするエアバッグ用高強度高靱性高加工性継目無鋼管の製造方法。
【0013】
【発明の実施の形態】
まず、使用する鋼管素材の組成限定理由について、 説明する。以下、組成における質量%は単に%と記す。
C:0.01〜0.08
Cは、鋼の強度増加に寄与する元素であるが、0.08%を超えて過剰に含有すると加工性、溶接性が低下する。一方、0.01%未満の含有では、所望の引張強さを確保することができにくくなる。このため、本発明では、Cは0.01〜0.08%の範囲に限定した。なお、好ましくは0.03〜0.08%である。
【0014】
Si:0.5 %以下
Siは、鋼の強度を増加させる元素であり、0.1 %以上含有することが好ましいが、過剰な含有は延性、加工性を低下させるため、本発明では0.5 %以下に限定した。なお、好ましくは0.1 〜0.4 %である。
Mn:0.10〜2.00%
Mnは、強度を向上させる元素であり、所望の強度を確保するために、本発明では0.10%以上の含有を必要とする。一方、2.00%を超えて含有すると、延性が低下し、加工性および溶接性が低下する。このため、Mnは2.00%以下に限定した。なお、好ましくは、1.00〜1.70%である。
【0015】
Cr:1.0 %超〜 2.0%
Crは、鋼の強度、 耐食性を向上させる有効な元素であり、本発明では主として高強度を確保するために、1.0 %超の含有を必要とする。一方、2.0 %を超えて含有すると、延性が低下し、さらに加工性、溶接性、靭性が低下する。このため、Crは1.0 %超〜 2.0%の範囲に限定した。なお、好ましくは1.1 〜1.5 %である。
【0016】
Mo:0.5 %以下
Moは、鋼の強度を増加させるとともに、焼入れ性を向上させる元素であり、本発明では0.1 %以上含有することが好ましい。一方、0.5 %を超えて含有すると、延性が低下し、耐溶接割れ性が低下する。このため、Moは0.5 %以下に限定した。なお、好ましくは0.3 %以下である。
【0017】
本発明では、上記した基本組成に加えて、さらにCu:1.0 %以下、Ni:1.0 %以下、Nb:0.10%以下、V:0.10%以下、Ti:0.10%以下、B:0.005 %以下のうちから選ばれた1種または2種以上を含有できる。
Cu、Ni、Nb、V、Ti、Bは、いずれも強度を増加させる作用を有し、必要に応じ1種または2種以上を選択して含有できる。
【0018】
Cuは、鋼の強度を増加させるとともに、耐食性をも向上させる元素である。しかし、1.0 %を超えて含有すると、熱間加工性が低下する。このため、Cuは1.0 %以下に限定することが好ましい。なお、より好ましくは0.5 %以下である。
Niは、鋼の強度を増加させるとともに、焼入れ性、 靭性を向上させる元素であるが高価であるため、本発明では1.0 %以下に限定することが好ましい。なお、より好ましくは0.5 %以下である。
【0019】
Nbは、析出硬化により鋼の強度を増加させるとともに、組織を微細化して靭性を向上させる元素であるが、0.10%を超えて含有すると、逆に靭性が劣化する。このため、Nbは0.10%以下に限定することが好ましい。なお、より好ましく0.01〜0.05%である。
Vは、析出硬化により鋼の強度を増加させるとともに、焼入れ性を向上させる元素であるが、0.10%を超えて含有すると、靭性が劣化する。このため、Vは0.10%以下に限定することが好ましい。なお、より好ましくは0.01〜0.05%である。
【0020】
Tiは、析出硬化により鋼の強度を増加させるとともに、組織を微細化して靭性を向上させる元素であるが、0.10%を超えて含有すると、逆に靭性が劣化する。このため、Tiは0.10%以下に限定することが好ましい。なお、より好ましくは0.005 〜0.03%である。
Bは、焼入れ性の向上を通して強度の増加に寄与する元素であるが、0.005 %を超えて含有すると、靭性が低下する。このため、Bは0.005 %以下に限定することが好ましい。なお、より好ましくは0.0005〜0.002 %である。
【0021】
上記した成分以外の残部はFeおよび不可避的不純物である。不可避的不純物としては、P:0.03%以下、S:0.01%以下、Al:0.10%以下が許容できる。
上記した組成の溶鋼を、転炉、電気炉等の公知の溶製方法により溶製し、連続鋳造法、造塊法等の公知の鋳造方法によりビレット等の鋼管素材とすることが好ましい。
【0022】
ついで、得られた鋼管素材を、好ましくは通常のマンネスマン−プラグミル方式、あるいはマンネスマンーマンドレルミル方式の製造工程を用いて造管し、継目無鋼管とする。なお、継目無鋼管の製造工程としては、上記した以外の方式によっても何ら問題はない。
造管され継目無鋼管は、ついで焼入れ焼戻し処理、あるいは焼ならし処理を施される。
【0023】
焼入れのための加熱温度は、Ac3 変態点以上、1050℃以下の範囲内の温度とする。加熱温度がAc3 変態点未満では、均一なオーステナイト化ができず、一方、1050℃を超えて高い温度では結晶粒が粗大化し靭性が低下する。このため、本発明では、焼入れ加熱温度はAc3 変態点以上1050℃以下の範囲とした。なお、上記した範囲内の温度に加熱したのち、水冷等により冷却(焼入れ)し、焼入れ組織 (マルテンサイト組織)とする。なお、好ましくは、焼入れ加熱温度はAc3 変態点以上、950 ℃以下である。
【0024】
焼戻しは、450 ℃以上、Ac1 変態点以下の範囲内の温度で行なう。焼戻し温度は強度、靭性、加工性が同時に最適となる温度を選択することが好ましい。焼戻し温度が450 ℃未満では焼戻しが不十分で所望の靭性が得られない。一方、Ac1 変態点を超えると、焼入れ組織が得られず強度が低下し、所望の強度が確保できなくなる。このため、焼戻し温度は、450 ℃以上、Ac1 変態点以下の範囲内の温度に限定した。なお、好ましくは500 〜700 ℃である。また、焼戻し後の冷却は、空冷以上の速度で冷却することが好ましい。
【0025】
焼ならし処理は、850 〜1000℃の範囲内の温度に加熱し空冷する。焼ならし温度が850 ℃未満ではオーステナイト粒の十分な均一化ができず、一方、焼ならし温度が1000℃を超えて高くなると、結晶粒が粗大化し所望の靭性が確保できにくくなる。このため、焼ならし温度は850 〜1000℃に限定することが好ましい。なお、好ましくは850 〜950 ℃である。
【0026】
焼入れ焼戻し処理、あるいは焼ならし処理を施された継目無鋼管は、その後、冷間引抜きを施され、所定寸法の鋼管とされる。
冷間引抜きは、特別な装置を必要とせず、通常公知の冷間引抜き装置を利用して行なうことができる。冷間引抜き条件は、所定寸法の鋼管とすることができればとくに限定する必要はないが、縮径率を5〜15%、減肉率を10〜30%と適正範囲内に調整することにより、周方向の靱性の低下が抑制でき、異方性の少ない鋼管とすることができる。
【0027】
上記した製造方法により製造された継目無鋼管は、高寸法精度を有し、引張強さ:900 MPa 以上の高強度と、半割りにした鋼管に対する−60℃における落重試験で延性を示す高靭性とを有し、加工性、溶接性に優れた、カーテン式エアバッグ用インフレータ向けとして好適な鋼管となる。
【0028】
【実施例】
表1に示す組成の鋼管素材(ビレット:140mm φ)を1250℃に加熱し、マンネスマン−マンドレルミル方式による穿孔、延伸圧延、および縮径圧延とにより、継目無鋼管(外径:34.0φ×肉厚:3.2mm 、外径:38.1φ×肉厚:3.3mm )とした。これら継目無鋼管に、表2に示す条件で焼入れ焼戻しあるいは焼ならし処理を施した。ついで、これら熱処理済み継目無鋼管にそれぞれ、縮径率:11.8%、8.9 %、減肉率:21.9%、18.2%の冷間引抜き加工を施して、外径30.0φ×肉厚2.5mm 、あるいは外径34.7φ×肉厚2.7mm の鋼管 (製品)とした。
【0029】
得られた継目無鋼管 (製品)から試験片を採取し、実管引張試験を実施し、長手方向の引張特性を調査した。実管引張試験は、JIS Z 2201に規定される11号試験片(管状試験片:実管)を採取して、JIS Z 2241の規定に準拠して行った。
さらに、水圧バースト試験を実施し、そのバースト圧から周方向の引張強度を換算した。
【0030】
また、得られた継目無鋼管 (製品)について、−60℃における落重試験を実施し、靱性を調査した。−60℃における落重試験は、長さ70mmの継目無鋼管 (製品)を半円状に半割りにして、その上に100kgf(980 N)の重鎮を500mm の高さから落下させる落重試験を−60℃にて実施して、破面を観察し脆性破壊の有無を調査した。試験は繰り返し3回とし、3回の試験で全く脆性破壊が生じない場合を○とし、全て脆性破壊が生じた場合を×、それ以外を△とした。
【0031】
また、得られた継目無鋼管 (製品)について、へら絞り加工により、管端を外径20mm、25mmに縮径し、加工部の割れを観察し、加工性を評価した。割れ発生のない場合を加工性○、割れが発生した場合を加工性×とした。
また、へら絞り加工により、管端を外径20mmに縮径したのち、管端に封板を溶接し、溶接後割れ発生の有無を目視および顕微鏡により調査し、溶接性を評価した。
【0032】
また、得られた継目無鋼管 (製品)について、製品内外面の表面粗さを表面粗さ計を用いて測定し、JIS B 0601に規定される算術平均粗さRaを求めた。Raが1μm未満の場合を○、1μm以上の場合を×とした。
得られた結果を表2に示す。
【0033】
【表1】

Figure 0003960145
【0034】
【表2】
Figure 0003960145
【0035】
本発明例はいずれも、表面性状に優れ、かつ900MPa以上の引張強さと、高靭性とを有し、加工性に優れ、さらに、溶接性に優れた継目無鋼管となっている。一方、本発明の範囲を外れる比較例は、引張強さが850MPa未満であるか、靭性が低下しているか、あるいは加工性が低下しているかして、カーテン式エアバッグ用インフレータ向け鋼管として、十分な特性が得られていない。
【0036】
【発明の効果】
以上のように、本発明によれば、高強度高靭性高加工性継目無鋼管を安定して製造でき、産業上格段の効果を奏する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength seamless steel pipe, and more particularly to a high-strength seamless steel pipe excellent in toughness and workability, which is suitable for an airbag.
[0002]
[Prior art]
In recent years, there has been a strong desire to improve the collision safety of automobiles, and in particular, the introduction of safety devices that protect passengers in the event of a collision has been actively promoted. In particular, in the event of a collision, it is becoming common to install an airbag that deploys between the occupant and the steering wheel or instrument panel to absorb the kinetic energy of the occupant and reduce occupant damage. In particular, driver seat airbags loaded in the steering wheel and passenger seat airbags loaded in the instrument panel are becoming standard equipment. Furthermore, recently, in addition to these, in order to protect the occupant in the case of a side collision, there are an increasing number of automobiles equipped with a side airbag or a curtain airbag covering the side window on the seat.
[0003]
Conventionally, many methods for generating gas using explosives have been adopted for airbags. However, recently, due to recyclability and environmental considerations, instead of using explosives, a method of filling an inflator with an inert gas such as argon at high pressure has been adopted. In this method, since it is necessary to always keep the inert gas at a high pressure in the inflator, the inflator is desired to have sufficient strength.
[0004]
In general, an inflator for an airbag is manufactured by processing a steel pipe. In an air bag of a type filled with an inert gas, since the inert gas is filled in the inflator at a high pressure, a seamless steel pipe is exclusively used as the inflator steel pipe from the viewpoint of seam reliability. Usually, a seamless steel pipe is cold drawn to a predetermined size, cut to a predetermined length, the ends of both pipes are processed by pressing or the like, and a sealing plate is welded to obtain a product (inflator).
[0005]
For these reasons, there is a demand for seamless steel pipes having sufficient strength and toughness, excellent workability, and excellent weldability as steel pipes for inflators.
In response to such a request, for example, JP-A-10-140283 discloses C: 0.01 to 0.20%, Si: 0.50% or less, Mn: 0.30 to 2.00%, P: 0.020% or less, S: 0.020% or less. Al: 0.10% or less, or Mo: 0.50% or less, V: 0.10% or less, Ni: 0.50% or less, Cr: 1.00% or less, Cu: 0.50% or less, Ti: 0.10% or less, Nb: 0.10 % Or less, B: 0.005% or less, containing one or more of the remaining Fe and unavoidable impurities after pipe making, cold working or after cold working, annealing, A method of manufacturing a steel pipe for a high-strength, high-toughness air bag that is subjected to leveling or quenching and tempering has been proposed.
[0006]
In JP-A-10-140249, steel having the same composition as that described in JP-A-10-140283 is pipe-produced and then annealed at 850 to 1000 ° C. and then cooled to a predetermined size. A method of manufacturing a steel pipe for a high-strength, high-toughness air bag that has been subjected to inter-working or subjected to stress relief annealing, normalizing, or quenching and tempering has been proposed.
Japanese Patent Laid-Open No. 10-140250 discloses a steel having a composition similar to that described in Japanese Patent Laid-Open No. 10-140283, and after quenching at 850 to 1000 ° C., or further at least 450 ° C. Ac 1 A method of manufacturing a steel pipe for a high-strength, high-toughness air bag that has been subjected to tempering below the transformation point and then subjected to cold working to a predetermined dimension or annealing after cold working has been proposed. .
[0007]
According to the techniques described in JP-A-10-140283, JP-A-10-140249, and JP-A-10-140250, high dimensional accuracy, excellent workability and weldability, and tensile strength: 590 It is said that a steel pipe for airbag with high strength and toughness of N / mm 2 or more can be manufactured.
[0008]
[Problems to be solved by the invention]
Recently, the airbag system is required to be reduced in size and weight, and a further increase in strength is required as a seamless steel pipe for an airbag inflator. In particular, curtain-type airbags require a large volume of gas so that the airbag can cover the front and rear side windows, and a filling pressure of 50 MPa or more is required. In order to satisfy these requirements, there is a demand for a seamless steel pipe that can be finally drawn to a tensile strength of 900 MPa or more as an inflator after cold drawing or heat treatment.
[0009]
The techniques described in JP-A-10-140283, JP-A-10-140249, and JP-A-10-140250 are aimed at producing 590 MPa class high-strength seamless steel pipes. There is a problem that it is not possible to meet the demand for further strengthening. In addition, in the techniques described in JP-A-10-140283, JP-A-10-140249, and JP-A-10-140250, when heat treatment after cold working is required, surface roughness due to scale generation is required. There is a major problem in product characteristics that the dimensional accuracy, especially roundness, decreases due to the deterioration of thickness and the residual stress introduced during cold working is released by heat treatment, and there is also a manufacturing problem due to bending. .
[0010]
The present invention advantageously solves the problems of the prior art described above, has high dimensional accuracy, is excellent in workability and weldability at the time of manufacturing an inflator, and further halves the tensile strength of 900 MPa or more as an inflator. It aims at proposing the manufacturing method of the high strength high toughness high workability seamless steel pipe from which the high toughness which shows ductility by the drop test at -60 degreeC with respect to a steel pipe is obtained.
[0011]
[Means for Solving the Problems]
In order to achieve the above-mentioned problems, the present inventors have intensively studied various factors affecting strength, toughness, and workability. As a result, reduce the C content, make a steel composition containing appropriate amounts of Cr and Mo, and after forming into a seamless steel pipe, quenching and tempering or normalizing, and then cold drawing Thus, it has been found that high dimensional accuracy and high strength can be achieved, and in particular, a seamless steel pipe with a small decrease in circumferential strength and a small anisotropy is obtained.
[0012]
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.01 to 0.08%, Si: 0.5% or less, Mn: 0.10 to 2.00%, Cr: more than 1.0% to 2.0%, Mo: 0.5% or less , balance Fe and inevitable After the pipe-making and seamless steel pipe steel pipe material composition ing from impurities, in the seamless steel pipe, Ac 3 transformation point or higher, 1050 ° C. and quenched after being heated to a temperature in the range of less then 450 ° C. or higher High strength, high toughness, high workability for airbags, characterized by performing quenching and tempering treatment, tempering at a temperature within the range of Ac 1 transformation point or less, and then cold drawing to form a steel pipe of a predetermined size Steel pipe manufacturing method.
(2) In (1), in addition to the above composition, in addition to mass, Cu: 1.0% or less, Ni: 1.0% or less, Nb: 0.10% or less, V: 0.10% or less, Ti: 0.10% or less, B : A method for producing a high-strength, high-toughness, high-workability seamless steel pipe for an air bag, characterized by comprising one or more selected from 0.005% or less.
(3) In (1) or (2), in place of the quenching and tempering process, the seamless steel pipe is subjected to a normalizing process in which the steel pipe is heated to a temperature in the range of 850 to 1000 ° C. and air-cooled. A method for producing a high strength, high toughness, high workability seamless steel pipe for an airbag.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
First, the reasons for limiting the composition of the steel pipe material used will be explained. Hereinafter, the mass% in the composition is simply referred to as%.
C:. 0.01~0 08%
C is an element that contributes to increasing the strength of the steel. However, if it exceeds 0.08 %, the workability and weldability are deteriorated. On the other hand, if the content is less than 0.01%, it becomes difficult to secure a desired tensile strength. Therefore, in the present invention, C is limited to a range of 0.01 to 0.08%. In addition, Preferably it is 0.03-0.08%.
[0014]
Si: 0.5% or less
Si is an element that increases the strength of steel, and is preferably contained in an amount of 0.1% or more. However, excessive addition reduces the ductility and workability, so in the present invention it is limited to 0.5% or less. In addition, Preferably it is 0.1 to 0.4%.
Mn: 0.10 to 2.00%
Mn is an element that improves the strength. In order to secure a desired strength, Mn needs to be contained in an amount of 0.10% or more in the present invention. On the other hand, when it contains exceeding 2.00%, ductility will fall and workability and weldability will fall. For this reason, Mn was limited to 2.00% or less. In addition, Preferably, it is 1.00 to 1.70%.
[0015]
Cr: more than 1.0% to 2.0%
Cr is an effective element for improving the strength and corrosion resistance of steel. In the present invention, it is necessary to contain more than 1.0% mainly to ensure high strength. On the other hand, if the content exceeds 2.0%, the ductility is lowered, and the workability, weldability, and toughness are further lowered. For this reason, Cr was limited to the range of more than 1.0% to 2.0%. In addition, Preferably it is 1.1 to 1.5%.
[0016]
Mo: 0.5% or less
Mo is an element that increases the strength of the steel and improves the hardenability. In the present invention, Mo is preferably contained in an amount of 0.1% or more. On the other hand, if it exceeds 0.5%, the ductility is lowered and the weld crack resistance is lowered. For this reason, Mo was limited to 0.5% or less. In addition, Preferably it is 0.3% or less.
[0017]
In the present invention, in addition to the above basic composition, Cu: 1.0% or less, Ni: 1.0% or less, Nb: 0.10% or less, V: 0.10% or less, Ti: 0.10% or less, B: 0.005% or less 1 type or 2 types or more selected from.
Cu, Ni, Nb, V, Ti, and B all have the effect of increasing the strength, and can be selected from one or more as necessary.
[0018]
Cu is an element that increases the strength of steel and also improves the corrosion resistance. However, when it contains exceeding 1.0%, hot workability will fall. For this reason, it is preferable to limit Cu to 1.0% or less. More preferably, it is 0.5% or less.
Ni is an element that increases the strength of the steel and improves the hardenability and toughness, but is expensive. Therefore, it is preferably limited to 1.0% or less in the present invention. More preferably, it is 0.5% or less.
[0019]
Nb is an element that increases the strength of the steel by precipitation hardening and refines the structure to improve the toughness. However, if it contains more than 0.10%, the toughness deteriorates conversely. For this reason, it is preferable to limit Nb to 0.10% or less. In addition, 0.01 to 0.05% is more preferable.
V is an element that increases the strength of the steel by precipitation hardening and improves the hardenability, but if it exceeds 0.10%, the toughness deteriorates. For this reason, it is preferable to limit V to 0.10% or less. In addition, More preferably, it is 0.01 to 0.05%.
[0020]
Ti is an element that increases the strength of steel by precipitation hardening and improves the toughness by refining the structure. However, if it exceeds 0.10%, the toughness deteriorates conversely. For this reason, it is preferable to limit Ti to 0.10% or less. More preferably, it is 0.005 to 0.03%.
B is an element that contributes to an increase in strength through the improvement of hardenability, but if it exceeds 0.005%, the toughness decreases. For this reason, B is preferably limited to 0.005% or less. More preferably, it is 0.0005 to 0.002%.
[0021]
The balance other than the above components is Fe and inevitable impurities. As unavoidable impurities, P: 0.03% or less, S: 0.01% or less, and Al: 0.10% or less are acceptable.
It is preferable that the molten steel having the above composition is melted by a known melting method such as a converter or an electric furnace, and used as a steel pipe material such as a billet by a known casting method such as a continuous casting method or an ingot casting method.
[0022]
Subsequently, the obtained steel pipe material is preferably formed by using a normal Mannesmann-plug mill system or Mannesman-Mandrel mill system manufacturing process to obtain a seamless steel pipe. In addition, as a manufacturing process of a seamless steel pipe, there is no problem even if methods other than those described above are used.
Pipe-making has been seamless steel pipe is then subjected to quenching and tempering treatment, or normalizing process.
[0023]
The heating temperature for quenching is a temperature within the range of Ac 3 transformation point to 1050 ° C. When the heating temperature is less than the Ac 3 transformation point, uniform austenite cannot be formed. On the other hand, when the heating temperature is higher than 1050 ° C., the crystal grains become coarse and the toughness decreases. For this reason, in the present invention, the quenching heating temperature is set in the range of Ac 3 transformation point or higher and 1050 ° C. or lower. In addition, after heating to the temperature within the above-mentioned range, it is cooled (quenched) by water cooling or the like to obtain a quenched structure (martensite structure). Preferably, the quenching heating temperature is not lower than the Ac 3 transformation point and not higher than 950 ° C.
[0024]
Tempering is performed at a temperature in the range of 450 ° C. or more and the Ac 1 transformation point or less. As the tempering temperature, it is preferable to select a temperature at which strength, toughness, and workability are optimized at the same time. If the tempering temperature is less than 450 ° C., the tempering is insufficient and the desired toughness cannot be obtained. On the other hand, if the Ac 1 transformation point is exceeded, a hardened structure cannot be obtained, the strength is lowered, and a desired strength cannot be ensured. For this reason, the tempering temperature was limited to a temperature within the range of 450 ° C. or more and the Ac 1 transformation point or less. In addition, Preferably it is 500-700 degreeC. Moreover, it is preferable that the cooling after tempering is performed at a speed higher than that of air cooling.
[0025]
In the normalizing treatment, the temperature is heated to a temperature within the range of 850 to 1000 ° C. and air cooled. If the normalizing temperature is less than 850 ° C., the austenite grains cannot be sufficiently uniformed. On the other hand, if the normalizing temperature is higher than 1000 ° C., the crystal grains become coarse and it becomes difficult to ensure the desired toughness. For this reason, it is preferable to limit the normalizing temperature to 850-1000 degreeC. In addition, Preferably it is 850-950 degreeC.
[0026]
The seamless steel pipe that has been subjected to quenching and tempering treatment or normalizing treatment is then subjected to cold drawing to obtain a steel pipe having a predetermined size.
Cold drawing does not require a special device and can be performed using a generally known cold drawing device. The cold drawing condition is not particularly limited as long as it can be a steel pipe of a predetermined size, but by adjusting the diameter reduction rate to 5 to 15% and the thickness reduction rate to 10 to 30% within an appropriate range, A decrease in circumferential toughness can be suppressed, and a steel pipe with little anisotropy can be obtained.
[0027]
Seamless steel pipes manufactured by the above-described manufacturing method have high dimensional accuracy, high tensile strength: 900 MPa or higher, and high ductility in a drop test at -60 ° C against halved steel pipes. It has a toughness and is excellent in workability and weldability, and is a steel pipe suitable for an inflator for a curtain airbag.
[0028]
【Example】
A steel pipe material (billet: 140 mmφ) having the composition shown in Table 1 is heated to 1250 ° C and drilled, drawn and rolled by the Mannesmann-mandrel mill method, and seamless steel pipe (outer diameter: 34.0φ × meat) Thickness: 3.2 mm, outer diameter: 38.1φ × thickness: 3.3 mm). These seamless steel pipes were subjected to quenching and tempering or normalizing treatment under the conditions shown in Table 2. Next, these heat-treated seamless steel pipes were cold-drawn with a diameter reduction ratio of 11.8% and 8.9%, and a thickness reduction ratio of 21.9% and 18.2%, respectively, and an outer diameter of 30.0φ × wall thickness of 2.5mm, or A steel pipe (product) with an outer diameter of 34.7φ and a wall thickness of 2.7mm was used.
[0029]
A test piece was taken from the obtained seamless steel pipe (product), and an actual pipe tensile test was conducted to examine the tensile properties in the longitudinal direction. The actual pipe tensile test was conducted in accordance with the provisions of JIS Z 2241 by collecting No. 11 test pieces (tubular test pieces: real pipes) defined in JIS Z 2201.
Further, a hydraulic pressure burst test was performed, and the tensile strength in the circumferential direction was converted from the burst pressure.
[0030]
The obtained seamless steel pipe (product) was subjected to a drop weight test at -60 ° C to investigate toughness. The drop weight test at -60 ℃ is a drop weight test in which a 70mm-long seamless steel pipe (product) is divided into half-circles and a 100kgf (980 N) heavyweight is dropped from a height of 500mm on it. Was carried out at −60 ° C., and the fracture surface was observed to investigate the presence or absence of brittle fracture. The test was repeated three times, and a case where no brittle fracture occurred in the three tests was indicated as ◯, a case where all the brittle fractures occurred was indicated as x, and the other cases were indicated as Δ.
[0031]
In addition, the obtained seamless steel pipe (product) was subjected to spatula drawing to reduce the pipe end to an outer diameter of 20 mm and 25 mm, and observed cracks in the processed part to evaluate the workability. The case where there was no cracking was designated as workability ○, and the case where cracking occurred was designated as workability x.
Further, after reducing the diameter of the pipe end to 20 mm by spatula drawing, a sealing plate was welded to the pipe end, and the presence or absence of cracking after welding was examined visually and under a microscope to evaluate weldability.
[0032]
Further, for the obtained seamless steel pipe (product), the surface roughness of the inner and outer surfaces of the product was measured using a surface roughness meter, and the arithmetic average roughness Ra defined in JIS B 0601 was determined. The case where Ra was less than 1 μm was marked as ◯, and the case where Ra was 1 μm or more was marked as x.
The obtained results are shown in Table 2.
[0033]
[Table 1]
Figure 0003960145
[0034]
[Table 2]
Figure 0003960145
[0035]
Each of the inventive examples is a seamless steel pipe having excellent surface properties, a tensile strength of 900 MPa or more, high toughness, excellent workability, and excellent weldability. On the other hand, the comparative example out of the scope of the present invention, whether the tensile strength is less than 850 MPa, toughness is reduced, or whether the workability is reduced, as a steel pipe for curtain-type airbag inflator, Sufficient characteristics are not obtained.
[0036]
【The invention's effect】
As described above, according to the present invention, a high-strength, high-toughness, high-workability seamless steel pipe can be stably produced, and an industrially remarkable effect is achieved.

Claims (3)

質量%で、
C:0.01〜0.08%、 Si:0.5 %以下、
Mn:0.10〜2.00%、 Cr:1.0 %超〜 2.0%、
Mo:0.5 %以下
を含有し、残部 Fe および不可避的不純物からなる組成の鋼管素材を造管し継目無鋼管としたのち、該継目無鋼管に、Ac3 変態点以上、1050℃以下の範囲内の温度に加熱したのち焼入れし、ついで450 ℃以上、Ac1 変態点以下の範囲内の温度で焼戻しする焼入れ焼戻し処理を施し、その後、冷間引抜きして所定寸法の鋼管とすることを特徴とするエアバッグ用高強度高靭性高加工性継目無鋼管の製造方法。
% By mass
C: 0.01 to 0.08%, Si: 0.5% or less,
Mn: 0.10 to 2.00%, Cr: more than 1.0% to 2.0%,
Mo: contains 0.5% or less, after the by pipe-making steel pipe material composition the balance Fe and unavoidable impurities ing seamless steel pipe, in the seamless steel pipe, Ac 3 transformation point or more, the range of 1050 ° C. or less The steel pipe is quenched and tempered at a temperature within the range of 450 ° C or higher and below the Ac 1 transformation point, and then cold drawn to form a steel pipe of the specified dimensions. A method for producing a high strength, high toughness, high workability seamless steel pipe for an airbag.
前記組成に加えてさらに、質量%で、Cu:1.0 %以下、Ni:1.0 %以下、Nb:0.10%以下、V:0.10%以下、Ti:0.10%以下、B:0.005 %以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項1に記載のエアバッグ用高強度高靱性高加工性継目無鋼管の製造方法。  In addition to the above composition, it is further selected by mass% from Cu: 1.0% or less, Ni: 1.0% or less, Nb: 0.10% or less, V: 0.10% or less, Ti: 0.10% or less, and B: 0.005% or less. The method for producing a high-strength, high-toughness, high-workability seamless steel pipe for an air bag according to claim 1, wherein the composition contains one or more kinds. 前記焼入れ焼戻し処理に代えて、前記継目無鋼管に、850 〜1000℃の範囲内の温度に加熱し空冷する焼ならし処理を施すことを特徴とする請求項1または2に記載のエアバッグ用高強度高靱性高加工性継目無鋼管の製造方法。  3. The air bag according to claim 1, wherein, in place of the quenching and tempering treatment, the seamless steel pipe is subjected to a normalizing treatment that is heated to a temperature within a range of 850 to 1000 ° C. and air-cooled. A method for producing high strength, high toughness, high workability seamless steel pipes.
JP2002186550A 2002-06-26 2002-06-26 Manufacturing method of high strength, high toughness, high workability seamless steel pipe for airbag Expired - Fee Related JP3960145B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002186550A JP3960145B2 (en) 2002-06-26 2002-06-26 Manufacturing method of high strength, high toughness, high workability seamless steel pipe for airbag
US10/514,765 US20060070687A1 (en) 2002-06-26 2003-06-11 Method for producing seamless steel pipe for inflator of air bag
MXPA04010403A MXPA04010403A (en) 2002-06-26 2003-06-11 Method for producing seamless steel pipe for inflator of air bag.
PCT/JP2003/007435 WO2004003241A1 (en) 2002-06-26 2003-06-11 Method for producing seamless steel pipe for inflator of air bag
CA002476546A CA2476546A1 (en) 2002-06-26 2003-06-11 Method for producing seamless steel pipe for inflator of air bag
EP03733377A EP1516935A4 (en) 2002-06-26 2003-06-11 Method for producing seamless steel pipe for inflator of air bag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002186550A JP3960145B2 (en) 2002-06-26 2002-06-26 Manufacturing method of high strength, high toughness, high workability seamless steel pipe for airbag

Publications (2)

Publication Number Publication Date
JP2004027303A JP2004027303A (en) 2004-01-29
JP3960145B2 true JP3960145B2 (en) 2007-08-15

Family

ID=31181868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002186550A Expired - Fee Related JP3960145B2 (en) 2002-06-26 2002-06-26 Manufacturing method of high strength, high toughness, high workability seamless steel pipe for airbag

Country Status (1)

Country Link
JP (1) JP3960145B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006046702A1 (en) 2004-10-28 2006-05-04 Sumitomo Metal Industries, Ltd. Production method of seamless steel pipe
CA2585629C (en) * 2004-10-29 2011-06-21 Sumitomo Metal Industries, Ltd. Steel pipe for air bag inflator and method for production thereof
JP4967356B2 (en) * 2006-01-31 2012-07-04 Jfeスチール株式会社 High strength seamless steel pipe and manufacturing method thereof
MX2009004425A (en) 2006-10-27 2009-06-30 Sumitomo Metal Ind Seamless steel tube for airbag accumulators and process for production thereof.

Also Published As

Publication number Publication date
JP2004027303A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
JP5018784B2 (en) Seamless steel pipe for airbag accumulator and manufacturing method thereof
JP4529901B2 (en) Steel pipe for airbag system and manufacturing method thereof
EP2484793B1 (en) Steel pipe for air bag and process for producing same
JP5979334B1 (en) High strength welded steel pipe for airbag inflator and method for manufacturing the same
WO2002079526A1 (en) High strength steel tube for air bag and method for production thereof
JP2017524816A (en) High strength and toughness seamless steel pipe for car airbag and its manufacturing method
JP2009532584A (en) Low carbon alloy steel pipe with ultra-high strength and excellent toughness at low temperature and its production method
US7749339B2 (en) Process for manufacturing an airbag inflator bottle member
JPH10140250A (en) Production of steel tube for air bag, having high strength and high toughness
JP3220975B2 (en) Manufacturing method of steel pipe for high strength and high toughness air bag
JP4770922B2 (en) Steel pipe for airbag and manufacturing method thereof
EP2578705B1 (en) Process for producing steel pipe for air bag
US20060070687A1 (en) Method for producing seamless steel pipe for inflator of air bag
JP3858615B2 (en) Method for producing seamless steel pipe for high strength airbag with tensile strength of 900 MPa or more
JP3318467B2 (en) Manufacturing method of high strength and high toughness steel pipe with excellent workability
JP3678147B2 (en) Steel tube for high strength and toughness airbag and its manufacturing method
JP4079053B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe for airbag
JP2004076034A (en) Method for producing high strength, high toughness and high workability seamless steel pipe for air bag
JP3960145B2 (en) Manufacturing method of high strength, high toughness, high workability seamless steel pipe for airbag
JP3250211B2 (en) Manufacturing method of steel pipe for high strength and high toughness air bag
JP4197590B2 (en) Steel tube and pressure accumulator for high strength and toughness airbag
JP4079054B2 (en) High strength and high toughness welded steel pipe for airbag bottle and method for producing the same
JPH10140238A (en) Production of steel tube for air bag, having high strength and high toughness
JPH10204571A (en) Non-heat treated high strength seamless steel tube
JP2003201541A (en) High strength, high workability seamless steel pipe for air bag and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees