JP2009532584A - Low carbon alloy steel pipe with ultra-high strength and excellent toughness at low temperature and its production method - Google Patents

Low carbon alloy steel pipe with ultra-high strength and excellent toughness at low temperature and its production method Download PDF

Info

Publication number
JP2009532584A
JP2009532584A JP2009503677A JP2009503677A JP2009532584A JP 2009532584 A JP2009532584 A JP 2009532584A JP 2009503677 A JP2009503677 A JP 2009503677A JP 2009503677 A JP2009503677 A JP 2009503677A JP 2009532584 A JP2009532584 A JP 2009532584A
Authority
JP
Japan
Prior art keywords
steel pipe
steel
low carbon
less
carbon alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009503677A
Other languages
Japanese (ja)
Inventor
ロペス,エドガルド・オスカル
アルトシユラー,エデユアルド
Original Assignee
テナリス・コネクシヨンズ・アクチエンゲゼルシヤフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テナリス・コネクシヨンズ・アクチエンゲゼルシヤフト filed Critical テナリス・コネクシヨンズ・アクチエンゲゼルシヤフト
Publication of JP2009532584A publication Critical patent/JP2009532584A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Articles (AREA)
  • Pressure Vessels And Lids Thereof (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

鋼管が、本質的に、重量で、約0.06%〜約0.18%の炭素、約0.3%〜約1.5%のマンガン、約0.05%〜約〜0.5%のケイ素、約0.015%までの硫黄、約0.025%までのリン並びに少なくとも1種の次の元素:約0.30%までのバナジウム、約0.10%までのアルミニウム、約0.06%までのニオブ、約1%までのクロム、約0.70%までのニッケル、約0.70%までのモリブデン、約0.35%までの銅、約0.15%まで残留元素並びに残余の鉄及び偶発的不純物よりなる、特に、保存ガスの空気ポンプの圧力容器のための低炭素合金鋼管及びその製法。毎秒約100℃の高い加熱速度後、毎秒約100℃の冷却速度で水基剤急冷溶液中で鋼管を急速に、完全に急冷する。鋼は少なくとも約145ksi、そして220ksiのような高い引っ張り強さを有し、−100℃のような低温で延性の動きを示す。  The steel tube is essentially about 0.06% to about 0.18% carbon, about 0.3% to about 1.5% manganese, about 0.05% to about 0.5% by weight. Silicon, up to about 0.015% sulfur, up to about 0.025% phosphorus and at least one of the following elements: up to about 0.30% vanadium, up to about 0.10% aluminum, about .0. Up to 06% niobium, up to about 1% chromium, up to about 0.70% nickel, up to about 0.70% molybdenum, up to about 0.35% copper, up to about 0.15% residual elements and residue A low-carbon alloy steel pipe, particularly for a pressure vessel of an air pump for a storage gas, and a method for producing the same. After a high heating rate of about 100 ° C. per second, the steel tube is rapidly and completely quenched in a water base quench solution at a cooling rate of about 100 ° C. per second. Steel has a high tensile strength of at least about 145 ksi and 220 ksi and exhibits ductile behavior at low temperatures such as -100 ° C.

Description

関連出願の相互参照Cross-reference of related applications

本PCT出願は、2006年4月3日出願の米国特許非仮出願第11/395,322号明細書の優先権を請求する。   This PCT application claims priority from US Patent Application No. 11 / 395,322, filed April 3, 2006.

本発明は、低温で超高度な強度及び優れた靭性を有する低炭素合金鋼管並びに更にそのような鋼管を製造する方法を対象とする。鋼管は、その一例が自動車のエアバッグの空気ポンプである、自動車の抑制システムの容器のための構成部品を製造するために特に適する。   The present invention is directed to a low carbon alloy steel pipe having ultra-high strength and excellent toughness at low temperatures and a method for producing such a steel pipe. Steel pipes are particularly suitable for producing components for the containment of automobile restraint systems, one example of which is an air pump for an automobile airbag.

更に、製造経費を低下させるために、低炭素、低合金カテゴリー及び異なる熱処理法における代りの鋼組成物が開発され、試験された。   In addition, alternative steel compositions in low carbon, low alloy categories and different heat treatment methods were developed and tested to reduce manufacturing costs.

特許文献1及び特許文献2は、自動車のエアバッグの空気ポンプに有用である考えられる鋼化学を一般的な用語で説明している(特許文献1、2参照)。これらの文献は最終条件として、熱処理の不在、応力の除去及び焼きなまし又は急冷及び焼き戻しを挙げている。これらの刊行物は熱処理工程として急冷のみの可能性を言及してはいない。請求項には機械的性質が言及されていない。種々の実施例において、実施例#21においてのみ、鋼が急冷され、焼き戻されているが、報告されたUTSは686MPa(99ksi)のみである。実施例#26中の最高の記載された機械的性質ですら、863MPa(125ksi)の最大UTSを伴って、比較的低い。従って、これらの刊行物は比較的低い等級を対象とする(意図された目標は590MPa(86ksi)である)。更に、これらの刊行物は−40℃における偏平化落錘(DW)タイプの試験により、低温で延性を示す。低温で延性を示すための現在認可された試験は破裂(burst)試験であり、それは脆性を示すのにより有効である。DW試験後に延性であると主張されている、これらの文献中に示された大部分の実施例は実際、破裂試験において低温で延性の動きを示さず、従って政府の規制(例えば米国のDOT)に対する準拠の不在のために、特定のエアバッグの空気ポンプの適用に適さないであろうと考えられる。   Patent Literature 1 and Patent Literature 2 describe, in general terms, steel chemistry that is considered useful for an air pump of an automobile airbag (see Patent Literatures 1 and 2). These references cite the absence of heat treatment, stress relief and annealing or quenching and tempering as final conditions. These publications do not mention the possibility of quenching alone as a heat treatment step. The claims do not mention mechanical properties. In various examples, the steel was quenched and tempered only in Example # 21, but the only reported UTS is 686 MPa (99 ksi). Even the best described mechanical properties in Example # 26 are relatively low, with a maximum UTS of 863 MPa (125 ksi). Therefore, these publications target a relatively low grade (the intended target is 590 MPa (86 ksi)). In addition, these publications exhibit ductility at low temperatures in a flat weight drop (DW) type test at -40 ° C. The currently approved test for exhibiting ductility at low temperatures is the burst test, which is more effective for exhibiting brittleness. Most of the examples shown in these documents, alleged to be ductile after the DW test, do not actually show ductile behavior at low temperatures in burst tests and are therefore government regulations (eg, US DOT). It is believed that due to the lack of compliance with, it would not be suitable for certain airbag air pump applications.

特許文献3は電気的抵抗溶接管(ERW法)を製造する際の使用のための鋼のみを対象とすると云われる(特許文献3参照)。該請求項は、ERW法の種々のアスペクト並びに焼きなまし又は急冷及び焼き戻しのための場合による熱処理、場合による、隠された(ulterior)冷間引き抜き法(drawing)、場合による隠された熱処理(焼きなまし又は急冷及び焼き戻し)を明記している。この文献は2種の、異なる、非常に一般的な鋼化学のみを扱っており、その1つは低炭素鋼であり、他方は種々の合金元素における一般的な制約を記載している。この文献は急冷熱処理のみの可能性を示唆してはいない。種々の実施例が急冷及び焼き戻し材料に与えられているが、得られた機械的性質は比較的低い。達成された最大の結果は急冷及び焼き戻し試験#18における852MPa(123ksi)である。   Patent Document 3 is said to cover only steel for use in manufacturing an electric resistance welded pipe (ERW method) (see Patent Document 3). The claims include various aspects of the ERW process and optional heat treatment for annealing or quenching and tempering, optional hidden cold drawing, optional hidden heat treatment (annealing). Or rapid cooling and tempering). This document deals only with two different and very common steel chemistries, one of which is a low carbon steel and the other describes general constraints on various alloying elements. This document does not suggest the possibility of quenching only. Various examples have been given for quenching and tempering materials, but the resulting mechanical properties are relatively low. The maximum result achieved is 852 MPa (123 ksi) in quench and temper test # 18.

スミトモにより特許文献1、2、3それぞれに示された鋼「化学」並びに後に特許文献4中に特定された化学又は特許文献5として発行された継続文献は、実際、1990年より以前の昔から、米国で製造、販売されたようなSAE 1010の全般的目的の鋼を包含するような広範囲を伴う鋼を規定している(特許文献1、2、3、4、5、参照)。出願者は数年間にわたり、近代の技術により製造されたSAE 1010鋼等級は、前記出願に記載されたように、通常、Pの量が0.025未満であり、Sの量が0.01未満であろうことを補償することを知っている。   Steel "Chemistry" shown in each of Patent Documents 1, 2, and 3 by Sumitomo as well as the chemistry identified later in Patent Document 4 or the continued literature issued as Patent Document 5 are actually from a long time ago before 1990 Defines a wide range of steels, including SAE 1010 general purpose steels manufactured and sold in the United States (see patent documents 1, 2, 3, 4, 5). Applicants have for several years SAE 1010 steel grades manufactured by modern technology, as described in the application, usually have an amount of P of less than 0.025 and an amount of S of less than 0.01. Knows to compensate.

エアバッグの適用のための鋼における先行技術の状態を表す更なる文献は、特許文献6並びに特許文献7及び8を包含する種々の刊行係属文献を包含する(特許文献6、7、8参照)。これらの文献は、極めて急速な誘導オーステナイト化及び隠された超急速な水急冷から本明細書に教示されたようなどんな利点をも示唆せず、ましてやこのような急速な急冷のみを使用し、そしてその後に焼き戻し工程を使用しないことは示唆していない。更に、特許文献2は、僅かに低いPの最大値(0.02)及び僅かに高いSの最大値(0.02)のみを伴って、特許文献4と重複する化学を開示している(特許文献2、4参照)。特許文献9は焼き戻しなしに急冷の可能性を広範に示唆しているが、請求項6及び7は、請求される機械的性質を達成するために急冷の必要を述べず、その代りにこれらの請求項は少なくとも2種の熱処理を必要とする(特許文献9参照)。   Further literature describing the state of the art in steel for air bag applications includes various published pending publications including US Pat. . These documents do not suggest any advantage as taught herein from extremely rapid induction austenitization and hidden ultra-rapid water quenching, and even use only such rapid quenching, And it does not suggest not using a tempering process after that. Further, Patent Document 2 discloses chemistry that overlaps with Patent Document 4 with only a slightly lower maximum value of P (0.02) and a slightly higher maximum value of S (0.02). (See Patent Documents 2 and 4). Although Patent Document 9 broadly suggests the possibility of quenching without tempering, claims 6 and 7 do not state the need for quenching to achieve the claimed mechanical properties, but instead The claim requires at least two types of heat treatment (see Patent Document 9).

自動車の乗り手の抑制システムのためのエアバッグの空気ポンプ(inflator)は厳格な構造的及び機能的基準を充たすことが要請される。従って、製造工程には、厳格な手順及び許容値が課される。現場の経験が、本工業は過去の構造的及び機能的基準を充たすのに成功してきたことを示すが、同時に製造経費の継続した低下もまた重要であるが、発展する要求条件を充たすために、改善され、そして/又は新規の特性が必要である。   Airbag air pumps for vehicle occupant restraint systems are required to meet strict structural and functional standards. Therefore, strict procedures and tolerances are imposed on the manufacturing process. On-site experience shows that the industry has been successful in meeting past structural and functional standards, but at the same time, continued reductions in manufacturing costs are also important, but to meet evolving requirements There is a need for improved and / or new properties.

今日の多数の乗り物において、エアバッグ又は補助的抑制システムは重要な安全装置である。過去において、エアバッグシステムは爆発性化学薬品を使用するタイプのものであったが、それらは高価であり、そして最近では環境的及び再利用の問題のために、アルゴンガス等で充填した鋼管でできたアキュムレーターを使用する、新規のタイプの空気ポンプが開発され、そしてこのタイプはますます使用されている。   In many vehicles today, airbags or auxiliary restraint systems are important safety devices. In the past, airbag systems were of the type that used explosive chemicals, but they were expensive, and recently due to environmental and reuse issues, steel tubes filled with argon gas etc. A new type of air pump has been developed that uses the resulting accumulator, and this type is increasingly used.

前記のアキュムレーターは通常には、1回又は多数の段階の破裂において、自動車の衝突時にエアバッグ中に吹き込まれる高圧のガス等を保持する容器である。従って、このようなアキュムレーターとして使用される鋼管は、極めて短期間に高い応力率で応力を受けなければならない。従って、前記の鋼管は、通常圧のシリンダーのような簡単な構造物に比較して、優れたディメンションの精度、優れた加工性及び溶接性を有することが要請され、そしてなかでも、高い強度、靭性及び破裂に対する優れた抵抗をもたねばならない。エアバッグ中に非常に正確な容量のガスが吹き込むことを確保するために、ディメンションの精度もまた重要である。   The accumulator is usually a container that holds high-pressure gas or the like that is blown into an air bag in the event of a car crash in one or many stages of rupture. Therefore, a steel pipe used as such an accumulator must be stressed at a high stress rate in a very short time. Therefore, the steel pipe is required to have excellent dimensional accuracy, excellent workability and weldability compared to a simple structure such as a normal pressure cylinder, and among others, high strength, Must have good toughness and resistance to rupture. Dimensional accuracy is also important to ensure that a very accurate volume of gas is blown into the airbag.

アキュムレーターは、管が製造された後に完成形状に形成されるために、アキュムレーターを製造するために使用される管状部材においては、常温成形の性質が非常に重要である。常温成形により、容器の形状に応じた異なる形状が得られるであろう。常温成形後に、割れ目及び表面の欠損をもたない圧力容器を得ることが重要である。更に、常温成形後に、低温においてすら、非常に良好な靭性をもつことも重要である。   Since the accumulator is formed into a finished shape after the tube is manufactured, the property of room temperature molding is very important in the tubular member used for manufacturing the accumulator. Different shapes depending on the shape of the container will be obtained by room temperature molding. It is important to obtain a pressure vessel free from cracks and surface defects after cold forming. It is also important to have very good toughness, even at low temperatures after cold forming.

本明細書に開示される鋼は非常に良好な溶接性をもち、そしてエアバッグのアキュムレーターの適用のために、溶接前の予備加熱も溶接後の熱処理をも必要としない。必要な溶接性を得るためには式、
Ceq=%C+%Mn/6+(%Cr+%Mo+%V)/5+(%Ni+%Cu)/15
により規定される炭素当量は約0.63%未満でなければならない。Ceqが減少するに従って、溶接性が改善する。本発明の好ましい態様において、溶接性をよりよく保証するためには、前記に定義された炭素当量は約0.60%未満、好ましくは約0.56%未満、そしてもっとも好ましくは約0.52%未満、又は約0.48%未満すらでなければならない。
The steel disclosed herein has very good weldability and does not require preheating prior to welding or heat treatment after welding for the application of airbag accumulators. Formula to obtain the required weldability,
Ceq =% C +% Mn / 6 + (% Cr +% Mo +% V) / 5 + (% Ni +% Cu) / 15
The carbon equivalent defined by must be less than about 0.63%. As Ceq decreases, weldability improves. In a preferred embodiment of the present invention, the carbon equivalent as defined above is less than about 0.60%, preferably less than about 0.56%, and most preferably about 0.52 to better ensure weldability. %, Or even less than about 0.48%.

ガス容器を製造するために、本発明に従って製造される冷間引き抜き管は、所望の形状を得るために、異なる知られた方法(圧接、スウェージング、等のような)を使用して長さに切断され、次に常温成形される。あるいはまた、溶接された管を使用することができるであろう。その後、アキュムレーターを製造するために、摩擦溶接、ガスタングステンアーク溶接又はレーザー溶接のようないずれかの適した方法により、末端キャップ及びディフューザーを容器の両端に溶接する。これらの溶接物は著しく重要であり、従って、かなりの労力及び、特定の場合には、圧力容器及びエアバッグの配備全体の溶接の完全性を確保するための試験を要する。これらの溶接物は割れたり又は破損する可能性があり、従ってアキュムレーターの完全性、及び恐らくはエアバッグの操作に危険をもたらせることが認められている。   To produce a gas container, the cold drawn tube produced according to the present invention is lengthened using different known methods (such as pressure welding, swaging, etc.) to obtain the desired shape. And then molded at room temperature. Alternatively, a welded tube could be used. The end cap and diffuser are then welded to both ends of the vessel by any suitable method, such as friction welding, gas tungsten arc welding, or laser welding, to produce an accumulator. These weldments are of significant importance and therefore require considerable effort and, in certain cases, tests to ensure weld integrity throughout the pressure vessel and airbag deployment. It has been recognized that these weldments can crack or break and thus pose a risk to the integrity of the accumulator and possibly the operation of the airbag.

空気ポンプは、エアバッグ配備中にそれらがそれらの構造の完全性を保持することを確認するために試験される。このような試験の1つはいわゆる破裂試験である。これは、カニスターが通常の操作による使用中、すなわちエアバッグの配備中に期待されるものより有意に高い内圧を受ける、破壊タイプの試験である。この試験で、空気ポンプは破裂が起るまで、増加していく内圧を受ける。   Air pumps are tested to ensure that they retain their structural integrity during airbag deployment. One such test is a so-called burst test. This is a destructive type test where the canister is subjected to an internal pressure significantly higher than expected during use in normal operation, ie during deployment of the airbag. In this test, the air pump is subjected to increasing internal pressure until rupture occurs.

破裂試験の結果を考察し、これらの試験からの試験カニスターの試験片を研究すると、破壊は、異なる代りの方法:延性破壊、脆性破壊及び、時々はこれらの2モードの組み合わせ、により起ることが見いだされた。延性破壊においては、開放された膨らみにより例示される外側向きの(outturned)破裂(破裂する泡により示されるであろうような)が起ることが認められた。破裂した表面は、管の外面に対して約45度の傾きをもち、主要領域内に局在する。他方、脆性破壊においては、材料中の脆弱領域を示す、空気ポンプの長さに沿った、目立たない(non−arresting)縦の割れ目が示される。この場合、破壊面は管の外面に対して垂直である。これらの2種の破壊は走査電子顕微鏡下で観察されると独特の面をもち、−へこみが延性破壊の特徴であり、他方、割れ目が脆性を示す。   Considering the results of burst tests and studying test canister specimens from these tests, fracture occurs by different alternative methods: ductile fracture, brittle fracture and sometimes a combination of these two modes. Was found. It was observed that in ductile fracture, an outward burst (as would be indicated by a bursting bubble), exemplified by an open bulge, occurred. The ruptured surface has an inclination of about 45 degrees with respect to the outer surface of the tube and is localized in the main region. On the other hand, in brittle fracture, a non-arresting vertical crack along the length of the air pump is shown, indicating a fragile region in the material. In this case, the fracture surface is perpendicular to the outer surface of the tube. These two types of fractures have a unique surface when observed under a scanning electron microscope,-dents are characteristic of ductile fracture, while cracks are brittle.

時々、これらの2種の破壊モードの組み合わせ物が認められ、脆弱な割れ目が延性の破壊部分から伝播されることができる。エアバッグの空気ポンプを包含する全体のシステムは非常に異なる気候下で運転する乗り物において使用される可能性があるために、非常に寒冷な温度から暖かい温度までの広範な温度にわたり、物質が延性の動きを示すことが重要である。
特開平10−140249号公報[出願日、1996年11月5日] 特開平10−140283号公報[出願日1996年11月12日] 特開平13−49343号公報[出願日1999年10月8日] 米国特許第6878219号明細書、Kondo et al. 米国特許第2005/0039826号明細書 米国特許第6386583号明細書、Erike 米国特許第2004/0074570号明細書 米国特許第2005/0061404号明細書 米国特許第20020033591号明細書
Occasionally, a combination of these two failure modes is observed, and a fragile fracture can propagate from a ductile fracture. The entire system, including airbag air pumps, can be used in vehicles operating in very different climates, so the material is ductile over a wide range of temperatures from very cold to warm. It is important to show movements.
JP 10-140249 A [Application date, November 5, 1996] JP-A-10-140283 [Application date November 12, 1996] Japanese Patent Laid-Open No. 13-49343 [Application date: October 8, 1999] U.S. Pat. No. 6,878,219, Kondo et al. US Patent No. 2005/0039826 US Pat. No. 6,386,583, Erike US 2004/0074570 US 2005/0061404 Specification US 20020033591

発明の要約
第1に、本発明は非常に高度の引っ張り強さ(最低UTS 145ksi)、そして好ましくは超高度の引っ張り強さ(最低UTS 160ksi、そして恐らく175ksi又は220ksi)、及びその結果として非常に高い破裂圧を有する常温成形に適する、特定の新低炭素合金鋼を対象とする。更に、該鋼は、−60℃で保証された延性の動き、すなわち−60℃未満の、そして恐らくは−100℃の低温で、延性から脆性への転移温度(DBTT)を伴い、低温で優れた靭性を有する。
SUMMARY OF THE INVENTION First, the present invention provides a very high tensile strength (minimum UTS 145 ksi), and preferably a very high tensile strength (minimum UTS 160 ksi, and possibly 175 ksi or 220 ksi), and as a result, The target is specific new low-carbon alloy steels suitable for cold forming with high burst pressure. In addition, the steel has excellent ductility behavior at -60 ° C., ie at temperatures as low as −60 ° C. and possibly as low as −100 ° C., with a transition temperature from ductility to brittleness (DBTT). It has toughness.

第2に、本発明はまた、本質的に、新規の急速誘導オーステナイト化/高速急冷/焼き戻し法なし、を含んでなる、このような鋼管を製造する方法を対象とする。好ましい方法において、超高度引っ張り強さ(最大UTS 145ksi〜220ksi)及び、その結果、非常に高い破裂圧を有する、常温成形にも適する低炭素合金鋼管を製造するように、どんな焼き戻し工程をも排除する、超急速水急冷工程による、極めて急速な誘導オーステナイト化が使用される。更に、該鋼は、−60℃で保証された延性の動き、すなわち−60℃未満、そして恐らく−100℃の低温ですらの延性から脆性への転移温度(DBTT)を伴って、低温で優れた靭性を有する。   Secondly, the present invention is also directed to a method of manufacturing such a steel pipe which essentially comprises a novel rapid induction austenitization / fast quench / no tempering method. In the preferred method, any tempering step is performed to produce a low carbon alloy steel tube suitable for cold forming, having a very high tensile strength (up to UTS 145 ksi-220 ksi) and consequently a very high burst pressure. A very rapid induction austenitization is used, with an ultra-rapid water quenching step to eliminate. Furthermore, the steel is excellent at low temperatures, with a ductile behavior guaranteed at −60 ° C., ie below −60 ° C. and possibly even at a low temperature of −100 ° C., the ductile to brittle transition temperature (DBTT). Toughness.

本発明の物質は、その1例が自動車のエアバッグ空気ポンプである、自動車の抑制システムの構成部品の容器のための構成部品に特定の使用を有する。本明細書に開示される各鋼を製造するために使用される化学物質は新規であり、以後、それぞれ、以下の表Iに要約される組成を有する、鋼A、鋼B、鋼C、鋼D及び鋼Eと識別されるであろう:   The materials of the present invention have particular use in components for containers of components of automotive restraint systems, one example of which is an automotive airbag air pump. The chemicals used to make each of the steels disclosed herein are novel and will subsequently have Steel A, Steel B, Steel C, Steel, each having the composition summarized in Table I below. Will be identified as D and Steel E:

新規の急速な誘導オーステナイト化/高速急冷/焼き戻し法なし、におけるこれらの各鋼を使用する試験結果は、以下の表IIに要約されるように、5種の鋼組成物間に、驚くべき、異なる結果を示した:   The test results using each of these steels in a new rapid induction austenitization / fast quench / no tempering process are surprising among the five steel compositions as summarized in Table II below. Showed different results:

本発明の好ましい態様は、付記の図面に関連して、例によってのみ、以下に詳細に説明される。   Preferred embodiments of the invention are described in detail below, by way of example only, with reference to the accompanying drawings.

好ましい態様の説明
本発明は種々の形態における態様を許すが、本開示が本発明の例示であると考えることができ、示された特定の態様に本発明を限定することは意図されないことを理解して、現在好ましい態様が以下に、説明されるであろう。
DESCRIPTION OF PREFERRED EMBODIMENTS While the invention may be embodied in various forms, it will be understood that this disclosure can be considered as illustrative of the invention and is not intended to limit the invention to the particular embodiments shown. Thus, presently preferred embodiments will be described below.

本発明は保存ガスの空気ポンプの圧力容器に使用される鋼管を対象とする。より具体的には、本発明は、−60℃で、すなわち−60℃未満、そして恐らく−100℃の低温でも、延性から脆性への転移温度における保証された延性の動きを有する、継ぎ目なし圧力容器の適用のための、低炭素の超高度の強度の鋼等級を対象とする。   The present invention is directed to a steel pipe used in a pressure vessel of a storage gas air pump. More specifically, the present invention provides a seamless pressure that has a guaranteed ductile movement at the transition temperature from ductility to brittleness at −60 ° C., ie less than −60 ° C. and possibly even at a low temperature of −100 ° C. Covers low carbon, super high strength steel grades for container applications.

より具体的には、本発明は、空気ポンプを製造するために使用することができる継ぎ目なし鋼管を得るための化学組成物及び製法を対象とする。   More specifically, the present invention is directed to chemical compositions and processes for obtaining seamless steel pipes that can be used to manufacture air pumps.

継ぎ目のない低炭素の超高度の強度の鋼の製法のスキーム表示は以下:
1.製鋼、
2.鋳鋼、
3.管の熱間圧延、
4.熱間圧延中空仕上げ操作、
5.冷間引き抜き、
6.急冷によるオーステナイト化(焼き戻しを伴わない)、
7.冷間引き抜きの管の仕上げ操作
であることができよう。
The following is a schematic representation of the process for making seamless, low-carbon, ultra-high strength steel:
1. Steel making,
2. Cast steel,
3. Hot rolling of pipes,
4). Hot rolling hollow finishing operation,
5. Cold drawing,
6). Austenite by rapid cooling (without tempering),
7). It could be a cold drawing tube finishing operation.

製鋼工程の主要目的の1つは、炭素、ケイ素、硫黄、リン及びマンガンの除去により鉄を精錬することである。とりわけ、硫黄及びリンは、それらが物質の機械的性質を劣化させるために鋼に損害を与える。基礎的製鋼操作において、より急速な処理を許す特定の精錬工程を実施するための基礎的工程の前又は後に、レードル冶金が使用される。   One of the main objectives of the steelmaking process is to refine iron by removing carbon, silicon, sulfur, phosphorus and manganese. In particular, sulfur and phosphorus damage steel because they degrade the mechanical properties of the material. In basic steelmaking operations, ladle metallurgy is used before or after the basic process to perform a specific refining process that allows more rapid processing.

製鋼法は、順次、製品に必要な高い靭性を得るために重要な、非常に低い硫黄及びリン含量を得るために、極めて清浄な実施法下で実施される。従って、ASTM E45のStandard−Worst Field法(方法A)の指針に従う、レベル2以下―薄いシリーズ―及びレベル1以下―濃いシリーズ―の包含物レベルの目的が課せられてきた。本発明の好ましい態様において、前記の標準に従って測定される最大微小包含物の含量は
以下:
The steelmaking process is in turn carried out under very clean practices in order to obtain very low sulfur and phosphorus contents which are important for obtaining the high toughness required for the product. Therefore, inclusion level objectives of Level 2 and below—thin series—and Level 1 and below—dark series have been imposed, following the guidelines of ASTM E45 Standard-Worst Field Method (Method A). In a preferred embodiment of the present invention, the maximum microinclusion content measured according to the above standard is:

でなければならない。 Must.

更に、極めて清浄な実施法は30μm以下のサイズをもつ大形(oversize)の包含物の含量を得ることを可能にする。これらの包含物の含量は総酸素含量を20ppmに限定することにより得られる。   Furthermore, a very clean implementation makes it possible to obtain an oversize inclusion content with a size of 30 μm or less. The content of these inclusions is obtained by limiting the total oxygen content to 20 ppm.

二次的冶金における極めて清浄な実施法は、包含物及び不純物を浮き上がらせるためにレードル炉内で不活性ガスを発泡させることにより実施される。不純物及び包含物を吸収することができる流体スラグの生成並びに液状鋼に対するSiCaの添加による包含物のサイズ及び形状の修飾が、低い包含物含量を有する高品質の鋼を生成する。   A very clean practice in secondary metallurgy is performed by bubbling an inert gas in a ladle furnace to raise inclusions and impurities. Generation of fluid slag capable of absorbing impurities and inclusions and modification of inclusion size and shape by addition of SiCa to liquid steel produces high quality steel with low inclusion content.

低炭素の合金鋼を使用する実施例
得られる鋼の化学組成は以下のようであり、それぞれ「%」は「質量パーセント」を意味することとする。
Examples using low carbon alloy steels The chemical composition of the resulting steels is as follows, where “%” means “mass percent” respectively.

炭素(C)
Cは鋼の強度を安価に高める元素であるが、その含量が0.06%未満であると、所望の強度を得ることが難しい。他方、鋼が0.18%を超えるCを含有すると、常温作業性、溶接性及び靭性が減少する。従って、C含量の範囲は0.06%〜0.18%である。C含量の好ましい範囲は、0.07%〜0.12%であり、そして更により好ましい範囲は0.10〜0.12%である。
Carbon (C)
C is an element that increases the strength of steel at low cost. If the content is less than 0.06%, it is difficult to obtain a desired strength. On the other hand, when steel contains C exceeding 0.18%, normal temperature workability, weldability and toughness are reduced. Therefore, the range of C content is 0.06% to 0.18%. A preferred range for the C content is 0.07% to 0.12%, and an even more preferred range is 0.10 to 0.12%.

マンガン(Mn)
Mnは鋼の焼き入れ可能(hardenability)性を増加するのに有効な元素であり、従って、それは強度及び靭性を増加する。その含量が0.3%未満であると、所望の強度を得ることが難しく、他方、それが1.5%を超えると、結束構造(banding structure)が著明になり、靭性が減少する。従って、Mn含量は0.3%〜1.5%であり、好ましいMn範囲は0.60〜1.40%である。
Manganese (Mn)
Mn is an effective element for increasing the hardenability of steel, and therefore it increases strength and toughness. If the content is less than 0.3%, it is difficult to obtain the desired strength, while if it exceeds 1.5%, the binding structure becomes prominent and the toughness decreases. Therefore, the Mn content is 0.3% to 1.5%, and the preferred Mn range is 0.60 to 1.40%.

ケイ素(Si)
Siは製鋼工程中に脱酸素効果を有し、更に鋼の強度を増加する元素である。ケイ素含量が0.05%未満である場合は、鋼は酸化を受け易く、他方、それが0.50%を超えると、靭性及び加工性の双方が減少する。従って、Si含量は0.05%〜0.5%であり、好ましいSi範囲は0.05%〜0.40%である。
Silicon (Si)
Si is an element that has a deoxidizing effect during the steel making process and further increases the strength of the steel. If the silicon content is less than 0.05%, the steel is susceptible to oxidation, whereas if it exceeds 0.50%, both toughness and workability are reduced. Accordingly, the Si content is 0.05% to 0.5%, and the preferred Si range is 0.05% to 0.40%.

硫黄(S)
Sは鋼の靭性を減少させる元素である。従って、S含量は最大0.015%に限定される。好ましい最大値は0.010%である。
Sulfur (S)
S is an element that decreases the toughness of steel. Therefore, the S content is limited to a maximum of 0.015%. A preferred maximum is 0.010%.

リン(P)
Pは鋼の靭性を減少させる元素である。従って、P含量は最大0.025%に限定される。好ましい最大値は0.02%である。
Phosphorus (P)
P is an element that decreases the toughness of steel. Accordingly, the P content is limited to a maximum of 0.025%. A preferred maximum is 0.02%.

ニッケル(Ni)
Niは鋼の強度及び靭性を増加する元素であるが、非常に高価であるので、価格の理由で、Niは最大0.70%に限定される。好ましい最大値は0.50%である。
Nickel (Ni)
Ni is an element that increases the strength and toughness of steel, but is very expensive, so for reasons of price, Ni is limited to a maximum of 0.70%. A preferred maximum is 0.50%.

クロム(Cr)
Crは鋼の強度、靭性及び腐食抵抗性を増加するのに有効な元素である。それが1%を超えると、溶接区域の靭性が著しく減少する。従って、Cr含量は最大1.0%に限定され、好ましいCr最大含量は0.80%である。
Chrome (Cr)
Cr is an effective element for increasing the strength, toughness and corrosion resistance of steel. If it exceeds 1%, the toughness of the weld zone is significantly reduced. Therefore, the Cr content is limited to a maximum of 1.0%, and the preferred maximum Cr content is 0.80%.

モリブデン(Mo)
Moは鋼の強度を増加するのに有効で、焼き戻し中の軟化を遅らせる役にたつ元素であるが、非常に高価である。従って、Mo含量は最大0.7%に限定され、好ましいMo最大含量は0.50%である。
Molybdenum (Mo)
Mo is effective in increasing the strength of steel and is an element that serves to delay softening during tempering, but is very expensive. Therefore, the Mo content is limited to a maximum of 0.7%, and the preferred maximum Mo content is 0.50%.

バナジウム(V)
Vは少量を添加されても、鋼の強度を増加するのに有効で、焼き戻し中の軟化を遅らせる元素である。しかし、この合金鉄は高価であり、最大含量を低下させる必要を強要する。従って、Vは最大0.3%に限定され、好ましい最大値は0.20%である。
Vanadium (V)
V is an element that is effective in increasing the strength of steel even when added in a small amount, and delays softening during tempering. However, this alloy iron is expensive and forces the need to reduce the maximum content. Therefore, V is limited to a maximum of 0.3%, and a preferable maximum value is 0.20%.

前記に挙げられていない他の元素の好ましい範囲は以下である:
元素 重量%
アルミニウム 最大0.10%
ニオブ 最大0.06%
Sn 最大0.05%
Sb 最大0.05%
Pb 最大0.05%
As 最大0.05%。
Preferred ranges for other elements not listed above are as follows:
Element weight%
Aluminum up to 0.10%
Niobium up to 0.06%
Sn up to 0.05%
Sb up to 0.05%
Pb up to 0.05%
As up to 0.05%.

管又はチェンバーを製造するために使用される1レードルの鋼中の残留元素は以下でなければならない:
Sn+Sb+Pb+As≦最大0.15% そして
S+P≦0.025。
The residual elements in a ladle of steel used to make tubes or chambers must be:
Sn + Sb + Pb + As ≦ maximum 0.15% and S + P ≦ 0.025.

次の工程は、貫通され、圧延されて、継ぎ目のない鋼管を形成することができる中空でない(solid)鋼棒を製造するための鋼鋳造である。鋼を鋼軸に沿って均一な直径をもつ丸い中空でない鋼片(billet)に鋼ショップ中で鋳造する。   The next step is steel casting to produce a solid steel rod that can be penetrated and rolled to form a seamless steel pipe. The steel is cast in a steel shop into round, non-hollow billets with a uniform diameter along the steel axis.

超高度に清浄な鋼の中空でない円筒形の鋼片を約1200℃〜1300℃の温度に加熱し、この時点で、圧延機工程を受ける。好ましくは、鋼片は約1250℃の温度に加熱され、次に圧延機を通される。鋼片は好ましくは、知られたManessmann法を使用して貫通され、次に、外径及び壁の厚さが実質的に減少され、他方長さは熱間圧延中に実質的に増加される。例えば、148mmの外径の中空でない棒が、3.25mmの壁の厚さをもつ、48.3mmの外径の熱間圧延管に熱間圧延される。   A non-hollow cylindrical steel slab of ultra-highly clean steel is heated to a temperature of about 1200 ° C. to 1300 ° C., at which point it undergoes a rolling mill process. Preferably, the steel slab is heated to a temperature of about 1250 ° C. and then passed through a rolling mill. The billet is preferably penetrated using the known Manssmann method, then the outer diameter and wall thickness are substantially reduced, while the length is substantially increased during hot rolling. . For example, a 148 mm outer diameter non-hollow bar is hot rolled into a 48.3 mm outer diameter hot rolled tube with a wall thickness of 3.25 mm.

圧延管の断面積に対する中空でない鋼片の断面積の比率として測定される断面積の減少率は、所望の機械的性質を得るために必要な、精錬微小構造を得るために重要である。従って、最小の断面積減少率は約15:1であり、好ましい及びもっとも好ましい最小断面積減少率はそれぞれ、約20:1及び約25:1である。   The rate of reduction of the cross-sectional area, measured as the ratio of the cross-sectional area of the non-hollow steel slab to the cross-sectional area of the rolled tube, is important for obtaining the refined microstructure necessary to obtain the desired mechanical properties. Accordingly, the minimum cross-sectional area reduction rate is about 15: 1, and the preferred and most preferred minimum cross-sectional area reduction rates are about 20: 1 and about 25: 1, respectively.

そのように製造された超高度清浄鋼の継ぎ目のない熱延管を室温に冷却する。そのように製造された超高度に清浄な鋼の継ぎ目のない熱延管は、管の周囲及び管軸に沿った縦の双方にほぼ均一な壁の厚さを有する。   The seamless hot-rolled tube of ultra-high clean steel so produced is cooled to room temperature. An ultra-high clean steel seamless hot-rolled tube so produced has a substantially uniform wall thickness both around the tube and longitudinally along the tube axis.

次に、熱延管は異なる仕上げ工程を通過し、例えば2〜4片に長さを切断し、そしてその末端を切り落とし、必要な場合は知られた回転直線化装置で直線化し、そして電磁気試験又は超音波試験のような1種又は複数の異なる知られた方法により非破壊試験される。   The hot-rolled tube then goes through different finishing steps, for example cut into lengths of 2 to 4 pieces and cut off its ends, if necessary straightened with a known rotary linearizer and electromagnetic testing Or it is non-destructively tested by one or more different known methods such as ultrasonic testing.

次に、熱延管の各片の表面を常温引き抜きのために適当に条件調整する。この条件調整は酸溶液中に浸漬することにより酸浸漬する工程、及び、知られたリン酸亜鉛及びナトリウムエステアレート(estearathe)組み合わせ物、又は反応性油のような滑剤(lubricant)の適当な層を適用する工程を包含する。表面条件調整後、継ぎ目のない管を、引き抜かれる管の外径より小さい直径をもつ外部ダイを通して引き抜くことにより常温引き抜きを実施する。大部分の場合、管の内面もまた、ロッドの一方の末端に固定された内部マンドレルにより支持されるので、マンドレルは引き抜き中、ダイに近くに留まる。この引き抜き操作は、管を前以て室温より高く加熱する必要なく実施される。   Next, the condition of the surface of each piece of the hot-rolled tube is appropriately adjusted for drawing at room temperature. This conditioning can be accomplished by dipping in an acid solution and a suitable combination of known zinc phosphate and sodium esterate combinations or lubricants such as reactive oils. Applying a layer. After adjusting the surface conditions, room temperature drawing is performed by drawing the seamless pipe through an external die having a diameter smaller than the outer diameter of the pipe to be drawn. In most cases, the inner surface of the tube is also supported by an internal mandrel secured to one end of the rod so that the mandrel remains close to the die during withdrawal. This drawing operation is performed without the need to preheat the tube above room temperature.

継ぎ目のない管は、少なくとも1回はそのように常温で引き抜きされて、各通過がそれぞれ外径及び管の壁の厚さ双方を減少させる。そのように製造された常温引き抜き鋼管は、管の周囲及び管軸に沿って縦の双方の、管軸に沿った均一な外径及び均一な壁の厚さを有する。そのように常温引き抜きされた管は好ましくは10〜70mm間の外径及び好ましくは1〜4mmの壁の厚さを有する。   A seamless tube is so drawn at room temperature at least once so that each pass reduces both the outer diameter and the wall thickness of the tube. The cold drawn steel pipe so produced has a uniform outer diameter and a uniform wall thickness along the tube axis, both around the tube and longitudinally along the tube axis. Such cold drawn tubes preferably have an outer diameter between 10 and 70 mm and a wall thickness of preferably 1 to 4 mm.

次に常温引き抜き管を少なくとも上方のオーステナイト化温度、又はAc3(本明細書に開示された特定の化合物に対しては約880℃である)、しかし好ましくは約920℃を超え、そして約1050℃未満の温度でオーステナイト化炉内で熱処理する。この最大オーステナイト化温度は結晶粗大化(grain corsening)を回避するために課せられる。この工程は燃料炉内又は誘導型炉内のいずれかで実施することができるが、好ましくは後者中で実施される。炉内移動時間は使用される炉の種類に著しく左右される。本適用により必要とされる高度の表面の品質は、誘導型の炉が使用される場合により良く得られることが見いだされた。これは、酸化を起すことを妨げる非常に短い移動時間が関与する誘導工程の性状による。好ましくは、オーステナイト化加熱速度は少なくとも毎秒約100℃であるが、より好ましくは、毎秒少なくとも約200℃である。極めて高い加熱速度及び、その結果としての非常に短い加熱時間が、順次必要な機械的性質を保証する、非常に微細な結晶微細構造を得るために重要である。   The cold draw tube is then passed through at least the upper austenitizing temperature, or Ac3 (about 880 ° C. for the specific compounds disclosed herein), but preferably above about 920 ° C. and about 1050 ° C. Heat treatment in an austenitizing furnace at a temperature below. This maximum austenitizing temperature is imposed in order to avoid crystal coarsening. This step can be carried out either in a fuel furnace or in an induction furnace, but is preferably carried out in the latter. In-furnace travel time is highly dependent on the type of furnace used. It has been found that the high surface quality required by this application is better obtained when an induction furnace is used. This is due to the nature of the induction process, which involves a very short migration time that prevents oxidation from taking place. Preferably, the austenitizing heating rate is at least about 100 ° C per second, more preferably at least about 200 ° C per second. Very high heating rates and the resulting very short heating times are important for obtaining very fine crystalline microstructures which in turn guarantee the necessary mechanical properties.

更に、誘導炉のコイルの内径により規定される円形の面積に対する、管の外径により規定される円形の面積の比率として定義される適当な充填因子が、必要な高い加熱速度を得るために重要である。最小充填因子は約0.16であり、好ましい最小充填因子は約0.36である。   In addition, an appropriate filling factor, defined as the ratio of the circular area defined by the outer diameter of the tube to the circular area defined by the inner diameter of the induction furnace coil, is important to obtain the required high heating rate. It is. The minimum fill factor is about 0.16 and the preferred minimum fill factor is about 0.36.

炉の出口領域で又はその近位で、管は適当な急冷液により急冷される。急冷液は好ましくは、水又は水基剤の急冷溶液である。管温度は外界温度に、好ましくは毎秒少なくとも約100℃の速度で、より好ましくは毎秒少なくとも約200℃の速度で、急速に低下する。この極めて高い冷却速度が完全な微細構造の変態(transformation)を得るために重要である。   At or near the exit area of the furnace, the tube is quenched with a suitable quench liquid. The quench liquid is preferably water or a water base quench solution. The tube temperature rapidly decreases to ambient temperature, preferably at a rate of at least about 100 ° C. per second, more preferably at a rate of at least about 200 ° C. per second. This extremely high cooling rate is important in order to obtain a complete microstructure transformation.

次に、焼き戻し工程が使用される方法において、鋼管をAc1未満の温度で適当な温度及びサイクル時間を使用して焼き戻しする。好ましくは、焼き戻し温度は約400〜600℃の間、そしてより好ましくは、約450〜550℃の間である。あるいはまた、焼き戻し温度は200℃〜600℃の間、そしてより好ましくは約250℃〜550℃の間であることができる。浸漬時間は非常に良好な温度の均一性を保証するために十分長くなければならないが、余り長いと、所望の機械的性質が得られない。この焼き戻し工程は好ましくは、管の脱炭及び/又は酸化を回避するために、保護的還元又は中性雰囲気中で実施される。   Next, in a method where a tempering step is used, the steel pipe is tempered using a suitable temperature and cycle time at a temperature below Ac1. Preferably, the tempering temperature is between about 400-600 ° C and more preferably between about 450-550 ° C. Alternatively, the tempering temperature can be between 200C and 600C, and more preferably between about 250C and 550C. The soaking time must be long enough to ensure very good temperature uniformity, but if it is too long, the desired mechanical properties cannot be obtained. This tempering step is preferably performed in a protective reducing or neutral atmosphere to avoid decarburization and / or oxidation of the tube.

好ましい方法においては、焼き戻し工程は回避され、前記のように水又は水基剤溶液を使用する高速急冷のみが使用される。高速急冷を達成するためには、以下の装置が好ましいが、必須ではない。毎時2200kgの全容量をもつ急冷ライン、次に500Kwに設定された誘導原の最大出力をもつ誘導炉。ヘッド急冷装置は各ライン上に12ノズルをもつ42ラインを使用する。水急冷流量は毎時10〜60mの範囲に調整され、管の前進速度は毎分5〜25メーターに制御される。更に、次のピンチローラーが管上に回転をもたらすように設定される。 In the preferred method, the tempering step is avoided and only rapid quenching using water or a water base solution as described above is used. In order to achieve rapid quenching, the following apparatus is preferred but not essential. An induction furnace with a quenching line with a total capacity of 2200 kg per hour and then a maximum power of induction source set to 500 Kw. The head quencher uses 42 lines with 12 nozzles on each line. The water quench flow rate is adjusted to a range of 10-60 m 3 per hour and the tube advance speed is controlled to 5-25 meters per minute. In addition, the next pinch roller is set to cause rotation on the tube.

そのように製造された超高度の強度の鋼管を、異なる仕上げ工程を通過させ、知られた回転直線化装置で直線化し、そして1種又は複数の異なる知られた方法により非破壊的に試験する。この種の適用のための管は好ましくは、知られた超音波及び電磁法の双方により試験しなければならない。   The super high strength steel pipes so produced are passed through different finishing steps, straightened with known rotary linearizers, and tested non-destructively by one or more different known methods . Tubes for this type of application should preferably be tested by both known ultrasonic and electromagnetic methods.

熱処理後の管を化学的に処理して、望ましい外観及び非常に低い表面の粗さをもつ管を得ることができる。例えば、管を硫酸及び塩酸溶液中に浸漬し、リン酸亜鉛を使用してリン酸化させ、そして石油基剤の油、水基剤の油又は鉱油を使用して油処理することができるであろう。   The heat-treated tube can be chemically treated to obtain a tube with the desired appearance and very low surface roughness. For example, a tube could be immersed in sulfuric acid and hydrochloric acid solution, phosphorylated using zinc phosphate, and oil treated using petroleum based oil, water based oil or mineral oil. Let's go.

第1又は第2に記載された方法により得られる鋼管は、以下の最小の機械的性質を有する:
耐力(Yield Strength) 最低約110ksi
(758MPa)
引っ張り強さ(Tensile Strength) 最低約145ksi
(1000MPa)
伸び(Elongation) 最低約9%
The steel pipe obtained by the method described in the first or second has the following minimum mechanical properties:
Yield Strength (Approximately 110 ksi)
(758 MPa)
Tensile Strength Minimum of about 145 ksi
(1000 MPa)
Elongation Minimum 9%

耐力、引っ張り強さ及び伸びは標準ASTM E8に記載の方法に従って実施することができる。引っ張り試験に対して、管状部分全体を評価するためには実物大の試験片が好ましい。   Yield strength, tensile strength and elongation can be carried out according to the methods described in standard ASTM E8. For the tensile test, a full-size specimen is preferred for evaluating the entire tubular portion.

偏平化試験は49CFR、段落178.65の規格DOT 39の条件に準拠しなければならない。従って、管片は、反対側が管壁の厚さの6倍の距離になるまで、60度の角度のV−型工具で偏平化される時に、割れてはならない。この試験は開発された鋼により完全に充たされる。   The flattening test must comply with the conditions of 49 CFR, standard DOT 39 of paragraph 178.65. Therefore, the tube piece must not crack when flattened with a V-shaped tool at an angle of 60 degrees until the opposite side is 6 times the thickness of the tube wall. This test is fully satisfied by the developed steel.

強度及び靭性の間の良好な平衡を得るために、以前の(prior)(時々、以前の(former)と呼ばれる)オーステナイト結晶粒度は、ASTM E−112基準に従って測定されて、好ましくは7以下、そしてより好ましくは9以下でなければならない。これは、オーステナイト化期間中の極めて短期の加熱サイクルのお陰で達成される。   In order to obtain a good balance between strength and toughness, the prior (sometimes referred to as former) austenite grain size is measured according to the ASTM E-112 standard, preferably 7 or less, And more preferably it must be 9 or less. This is achieved thanks to a very short heating cycle during the austenitization period.

前記の方法により得られる鋼管は、本発明に対して記載された条件に準拠するためには、前記の性質をもたなければならない。   The steel pipe obtained by the above method must have the above properties in order to comply with the conditions described for the present invention.

産業の要請は、粗さの条件をより低い値に継続的に強制している。本発明は、例えば、外面及び内面双方において最大3.2ミクロンの完成管の表面仕上げを伴う、良好な視覚的外観を有する。この条件は、工程の異なる段階における常温引き抜き、短いオーステナイト化時間、還元又は中性雰囲気の焼き戻し及び適当な表面の化学的状態調整により得られる。   Industry demands continue to force roughness conditions to lower values. The present invention has a good visual appearance, for example, with a finished tube surface finish of up to 3.2 microns on both the outer and inner surfaces. This condition is obtained by cold drawing at different stages of the process, short austenitizing time, reduction or tempering of a neutral atmosphere and appropriate surface chemical conditioning.

ヒドロバースト圧力試験は例えば、管端に平らな鋼板を溶接することにより、管切片の末端をシールすることにより実施しなければならない。300mmの管片が、全たが応力(hoop stress)が発達することができるように制約なしに留まることが重要である。管切片の加圧は油、水、アルコール又はそれらの混合物をポンプで押し出すことにより実施されるであろう。   The hydroburst pressure test must be performed, for example, by sealing the end of the tube section by welding a flat steel plate to the tube end. It is important that the 300 mm tube piece remains unconstrained so that all the hop stress can develop. Pressurization of the tube section may be performed by pumping out oil, water, alcohol or mixtures thereof.

破裂試験の圧力条件は管サイズに左右される。破裂試験時に、超高強度鋼の継ぎ目のない管は−60℃で保証された延性の動きを有する。製造されたサンプル上で実施される試験は、−60℃未満の延性から脆性への転移温度を伴い、−60℃の保証された延性の動きを有することを示す。   The pressure condition of the burst test depends on the tube size. During burst testing, the ultra high strength steel seamless tube has a ductile motion guaranteed at -60 ° C. Tests performed on the manufactured samples show a ductile to brittle transition temperature below −60 ° C. and a guaranteed ductile movement of −60 ° C.

本発明者はCharpy衝撃試験(ASTM E32に従う)の代りに、外界温度及び低温の双方で実施される破裂試験が、はるかに、より代表的な有効な試験であることを見いだした。これは、これらの生成物において比較的薄い壁の厚さ及び小さい外径が使用され、従ってCharpy衝撃試験に対する標準のASTM試験片が横断方向に管から加工することができない、という事実による。更に、この標準より小さいCharpy衝撃プローブを得るためには、偏平化の変形を、湾曲した管プローブに適用しなければならない。これは鋼の機械的性質、とりわけ衝撃強さに対する顕著な影響を有する。従って、この方法によって、代表的な衝撃試験の結果は得られない。   The present inventor has found that instead of the Charpy impact test (according to ASTM E32), a burst test performed at both ambient and low temperatures is a much more representative and effective test. This is due to the fact that relatively thin wall thicknesses and small outer diameters are used in these products, so standard ASTM specimens for Charpy impact testing cannot be machined from the tube in the transverse direction. Furthermore, in order to obtain a Charpy impact probe smaller than this standard, a flattening deformation must be applied to the curved tube probe. This has a significant effect on the mechanical properties of the steel, in particular the impact strength. Therefore, typical impact test results cannot be obtained by this method.

代りの低炭素、低合金鋼を使用する実施例
出願者は、焼き戻しを伴わない高速急冷が本発明の重要なアスペクトであることを見いだした。特定の加熱及び高速急冷により処理されると、先行技術の化合物より低い合金でありそしてより安価な鋼が、本明細書で以前に考察された標準を充たすか又はそれを超えることができる。
Examples Using Alternative Low Carbon, Low Alloy Steel Applicants have found that rapid quenching without tempering is an important aspect of the present invention. When processed with specific heating and rapid quenching, steels that are lower alloys and less expensive than prior art compounds can meet or exceed the standards previously discussed herein.

前記に定義された、新規の鋼A、B、C、D及びEは、焼き戻し工程を付加する代りに、高速急冷を伴う非常に急速な誘導炉のオーステナイト化が使用される好ましい方法を使用して分析された代りの鋼である。驚くべきことには、高速とは言えない急冷、すなわち通常の急冷工程が使用されるか又は前記のような焼き戻し工程が使用される対照試験を、特定のこれらの新規の鋼で実施すると、該試験は有意に劣った特徴を示した。   As defined above, the new steels A, B, C, D and E use the preferred method in which a very rapid induction furnace austenitization with fast quenching is used instead of adding a tempering step. Instead of the steel analyzed. Surprisingly, if a controlled test in which a rapid quenching, i.e. a normal quenching process, or a tempering process as described above is used, is performed on certain of these new steels, which is not fast. The test showed significantly inferior features.

好ましい方法に従う、より安価な鋼を包含する代替物を使用する高速急冷され、そして焼き戻しを伴わない工程
鋼Eサンプル上の高速急冷試験に使用されたパラメーターは以下であった:
40m/時間の水流、20m/分の管の前進速度、80%の誘導装置電力、880〜940℃のオーステナイト化温度、目標920℃、OD表面及びコア物質上のマルテンサイト変態(transformation)を認めた。
According to the preferred method, the process was fast quenched using alternatives including cheaper steel and without tempering. The parameters used for the rapid quench test on the steel E sample were:
40m 3 / hr water flow, 20m / min tube advance rate, 80% induction power, austenitizing temperature of 880-940 ° C, target 920 ° C, martensitic transformation on OD surface and core material Admitted.

図1は鋼Eに対する100%マルテンサイト変態を伴うコア物質を示す。   FIG. 1 shows the core material with 100% martensitic transformation for steel E.

低合金SAE 1010等級の鋼と同様な化学構造を有する鋼Eは、高速急冷を受けると、最低期待値を達成しなかった。   Steel E, which has a chemical structure similar to low alloy SAE 1010 grade steel, did not achieve the lowest expected value when subjected to rapid quenching.

試験結果は以下であった:   The test results were as follows:

同様に、割れ目の動き及びタイプを観察するために、低温(−60℃)における破裂試験を実施した。図IIは鋼Eの試験破裂サンプルを示す。双方が延性の動きを示した。   Similarly, a burst test at low temperature (−60 ° C.) was performed to observe the movement and type of cracks. FIG. II shows a test burst sample of Steel E. Both showed a ductile movement.

通常の急冷工程を伴う鋼E上の対照試験を実施し、結果は以下であった:   A control test on steel E with normal quenching process was performed and the results were as follows:

図IIIは通常の急冷工程を使用する鋼Eに対するコア構造を示す。壁の厚さに沿っていくらかのフェライト構造を認める。   FIG. III shows the core structure for steel E using a normal quenching process. Some ferrite structure is observed along the wall thickness.

鋼Dは、示した価格値に対する高い性能のために、非常に有望であることが見出された。鋼Dは好ましい方法に従って管を製造するために選択された。高速急冷試験のために使用された鋼Dのサンプルの測定化学組成は以下であった:   Steel D was found very promising because of its high performance for the indicated price value. Steel D was selected to produce the tube according to the preferred method. The measured chemical composition of the sample of Steel D used for the rapid quench test was as follows:

鋼Dのサンプル上の高速急冷試験に使用されたパラメーターは以下であった:
急冷工程はオーステナイト温度を920〜940℃に制御して実施された。
水流40m/時間、
管の前進速度10m/分、
誘導装置電力、総容量(500Kw)の62%、
管上の回転は17°のピンチロール角で与えられた。
The parameters used for the rapid quench test on the steel D sample were:
The rapid cooling process was performed by controlling the austenite temperature to 920 to 940 ° C.
Water flow 40m 3 / hour,
Tube forward speed 10m / min,
Induction device power, 62% of total capacity (500Kw),
The rotation on the tube was given with a 17 ° pinch roll angle.

鋼Dのサンプル上で高速急冷された試験結果は以下であった:   The results of the rapid quenching on the steel D sample were as follows:

図IVは、100%のマルテンサイト及び完全に急冷された変態を示す高速急冷鋼Dの微細構造を示す。   FIG. IV shows the microstructure of high-speed quenched steel D showing 100% martensite and a fully quenched transformation.

同様に、割れ目の動き及びタイプを観察するために低温(−60℃)で破裂試験を実施した。図Vは鋼Dの試験破裂サンプルを示す。双方が延性の動きを示した。   Similarly, a burst test was performed at low temperature (−60 ° C.) to observe the movement and type of cracks. FIG. V shows a test burst sample of Steel D. Both showed a ductile movement.

通常の急冷工程を伴う鋼D上の対照試験を実施し、結果は以下である:   A control test on steel D with a normal quenching process was performed and the results are as follows:

図VIは通常の急冷工程を使用する鋼Dのコア構造を示す。   FIG. VI shows the core structure of Steel D using a normal quenching process.

鋼Bは好ましい方法に従って管を製造するために選択された。高速急冷試験に使用された鋼Bのサンプルの測定化学組成は以下であった:   Steel B was selected to produce the tube according to the preferred method. The measured chemical composition of the steel B sample used in the rapid quench test was as follows:

鋼Bのサンプル上の高速急冷試験に使用したパラメーターは以下であった:
急冷工程を、オーステナイト温度を920〜940℃に制御しながら実施した。
水流40m/時間、
管の前進速度10m/分
誘導装置電力、総容量(500Kw)の70%
管上の回転は17°のピンチロール角で与えられた。
The parameters used for the rapid quench test on the steel B sample were:
The quenching step was performed while controlling the austenite temperature at 920 to 940 ° C.
Water flow 40m 3 / hour,
Pipe forward speed 10m / min Inductor power, 70% of total capacity (500Kw)
The rotation on the tube was given with a 17 ° pinch roll angle.

鋼Bサンプル上で高速急冷された試験結果は以下であった:   The results of the rapid quenching on the steel B sample were as follows:

同様に、割れ目の動き及びタイプを観察するために鋼B上で低温(−60℃)の破裂試験を実施し、双方とも延性の動きを示した。   Similarly, a low temperature (−60 ° C.) burst test was performed on Steel B to observe crack motion and type, both exhibiting ductile motion.

鋼Aを好ましい方法に従って管を製造するために選択した。高速急冷試験に使用された鋼Aのサンプルの測定化学組成は以下であった:   Steel A was selected to produce the tube according to the preferred method. The measured chemical composition of the sample of Steel A used for the rapid quench test was as follows:

鋼Aのサンプル上の高速急冷試験に使用したパラメーターは以下であった:
急冷工程を、920〜940℃にオーステナイト温度を制御しながら実施した。
水流50m/時間、
管の前進速度20m/分、
誘導装置電力、総容量(500Kw)の90%、
管上の回転は17°のピンチロール角で与えられた。
The parameters used for the rapid quench test on the steel A sample were:
The quenching step was performed while controlling the austenite temperature at 920 to 940 ° C.
Water flow 50m 3 / hour,
Tube forward speed 20m / min,
Induction device power, 90% of total capacity (500Kw),
The rotation on the tube was given with a 17 ° pinch roll angle.

鋼Aのサンプル上で高速急冷された試験結果は以下であった:   The results of the rapid quenching on the steel A sample were as follows:

同様に、割れ目の動き及びタイプを観察するために低温(−60℃及び−100℃)の破裂試験を鋼A上で実施し、双方が延性の動きを示した。   Similarly, low temperature (−60 ° C. and −100 ° C.) burst tests were performed on Steel A to observe crack motion and type, both exhibiting ductile motion.

代りの低価格鋼を使用し、焼き戻し工程を伴う、高速急冷による対照試験
好ましい鋼Dのサンプルが、好ましい方法に従う高速急冷を使用すると驚くべき機械的値をもたらすことが見いだされたので、次に、機械的性質に対する焼き戻しを付加する効果を決定するために焼き戻しを実施した。
Control test with fast quench using alternative low-priced steel and with tempering process The preferred steel D sample was found to give surprising mechanical values when using fast quench according to the preferred method. In addition, tempering was performed to determine the effect of adding tempering on the mechanical properties.

焼き戻し熱処理は15分の総時間で、580℃で実施した。UTS平均は期待値を充たさない、116Ksi(805MPa)であった。   The tempering heat treatment was carried out at 580 ° C. for a total time of 15 minutes. The UTS average was 116 Ksi (805 MPa), which did not satisfy the expected value.

35 USC§112の説明及び実施可能要件に準拠するために、我々の発明の好ましい態様が示され説明されたが、本発明の範囲は、説明されたいずれの態様にも限定されず、付記の請求項の範囲によってのみ規定されることを理解することができる。   35 Although preferred embodiments of our invention have been shown and described in order to comply with the description and enablement requirements of USC §112, the scope of the present invention is not limited to any of the described embodiments. It can be seen that it is defined only by the scope of the claims.

鋼E上の高速急冷に対するコアの微小構造を示す。The core microstructure for fast quenching on steel E is shown. 鋼E上の高速急冷に対する−60℃における破裂試験を示す。The burst test at −60 ° C. for rapid quenching on steel E is shown. 鋼E上の通常の急冷に対する微小構造を示す。The microstructure for normal quenching on Steel E is shown. 鋼D上の高速急冷のコアの微小構造を示す。3 shows the microstructure of a rapidly quenched core on Steel D. 鋼D上の高速急冷に対する−60℃における破裂試験を示す。The burst test at -60 degreeC with respect to the rapid quenching on the steel D is shown. 鋼D上の通常の急冷に対する微小構造を示す。The microstructure for normal quenching on steel D is shown.

Claims (48)

本質的に、重量で、約0.06%〜約0.18%の炭素、約0.5%〜約1.5%のマンガン、約0.1%〜約〜0.5%のケイ素、約0.015%までの硫黄、約0.025%までのリン、約0.50%までのニッケル、約0.1%〜約1.0%のクロム、約0.1%〜約1.0%のモリブデン、約0.01%〜約0.10%のバナジウム、約0.01%〜約0.10%のチタン、約0.05%〜約0.35%の銅、約0.010%〜約0.050%のアルミニウム、約0.05%までのニオブ、約0.15%までの残留(residual)元素並びに残余の(balance)鉄及び偶発的不純物よりなる、低炭素合金鋼管であって、
鋼管が少なくとも約145ksiの引っ張り強さを有し、そして−60℃未満の、延性から脆性への転移温度を有する、低炭素合金鋼管。
Essentially, by weight, from about 0.06% to about 0.18% carbon, from about 0.5% to about 1.5% manganese, from about 0.1% to about 0.5% silicon, Up to about 0.015% sulfur, up to about 0.025% phosphorus, up to about 0.50% nickel, from about 0.1% to about 1.0% chromium, from about 0.1% to about 1. 0% molybdenum, about 0.01% to about 0.10% vanadium, about 0.01% to about 0.10% titanium, about 0.05% to about 0.35% copper, about 0.0. Low carbon alloy steel pipe comprising 010% to about 0.050% aluminum, up to about 0.05% niobium, up to about 0.15% residual elements and balance iron and incidental impurities Because
A low carbon alloy steel pipe having a tensile strength of at least about 145 ksi and a ductile to brittle transition temperature of less than -60 ° C.
鋼管が、本質的に、重量で、約0.07%〜約0.12%の炭素、約1.00%〜約1.40%のマンガン、約0.15%〜約〜0.35%のケイ素、約0.010%までの硫黄、約0.015%までのリン、約0.20%までのニッケル、約0.55%〜約0.80%のクロム、約0.30%〜約0.50%のモリブデン、約0.01%〜約0.07%のバナジウム、約0.01%〜約0.05%のチタン、約0.15%〜約0.30%の銅、約0.010%〜約0.050%のアルミニウム、約0.05%までのニオブ、約0.15%までの残留元素並びに残余の鉄及び偶発的不純物よりなる、請求項1の低炭素合金鋼管。   The steel tube is essentially about 0.07% to about 0.12% carbon, about 1.00% to about 1.40% manganese, about 0.15% to about 0.35% by weight. Silicon, up to about 0.010% sulfur, up to about 0.015% phosphorus, up to about 0.20% nickel, from about 0.55% to about 0.80% chromium, from about 0.30% About 0.50% molybdenum, about 0.01% to about 0.07% vanadium, about 0.01% to about 0.05% titanium, about 0.15% to about 0.30% copper, The low carbon alloy of claim 1 comprising from about 0.010% to about 0.050% aluminum, up to about 0.05% niobium, up to about 0.15% residual elements and residual iron and incidental impurities. Steel pipe. 鋼管が、本質的に、重量で、約0.08%〜約0.11%の炭素、約1.03%〜約1.18%のマンガン、約0.15%〜約〜0.35%のケイ素、約0.003%までの硫黄、約0.012%までのリン、約0.10%までのニッケル、約0.63%〜約0.73%のクロム、約0.40%〜約0.45%のモリブデン、約0.03%〜約0.05%のバナジウム、約0.025%〜約0.035%のチタン、約0.15%〜約0.30%の銅、約0.010%〜約0.050%のアルミニウム、約0.05%までのニオブ、約0.15%までの残留元素並びに残余の鉄及び偶発的不純物よりなる、請求項1の低炭素合金鋼管。   The steel tube is essentially about 0.08% to about 0.11% carbon, about 1.03% to about 1.18% manganese, about 0.15% to about ~ 0.35% by weight. Silicon, up to about 0.003% sulfur, up to about 0.012% phosphorus, up to about 0.10% nickel, from about 0.63% to about 0.73% chromium, from about 0.40% About 0.45% molybdenum, about 0.03% to about 0.05% vanadium, about 0.025% to about 0.035% titanium, about 0.15% to about 0.30% copper, The low carbon alloy of claim 1 comprising from about 0.010% to about 0.050% aluminum, up to about 0.05% niobium, up to about 0.15% residual elements and residual iron and incidental impurities. Steel pipe. 鋼管が少なくとも約125ksiの耐力を有する、請求項1の低炭素合金鋼管。   The low carbon alloy steel pipe of claim 1, wherein the steel pipe has a yield strength of at least about 125 ksi. 鋼管が少なくとも約135ksiの耐力を有する、請求項1の低炭素合金鋼管。   The low carbon alloy steel pipe of claim 1, wherein the steel pipe has a yield strength of at least about 135 ksi. 鋼管が少なくとも約9%の破断点伸び(elongation at break)を有する、請求項1の低炭素合金鋼管。   The low carbon alloy steel pipe of claim 1, wherein the steel pipe has an elongation at break of at least about 9%. 鋼管が約40HRC以下の硬度を有する、請求項1の低炭素合金鋼管。   The low carbon alloy steel pipe of claim 1, wherein the steel pipe has a hardness of about 40 HRC or less. 鋼管が約37HRC以下の硬度を有する、請求項1の低炭素合金鋼管。   The low carbon alloy steel pipe of claim 1, wherein the steel pipe has a hardness of about 37 HRC or less. 鋼管が、炭素当量が式:Ceq=%C+%Mn/6+(%Cr+%Mo+%V)/5+(%Ni+%Cu)/15:に従って決定される、約0.63%未満の炭素当量を有する、請求項1の低炭素合金鋼管。   The steel pipe has a carbon equivalent of less than about 0.63%, where the carbon equivalent is determined according to the formula: Ceq =% C +% Mn / 6 + (% Cr +% Mo +% V) / 5 + (% Ni +% Cu) / 15: The low carbon alloy steel pipe according to claim 1. 鋼管が約0.60%未満の炭素当量を有する、請求項9の低炭素合金鋼管。   The low carbon alloy steel pipe of claim 9, wherein the steel pipe has a carbon equivalent of less than about 0.60%. 鋼管が約0.56%未満の炭素当量を有する、請求項9の低炭素合金鋼管。   The low carbon alloy steel pipe of claim 9, wherein the steel pipe has a carbon equivalent of less than about 0.56%. 鋼管が、ASTM E45 Standard−Worst Field法(方法A)に従って測定される、レベル2以下−薄いシリーズ−及びレベル1以下―濃いシリーズ―の最大微量包含物(microinclusion)を含有する、請求項1の低炭素合金鋼管。   2. The steel pipe of claim 1, comprising a maximum of microinclusion of level 2 or less-thin series-and level 1 or less-dense series-measured according to the ASTM E45 Standard-Worst Field method (Method A). Low carbon alloy steel pipe. 鋼管が以下:
のような,ASTM E45 Standard−Worst Field法(方法A)に従って測定される最大微量包含物を含有する、請求項1の低炭素合金鋼管。
Steel pipes are the following:
The low carbon alloy steel pipe of claim 1, comprising a maximum trace inclusion measured according to the ASTM E45 Standard-Worst Field method (Method A).
30μm以下のサイズの大形(oversize)包含物含量が得られる、請求項13の低炭素合金鋼管。   14. The low carbon alloy steel pipe of claim 13, wherein an oversize inclusion content of a size of 30 [mu] m or less is obtained. 総酸素含量が20ppmに限定される、請求項14の低炭素合金鋼管。   15. The low carbon alloy steel pipe of claim 14, wherein the total oxygen content is limited to 20 ppm. 管が継目なしの形状(configuration)を有する、請求項1の低炭素合金鋼管。   The low carbon alloy steel pipe of claim 1, wherein the pipe has a seamless configuration. 請求項1の低炭素合金鋼管を含んでなる、保存ガスの空気ポンプの圧力容器。   A pressure vessel for a storage gas air pump comprising the low carbon alloy steel pipe of claim 1. 請求項1の低炭素合金鋼管を含んでなる、自動車のエアバッグの空気ポンプ。   An air pump for an automobile airbag comprising the low carbon alloy steel pipe according to claim 1. 本質的に、重量で、約0.08%〜約0.11%の炭素、約1.03%〜約1.18%のマンガン、約0.15%〜約〜0.35%のケイ素、約0.003%までの硫黄、約0.012%までのリン、約0.10%までのニッケル、約0.63%〜約0.73%のクロム、約0.40%〜約0.45%のモリブデン、約0.03%〜約0.05%のバナジウム、約0.025%〜約0.035%のチタン、約0.15%〜約0.30%の銅、約0.010%〜約0.050%のアルミニウム、約0.05%までのニオブ、約0.15%までの残留元素並びに残余の鉄及び偶発的不純物よりなる、低炭素合金鋼管であって、鋼管が少なくとも約135ksiの耐力、少なくとも約145ksiの引っ張り強さ、少なくとも約9%の破断点伸び、約37HRC以下の硬度を有し、そして−60℃未満の延性から脆性への転移温度を有する、低炭素合金鋼管。   Essentially, by weight, from about 0.08% to about 0.11% carbon, from about 1.03% to about 1.18% manganese, from about 0.15% to about 0.35% silicon, Up to about 0.003% sulfur, up to about 0.012% phosphorus, up to about 0.10% nickel, about 0.63% to about 0.73% chromium, about 0.40% to about 0.00. 45% molybdenum, about 0.03% to about 0.05% vanadium, about 0.025% to about 0.035% titanium, about 0.15% to about 0.30% copper, about 0.0. A low carbon alloy steel pipe comprising 010% to about 0.050% aluminum, up to about 0.05% niobium, up to about 0.15% residual elements and residual iron and incidental impurities, A proof stress of at least about 135 ksi, a tensile strength of at least about 145 ksi, an elongation at break of at least about 9%, 37HRC have the following hardness, and has a transition temperature to brittle from -60 ° C. of less than ductility, low carbon alloy steel. 管が継目なしの形状を有する、請求項19の低炭素合金鋼管。   20. The low carbon alloy steel pipe of claim 19, wherein the pipe has a seamless shape. 請求項19の低炭素合金鋼管を含んでなる、保存ガスの空気ポンプの圧力容器。   20. A preservative gas air pump pressure vessel comprising the low carbon alloy steel pipe of claim 19. 請求項19の低炭素合金鋼管を含んでなる、自動車のエアバッグの空気ポンプ。   An air pump for an automobile airbag comprising the low carbon alloy steel pipe of claim 19. 以下の工程:本質的に、重量で、約0.06%〜約0.18%の炭素、約0.5%〜約1.5%のマンガン、約0.1%〜約〜0.5%のケイ素、約0.015%までの硫黄、約0.025%までのリン、約0.50%までのニッケル、約0.1%〜約1.0%のクロム、約0.1%〜約1.0%のモリブデン、約0.01%〜約0.10%のバナジウム、約0.01%〜約0.10%のチタン、約0.05%〜約0.35%の銅、約0.010%〜約0.050%のアルミニウム、約0.05%までのニオブ、約0.15%までの残留元素並びに残余の鉄及び偶発的不純物よりなる鋼材料からある長さの管を製造し;鋼管を冷間引き抜き法にかけて所望のディメンションを得;毎秒少なくとも約100℃の加熱速度で、少なくともAc3の温度まで誘導タイプのオーステナイト化炉内で冷間引き抜き鋼管を加熱することによりオーステナイト化させ;加熱工程後に、毎秒少なくとも約100℃の冷却速度で、管がほぼ外界温度に到達するまで急冷液中で鋼管を急冷し;そして急冷工程後に、Ac1未満の温度で約2〜30分間鋼管を焼き戻す工程;を含んでなる、保存ガスの空気ポンプの圧力容器のための、ある長さの鋼管の製法。   The following steps: essentially from about 0.06% to about 0.18% carbon, from about 0.5% to about 1.5% manganese, from about 0.1% to about 0.5 by weight. % Silicon, up to about 0.015% sulfur, up to about 0.025% phosphorus, up to about 0.50% nickel, from about 0.1% to about 1.0% chromium, about 0.1% ~ About 1.0% molybdenum, about 0.01% to about 0.10% vanadium, about 0.01% to about 0.10% titanium, about 0.05% to about 0.35% copper. A length of steel material consisting of about 0.010% to about 0.050% aluminum, up to about 0.05% niobium, up to about 0.15% residual elements and residual iron and incidental impurities. Producing a tube; subjecting the steel tube to a cold drawing process to obtain the desired dimension; at a rate of at least Ac3 at a heating rate of at least about 100 ° C. per second Austenitized by heating a cold drawn steel tube in an induction type austenitizing furnace to a degree; in the quenching liquid after the heating step, at a cooling rate of at least about 100 ° C. per second until the tube reaches near ambient temperature A method of producing a length of steel pipe for a storage gas air pump pressure vessel comprising: quenching the steel pipe; and tempering the steel pipe after the quenching step at a temperature less than Ac1 for about 2 to 30 minutes. . 生成される鋼管が、本質的に、重量で、約0.07%〜約0.12%の炭素、約1.00%〜約1.40%のマンガン、約0.15%〜約〜0.35%のケイ素、約0.010%までの硫黄、約0.015%までのリン、約0.20%までのニッケル、約0.55%〜約0.80%のクロム、約0.30%〜約0.50%のモリブデン、約0.01%〜約0.07%のバナジウム、約0.01%〜約0.05%のチタン、約0.15%〜約0.30%の銅、約0.010%〜約0.050%のアルミニウム、約0.05%までのニオブ、約0.15%までの残留元素並びに残余の鉄及び偶発的不純物よりなる、請求項23の方法。   The resulting steel pipe is essentially about 0.07% to about 0.12% carbon, about 1.00% to about 1.40% manganese, about 0.15% to about 0 by weight. .35% silicon, up to about 0.010% sulfur, up to about 0.015% phosphorus, up to about 0.20% nickel, from about 0.55% to about 0.80% chromium, 30% to about 0.50% molybdenum, about 0.01% to about 0.07% vanadium, about 0.01% to about 0.05% titanium, about 0.15% to about 0.30% 24. of copper, about 0.010% to about 0.050% aluminum, up to about 0.05% niobium, up to about 0.15% residual elements and residual iron and incidental impurities. Method. 生成される鋼管が、本質的に、重量で、約0.08%〜約0.11%の炭素、約1.03%〜約1.18%のマンガン、約0.15%〜約〜0.35%のケイ素、約0.003%までの硫黄、約0.012%までのリン、約0.10%までのニッケル、約0.63%〜約0.73%のクロム、約0.40%〜約0.45%のモリブデン、約0.03%〜約0.05%のバナジウム、約0.025%〜約0.035%のチタン、約0.15%〜約0.30%の銅、約0.010%〜約0.050%のアルミニウム、約0.05%までのニオブ、約0.15%までの残留元素並びに残余の鉄及び偶発的不純物よりなる、請求項23の方法。   The resulting steel pipe is essentially about 0.08% to about 0.11% carbon, about 1.03% to about 1.18% manganese, about 0.15% to about 0 by weight. .35% silicon, up to about 0.003% sulfur, up to about 0.012% phosphorus, up to about 0.10% nickel, about 0.63% to about 0.73% chromium, about 0.03%. 40% to about 0.45% molybdenum, about 0.03% to about 0.05% vanadium, about 0.025% to about 0.035% titanium, about 0.15% to about 0.30% 24. of copper, about 0.010% to about 0.050% aluminum, up to about 0.05% niobium, up to about 0.15% residual elements and residual iron and incidental impurities. Method. 完成鋼管が少なくとも約125ksiの耐力を有する、請求項23の方法。   24. The method of claim 23, wherein the finished steel pipe has a proof stress of at least about 125 ksi. 完成鋼管が少なくとも約135ksiの耐力を有する、請求項23の方法。   24. The method of claim 23, wherein the finished steel pipe has a proof stress of at least about 135 ksi. 完成鋼管が少なくとも約145ksiの引っ張り強さを有する、請求項23の方法。   24. The method of claim 23, wherein the finished steel pipe has a tensile strength of at least about 145 ksi. 完成鋼管が少なくとも約9%の破断点伸びを有する、請求項23の方法。   24. The method of claim 23, wherein the finished steel tube has an elongation at break of at least about 9%. 完成鋼管が約40HRC以下の硬度を有する、請求項23の方法。   24. The method of claim 23, wherein the finished steel pipe has a hardness of about 40 HRC or less. 完成鋼管が約37HRC以下の硬度を有する、請求項23の方法。   24. The method of claim 23, wherein the finished steel pipe has a hardness of about 37 HRC or less. 完成硬度が−60℃未満の延性から脆性への転移温度を有する、請求項23の方法。   24. The method of claim 23, wherein the finished hardness has a ductile to brittle transition temperature of less than -60C. オーステナイト化の加熱工程において、鋼管が約920〜1050℃の間の温度に加熱される、請求項23の方法。   24. The method of claim 23, wherein in the austenitizing heating step, the steel pipe is heated to a temperature between about 920-1050 <0> C. オーステナイト化の加熱工程において、鋼管が毎秒少なくとも約200℃の速度で加熱される、請求項33の方法。   34. The method of claim 33, wherein in the austenitizing heating step, the steel pipe is heated at a rate of at least about 200 ° C per second. 急冷工程において鋼管が毎秒少なくとも約200℃の速度で冷却される、請求項23の方法。   24. The method of claim 23, wherein the steel pipe is cooled at a rate of at least about 200 ° C. per second in the quenching step. 焼き戻し工程において鋼管が約400〜600℃の間の温度で焼き戻される、請求項23の方法。   24. The method of claim 23, wherein the steel pipe is tempered at a temperature between about 400-600 [deg.] C. in the tempering step. 焼き戻し工程において、鋼管が約4〜20分間焼き戻される、請求項36の方法。   38. The method of claim 36, wherein in the tempering step, the steel pipe is tempered for about 4 to 20 minutes. 焼き戻された鋼管が酸洗いされ(pickled)、リン酸化され、そして油処理される仕上げ工程を更に含んでなる、請求項23の方法。   24. The method of claim 23, further comprising a finishing step in which the tempered steel pipe is pickled, phosphorylated and oiled. 以下の工程:本質的に、重量で、約0.08%〜約0.11%の炭素、約1.03%〜約1.18%のマンガン、約0.15%〜約〜0.35%のケイ素、約0.003%までの硫黄、約0.012%までのリン、約0.10%までのニッケル、約0.63%〜約0.73%のクロム、約0.40%〜約0.45%のモリブデン、約0.03%〜約0.05%のバナジウム、約0.025%〜約0.035%のチタン、約0.15%〜約0.30%の銅、約0.010%〜約0.050%のアルミニウム、約0.05%までのニオブ、約0.15%までの残留元素並びに残余の鉄及び偶発的不純物よりなる鋼材料からある長さの管を製造し;鋼管を冷間引き抜き法にかけて、所望のディメンションを得;毎秒少くとも約200℃の加熱速度で、約920〜1050℃間の温度に、誘導タイプのオーステナイト化炉内で冷間引き抜き鋼管を加熱することによりオーステナイト化させ;加熱工程後に、毎秒少なくとも約200℃の冷却速度で管がほぼ外界温度に到達するまで水基剤の急冷溶液中で鋼管を急冷し;そして急冷工程後に、鋼管を約450〜550℃の間の温度で約4〜20分間焼き戻す工程、焼き戻した鋼管を酸洗いし、リン酸化し、そして油で処理する仕上げ工程を含んでなり、そこで完成鋼管が少なくとも約135ksiの耐力、少なくとも約145ksiの引っ張り強さ、少なくとも9%の破断点伸び、約37HRC以下の硬度、−60℃未満の延性から脆性への転移温度及び良好な表面外観を有する、保存ガスの空気ポンプの圧力容器のためのある長さの鋼管を製造する方法。   The following steps: essentially from about 0.08% to about 0.11% carbon, from about 1.03% to about 1.18% manganese, from about 0.15% to about 0.35 by weight. % Silicon, up to about 0.003% sulfur, up to about 0.012% phosphorus, up to about 0.10% nickel, from about 0.63% to about 0.73% chromium, about 0.40% About 0.45% molybdenum, about 0.03% to about 0.05% vanadium, about 0.025% to about 0.035% titanium, about 0.15% to about 0.30% copper. A length of steel material consisting of about 0.010% to about 0.050% aluminum, up to about 0.05% niobium, up to about 0.15% residual elements and residual iron and incidental impurities. Manufacture the tube; subject the steel tube to cold drawing to obtain the desired dimension; at a heating rate of at least about 200 ° C. per second Austenitizing by heating a cold drawn steel tube in an induction type austenitizing furnace to a temperature between about 920-1050 ° C; after the heating step, the tube is brought to near ambient temperature at a cooling rate of at least about 200 ° C per second. Quenching the steel pipe in a water base quench solution until it reaches; and after the quenching step, tempering the steel pipe at a temperature between about 450-550 ° C. for about 4-20 minutes, pickling the tempered steel pipe A finished steel pipe, wherein the finished steel tube has a yield strength of at least about 135 ksi, a tensile strength of at least about 145 ksi, an elongation at break of at least 9%, a hardness of about 37 HRC or less, − Produced a length of steel pipe for preserving gas air pump pressure vessel with transition temperature from ductility to brittleness below 60 ° C and good surface appearance How to. 以下の工程:本質的に、重量で、約0.06%〜約0.18%の炭素、約0.3%〜約1.5%のマンガン、約0.05%〜約〜0.5%のケイ素、約0.015%までの硫黄、約0.025%までのリン並びに少なくとも1種の次の元素:約0.30%までのバナジウム、約0.10%までのアルミニウム、約0.06%までのニオブ、約1%までのクロム、約0.70%までのニッケル、約0.70%までのモリブデン、約0.35%までの銅、約0.15%までの残留元素並びに残余の鉄及び偶発的不純物よりなる鋼材料から、ある長さの管を製造し;鋼管を冷間引き抜き法にかけて、所望のディメンションを得;冷間引き抜き鋼管を、毎秒少なくとも約100℃の加熱速度で、少なくともAc3の温度に、誘導タイプのオーステナイト化炉内で加熱することによりオーステナイト化させ;加熱工程後に、鋼管を、毎秒少なくとも約100℃の冷却速度で、管がほぼ外界温度に到達するまで急冷液中で急冷する工程を含んでなり、ここで鋼管が少なくとも約145ksiの引っ張り強さを有し、そして−60℃未満の延性から脆性への転移温度を有する、保存ガスの空気ポンプの圧力容器のための、ある長さの鋼管を製造する方法。   The following steps: essentially from about 0.06% to about 0.18% carbon, from about 0.3% to about 1.5% manganese, from about 0.05% to about 0.5 by weight. % Silicon, up to about 0.015% sulfur, up to about 0.025% phosphorus and at least one of the following elements: up to about 0.30% vanadium, up to about 0.10% aluminum, about 0 0.06% niobium, up to about 1% chromium, up to about 0.70% nickel, up to about 0.70% molybdenum, up to about 0.35% copper, up to about 0.15% residual elements And producing a length of tubing from the steel material consisting of the remaining iron and incidental impurities; subjecting the steel pipe to a cold drawing process to obtain the desired dimension; heating the cold drawn steel pipe to at least about 100 ° C. per second Induction type austenite at a temperature of at least Ac3 Austenitizing by heating in a calcination furnace; comprising, after the heating step, quenching the steel tube in a quenching liquid at a cooling rate of at least about 100 ° C. per second until the tube reaches approximately ambient temperature; Producing a length of steel pipe for a storage gas air pump pressure vessel where the steel pipe has a tensile strength of at least about 145 ksi and a transition temperature from ductility to brittleness of less than −60 ° C. how to. 生成される鋼管が本質的に、重量で、約0.07%〜約0.12%の炭素、約0.60%〜約1.40%のマンガン、約0.05%〜約〜0.40%のケイ素、約0.010%までの硫黄、約0.02%までのリン並びに少なくとも1種の次の元素:約0.20%までのバナジウム、約0.07%までのアルミニウム、約0.04%までのニオブ、約0.8%までのクロム、約0.50%までのニッケル、約0.50%までのモリブデン、約0.35%までの銅、約0.15%までの残留元素並びに残余の鉄及び偶発的不純物よりなり、そこで鋼管が少なくとも約160ksiの引っ張り強さを有し、そして−60℃未満の延性から脆性への転移温度を有する、請求項40の方法。   The resulting steel tube is essentially about 0.07% to about 0.12% carbon, about 0.60% to about 1.40% manganese, about 0.05% to about. 40% silicon, up to about 0.010% sulfur, up to about 0.02% phosphorus and at least one of the following elements: up to about 0.20% vanadium, up to about 0.07% aluminum, about Up to 0.04% niobium, up to about 0.8% chromium, up to about 0.50% nickel, up to about 0.50% molybdenum, up to about 0.35% copper, up to about 0.15% 41. The method of claim 40, wherein the steel tube has a tensile strength of at least about 160 ksi and a ductile to brittle transition temperature of less than -60 ° C. 鋼管が約0.52%未満の炭素当量を有し、その炭素当量が式:
Ceq=%C+%Mn/6+(%Cr+%Mo+%V)/5+(%Ni+%Cu)/15:
に従って決定される、請求項40の方法。
The steel pipe has a carbon equivalent of less than about 0.52%, and the carbon equivalent is represented by the formula:
Ceq =% C +% Mn / 6 + (% Cr +% Mo +% V) / 5 + (% Ni +% Cu) / 15:
41. The method of claim 40, determined according to:
鋼管が約0.48%未満の炭素当量を有し、その炭素当量が式:
Ceq=%C+%Mn/6+(%Cr+%Mo+%V)/5+(%Ni+%Cu)/15:
に従って決定される、請求項41の方法。
The steel pipe has a carbon equivalent of less than about 0.48%, and the carbon equivalent is represented by the formula:
Ceq =% C +% Mn / 6 + (% Cr +% Mo +% V) / 5 + (% Ni +% Cu) / 15:
42. The method of claim 41, determined according to:
完成鋼管が少なくとも約9%の破断点伸びを有する、請求項40の方法。   41. The method of claim 40, wherein the finished steel pipe has an elongation at break of at least about 9%. オーステナイト化加熱工程において、鋼管が約860〜1050℃の間の温度に加熱される、請求項40の方法。   41. The method of claim 40, wherein in the austenitizing heating step, the steel pipe is heated to a temperature between about 860-1050 <0> C. オーステナイト化加熱工程において、鋼管が毎秒少なくとも約200℃の速度で加熱される、請求項40の方法。   41. The method of claim 40, wherein in the austenitizing heating step, the steel pipe is heated at a rate of at least about 200 ° C per second. 急冷工程において、鋼管が毎秒少なくとも約200℃の速度で冷却される、請求項40の方法。   41. The method of claim 40, wherein in the quenching step, the steel pipe is cooled at a rate of at least about 200 ° C per second. 以下の工程:本質的に、重量で、約0.07%〜約0.12%の炭素、約0.60%〜約1.40%のマンガン、約0.05%〜約〜0.40%のケイ素、約0.010%までの硫黄、約0.02%までのリン、最大0.20%のバナジウム、約0.07%までのアルミニウム、約0.04%までのニオブ、約0.8%までのクロム、約0.50%までのニッケル、約0.50%までのモリブデン、約0.35%までの銅、約0.15%までの残留元素並びに残余の鉄及び偶発的不純物よりなる鋼材料から、ある長さの管を生成し;鋼管を冷間引き抜き法にかけて、所望のディメンションを得;冷間引き抜き鋼管を、毎秒少なくとも約200℃の加熱速度で、約860〜1050℃の間の温度に、誘導タイプのオーステナイト化炉内で加熱することによりオーステナイト化させ;加熱工程後に、鋼管を、毎秒少なくとも約200℃の冷却速度で水基剤の急冷溶液中で急冷する工程を含んでなり、そこで完成鋼管が少なくとも約160ksiの引っ張り強さ、少なくとも約9%の破断点伸び及び−60℃未満、そして好ましくは100℃未満の延性から脆性への転移温度を有する、保存ガスの空気ポンプの圧力容器のための、ある長さの鋼管を製造する方法。   The following steps: essentially from about 0.07% to about 0.12% carbon, from about 0.60% to about 1.40% manganese, from about 0.05% to about 0.40 by weight. % Silicon, up to about 0.010% sulfur, up to about 0.02% phosphorus, up to 0.20% vanadium, up to about 0.07% aluminum, up to about 0.04% niobium, about 0 Up to .8% chromium, up to about 0.50% nickel, up to about 0.50% molybdenum, up to about 0.35% copper, up to about 0.15% residual elements and residual iron and incidental A length of tubing is produced from the steel material consisting of impurities; the steel pipe is subjected to a cold drawing process to obtain the desired dimension; the cold drawn steel pipe is about 860-1050 at a heating rate of at least about 200 ° C. per second. Heat in an induction type austenitizing furnace to a temperature between Austenitizing; comprising, after the heating step, quenching the steel pipe in a water based quench solution at a cooling rate of at least about 200 ° C. per second, wherein the finished steel pipe has a tensile strength of at least about 160 ksi; Produces a length of steel pipe for a storage gas air pump pressure vessel having an elongation at break of at least about 9% and a ductile to brittle transition temperature of less than −60 ° C., and preferably less than 100 ° C. how to.
JP2009503677A 2006-04-03 2007-04-02 Low carbon alloy steel pipe with ultra-high strength and excellent toughness at low temperature and its production method Pending JP2009532584A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/395,322 US20060169368A1 (en) 2004-10-05 2006-04-03 Low carbon alloy steel tube having ultra high strength and excellent toughness at low temperature and method of manufacturing the same
PCT/IB2007/000850 WO2007113642A2 (en) 2006-04-03 2007-04-02 Low carbon alloy steel tube having ultra high strength and excellent toughness at low temperature and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2009532584A true JP2009532584A (en) 2009-09-10

Family

ID=38564023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009503677A Pending JP2009532584A (en) 2006-04-03 2007-04-02 Low carbon alloy steel pipe with ultra-high strength and excellent toughness at low temperature and its production method

Country Status (10)

Country Link
US (2) US20060169368A1 (en)
EP (1) EP2007914B1 (en)
JP (1) JP2009532584A (en)
KR (1) KR20090013769A (en)
CN (1) CN101448966A (en)
AR (1) AR060286A1 (en)
BR (1) BRPI0709458B1 (en)
CA (1) CA2650452A1 (en)
MX (1) MX2008012810A (en)
WO (1) WO2007113642A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9014280B2 (en) 2006-10-13 2015-04-21 Qualcomm Incorporated Video coding with adaptive filtering for motion compensated prediction
WO2016063513A1 (en) * 2014-10-23 2016-04-28 Jfeスチール株式会社 High-strength welded steel pipe for airbag inflator, and method for manufacturing same
JP2017524816A (en) * 2014-06-25 2017-08-31 宝山鋼鉄股▲分▼有限公司 High strength and toughness seamless steel pipe for car airbag and its manufacturing method
JP2018518599A (en) * 2015-05-21 2018-07-12 エーケー スティール プロパティ−ズ、インク. High manganese 3rd generation advanced high strength steel
JP2019112705A (en) * 2017-12-26 2019-07-11 日本製鉄株式会社 Seamless steel tube and manufacturing method of seamless steel tube

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2295777B1 (en) * 2003-03-31 2016-12-07 Hitachi Metals, Ltd. Internal engine piston and its production method
CN100545291C (en) 2003-04-25 2009-09-30 墨西哥钢管股份有限公司 Weldless steel tube and the method that obtains described steel pipe as conduit
KR101340165B1 (en) * 2006-06-29 2013-12-10 테나리스 커넥션즈 아.게. Seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders and process for obtaining the same
MX2007004600A (en) * 2007-04-17 2008-12-01 Tubos De Acero De Mexico S A Seamless steel pipe for use as vertical work-over sections.
US7862667B2 (en) 2007-07-06 2011-01-04 Tenaris Connections Limited Steels for sour service environments
WO2009065432A1 (en) * 2007-11-19 2009-05-28 Tenaris Connections Ag High strength bainitic steel for octg applications
AT507596B1 (en) 2008-11-20 2011-04-15 Voestalpine Tubulars Gmbh & Co Kg METHOD AND DEVICE FOR PRODUCING STEEL TUBES WITH SPECIAL CHARACTERISTICS
MX2009012811A (en) * 2008-11-25 2010-05-26 Maverick Tube Llc Compact strip or thin slab processing of boron/titanium steels.
JP4770922B2 (en) * 2008-12-08 2011-09-14 住友金属工業株式会社 Steel pipe for airbag and manufacturing method thereof
TWI381057B (en) * 2009-03-20 2013-01-01 China Steel Corp Steel material suitable for preparing airbag device for airbag and its application
CN101693941B (en) * 2009-08-13 2011-06-08 巨力索具股份有限公司 Method for quenching medium and low carbon alloy structural steel workpieces
EP2325435B2 (en) 2009-11-24 2020-09-30 Tenaris Connections B.V. Threaded joint sealed to [ultra high] internal and external pressures
CN101792885B (en) * 2010-03-30 2011-08-03 莱芜钢铁集团有限公司 Hot-rolled round steel for high carbon manganese and chrome grinding ball and method for producing same
MX2012013939A (en) * 2010-06-03 2013-05-06 Nippon Steel & Sumitomo Metal Corp Process for producing steel pipe for air bag.
CN102741438B (en) * 2010-06-03 2014-11-05 新日铁住金株式会社 Steel pipe for air bag and process for producing same
CN101988170B (en) * 2010-12-06 2012-03-28 周建安 Method for microalloying vanadium and nitrogen in molten iron
US9163296B2 (en) 2011-01-25 2015-10-20 Tenaris Coiled Tubes, Llc Coiled tube with varying mechanical properties for superior performance and methods to produce the same by a continuous heat treatment
IT1403688B1 (en) 2011-02-07 2013-10-31 Dalmine Spa STEEL TUBES WITH THICK WALLS WITH EXCELLENT LOW TEMPERATURE HARDNESS AND RESISTANCE TO CORROSION UNDER TENSIONING FROM SULFUR.
IT1403689B1 (en) 2011-02-07 2013-10-31 Dalmine Spa HIGH-RESISTANCE STEEL TUBES WITH EXCELLENT LOW TEMPERATURE HARDNESS AND RESISTANCE TO CORROSION UNDER VOLTAGE SENSORS.
US8414715B2 (en) 2011-02-18 2013-04-09 Siderca S.A.I.C. Method of making ultra high strength steel having good toughness
US8636856B2 (en) 2011-02-18 2014-01-28 Siderca S.A.I.C. High strength steel having good toughness
DE102011108162B4 (en) * 2011-07-20 2013-02-21 Salzgitter Flachstahl Gmbh Process for producing a component by hot forming a precursor of steel
FI20115832L (en) * 2011-08-26 2013-02-27 Rautaruukki Oyj Method for manufacturing a steel product with excellent mechanical properties, steel product manufactured with the method and use of strain-hardened steel
US9340847B2 (en) 2012-04-10 2016-05-17 Tenaris Connections Limited Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same
CN102605283B (en) * 2012-04-18 2013-12-25 江苏省沙钢钢铁研究院有限公司 Low-cost high-toughness low-temperature pressure vessel steel and manufacturing method thereof
US9365944B2 (en) * 2012-05-18 2016-06-14 Tube-Mac Piping Technologies Ltd. Method of making hydralic tubing
CA2897451C (en) 2013-01-11 2019-10-01 Tenaris Connections Limited Galling resistant drill pipe tool joint and corresponding drill pipe
US9187811B2 (en) 2013-03-11 2015-11-17 Tenaris Connections Limited Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
EP2789701A1 (en) 2013-04-08 2014-10-15 DALMINE S.p.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
EP2789700A1 (en) 2013-04-08 2014-10-15 DALMINE S.p.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
KR101505286B1 (en) * 2013-05-30 2015-03-24 현대제철 주식회사 Method of manufacturing seamless product
US11105501B2 (en) 2013-06-25 2021-08-31 Tenaris Connections B.V. High-chromium heat-resistant steel
CN103320711B (en) * 2013-06-26 2016-01-20 衡阳华菱钢管有限公司 Weldless steel tube and manufacture method thereof
US9776592B2 (en) * 2013-08-22 2017-10-03 Autoliv Asp, Inc. Double swage airbag inflator vessel and methods for manufacture thereof
KR101639327B1 (en) * 2014-12-16 2016-07-13 주식회사 세아베스틸 Steel for inflator tube of air bag having good impact value in low temperature
KR101657827B1 (en) * 2014-12-24 2016-09-20 주식회사 포스코 Steel having excellent in resistibility of brittle crack arrestbility and manufacturing method thereof
CN106282831B (en) * 2015-05-25 2018-11-06 宝钢湛江钢铁有限公司 A kind of high-strength container weather resisting steel and its manufacturing method
GB2548175B (en) * 2016-03-09 2018-10-03 Goodwin Plc A steel, a welding consumable and a cast steel product
JP2018024915A (en) * 2016-08-10 2018-02-15 豊田合成株式会社 Gas housing container for inflator and manufacturing method therefor
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
US10434554B2 (en) 2017-01-17 2019-10-08 Forum Us, Inc. Method of manufacturing a coiled tubing string
CN107236909B (en) * 2017-06-16 2019-06-18 武汉钢铁有限公司 It can be used for the high intensity, high tenacity corrosion resistant steel and its production method of -60 DEG C of low temperature environments
CN110295313B (en) 2018-03-21 2021-09-17 宝山钢铁股份有限公司 Low-temperature-resistant high-strength high-toughness oil casing pipe and manufacturing method thereof
CN110205558A (en) * 2019-06-05 2019-09-06 盐城市联鑫钢铁有限公司 A kind of HRB400 steel alloy and its smelting process method containing Nb, V
CN110257722A (en) * 2019-07-25 2019-09-20 南京钢铁股份有限公司 High-intensitive S420NL-Z35 low-temperature flexibility steel plate and manufacturing method
AR122713A1 (en) 2020-06-23 2022-09-28 Tenaris Connections Bv METHOD FOR MANUFACTURING A HIGH-STRENGTH STEEL PIPE FROM A COMPOSITION OF STEEL AND ITS COMPONENTS
DE102020133765A1 (en) 2020-12-16 2022-06-23 Benteler Steel/Tube Gmbh High strength steel pipe and method of making high strength steel pipe
CN116891971A (en) * 2022-10-18 2023-10-17 广西柳钢中金不锈钢有限公司 Method for manufacturing nickel-chromium-manganese-containing steel for carbon structure
CN115976409A (en) * 2022-12-15 2023-04-18 攀钢集团攀枝花钢铁研究院有限公司 Low-cost hollow anchor rod welded pipe, hot-rolled steel strip and preparation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194501A (en) * 2000-12-27 2002-07-10 Sumitomo Metal Ind Ltd High strength, highly tough steel tube for air bag application and production method of the same
WO2002079526A1 (en) * 2001-03-29 2002-10-10 Sumitomo Metal Industries, Ltd. High strength steel tube for air bag and method for production thereof
WO2004104255A1 (en) * 2003-05-21 2004-12-02 Sumitomo Metal Industries, Ltd. Tube d'acier pour systeme de coussin de securite gonflable et procede de production associe

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3645725A (en) * 1969-05-02 1972-02-29 Armco Steel Corp Austenitic steel combining strength and resistance to intergranular corrosion
JPS61130462A (en) * 1984-11-28 1986-06-18 Tech Res & Dev Inst Of Japan Def Agency High-touchness extra high tension steel having superior stress corrosion cracking resistance as well as yield stress of 110kgf/mm2 and above
DE3666461D1 (en) * 1985-06-10 1989-11-23 Hoesch Ag Method and use of a steel for manufacturing steel pipes with a high resistance to acid gases
JPH01275739A (en) * 1988-04-28 1989-11-06 Sumitomo Metal Ind Ltd Low si high strength and heat-resistant steel tube having excellent ductility and toughness
JPH0772299B2 (en) * 1990-06-19 1995-08-02 住友金属工業株式会社 Manufacturing method of high yield steel plate with low yield ratio
US5348344A (en) * 1991-09-18 1994-09-20 Trw Vehicle Safety Systems Inc. Apparatus for inflating a vehicle occupant restraint using a mixture of gases
US5454883A (en) * 1993-02-02 1995-10-03 Nippon Steel Corporation High toughness low yield ratio, high fatigue strength steel plate and process of producing same
US5388322A (en) * 1993-05-28 1995-02-14 Simon; Joseph A. Method of making a shatterproof air bag inflator pressure vessel
IT1271310B (en) * 1994-12-21 1997-05-27 Snam Progetti PROCEDURE FOR OBTAINING DISTINCT CURRENTS OF METHANOL AND ETHANOL, OF N-PROPANOL, OF ISOBUTANOL, USABLE IN THE SYNTHESIS OF HIGH-OCTANIC PRODUCTS, FROM MIXTURES CONTAINING ALCOHOLS WITH WATER AND OTHER LOW BOILING AND HIGH BOILING COMPOUNDS
US6056833A (en) * 1997-07-23 2000-05-02 Usx Corporation Thermomechanically controlled processed high strength weathering steel with low yield/tensile ratio
US6159312A (en) * 1997-12-19 2000-12-12 Exxonmobil Upstream Research Company Ultra-high strength triple phase steels with excellent cryogenic temperature toughness
JP3519966B2 (en) * 1999-01-07 2004-04-19 新日本製鐵株式会社 Ultra-high-strength linepipe excellent in low-temperature toughness and its manufacturing method
US6187117B1 (en) * 1999-01-20 2001-02-13 Bethlehem Steel Corporation Method of making an as-rolled multi-purpose weathering steel plate and product therefrom
DE10022463B4 (en) * 1999-05-12 2005-07-14 Trw Inc., Lyndhurst A method of manufacturing a container of an inflator of a vehicle occupant protection device
US6173495B1 (en) * 1999-05-12 2001-01-16 Trw Inc. High strength low carbon air bag quality seamless tubing
US7481897B2 (en) * 2000-09-01 2009-01-27 Trw Automotive U.S. Llc Method of producing a cold temperature high toughness structural steel
US6386583B1 (en) * 2000-09-01 2002-05-14 Trw Inc. Low-carbon high-strength steel
US20020033591A1 (en) * 2000-09-01 2002-03-21 Trw Inc. Method of producing a cold temperature high toughness structural steel tubing
US20060070687A1 (en) * 2002-06-26 2006-04-06 Jfe Steel Corporation, A Corporation Of Japan Method for producing seamless steel pipe for inflator of air bag
CN100545291C (en) * 2003-04-25 2009-09-30 墨西哥钢管股份有限公司 Weldless steel tube and the method that obtains described steel pipe as conduit
US7278190B2 (en) * 2003-07-03 2007-10-09 Newfrey Llc Two component fuel and brake line clip
US20050076975A1 (en) * 2003-10-10 2005-04-14 Tenaris Connections A.G. Low carbon alloy steel tube having ultra high strength and excellent toughness at low temperature and method of manufacturing the same
US20050087269A1 (en) * 2003-10-22 2005-04-28 Merwin Matthew J. Method for producing line pipe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194501A (en) * 2000-12-27 2002-07-10 Sumitomo Metal Ind Ltd High strength, highly tough steel tube for air bag application and production method of the same
WO2002079526A1 (en) * 2001-03-29 2002-10-10 Sumitomo Metal Industries, Ltd. High strength steel tube for air bag and method for production thereof
WO2004104255A1 (en) * 2003-05-21 2004-12-02 Sumitomo Metal Industries, Ltd. Tube d'acier pour systeme de coussin de securite gonflable et procede de production associe

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9014280B2 (en) 2006-10-13 2015-04-21 Qualcomm Incorporated Video coding with adaptive filtering for motion compensated prediction
JP2017524816A (en) * 2014-06-25 2017-08-31 宝山鋼鉄股▲分▼有限公司 High strength and toughness seamless steel pipe for car airbag and its manufacturing method
US10494690B2 (en) 2014-06-25 2019-12-03 Boashan Iron & Steel Co., Ltd. High-toughness seamless steel tube for automobile safety airbag and manufacturing method therefor
WO2016063513A1 (en) * 2014-10-23 2016-04-28 Jfeスチール株式会社 High-strength welded steel pipe for airbag inflator, and method for manufacturing same
JP5979334B1 (en) * 2014-10-23 2016-08-24 Jfeスチール株式会社 High strength welded steel pipe for airbag inflator and method for manufacturing the same
US10301703B2 (en) 2014-10-23 2019-05-28 Jfe Steel Corporation High-strength welded steel pipe for airbag inflator and method for manufacturing the same
JP2018518599A (en) * 2015-05-21 2018-07-12 エーケー スティール プロパティ−ズ、インク. High manganese 3rd generation advanced high strength steel
US11136656B2 (en) 2015-05-21 2021-10-05 Cleveland-Cliffs Steel Properties Inc. High manganese 3rd generation advanced high strength steels
JP7053267B2 (en) 2015-05-21 2022-04-12 クリーブランド-クリフス スティール プロパティーズ、インク. High manganese 3rd generation advanced high-strength steel
JP2019112705A (en) * 2017-12-26 2019-07-11 日本製鉄株式会社 Seamless steel tube and manufacturing method of seamless steel tube

Also Published As

Publication number Publication date
CA2650452A1 (en) 2007-10-11
US20090101242A1 (en) 2009-04-23
WO2007113642A3 (en) 2008-01-31
BRPI0709458A2 (en) 2011-07-12
MX2008012810A (en) 2009-03-16
EP2007914B1 (en) 2017-10-04
AR060286A1 (en) 2008-06-04
BRPI0709458B1 (en) 2014-09-09
US20060169368A1 (en) 2006-08-03
WO2007113642A2 (en) 2007-10-11
KR20090013769A (en) 2009-02-05
CN101448966A (en) 2009-06-03
EP2007914A2 (en) 2008-12-31

Similar Documents

Publication Publication Date Title
EP2007914B1 (en) Low carbon alloy steel tube having ultra high strength and excellent toughness at low temperature and method of manufacturing the same
CA2540000C (en) Low carbon alloy steel tube having ultra high strength and excellent toughness at low temperature and method of manufacturing the same
JP2007508452A6 (en) Low carbon alloy steel pipe with ultra high strength and excellent toughness at low temperature and its manufacturing method
EP2492361B1 (en) High strength steel pipe with excellent toughness at low temperature and good sulfide stress corrosion cracking resistance
AU2012200698B2 (en) Heavy wall steel pipes with excellent toughness at low temperature and sulfide stress corrosion cracking resistance
EP2857537B1 (en) Hollow stabilizer, and steel pipe for hollow stabilizers and method for production thereof
JP5979334B1 (en) High strength welded steel pipe for airbag inflator and method for manufacturing the same
JP5142141B2 (en) Hot-rolled steel sheets for hydroforming, steel pipes for hydroforming, and methods for producing them
WO2002079526A1 (en) High strength steel tube for air bag and method for production thereof
CN100460527C (en) Low carbon alloy steel tube having ultra high strength and excellent toughness at low temperature and method of manufacturing the same
JP3318467B2 (en) Manufacturing method of high strength and high toughness steel pipe with excellent workability
JP2023531248A (en) Method for producing high-strength steel pipe from steel composition and components made therefrom
JP2009203492A (en) High-tensile welded steel pipe for automobile structural member, and method for producing the same
JP3622499B2 (en) Steel pipe manufacturing method
JP2004076034A (en) Method for producing high strength, high toughness and high workability seamless steel pipe for air bag
JP4079054B2 (en) High strength and high toughness welded steel pipe for airbag bottle and method for producing the same
WO2014024234A1 (en) Steel plate for high strength steel pipe and high strength steel pipe
JP3960145B2 (en) Manufacturing method of high strength, high toughness, high workability seamless steel pipe for airbag
MXPA06003933A (en) Low carbon alloy steel tube having ultra high strength and excellent toughnes at low temperature and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130423