JP2004027303A - High strength, high toughness, high workability seamless steel tube for air bag and method of producing the same - Google Patents

High strength, high toughness, high workability seamless steel tube for air bag and method of producing the same Download PDF

Info

Publication number
JP2004027303A
JP2004027303A JP2002186550A JP2002186550A JP2004027303A JP 2004027303 A JP2004027303 A JP 2004027303A JP 2002186550 A JP2002186550 A JP 2002186550A JP 2002186550 A JP2002186550 A JP 2002186550A JP 2004027303 A JP2004027303 A JP 2004027303A
Authority
JP
Japan
Prior art keywords
less
steel pipe
seamless steel
strength
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002186550A
Other languages
Japanese (ja)
Other versions
JP3960145B2 (en
Inventor
Yukio Miyata
宮田 由紀夫
Kozo Takojima
蛸島 幸三
Takao Kawate
河手 崇男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002186550A priority Critical patent/JP3960145B2/en
Priority to US10/514,765 priority patent/US20060070687A1/en
Priority to EP03733377A priority patent/EP1516935A4/en
Priority to CA002476546A priority patent/CA2476546A1/en
Priority to MXPA04010403A priority patent/MXPA04010403A/en
Priority to PCT/JP2003/007435 priority patent/WO2004003241A1/en
Publication of JP2004027303A publication Critical patent/JP2004027303A/en
Application granted granted Critical
Publication of JP3960145B2 publication Critical patent/JP3960145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing a high strength, high toughness, high workability seamless steel tube for an air bag. <P>SOLUTION: A steel tube stock having a composition comprising 0.01 to 0.10% C, ≤0.5% Si, 0.10 to 2.00% Mn, >1.0 to 2.0% Cr and ≤0.5% Mo is made into a seamless steel tube. Thereafter, the seamless steel tube is subjected to quenching tempering treatment so as to be heated to a temperature in the range of an Ac<SB>3</SB>transformation point to 1050°C, be quenched, and be tempered at a temperature in the range of 450°C to an Ac<SB>1</SB>transformation point. The seamless steel tube is subsequently subjected to cold drawing into a steel tube having prescribed dimensions. The steel tube can comprise one or more kinds of metals selected from ≤1.0% Cu, ≤1.0% Ni,≤0.10% Nb, ≤0.10% V, ≤0.10% Ti and ≤0.005% B as well. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、高強度継目無鋼管に係り、とくにエアバッグ用として好適な、靭性、加工性に優れた高強度継目無鋼管に関する。
【0002】
【従来の技術】
近年、自動車の衝突安全性の向上が熱望され、とくに衝突時に乗員を保護する安全装置の導入が積極的に進められている。なかでも、衝突時、乗員と、ハンドルやインストルメントパネルとの間に展開し、乗員の運動エネルギーを吸収して乗員の損傷低減を図るエアバッグの搭載が、 一般化しつつある。とくに、ハンドル内に装填される運転席用エアバッグや、インストルメントパネル内に装填される助手席用エアバッグは標準装備化されつつある。さらに、最近では、これらに加え、側面衝突時に乗員を保護するため、座席にサイドエアバッグ、あるいはサイドウインドウを覆うカーテン式エアバッグなどを搭載する自動車が多くなっている。
【0003】
従来から、エアバッグには、火薬を使用してガスを発生させる方式が多く採用されてきた。しかし、 最近では、リサイクル性や環境への配慮から、火薬の使用に替えて、アルゴンなどの不活性ガスをインフレータに高圧で充填する方式が採用されるようになっている。この方式では、不活性ガスをインフレータ内に常時高圧に保つ必要があることから、インフレータには、十分な強度を有することが望まれている。
【0004】
一般に、エアバッグ用インフレータは鋼管を加工して製造されている。不活性ガスを充填する方式のエアバッグでは、不活性ガスはインフレータ内に高圧で充填されるため、シームの信頼性の観点から、インフレータ用鋼管としては、もっぱら継目無鋼管が使用される。通常、継目無鋼管に冷間引抜き加工を施し所定寸法とし、所定の長さに切断したのち、両管端をプレス加工などにより加工し封板を溶接して、製品(インフレータ)とされる。
【0005】
このようなことから、インフレータ用鋼管として、十分な強度と靭性を有し、加工性に優れ、さらに溶接性にも優れた継目無鋼管が要望されている。
このような要望に対し、例えば、特開平10−140283号公報には、C:0.01〜0.20%、Si:0.50%以下、Mn:0.30〜2.00%、P:0.020 %以下、S:0.020 %以下、Al:0.10%以下を含み、あるいはさらにMo:0.50%以下、V:0.10%以下、Ni:0.50%以下、Cr:1.00%以下、Cu:0.50%以下、Ti:0.10%以下、Nb:0.10%以下、B:0.005 %以下のうち1種以上を含有し、残部Feおよび不可避的不純物からなる鋼を製管後、冷間加工を施したまま、もしくは冷間加工後、 焼なまし、 焼ならし、または焼入れ焼戻し処理する高強度高靭性エアーバッグ用鋼管の製造方法が提案されている。
【0006】
また、特開平10−140249 号公報には、特開平10−140283号公報に記載された組成と同様の組成の鋼を製管後、850 〜1000℃で焼ならしたのち、所定の寸法に冷間加工を施したまま、もしくは応力除去焼鈍、焼ならし、または焼入れ焼戻し処理を施す高強度高靭性エアーバッグ用鋼管の製造方法が提案されている。
また、特開平10−140250 号公報には、特開平10−140283号公報に記載された組成と同様の組成の鋼を製管後、850 〜1000℃での焼入れ、あるいはさらに450 ℃以上Ac1 変態点未満での焼戻しを行なったのち、所定の寸法に冷間加工を施したまま、もしくは冷間加工後焼なまし処理を施す高強度高靭性エアーバッグ用鋼管の製造方法が提案されている。
【0007】
特開平10−140283号公報、特開平10−140249 号公報、特開平10−140250 号公報に記載された技術によれば、高寸法精度で加工性と溶接性に優れ、かつ引張強さ:590 N/mm2 以上の高強度高靭性のエアバッグ用鋼管が製造できるとしている。
【0008】
【発明が解決しようとする課題】
最近では、エアバッグシステムに対する小型化、軽量化が要求されるようになっており、エアバッグのインフレータ用の継目無鋼管として、更なる高強度化が要求されている。とくに、カーテン式エアバッグでは、エアバッグが前後のサイドウインドウを覆うことができるように、大容量のガスを必要とし、しかも50MPa 以上の充填圧力が要求されている。このような要求を満足するには、冷間引抜きや熱処理等を施したのち、最終的にインフレータとして900MPa以上の引張強さが得られる継目無鋼管が要望されている。
【0009】
特開平10−140283号公報、特開平10−140249 号公報、特開平10−140250 号公報に記載された技術では590MPa級の高強度継目無鋼管の製造を目的としており、上記したインフレータ用鋼管として望まれている、更なる高強度化要求には対応できないという問題がある。また、特開平10−140283号公報、特開平10−140249 号公報、特開平10−140250 号公報に記載された技術において冷間加工後の熱処理を必要とする場合には、スケール生成による表面粗さの劣化、さらに冷間加工時に導入された残留応力が熱処理により開放され、寸法精度、とくに真円度が低下するという製品特性上大きな問題があり、さらには、曲がりによる製造上の問題もある。
【0010】
本発明は、上記した従来技術の問題を有利に解決し、高寸法精度を有し、インフレータ製造時の加工性、溶接性に優れ、さらにインフレータとして、900MPa以上の引張強さと、半割りにした鋼管に対する−60℃における落重試験で延性を示す高靭性とが得られる、高強度高靭性高加工性継目無鋼管の製造方法を提案することを目的とする。
【0011】
【課題を解決するための手段】
本発明者らは、上記した課題を達成するために、強度、靭性、加工性におよぼす各種要因について鋭意研究した。その結果、C含有量を低減し、CrおよびMoを適量含有した鋼組成とし、継目無鋼管に造管したのち、焼入れ焼戻し処理、あるいは焼ならし処理を施し、その後、冷間引抜きを行なうことで、高寸法精度化、高強度化が図れ、とくに周方向強度の低下が小さく異方性の少ない継目無鋼管となることを見出した。
【0012】
本発明は、 上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)質量%で、C:0.01〜0.10%、Si:0.5 %以下、Mn:0.10〜2.00%、Cr:1.0 %超〜 2.0%、Mo:0.5 %以下を含有する組成の鋼管素材を造管し継目無鋼管としたのち、該継目無鋼管に、Ac3 変態点以上、1050℃以下の範囲内の温度に加熱したのち焼入れし、ついで450 ℃以上、Ac1 変態点以下の範囲内の温度で焼戻しする焼入れ焼戻し処理を施し、その後、冷間引抜きして所定寸法の鋼管とすることを特徴とするエアバッグ用高強度高靭性高加工性継目無鋼管の製造方法。
(2)(1)において、前記組成に加えてさらに、質量%で、Cu:1.0 %以下、Ni:1.0 %以下、Nb:0.10%以下、V:0.10%以下、Ti:0.10%以下、B:0.005 %以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とするエアバッグ用高強度高靱性高加工性継目無鋼管の製造方法。
(3)(1)または(2)において、前記焼入れ焼戻し処理に代えて、前記継目無鋼管に、850 〜1000℃の範囲内の温度に加熱し空冷する焼ならし処理を施すことを特徴とするエアバッグ用高強度高靱性高加工性継目無鋼管の製造方法。
【0013】
【発明の実施の形態】
まず、使用する鋼管素材の組成限定理由について、 説明する。以下、組成における質量%は単に%と記す。
C:0.01〜0.10%
Cは、鋼の強度増加に寄与する元素であるが、0.10%を超えて過剰に含有すると加工性、溶接性が低下する。一方、0.01%未満の含有では、所望の引張強さを確保することができにくくなる。このため、本発明では、Cは0.01〜0.10%の範囲に限定した。なお、好ましくは0.03〜0.08%である。
【0014】
Si:0.5 %以下
Siは、鋼の強度を増加させる元素であり、0.1 %以上含有することが好ましいが、過剰な含有は延性、加工性を低下させるため、本発明では0.5 %以下に限定した。なお、好ましくは0.1 〜0.4 %である。
Mn:0.10〜2.00%
Mnは、強度を向上させる元素であり、所望の強度を確保するために、本発明では0.10%以上の含有を必要とする。一方、2.00%を超えて含有すると、延性が低下し、加工性および溶接性が低下する。このため、Mnは2.00%以下に限定した。なお、好ましくは、1.00〜1.70%である。
【0015】
Cr:1.0 %超〜 2.0%
Crは、鋼の強度、 耐食性を向上させる有効な元素であり、本発明では主として高強度を確保するために、1.0 %超の含有を必要とする。一方、2.0 %を超えて含有すると、延性が低下し、さらに加工性、溶接性、靭性が低下する。このため、Crは1.0 %超〜 2.0%の範囲に限定した。なお、好ましくは1.1 〜1.5 %である。
【0016】
Mo:0.5 %以下
Moは、鋼の強度を増加させるとともに、焼入れ性を向上させる元素であり、本発明では0.1 %以上含有することが好ましい。一方、0.5 %を超えて含有すると、延性が低下し、耐溶接割れ性が低下する。このため、Moは0.5 %以下に限定した。なお、好ましくは0.3 %以下である。
【0017】
本発明では、上記した基本組成に加えて、さらにCu:1.0 %以下、Ni:1.0 %以下、Nb:0.10%以下、V:0.10%以下、Ti:0.10%以下、B:0.005 %以下のうちから選ばれた1種または2種以上を含有できる。
Cu、Ni、Nb、V、Ti、Bは、いずれも強度を増加させる作用を有し、必要に応じ1種または2種以上を選択して含有できる。
【0018】
Cuは、鋼の強度を増加させるとともに、耐食性をも向上させる元素である。しかし、1.0 %を超えて含有すると、熱間加工性が低下する。このため、Cuは1.0 %以下に限定することが好ましい。なお、より好ましくは0.5 %以下である。
Niは、鋼の強度を増加させるとともに、焼入れ性、 靭性を向上させる元素であるが高価であるため、本発明では1.0 %以下に限定することが好ましい。なお、より好ましくは0.5 %以下である。
【0019】
Nbは、析出硬化により鋼の強度を増加させるとともに、組織を微細化して靭性を向上させる元素であるが、0.10%を超えて含有すると、逆に靭性が劣化する。このため、Nbは0.10%以下に限定することが好ましい。なお、より好ましく0.01〜0.05%である。
Vは、析出硬化により鋼の強度を増加させるとともに、焼入れ性を向上させる元素であるが、0.10%を超えて含有すると、靭性が劣化する。このため、Vは0.10%以下に限定することが好ましい。なお、より好ましくは0.01〜0.05%である。
【0020】
Tiは、析出硬化により鋼の強度を増加させるとともに、組織を微細化して靭性を向上させる元素であるが、0.10%を超えて含有すると、逆に靭性が劣化する。このため、Tiは0.10%以下に限定することが好ましい。なお、より好ましくは0.005 〜0.03%である。
Bは、焼入れ性の向上を通して強度の増加に寄与する元素であるが、0.005 %を超えて含有すると、靭性が低下する。このため、Bは0.005 %以下に限定することが好ましい。なお、より好ましくは0.0005〜0.002 %である。
【0021】
上記した成分以外の残部はFeおよび不可避的不純物である。不可避的不純物としては、P:0.03%以下、S:0.01%以下、Al:0.10%以下が許容できる。
上記した組成の溶鋼を、転炉、電気炉等の公知の溶製方法により溶製し、連続鋳造法、造塊法等の公知の鋳造方法によりビレット等の鋼管素材とすることが好ましい。
【0022】
ついで、得られた鋼管素材を、好ましくは通常のマンネスマン−プラグミル方式、あるいはマンネスマンーマンドレルミル方式の製造工程を用いて造管し、継目無鋼管の製造工程としては、上記した以外の方式によっても何ら問題はない。造管され継目無鋼管は、ついで焼入れ焼戻し処理、あるいは焼ならし処理を施される。
【0023】
焼入れのための加熱温度は、Ac3 変態点以上、1050℃以下の範囲内の温度とする。加熱温度がAc3 変態点未満では、均一なオーステナイト化ができず、一方、1050℃を超えて高い温度では結晶粒が粗大化し靭性が低下する。このため、本発明では、焼入れ加熱温度はAc3 変態点以上1050℃以下の範囲とした。なお、上記した範囲内の温度に加熱したのち、水冷等により冷却(焼入れ)し、焼入れ組織(マルテンサイト組織)とする。なお、好ましくは、焼入れ加熱温度はAc3 変態点以上、950 ℃以下である。
【0024】
焼戻しは、450 ℃以上、Ac1 変態点以下の範囲内の温度で行なう。焼戻し温度は強度、靭性、加工性が同時に最適となる温度を選択することが好ましい。焼戻し温度が450 ℃未満では焼戻しが不十分で所望の靭性が得られない。一方、Ac1 変態点を超えると、焼入れ組織が得られず強度が低下し、所望の強度が確保できなくなる。このため、焼戻し温度は、450 ℃以上、Ac1 変態点以下の範囲内の温度に限定した。なお、好ましくは500 〜700 ℃である。また、焼戻し後の冷却は、空冷以上の速度で冷却することが好ましい。
【0025】
焼ならし処理は、850 〜1000℃の範囲内の温度に加熱し空冷する。焼ならし温度が850 ℃未満ではオーステナイト粒の十分な均一化ができず、一方、焼ならし温度が1000℃を超えて高くなると、結晶粒が粗大化し所望の靭性が確保できにくくなる。このため、焼ならし温度は850 〜1000℃に限定することが好ましい。なお、好ましくは850 〜950 ℃である。
【0026】
焼入れ焼戻し処理、あるいは焼ならし処理を施された継目無鋼管は、その後、冷間引抜きを施され、所定寸法の鋼管とされる。
冷間引抜きは、特別な装置を必要とせず、通常公知の冷間引抜き装置を利用して行なうことができる。冷間引抜き条件は、所定寸法の鋼管とすることができればとくに限定する必要はないが、縮径率を5〜15%、減肉率を10〜30%と適正範囲内に調整することにより、周方向の靱性の低下が抑制でき、異方性の少ない鋼管とすることができる。
【0027】
上記した製造方法により製造された継目無鋼管は、高寸法精度を有し、引張強さ:900 MPa 以上の高強度と、半割りにした鋼管に対する−60℃における落重試験で延性を示す高靭性とを有し、加工性、溶接性に優れた、カーテン式エアバッグ用インフレータ向けとして好適な鋼管となる。
【0028】
【実施例】
表1に示す組成の鋼管素材(ビレット:140mm φ)を1250℃に加熱し、マンネスマン−マンドレルミル方式による穿孔、延伸圧延、および縮径圧延とにより、継目無鋼管(外径:34.0φ×肉厚:3.2mm 、外径:38.1φ×肉厚:3.3mm )とした。これら継目無鋼管に、表2に示す条件で焼入れ焼戻しあるいは焼ならし処理を施した。ついで、これら熱処理済み継目無鋼管にそれぞれ、縮径率:11.8%、8.9 %、減肉率:21.9%、18.2%の冷間引抜き加工を施して、外径30.0φ×肉厚2.5mm 、あるいは外径34.7φ×肉厚2.7mm の鋼管 (製品)とした。
【0029】
得られた継目無鋼管 (製品)から試験片を採取し、実管引張試験を実施し、長手方向の引張特性を調査した。実管引張試験は、JIS Z 2201に規定される11号試験片(管状試験片:実管)を採取して、JIS Z 2241の規定に準拠して行った。
さらに、水圧バースト試験を実施し、そのバースト圧から周方向の引張強度を換算した。
【0030】
また、得られた継目無鋼管 (製品)について、−60℃における落重試験を実施し、靱性を調査した。−60℃における落重試験は、長さ70mmの継目無鋼管 (製品)を半円状に半割りにして、その上に100kgf(980 N)の重鎮を500mm の高さから落下させる落重試験を−60℃にて実施して、破面を観察し脆性破壊の有無を調査した。試験は繰り返し3回とし、3回の試験で全く脆性破壊が生じない場合を○とし、全て脆性破壊が生じた場合を×、それ以外を△とした。
【0031】
また、得られた継目無鋼管 (製品)について、へら絞り加工により、管端を外径20mm、25mmに縮径し、加工部の割れを観察し、加工性を評価した。割れ発生のない場合を加工性○、割れが発生した場合を加工性×とした。
また、へら絞り加工により、管端を外径20mmに縮径したのち、管端に封板を溶接し、溶接後割れ発生の有無を目視および顕微鏡により調査し、溶接性を評価した。
【0032】
また、得られた継目無鋼管 (製品)について、製品内外面の表面粗さを表面粗さ計を用いて測定し、JIS B 0601に規定される算術平均粗さRaを求めた。Raが1μm未満の場合を○、1μm以上の場合を×とした。
得られた結果を表2に示す。
【0033】
【表1】

Figure 2004027303
【0034】
【表2】
Figure 2004027303
【0035】
本発明例はいずれも、表面性状に優れ、かつ900MPa以上の引張強さと、高靭性とを有し、加工性に優れ、さらに、溶接性に優れた継目無鋼管となっている。一方、本発明の範囲を外れる比較例は、引張強さが850MPa未満であるか、靭性が低下しているか、あるいは加工性が低下しているかして、カーテン式エアバッグ用インフレータ向け鋼管として、十分な特性が得られていない。
【0036】
【発明の効果】
以上のように、本発明によれば、高強度高靭性高加工性継目無鋼管を安定して製造でき、産業上格段の効果を奏する。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-strength seamless steel pipe, and particularly to a high-strength seamless steel pipe excellent in toughness and workability, suitable for use in airbags.
[0002]
[Prior art]
In recent years, there has been a keen desire to improve the safety of automobile collisions. In particular, safety devices for protecting occupants during collisions have been actively introduced. Above all, in the event of a collision, the deployment of airbags that are deployed between the occupant and the steering wheel or instrument panel to absorb the kinetic energy of the occupant and reduce occupant damage is becoming common. In particular, driver-side airbags installed in the steering wheel and passenger-side airbags installed in the instrument panel are becoming standard equipment. Furthermore, recently, in addition to these, in order to protect occupants in the event of a side collision, many vehicles are equipped with a side airbag or a curtain-type airbag covering a side window.
[0003]
2. Description of the Related Art Conventionally, airbags have often adopted a method of generating gas using explosives. However, recently, in consideration of recyclability and environmental consideration, a method of filling an inflator with an inert gas such as argon at a high pressure instead of using explosives has been adopted. In this method, since the inert gas must be constantly maintained at a high pressure in the inflator, it is desired that the inflator has sufficient strength.
[0004]
Generally, an inflator for an airbag is manufactured by processing a steel pipe. In an airbag of a type in which an inert gas is filled, the inert gas is filled into the inflator at a high pressure. Therefore, from the viewpoint of the reliability of the seam, a seamless steel pipe is used as the steel pipe for the inflator. Normally, a seamless steel pipe is subjected to cold drawing to a predetermined size and cut to a predetermined length, and then both pipe ends are processed by press working or the like, and a sealing plate is welded to obtain a product (inflator).
[0005]
For this reason, a seamless steel pipe having sufficient strength and toughness, excellent workability, and excellent weldability is demanded as a steel pipe for an inflator.
In response to such demands, for example, JP-A-10-140283 discloses that C: 0.01 to 0.20%, Si: 0.50% or less, Mn: 0.30 to 2.00%, : 0.020% or less, S: 0.020% or less, Al: 0.10% or less, or further Mo: 0.50% or less, V: 0.10% or less, Ni: 0.50% or less , Cr: 1.00% or less, Cu: 0.50% or less, Ti: 0.10% or less, Nb: 0.10% or less, B: 0.005% or less, the balance being Manufacture of high-strength, high-toughness airbag steel pipes that are made of steel consisting of Fe and unavoidable impurities, and then subjected to annealing, normalizing, or quenching and tempering after cold working or after cold working. A method has been proposed.
[0006]
Japanese Patent Application Laid-Open No. 10-140249 discloses that steel having a composition similar to that described in Japanese Patent Application Laid-Open No. 10-140283 is pipe-formed, then annealed at 850 to 1000 ° C., and then cooled to a predetermined size. There has been proposed a method for producing a steel pipe for a high-strength and tough airbag, which is subjected to a stress relief annealing, normalizing, or quenching and tempering treatment while a cold working is being performed.
JP-A-10-140250, after the pipe producing a steel having the same composition as the composition described in JP-A-10-140283, quenching at 850 to 1000 ° C., or even 450 ° C. or higher Ac 1 A method for producing a steel pipe for a high-strength, high-toughness airbag that performs tempering at a temperature lower than the transformation point and then performs cold-working with predetermined dimensions or annealing after cold-working has been proposed. .
[0007]
According to the techniques described in JP-A-10-140283, JP-A-10-140249, and JP-A-10-140250, the workability and the weldability are excellent with high dimensional accuracy, and the tensile strength is 590. It is stated that a steel pipe for an airbag having high strength and toughness of N / mm 2 or more can be manufactured.
[0008]
[Problems to be solved by the invention]
Recently, it has been required to reduce the size and weight of the airbag system, and further increase the strength of the seamless steel pipe for the inflator of the airbag. In particular, a curtain-type airbag requires a large volume of gas so that the airbag can cover the front and rear side windows, and a filling pressure of 50 MPa or more is required. In order to satisfy such demands, a seamless steel pipe that has been subjected to cold drawing, heat treatment, and the like, and finally has a tensile strength of 900 MPa or more as an inflator is demanded.
[0009]
The techniques described in JP-A-10-140283, JP-A-10-140249, and JP-A-10-140250 aim at manufacturing a 590 MPa class high-strength seamless steel pipe. There is a problem that it is not possible to cope with the demand for higher strength. When heat treatment after cold working is required in the techniques described in JP-A-10-140283, JP-A-10-140249, and JP-A-10-140250, the surface roughness due to scale generation is required. Deterioration, and furthermore, residual stress introduced during cold working is released by heat treatment, and there is a major problem in product characteristics that dimensional accuracy, especially roundness is reduced, and there is also a manufacturing problem due to bending. .
[0010]
The present invention advantageously solves the above-mentioned problems of the prior art, has high dimensional accuracy, is excellent in workability at the time of manufacturing an inflator, has excellent weldability, and is further divided into a half and a tensile strength of 900 MPa or more as an inflator. An object of the present invention is to propose a method for producing a high-strength, high-toughness, high-workability seamless steel pipe capable of obtaining high toughness showing ductility in a drop test at −60 ° C. on a steel pipe.
[0011]
[Means for Solving the Problems]
The present inventors have intensively studied various factors affecting strength, toughness, and workability in order to achieve the above object. As a result, to reduce the C content to a steel composition containing appropriate amounts of Cr and Mo, form a seamless steel pipe, then perform a quenching and tempering treatment or a normalizing treatment, and then perform cold drawing. It has been found that a seamless steel pipe having high dimensional accuracy and high strength can be achieved, and in particular, has a small decrease in circumferential strength and a small anisotropy.
[0012]
The present invention has been completed based on the above-mentioned findings and further studies. That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.01 to 0.10%, Si: 0.5% or less, Mn: 0.10 to 2.00%, Cr: more than 1.0% to 2.0%, Mo: A steel pipe material having a composition containing 0.5% or less is formed into a seamless steel pipe, and then the seamless steel pipe is heated to a temperature within the range from the Ac 3 transformation point to 1050 ° C. and then quenched. Then, a quenching and tempering treatment of tempering at a temperature in the range of 450 ° C. or more and the Ac 1 transformation point or less is performed, and thereafter, the steel tube is cold drawn to obtain a steel pipe having a predetermined size. A method of manufacturing a tough, highly workable seamless steel pipe.
(2) In (1), in addition to the above composition, in mass%, Cu: 1.0% or less, Ni: 1.0% or less, Nb: 0.10% or less, V: 0.10% or less , Ti: 0.10% or less, B: 0.005% or less, a high-strength, high-toughness, high-workability seam for an airbag, characterized in that the composition contains one or more kinds selected from the group consisting of: Manufacturing method of steelless pipe.
(3) In the above (1) or (2), instead of the quenching and tempering treatment, the seamless steel pipe is subjected to a normalizing treatment of heating to a temperature in the range of 850 to 1000 ° C. and air cooling. For producing high strength, high toughness, high workability seamless steel pipes for airbags.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
First, the reasons for limiting the composition of the steel pipe material used will be described. Hereinafter, mass% in the composition is simply referred to as%.
C: 0.01 to 0.10%
C is an element that contributes to an increase in the strength of the steel. However, if it is contained in excess of 0.10%, workability and weldability are reduced. On the other hand, if the content is less than 0.01%, it becomes difficult to secure a desired tensile strength. For this reason, in the present invention, C is limited to the range of 0.01 to 0.10%. In addition, it is preferably 0.03 to 0.08%.
[0014]
Si: 0.5% or less Si is an element that increases the strength of steel and is preferably contained at 0.1% or more. However, excessive content lowers ductility and workability. Limited to 5% or less. Incidentally, the content is preferably 0.1 to 0.4%.
Mn: 0.10-2.00%
Mn is an element for improving the strength, and in order to secure a desired strength, the content of Mn is required to be 0.10% or more in the present invention. On the other hand, if the content exceeds 2.00%, ductility is reduced, and workability and weldability are reduced. For this reason, Mn was limited to 2.00% or less. In addition, Preferably, it is 1.00 to 1.70%.
[0015]
Cr: more than 1.0% to 2.0%
Cr is an effective element for improving the strength and corrosion resistance of steel, and in the present invention, it is necessary to contain more than 1.0% mainly to secure high strength. On the other hand, when the content exceeds 2.0%, the ductility is reduced, and the workability, weldability and toughness are further reduced. For this reason, Cr is limited to a range of more than 1.0% to 2.0%. Incidentally, the content is preferably 1.1 to 1.5%.
[0016]
Mo: 0.5% or less Mo is an element that increases the strength of steel and improves the hardenability, and in the present invention, it is preferable to contain 0.1% or more. On the other hand, when the content exceeds 0.5%, the ductility is reduced and the resistance to weld cracking is reduced. For this reason, Mo was limited to 0.5% or less. Incidentally, it is preferably at most 0.3%.
[0017]
In the present invention, in addition to the above basic composition, Cu: 1.0% or less, Ni: 1.0% or less, Nb: 0.10% or less, V: 0.10% or less, Ti: 0.10 % Or less, B: 0.005% or less.
Cu, Ni, Nb, V, Ti, and B all have the effect of increasing the strength, and one or more of them can be selected and contained as needed.
[0018]
Cu is an element that increases the strength of steel and also improves corrosion resistance. However, if the content exceeds 1.0%, the hot workability decreases. Therefore, Cu is preferably limited to 1.0% or less. Note that the content is more preferably 0.5% or less.
Ni is an element that increases the strength of the steel and improves the hardenability and toughness, but is expensive. Therefore, in the present invention, Ni is preferably limited to 1.0% or less. Note that the content is more preferably 0.5% or less.
[0019]
Nb is an element that increases the strength of the steel by precipitation hardening and refines the structure to improve the toughness. However, if it exceeds 0.10%, the toughness is degraded. Therefore, Nb is preferably limited to 0.10% or less. In addition, it is more preferably 0.01 to 0.05%.
V is an element that increases the strength of the steel by precipitation hardening and improves the hardenability, but if it is contained in excess of 0.10%, the toughness deteriorates. Therefore, V is preferably limited to 0.10% or less. In addition, more preferably, it is 0.01 to 0.05%.
[0020]
Ti is an element that increases the strength of steel by precipitation hardening and refines the structure to improve toughness. However, if it is contained in excess of 0.10%, the toughness is deteriorated. For this reason, it is preferable to limit Ti to 0.10% or less. Note that the content is more preferably 0.005 to 0.03%.
B is an element that contributes to an increase in strength through improvement in hardenability. However, if it is contained in excess of 0.005%, toughness decreases. Therefore, B is preferably limited to 0.005% or less. Note that the content is more preferably 0.0005 to 0.002%.
[0021]
The balance other than the components described above is Fe and inevitable impurities. As inevitable impurities, P: 0.03% or less, S: 0.01% or less, and Al: 0.10% or less are acceptable.
It is preferable to smelt the molten steel having the above composition by a known smelting method such as a converter or an electric furnace, and to form a steel pipe material such as a billet by a known casting method such as a continuous casting method or an ingot casting method.
[0022]
Next, the obtained steel pipe material is preferably formed using a normal Mannesmann-plug mill method or a Mannesman-mandrel mill method, and the seamless steel pipe is manufactured by a method other than the above. No problem. The formed seamless steel pipe is then subjected to a quenching and tempering treatment or a normalizing treatment.
[0023]
The heating temperature for quenching is a temperature in the range from the Ac 3 transformation point to 1050 ° C. If the heating temperature is lower than the Ac 3 transformation point, uniform austenitization cannot be performed. On the other hand, if the heating temperature is higher than 1050 ° C., the crystal grains become coarse and the toughness decreases. For this reason, in the present invention, the quenching heating temperature is in the range from the Ac 3 transformation point to 1050 ° C. After heating to a temperature within the above range, the material is cooled (quenched) by water cooling or the like to obtain a quenched structure (martensite structure). Preferably, the quenching heating temperature is not lower than the Ac 3 transformation point and not higher than 950 ° C.
[0024]
Tempering is performed at a temperature within the range of 450 ° C. or more and the Ac 1 transformation point or less. As the tempering temperature, it is preferable to select a temperature at which the strength, toughness and workability are simultaneously optimized. If the tempering temperature is lower than 450 ° C., the tempering is insufficient and the desired toughness cannot be obtained. On the other hand, when the temperature exceeds the Ac 1 transformation point, a quenched structure cannot be obtained, and the strength is reduced, so that a desired strength cannot be secured. For this reason, the tempering temperature is limited to a temperature within the range of 450 ° C. or more and the Ac 1 transformation point or less. The temperature is preferably 500 to 700 ° C. The cooling after tempering is preferably performed at a speed higher than air cooling.
[0025]
The normalizing process is performed by heating to a temperature in the range of 850 to 1000 ° C. and air cooling. If the normalizing temperature is lower than 850 ° C., the austenite grains cannot be sufficiently homogenized. On the other hand, if the normalizing temperature is higher than 1000 ° C., the crystal grains become coarse and it is difficult to secure desired toughness. For this reason, it is preferable to limit the normalizing temperature to 850 to 1000 ° C. The temperature is preferably 850 to 950 ° C.
[0026]
The seamless steel pipe that has been subjected to the quenching and tempering treatment or the normalizing treatment is thereafter subjected to cold drawing to form a steel pipe having a predetermined size.
The cold drawing does not require a special device, and can be performed by using a generally known cold drawing device. The cold drawing condition is not particularly limited as long as the steel tube can have a predetermined size, but by adjusting the diameter reduction ratio to an appropriate range of 5 to 15% and the wall thickness reduction to 10 to 30%, A reduction in circumferential toughness can be suppressed, and a steel pipe with less anisotropy can be obtained.
[0027]
The seamless steel pipe manufactured by the above-described manufacturing method has high dimensional accuracy, high tensile strength of 900 MPa or more, and high ductility in a drop test at −60 ° C. for a half-split steel pipe. It is a steel pipe having toughness and excellent in workability and weldability and suitable for an inflator for a curtain type airbag.
[0028]
【Example】
A steel pipe material (billet: 140 mm φ) having the composition shown in Table 1 was heated to 1250 ° C., and drilled by a Mannesmann-mandrel mill system, stretch-rolled, and reduced-diameter roll to form a seamless steel pipe (outer diameter: 34.0 φ × (Thickness: 3.2 mm, outer diameter: 38.1φ × thickness: 3.3 mm). These seamless steel pipes were subjected to quenching and tempering or normalizing treatment under the conditions shown in Table 2. Next, these heat-treated seamless steel pipes were subjected to cold drawing with a diameter reduction ratio of 11.8% and 8.9% and a wall thickness reduction ratio of 21.9% and 18.2%, respectively, to obtain an outer diameter of 30%. A steel pipe (product) having a diameter of 0.0φ × 2.5 mm or an outer diameter of 34.7φ × 2.7 mm was used.
[0029]
A test piece was sampled from the obtained seamless steel pipe (product), a real pipe tensile test was performed, and a tensile property in a longitudinal direction was investigated. The actual pipe tensile test was performed in accordance with JIS Z 2241 by extracting a No. 11 test piece (tubular test piece: real pipe) specified in JIS Z 2201.
Furthermore, a hydraulic burst test was performed, and the tensile strength in the circumferential direction was converted from the burst pressure.
[0030]
Further, a drop test at −60 ° C. was performed on the obtained seamless steel pipe (product) to investigate toughness. In the drop test at -60 ° C, a 70 mm long seamless steel pipe (product) is divided into halves, and a 100 kgf (980 N) heavy drop is dropped from a height of 500 mm onto the half. At −60 ° C., the fracture surface was observed, and the presence or absence of brittle fracture was investigated. The test was repeated three times, and the case where no brittle fracture occurred at all in the three tests was evaluated as ○, the case where all brittle fractures occurred was evaluated as x, and the others were evaluated as Δ.
[0031]
Further, the obtained seamless steel pipe (product) was reduced in outer diameter to 20 mm and 25 mm by a spatula drawing, and a crack in a processed portion was observed to evaluate workability. The case where no crack occurred was defined as workability ○, and the case where cracks occurred was defined as workability ×.
After the pipe end was reduced to an outer diameter of 20 mm by spatula drawing, a sealing plate was welded to the pipe end, and the occurrence of cracks after welding was visually and microscopically examined to evaluate the weldability.
[0032]
Further, for the obtained seamless steel pipe (product), the surface roughness of the inner and outer surfaces of the product was measured using a surface roughness meter, and an arithmetic average roughness Ra specified in JIS B0601 was obtained. The case where Ra was less than 1 μm was evaluated as ○, and the case where Ra was 1 μm or more was evaluated as ×.
Table 2 shows the obtained results.
[0033]
[Table 1]
Figure 2004027303
[0034]
[Table 2]
Figure 2004027303
[0035]
Each of the examples of the present invention is a seamless steel pipe having excellent surface properties, a tensile strength of 900 MPa or more, and high toughness, excellent workability, and excellent weldability. On the other hand, a comparative example out of the scope of the present invention has a tensile strength of less than 850 MPa, a reduced toughness, or a reduced workability, as a steel pipe for an inflator for a curtain type airbag, Sufficient characteristics have not been obtained.
[0036]
【The invention's effect】
As described above, according to the present invention, a high-strength, high-toughness, and high-workability seamless steel pipe can be stably manufactured, and an industrially remarkable effect is achieved.

Claims (3)

質量%で、
C:0.01〜0.10%、       Si:0.5 %以下、
Mn:0.10〜2.00%、       Cr:1.0 %超〜 2.0%、
Mo:0.5 %以下
を含有する組成の鋼管素材を造管し継目無鋼管としたのち、該継目無鋼管に、Ac3 変態点以上、1050℃以下の範囲内の温度に加熱したのち焼入れし、ついで450 ℃以上、Ac1 変態点以下の範囲内の温度で焼戻しする焼入れ焼戻し処理を施し、その後、冷間引抜きして所定寸法の鋼管とすることを特徴とするエアバッグ用高強度高靭性高加工性継目無鋼管の製造方法。
In mass%,
C: 0.01 to 0.10%, Si: 0.5% or less,
Mn: 0.10 to 2.00%, Cr: more than 1.0% to 2.0%,
Mo: A steel pipe material having a composition containing 0.5% or less is formed into a seamless steel pipe, and then the seamless steel pipe is heated to a temperature within the range from the Ac 3 transformation point to 1050 ° C. and then quenched. Then, a quenching and tempering treatment of tempering at a temperature in the range of 450 ° C. or more and the Ac 1 transformation point or less is performed, and thereafter, the steel tube is cold drawn to obtain a steel pipe having a predetermined size. A method of manufacturing a tough, highly workable seamless steel pipe.
前記組成に加えてさらに、質量%で、Cu:1.0 %以下、Ni:1.0 %以下、Nb:0.10%以下、V:0.10%以下、Ti:0.10%以下、B:0.005 %以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項1に記載のエアバッグ用高強度高靱性高加工性継目無鋼管の製造方法。In addition to the above composition, in mass%, Cu: 1.0% or less, Ni: 1.0% or less, Nb: 0.10% or less, V: 0.10% or less, Ti: 0.10% or less And B: a composition containing at least one member selected from the group consisting of 0.005% or less and a high-strength, high-toughness, and high-workability seamless steel tube for an airbag according to claim 1, characterized in that: Manufacturing method. 前記焼入れ焼戻し処理に代えて、前記継目無鋼管に、850 〜1000℃の範囲内の温度に加熱し空冷する焼ならし処理を施すことを特徴とする請求項1または2に記載のエアバッグ用高強度高靱性高加工性継目無鋼管の製造方法。3. The airbag according to claim 1, wherein, instead of the quenching and tempering treatment, the seamless steel pipe is subjected to a normalizing treatment of heating to a temperature in a range of 850 ° C. to 1000 ° C. and air cooling. A method for manufacturing a high-strength, high-toughness, high-workability seamless steel pipe.
JP2002186550A 2002-06-26 2002-06-26 Manufacturing method of high strength, high toughness, high workability seamless steel pipe for airbag Expired - Fee Related JP3960145B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002186550A JP3960145B2 (en) 2002-06-26 2002-06-26 Manufacturing method of high strength, high toughness, high workability seamless steel pipe for airbag
US10/514,765 US20060070687A1 (en) 2002-06-26 2003-06-11 Method for producing seamless steel pipe for inflator of air bag
EP03733377A EP1516935A4 (en) 2002-06-26 2003-06-11 Method for producing seamless steel pipe for inflator of air bag
CA002476546A CA2476546A1 (en) 2002-06-26 2003-06-11 Method for producing seamless steel pipe for inflator of air bag
MXPA04010403A MXPA04010403A (en) 2002-06-26 2003-06-11 Method for producing seamless steel pipe for inflator of air bag.
PCT/JP2003/007435 WO2004003241A1 (en) 2002-06-26 2003-06-11 Method for producing seamless steel pipe for inflator of air bag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002186550A JP3960145B2 (en) 2002-06-26 2002-06-26 Manufacturing method of high strength, high toughness, high workability seamless steel pipe for airbag

Publications (2)

Publication Number Publication Date
JP2004027303A true JP2004027303A (en) 2004-01-29
JP3960145B2 JP3960145B2 (en) 2007-08-15

Family

ID=31181868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002186550A Expired - Fee Related JP3960145B2 (en) 2002-06-26 2002-06-26 Manufacturing method of high strength, high toughness, high workability seamless steel pipe for airbag

Country Status (1)

Country Link
JP (1) JP3960145B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006046702A1 (en) 2004-10-28 2006-05-04 Sumitomo Metal Industries, Ltd. Production method of seamless steel pipe
WO2006046503A1 (en) * 2004-10-29 2006-05-04 Sumitomo Metal Industries, Ltd. Steel pipe for air bag inflator and method for production thereof
JP2007204789A (en) * 2006-01-31 2007-08-16 Jfe Steel Kk High-strength seamless steel pipe and manufacturing method therefor
WO2008050628A1 (en) 2006-10-27 2008-05-02 Sumitomo Metal Industries, Ltd. Seamless steel tube for airbag accumulators and process for production thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006046702A1 (en) 2004-10-28 2006-05-04 Sumitomo Metal Industries, Ltd. Production method of seamless steel pipe
US8091399B2 (en) 2004-10-28 2012-01-10 Sumitomo Metal Industries, Ltd. Process for manufacturing a seamless tube
WO2006046503A1 (en) * 2004-10-29 2006-05-04 Sumitomo Metal Industries, Ltd. Steel pipe for air bag inflator and method for production thereof
JP2007204789A (en) * 2006-01-31 2007-08-16 Jfe Steel Kk High-strength seamless steel pipe and manufacturing method therefor
WO2008050628A1 (en) 2006-10-27 2008-05-02 Sumitomo Metal Industries, Ltd. Seamless steel tube for airbag accumulators and process for production thereof
KR101081223B1 (en) 2006-10-27 2011-11-07 수미도모 메탈 인더스트리즈, 리미티드 Seamless steel tube for airbag accumulators and process for production thereof
US8496763B2 (en) 2006-10-27 2013-07-30 Sumitomo Metal Industries, Ltd. Seamless steel tube for an airbag accumulator and process for its manufacture

Also Published As

Publication number Publication date
JP3960145B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
JP5018784B2 (en) Seamless steel pipe for airbag accumulator and manufacturing method thereof
EP1637619B1 (en) Steel pipe for airbag system and method for its manufacture
EP2484793B1 (en) Steel pipe for air bag and process for producing same
JP5979334B1 (en) High strength welded steel pipe for airbag inflator and method for manufacturing the same
MX2008012810A (en) Low carbon alloy steel tube having ultra high strength and excellent toughness at low temperature and method of manufacturing the same.
WO2002079526A1 (en) High strength steel tube for air bag and method for production thereof
JPH10140250A (en) Production of steel tube for air bag, having high strength and high toughness
JP4770922B2 (en) Steel pipe for airbag and manufacturing method thereof
JP3220975B2 (en) Manufacturing method of steel pipe for high strength and high toughness air bag
EP2578705B1 (en) Process for producing steel pipe for air bag
US20060070687A1 (en) Method for producing seamless steel pipe for inflator of air bag
JP3318467B2 (en) Manufacturing method of high strength and high toughness steel pipe with excellent workability
JP4079053B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe for airbag
JP2004076034A (en) Method for producing high strength, high toughness and high workability seamless steel pipe for air bag
JP3250211B2 (en) Manufacturing method of steel pipe for high strength and high toughness air bag
JP4079054B2 (en) High strength and high toughness welded steel pipe for airbag bottle and method for producing the same
JP3960145B2 (en) Manufacturing method of high strength, high toughness, high workability seamless steel pipe for airbag
JPH10140238A (en) Production of steel tube for air bag, having high strength and high toughness
JP2003201541A (en) High strength, high workability seamless steel pipe for air bag and production method therefor
JPH10212549A (en) High toughness electric resistance welded tube for air bag and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees