JP2013139631A - High tensile bolt and method of manufacturing the same - Google Patents

High tensile bolt and method of manufacturing the same Download PDF

Info

Publication number
JP2013139631A
JP2013139631A JP2012269066A JP2012269066A JP2013139631A JP 2013139631 A JP2013139631 A JP 2013139631A JP 2012269066 A JP2012269066 A JP 2012269066A JP 2012269066 A JP2012269066 A JP 2012269066A JP 2013139631 A JP2013139631 A JP 2013139631A
Authority
JP
Japan
Prior art keywords
bolt
steel
strength
mass
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012269066A
Other languages
Japanese (ja)
Other versions
JP6051031B2 (en
Inventor
Yuji Kimura
勇次 木村
Kaneaki Tsuzaki
兼彰 津崎
Takashi Yamaguchi
隆司 山口
Hiroshi Masuda
浩志 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Utsunomiya University
Osaka University NUC
National Institute for Materials Science
Osaka City University
Original Assignee
Utsunomiya University
Osaka University NUC
National Institute for Materials Science
Osaka City University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Utsunomiya University, Osaka University NUC, National Institute for Materials Science, Osaka City University filed Critical Utsunomiya University
Priority to JP2012269066A priority Critical patent/JP6051031B2/en
Publication of JP2013139631A publication Critical patent/JP2013139631A/en
Application granted granted Critical
Publication of JP6051031B2 publication Critical patent/JP6051031B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a high tensile bolt having a tensile strength of 1,7 00 MPa or more and excellent tensile deformation performance and delayed fracture resistance, and a method of manufacturing the same.SOLUTION: A steel containing, by mass, 0.35-0.70% C, 0.50-2.50% Si, 0.10-1.00% Mn, 0.30-3.00% Cr, 0.50-1.50% Mo, 0.001-0.1% Al and the balance Fe with inevitable impurities, is formed into a bolt shape in such a manner that a shape parameter S (=Ab/Ae, wherein, Ab is an effective cross-sectional area in a shaft part 2 and Ae is an effective cross-sectional area in a screw part) in the shaft part 2, becomes a value of 0.85 to <1.25, and after quenching the steel by austenization in the temperature range of 850-1,050°C, the steel is subjected to a tempering treatment in the temperature range of 500-650°C.

Description

本発明は、土木、建築等の接合部に使用される高力ボルト及びその製造法に関する。   The present invention relates to a high-strength bolt used for a joint part of civil engineering, architecture, and the like and a method for manufacturing the same.

現在、土木建築分野ではF10T(JIS B 1186)及びS10T(JSSII09)の高力ボルト(引張強さが1000〜1100MPa)による摩擦接合が主流であるが、超高層建築物をはじめとする部材の厚肉化や高強度化に対して、より一層のボルトの高強度化が求められている。
最近ではF10Tの約1.5倍に相当する軸力の導入が可能なF14T超高力ボルト(引張強さ1400MPa〜1600MPa)が製品化され、建築分野での利用実績が増えている(例えば、非特許文献1)。
Currently, in the field of civil engineering and construction, F10T (JIS B 1186) and S10T (JSSII09) high-strength bolts (tensile strength of 1000 to 1100 MPa) are the mainstream, but the thickness of members such as high-rise buildings There is a demand for further increasing the strength of bolts for increasing the thickness and strength.
Recently, F14T ultra-high-strength bolts (tensile strength of 1400 MPa to 1600 MPa) capable of introducing axial force equivalent to about 1.5 times that of F10T have been commercialized, and the use record in the building field is increasing (for example, Non-patent document 1).

さらに、1700MPa超級の超高力ボルトが実用化されれば、接合部の更なるコンパクト化が可能となり、鋼構造物のデザインも変革できる。すなわち、ボルトの超高強度化によって、省資源化、省力化、省エネルギー化そしてCO削減という大きな波及効果が期待できる。 Furthermore, if an ultra-high-strength bolt exceeding 1700 MPa is put into practical use, it will be possible to further reduce the size of the joint and change the design of the steel structure. In other words, by increasing the strength of the bolts, it is possible to expect significant ripple effects such as resource saving, labor saving, energy saving and CO 2 reduction.

ところが引張強さが1200MPaを超えた低合金鋼(炭素以外の合金元素の添加量が10%以下)では、遅れ破壊が深刻な問題であり、高力ボルトの高強度化の大きな妨げとなっている。
遅れ破壊とは、大気腐食によって水素が発生し、鋼材中に侵入して鋼材が脆化して起こる破壊で、時間遅れ破壊の略称である。室温において鋼中で応力集中部に拡散集積する水素、いわゆる拡散性水素が遅れ破壊の原因である。この遅れ破壊のため、F14T超高力ボルトが開発されるまでの約30年間、土木建築用高力ボルトの高強度化はF10TおよびS10Tの高力ボルトで頭打ち状態であった。
However, in low alloy steels with a tensile strength exceeding 1200 MPa (addition amount of alloying elements other than carbon is 10% or less), delayed fracture is a serious problem, which greatly hinders the increase in strength of high strength bolts. Yes.
Delayed fracture is an abbreviation for time-delayed fracture, which is a breakdown that occurs when hydrogen is generated due to atmospheric corrosion and penetrates into the steel material and the steel material becomes brittle. Hydrogen that diffuses and accumulates in stress-concentrated portions in steel at room temperature, so-called diffusible hydrogen, is a cause of delayed fracture. Due to this delayed fracture, for about 30 years until the development of F14T ultra high strength bolts, the strength of high strength bolts for civil engineering and construction was flattened with high strength bolts of F10T and S10T.

前述のF14Tボルトでは、拡散性水素の許容量が大きな鋼材の開発と遅れ破壊の起こりにくいボルト形状の開発により耐遅れ破壊性能の向上が図られている(特許文献1、非特許文献1)。具体的には、Mo、Vの炭窒化物等の鋼中水素をトラップする粒子をマトリクス中に微細に分散させて許容水素量を大きくした鋼材を素材とすると共に、ボルトの(1)ねじ形状の開発、(2)ボルト軸からねじ部への移行部形状の改良、(3)ボルト頭部首下曲率半径rの増大、(4)ナットの形状変更した、従来のF10TおよびS10Tの高力ボルトとは異なる独自の形状が開示されている。
なお、許容水素量とは、ある荷重負荷条件下で、その水素量以下では素材が遅れ破壊しない拡散性水素量の許容値を示し、耐遅れ破壊性能を比較するためのひとつの指標である。
In the above-mentioned F14T bolt, the delayed fracture resistance is improved by developing a steel material having a large allowable amount of diffusible hydrogen and developing a bolt shape that hardly causes delayed fracture (Patent Document 1, Non-Patent Document 1). Specifically, a steel material such as Mo and V carbonitrides that trap hydrogen in steel is finely dispersed in a matrix to increase the allowable hydrogen amount, and the bolt (1) screw shape (2) Improvement of the shape of the transition from the bolt shaft to the threaded portion, (3) Increase in the bolt head neck neck radius of curvature r, (4) High strength of conventional F10T and S10T with modified nut shape A unique shape different from the bolt is disclosed.
The allowable hydrogen amount indicates an allowable value for the amount of diffusible hydrogen that does not cause delayed fracture of the material under a certain load condition, and is an index for comparing delayed fracture resistance.

一方、特許文献2では、C、Si,Mn,Cr,Moの添加量の規定と共に、焼戻処理温度を500℃〜Ae1と規定することで耐遅れ破壊特性に優れた1800MPa級機械構造用鋼が製造できることが開示されている。   On the other hand, in Patent Document 2, the steel for machine structural use of 1800 MPa class, which has excellent delayed fracture resistance by defining the tempering temperature from 500 ° C. to Ae1 along with the addition amount of C, Si, Mn, Cr, and Mo. Is disclosed that can be manufactured.

ところが、上記機械構造用鋼材から既存のF10Tボルトと同じねじ形状の高力ボルトを製造した場合には、ボルトの大気暴露試験でボルトのねじ部を起点とした遅れ破壊が頻繁に発生するという問題点もあった(非特許文献2)。しかも引張強度が1800MPaの超高強度鋼材では切欠靭性が低く、ボルトの引張変形能が低いという問題点もあった。   However, when a high-strength bolt having the same screw shape as that of an existing F10T bolt is manufactured from the steel for machine structural use, delayed fracture starting from the screw portion of the bolt frequently occurs in the bolt air exposure test. There was also a point (nonpatent literature 2). Moreover, the ultrahigh strength steel material having a tensile strength of 1800 MPa has a problem that the notch toughness is low and the tensile deformability of the bolt is low.

図1に示すように、高力ボルトは、頭部1、軸部2、ねじ部3の部位で構成され、ねじ部3で応力の集中がとくに大きく、しかも高軸力のボルト締め付けに際しては塑性ひずみも大きくなるため、ねじ部3を起点として遅れ破壊が起こることは良く知られている。   As shown in FIG. 1, the high-strength bolt is composed of a head portion 1, a shaft portion 2, and a screw portion 3, and the stress concentration is particularly large at the screw portion 3 and is plastic when tightening a bolt with a high axial force. Since strain increases, it is well known that delayed fracture occurs from the threaded portion 3 as a starting point.

特許文献3では、頭部1をねじ部3よりも高い温度で温間成形して軸部2から頭部1にかけてボルトの強度が傾斜的に低くなるように制御することで引張強さが1800MPaレベルでありながら延性、遅れ破壊特性に優れ、しかも優れた耐衝撃性を有するボルトが開示されている。ただボルト成形は温間域で行われるため従来の冷間成形プロセスと比べてボルトの量産性に課題がある。   In Patent Document 3, the tensile strength is 1800 MPa by warm-forming the head 1 at a temperature higher than that of the screw part 3 and controlling the strength of the bolt to be gradually lowered from the shaft part 2 to the head part 1. A bolt that is excellent in ductility and delayed fracture characteristics, yet has excellent impact resistance, is disclosed. However, since the bolt forming is performed in the warm region, there is a problem in mass productivity of the bolt as compared with the conventional cold forming process.

高力ボルト接合における高強度化技術の最前線、2008年度日本建築学会大会(広島)、構造部門(鋼構造)、パネルディスカッション資料、(2008)、p.1The forefront of high strength technology in high strength bolt joints, 2008 Architectural Institute of Japan (Hiroshima), Structural Division (Steel Structure), Panel Discussion Materials, (2008), p. 1 工業材料、第57巻、(2009)、p.34Industrial Materials, Vol. 57, (2009), p. 34

特開2002−276637号公報JP 2002-276737 A 特開2003−073769号公報JP 2003-073769 A 特開2011−058576号公報JP 2011-058576 A

本発明は、前述のような従来技術の問題点を解決し、F10TボルトおよびS10Tボルトの1.7倍に相当する軸力の導入が可能で、耐遅れ破壊特性に優れた土木・建築用の高力ボルト製品を提供するものである。   The present invention solves the problems of the prior art as described above, can introduce an axial force equivalent to 1.7 times that of F10T bolts and S10T bolts, and has excellent delayed fracture resistance. We provide high strength bolt products.

本発明者らは、上記の事情に鑑みて種々研究した結果、1700MPaの超高鋼材であってもボルトねじ部3への応力集中を小さくすれば、水素許容量を大きくして耐遅れ破壊特性を向上できることを知見し、ボルトの軸部2の最適化を図ってボルト軸部2でボルトの変形を担わせればボルト製品の引張変形性能を改善するとともに高軸力のボルト締め付けの際の高力ボルトねじ部3における塑性ひずみおよび応力集中を低減できることを見出した。   As a result of various studies in view of the above-described circumstances, the present inventors have increased the allowable hydrogen capacity and increased the delayed fracture resistance by reducing the stress concentration on the bolt screw portion 3 even with an ultrahigh steel material of 1700 MPa. If the bolt shaft 2 is optimized and the deformation of the bolt is carried out by the bolt shaft 2, the tensile deformation performance of the bolt product is improved and the high axial force is tightened. It has been found that the plastic strain and stress concentration in the force bolt thread portion 3 can be reduced.

本発明は、このような知見に基づいてなされたものであり、その要旨とするところは、以下の通りである。   This invention is made | formed based on such knowledge, The place made into the summary is as follows.

本発明の高力ボルトは、質量%で
C:0.35〜0.70%、
Si:0.50〜2.50%、
Mn:0.10〜1.00%、
Cr:0.30〜3.00%、
Mo:0.50〜1.50%、
Al:0.001〜0.1%
を含有し、残部はFe及び不可避不純物からなり、かつボルト頭部1からねじ部3までの部位の90体積%以上が焼戻マルテンサイト組織から成る内部金属組織を有すると共に、上記部位の引張強さが1700MPa以上であり、当該高力ボルトの軸部2において、次式(1)で表される軸部形状パラメータSが0.85以上1.25未満の値であることを特徴とする。
S=Ab/Ae ・・・ (1)
(式中のAbは軸部の有効断面積、Aeはねじ部の有効断面積を示す)
The high-strength bolt of the present invention is, in mass%, C: 0.35 to 0.70%,
Si: 0.50 to 2.50%,
Mn: 0.10 to 1.00%,
Cr: 0.30 to 3.00%
Mo: 0.50 to 1.50%,
Al: 0.001 to 0.1%
The balance is made of Fe and inevitable impurities, and 90% by volume or more of the part from the bolt head 1 to the screw part 3 has an internal metal structure consisting of a tempered martensite structure, and the tensile strength of the above part Is 1700 MPa or more, and in the shaft part 2 of the high-strength bolt, the shaft part shape parameter S represented by the following formula (1) is a value of 0.85 or more and less than 1.25.
S = Ab / Ae (1)
(Ab in the formula represents the effective sectional area of the shaft portion, and Ae represents the effective sectional area of the threaded portion)

また、本発明の高力ボルトの製造方法は、上記高力ボルトの製造に際して、素材をボルトへ成形した後、850℃〜1050℃の温度範囲内でオーステナイト化処理を施した後に焼入れして、内部金属組織の90体積%以上をマルテンサイト組織とした後に、500〜650℃の温度範囲で焼戻処理を施すことを特徴としている。   Moreover, in the manufacturing method of the high strength bolt of the present invention, in the production of the high strength bolt, after forming the material into the bolt, the material is quenched after being subjected to the austenitizing treatment within a temperature range of 850 ° C. to 1050 ° C., It is characterized in that 90% by volume or more of the internal metal structure is made a martensite structure, and then tempered in a temperature range of 500 to 650 ° C.

本発明によれば従来F10Tの1.7倍以上の軸力を導入可能で、素材をボルトへ成形後の焼入れおよび焼戻処理で遅れ破壊特性、とくに引張変形性能に優れた高力ボルトを提供することができ、産業上の貢献が期待できる。
これは、(1)ボルトの軸部2の有効断面積(Ab)とねじ部の有効断面積(Ae)の比率を調整して、ボルトの軸心方向の高張力に対してはねじ部3よりもボルト軸部2が先行して降伏変形することで遅れ破壊の発生点となるねじ部3への応力集中及び塑性ひずみの発生を低減し、かつボルト製品の延性を高めたことによるものである。なお、本発明において、ねじ部の有効断面積(Ae)とは、JIS B 1180の別表1中に規定された有効面積を意味する。また、軸部2の有効断面積(Ab)とは、軸部の最小径で算出される断面積を意味する。
According to the present invention, it is possible to introduce axial force more than 1.7 times that of conventional F10T, and provide high-strength bolts with excellent delayed fracture characteristics, especially tensile deformation performance by quenching and tempering after forming the material into bolts. Can contribute to the industry.
This is because (1) the ratio of the effective cross-sectional area (Ab) of the bolt shaft 2 and the effective cross-sectional area (Ae) of the screw part is adjusted, and the screw part 3 for high tension in the axial direction of the bolt. This is due to the fact that the bolt shaft part 2 yields and deforms in advance, thereby reducing the stress concentration on the screw part 3 and the occurrence of plastic strain, which are the origin of delayed fracture, and increasing the ductility of the bolt product. is there. In the present invention, the effective cross-sectional area (Ae) of the screw portion means an effective area defined in Appendix 1 of JIS B 1180. Moreover, the effective cross-sectional area (Ab) of the shaft part 2 means a cross-sectional area calculated by the minimum diameter of the shaft part.

ボルトの概略図である。It is the schematic of a volt | bolt. 切欠試験片の形状及び寸法(mm)を示す図である。It is a figure which shows the shape and dimension (mm) of a notch test piece. 切欠底の応力集中係数と切欠引張強さの関係を示すグラフである。It is a graph which shows the relationship between the stress concentration factor of a notch bottom, and notch tensile strength. 切欠引張強さと拡散性水素量との関係を示すグラフである。It is a graph which shows the relationship between notch tensile strength and the amount of diffusible hydrogen. 水素割れ感受性試験手順の概略図である。It is the schematic of a hydrogen cracking sensitivity test procedure. ボルトの形状を示す図である。It is a figure which shows the shape of a volt | bolt. 加力概要図である。FIG. ボルト製品の荷重変位関係図である。It is a load displacement relationship figure of a bolt product.

本発明における引張強さが1700MPa以上の高力ボルトは、(1)ボルトの軸部2の有効断面積(Ab)とねじ部の有効断面積(Ae)の比、すなわちS値を0.85以上で1.25未満の値として、ボルトの軸心方向の高張力に対してはねじ部3よりもボルト軸部2が先行して降伏変形することで遅れ破壊の発生点となるねじ部3への応力集中及び塑性ひずみの発生を低減し、ボルト製品の延性も高めることで実現できる。   The high-strength bolt having a tensile strength of 1700 MPa or more in the present invention is (1) the ratio of the effective cross-sectional area (Ab) of the shaft portion 2 of the bolt to the effective cross-sectional area (Ae) of the screw portion, that is, the S value is 0.85 As described above, as a value less than 1.25, with respect to high tension in the axial direction of the bolt, the threaded portion 3 that becomes a point of occurrence of delayed fracture due to yield deformation of the bolt shaft portion 2 ahead of the threaded portion 3. This can be achieved by reducing the stress concentration and plastic strain and increasing the ductility of the bolt product.

〔ボルト軸部形状〕
既存のF10T及びS10Tのボルトの場合、前記(1)式におけるS値は1.25から1.28の値であり、ボルト首下軸部の断面積(Ab)がねじ部の有効断面積(Ae)よりも大きいためボルトに張力を付加するとボルトはねじ部で破断する。
本発明のボルトの場合、S値が1.25未満の値となるようなボルト軸部の形状である。このようなボルトではS値を1.25未満とすることでボルトねじ部3への応力集中を低減できる。より好ましくはS値を1.05以下とすることで終局時に軸部破断が生じるため、ねじ部破断が生じるボルトに比べて変形能力が著しく向上する。一方でS値が小さくなりすぎるとボルトに導入できる張力も低くなるため、S値は0.85以上とするのが望ましい。
[Bolt shaft shape]
In the case of existing F10T and S10T bolts, the S value in the equation (1) is a value from 1.25 to 1.28, and the cross-sectional area (Ab) of the bolt neck lower shaft portion is the effective cross-sectional area of the screw portion ( Since it is larger than Ae), if tension is applied to the bolt, the bolt breaks at the threaded portion.
In the case of the bolt of the present invention, the bolt shaft portion has such a shape that the S value is less than 1.25. In such a bolt, the stress concentration on the bolt screw portion 3 can be reduced by setting the S value to less than 1.25. More preferably, by setting the S value to 1.05 or less, the shaft portion breaks at the end, so that the deformability is remarkably improved as compared with the bolt where the thread portion breaks. On the other hand, if the S value becomes too small, the tension that can be introduced into the bolt also decreases, so the S value is desirably 0.85 or more.

〔化学成分〕
本発明の高力ボルトは、質量%で
C:0.35〜0.70%、
Si:0.50〜2.50%、
Mn:0.10〜1.00%、
Cr:0.30〜3.00%、
Mo:0.50〜1.50%、
Al:0.001〜0.1%
を含有し、残部はFe及び不可避不純物からなることを特徴とするものである。
以下に、本発明ボルトの化学成分の限定理由について述べる。
〔Chemical composition〕
The high-strength bolt of the present invention is, in mass%, C: 0.35 to 0.70%,
Si: 0.50 to 2.50%,
Mn: 0.10 to 1.00%,
Cr: 0.30 to 3.00%
Mo: 0.50 to 1.50%,
Al: 0.001 to 0.1%
The balance is composed of Fe and inevitable impurities.
The reason for limiting the chemical component of the bolt of the present invention will be described below.

C:
Cは炭化物粒子を形成し、強度増加に最も有効な成分であるが、0.70質量%を超えると靱性劣化を招くことから、含有量を0.70質量%とした。強度増加を充分に期待するためには、0.35質量%以上、好ましくは、0.40質量%以上、より好ましくは0.50質量%を含有させる。
C:
C forms carbide particles and is the most effective component for increasing the strength. However, if it exceeds 0.70% by mass, the toughness is deteriorated, so the content is set to 0.70% by mass. In order to sufficiently expect an increase in strength, 0.35% by mass or more, preferably 0.40% by mass or more, more preferably 0.50% by mass is contained.

Si:
Siは脱酸及びフェライト中に固溶して鋼の強度を高めるとともにセメンタイトを微細に分散させるのに有効な元素である。
従って、脱酸材として添加したもので鋼中に残るものも含め、含有量を0.50質量%以上とする。高強度化を図る上で上限は特に制限しないが、鋼材の冷間鍛造性及び加工性を考慮すれば、2.5質量%以下、好ましくは2.0質量%以下、より好ましくは1.0質量%とすることが好ましい。
Si:
Si is an element effective for deoxidizing and dissolving in ferrite to increase the strength of the steel and finely disperse cementite.
Accordingly, the content added to the steel as a deoxidizing material and remaining in the steel is set to 0.50% by mass or more. The upper limit is not particularly limited for increasing the strength, but considering the cold forgeability and workability of the steel, it is 2.5% by mass or less, preferably 2.0% by mass or less, more preferably 1.0%. It is preferable to set it as the mass%.

Mn:
Mnはオーステナイト化温度を低下させオーステナイトの微細化に有効であるとともに、焼入れ性並びにセメンタイト中に固溶してセメンタイトの粗大化を抑制するのに有効な元素である。
0.10質量%未満では所望の効果が得られないため、0.10質量%以上と定めた。より好ましくは0.2質量%以上を含有させる。高強度化を図る上で上限は特に制限しないが、得られる鋼材の靭性を考慮すれば、1.00質量%以下とすることが好ましい。
Mn:
Mn is an element effective in lowering the austenitizing temperature and effective in refining austenite, and also in hardenability and solid solution in cementite to suppress cementite coarsening.
If the amount is less than 0.10% by mass, the desired effect cannot be obtained. More preferably, 0.2 mass% or more is contained. The upper limit is not particularly limited for increasing the strength, but considering the toughness of the steel material to be obtained, it is preferably 1.00% by mass or less.

Cr:
Crは焼入れ性向上に有効な元素であるとともにセメンタイト中に固溶してセメンタイトの成長を遅滞させる作用が強い元素である。また、比較的多く添加することでセメンタイトよりも熱的に安定な高Cr炭化物を形成したり、耐食性を向上させる、本発明では重要な元素のひとつでもある。
したがって、少なくとも0.30質量%以上含有させる必要がある。好ましくは0.80質量%以上であって、より好ましくは1.00質量%以上を含有させる。ただし、Crを多く添加しすぎると焼入れ処理の際に多くの粗大な炭化物が未固溶で残存し、機械的性質を劣化させる。よってその上限を3.00質量%以下とした。
Cr:
Cr is an element effective for improving the hardenability, and is also an element having a strong effect of delaying the growth of cementite by dissolving in cementite. In addition, it is also one of the important elements in the present invention that, by adding a relatively large amount, forms a high Cr carbide that is more thermally stable than cementite and improves corrosion resistance.
Therefore, it is necessary to contain at least 0.30% by mass or more. Preferably it is 0.80 mass% or more, More preferably, 1.00 mass% or more is contained. However, if too much Cr is added, many coarse carbides remain undissolved during the quenching process, and the mechanical properties are deteriorated. Therefore, the upper limit was made 3.00 mass% or less.

Mo:
Moは本発明において鋼の高強度化に有効な元素であり、鋼の焼入れ性向上を向上させるだけでなく、セメンタイト中にも少量固溶してセメンタイトを熱的に安定にする。とくにセメンタイトとはまったく別個に基地相中に新しく転位上に合金炭化物を核生成することで2次硬化を起こして鋼を強化する。しかも形成された合金炭化物は微細粒化に有効であると共に水素トラップサイトとしても有効である。
したがって、好ましくは0.50質量%以上、より好ましくは1.00質量%以上を含有させるが、高価な元素であるとともに過剰な添加は粗大な未固溶炭化物または金属間化合物を形成して靱性を劣化させるため、添加量の上限を1.50質量%に定めた。
なお、W、VについてもMoと同様な効果を示すため、Moの一部をこれらの元素で置き換えることも可能である。
Mo:
Mo is an element effective for increasing the strength of steel in the present invention, and not only improves the hardenability of the steel but also solidifies a small amount in cementite to make the cementite thermally stable. In particular, secondary hardening occurs and steel is strengthened by nucleating alloy carbides newly on dislocations in the matrix phase completely separately from cementite. Moreover, the formed alloy carbide is effective for atomization and also as a hydrogen trap site.
Therefore, preferably 0.50% by mass or more, more preferably 1.00% by mass or more is contained. However, it is an expensive element and excessive addition forms coarse undissolved carbides or intermetallic compounds to produce toughness. Therefore, the upper limit of the addition amount was set to 1.50% by mass.
Since W and V also show the same effect as Mo, a part of Mo can be replaced with these elements.

Alは脱酸およびOやNなどの元素と酸化物や窒化物などを形成して基地組織を微細化するのに有効な元素である。ただし過剰な添加は靱性を低下させるため、0.1質量%以下とするのが好ましい。より好ましくは0.04質量%以下とすることが好ましい。   Al is an element that is effective for deoxidizing and forming elements such as O and N, oxides, nitrides and the like to refine the base structure. However, since excessive addition reduces toughness, it is preferably 0.1% by mass or less. More preferably it is 0.04 mass% or less.

PやSは粒界強度を低下させるため極力取り除きたい元素であり、それぞれ0.01質量%以下とすることが好ましい。   P and S are elements that should be removed as much as possible in order to reduce the grain boundary strength, and are each preferably 0.01% by mass or less.

なお、上記以外の元素についても、本発明の効果を下げない範囲で各種の元素が含有されることが許容される。   In addition, it is permissible for elements other than those described above to be contained in various elements as long as the effects of the present invention are not reduced.

〔ボルト製品の調質処理〕
1700MPa以上のボルト引張強さを得るためには、素材をボルトへ成形した後、焼入れおよび焼戻処理を施す必要がある。
以下に、本発明におけるボルト製品の調質処理条件の限定理由について述べる。なお、ここでボルト引張強さは、ボルト製品からJIS Z 2201で規定される形状及び寸法に切削加工された引張試験片の常温での引張強さとする。
[Refining treatment of bolt products]
In order to obtain a bolt tensile strength of 1700 MPa or more, it is necessary to perform quenching and tempering treatment after forming the material into bolts.
The reasons for limiting the tempering treatment conditions for bolt products in the present invention will be described below. Here, the bolt tensile strength is defined as the tensile strength at normal temperature of a tensile test piece machined from a bolt product into a shape and dimensions specified in JIS Z 2201.

上記化学成分よりボルト製品のオーステナイト化温度としては850℃以上が必要である。ただしオーステナイト化温度が高すぎると基地結晶粒組織が粗大化し、ボルトの靭性が低下してしまう。したがってオーステナイト化温度の上限を1050℃以下に定めた。 オーステナイト化温度としては好ましくは1000℃以下、さらに好ましくは950℃以下とする。なお、オーステナイト化時間はボルト製品の形状や大きさによって異なるため条件は特に限定しないが、ボルト製品がオーステナイト化温度に達した後、10分から90分の範囲内であることが望ましい。   From the above chemical components, the austenitizing temperature of the bolt product needs to be 850 ° C. or higher. However, if the austenitizing temperature is too high, the base crystal grain structure becomes coarse and the toughness of the bolt decreases. Therefore, the upper limit of the austenitizing temperature is set to 1050 ° C. or lower. The austenitizing temperature is preferably 1000 ° C. or lower, more preferably 950 ° C. or lower. The austenitizing time varies depending on the shape and size of the bolt product, and the conditions are not particularly limited. However, it is desirable that the austenitizing time is within a range of 10 to 90 minutes after the bolt product reaches the austenitizing temperature.

オーステナイト化後の焼入れ条件はボルト製品の形状や大きさによって異なるため条件は特に限定しないが、焼入れによって(1)ボルトねじ底部等に焼割れが生じないこと、(2)焼入れままのボルト製品を構成する基地金属組織の90体積%以上がマルテンサイト組織からなることが不可欠である。その理由は、基地金属組織の90体積%未満の場合は、引き続く焼戻処理によって、1700MPa以上の引張強さが得られないためである。   The quenching conditions after austenitization vary depending on the shape and size of the bolt product, so the conditions are not particularly limited. However, (1) no quench cracking occurs at the bottom of the bolt screw by quenching, and (2) the as-quenched bolt product It is indispensable that 90 volume% or more of the base metal structure to comprise comprises a martensite structure. The reason is that when the base metal structure is less than 90% by volume, the tensile strength of 1700 MPa or more cannot be obtained by the subsequent tempering treatment.

前記焼入れまま組織において、1700MPa以上の引張強さでボルトの靭性や耐遅れ破壊特性を担保するには500℃以上で焼戻処理を施す必要がある。高温で焼戻処理を施すほど靭性は向上するが、引張強さは低下する。よって、焼戻温度の上限を650℃と定めた。とくに上記Mo添加の効果を有効に利用するには、その焼戻温度としては好ましくは530℃以上、より好ましくは550℃以上とする。なお、焼戻時間はボルト製品の形状や大きさによって異なるため条件は特に限定しないが、ボルト製品が焼戻温度に達した後、30分から90分の範囲内であることが望ましい。   In the as-quenched structure, it is necessary to perform a tempering treatment at 500 ° C. or higher to ensure the toughness and delayed fracture resistance of the bolt with a tensile strength of 1700 MPa or more. As the tempering treatment is performed at a higher temperature, the toughness is improved, but the tensile strength is lowered. Therefore, the upper limit of the tempering temperature was set to 650 ° C. In particular, in order to effectively utilize the effect of the Mo addition, the tempering temperature is preferably 530 ° C. or higher, more preferably 550 ° C. or higher. The tempering time varies depending on the shape and size of the bolt product, and the conditions are not particularly limited. However, it is desirable that the tempering time is within a range of 30 to 90 minutes after the bolt product reaches the tempering temperature.

以下、本発明の実施例について説明する。
この実施例における供試鋼材の化学成分を表1、熱処理条件および常温での引張変形特性を表2に示す。
表1において鋼材A,B,Cは本発明範囲内の化学成分の鋼材、D,Eは発明成分範囲外の鋼材である。なお、比較鋼のD鋼はF10T高力ボルト用鋼としても使用されるJIS−SCM440鋼に相当する。
Examples of the present invention will be described below.
Table 1 shows the chemical composition of the test steel in this example, and Table 2 shows the heat treatment conditions and the tensile deformation characteristics at room temperature.
In Table 1, steel materials A, B and C are steel materials having chemical components within the scope of the present invention, and D and E are steel materials outside the scope of the invention components. The comparative steel D steel corresponds to JIS-SCM440 steel which is also used as F10T high-strength bolt steel.

Figure 2013139631
Figure 2013139631

Figure 2013139631
Figure 2013139631

発明鋼A、発明鋼Bは500℃以上の焼戻温度で1700MPa以上の引張強さを得ることができるが、比較鋼Dは、Si、Mo量が、比較鋼Eは、Mo量がそれぞれ本発明の下限より少なく焼戻軟化抵抗が小さいため500℃以上の焼戻処理では1700MPa以上の引張強さを得ることができなかった。ただし、発明鋼Aでも焼戻マルテンサイト体積率が90%未満になると、1700MPa以上の引張強さを得ることができなくなった。
なお、用いた引張試験片はJIS Z 2201に規定のJIS4号または14号A丸棒試験片であり、引張試験片方法はJIS Z 2241に準じた。
Inventive steel A and inventive steel B can obtain a tensile strength of 1700 MPa or higher at a tempering temperature of 500 ° C. or higher. Comparative steel D has Si and Mo contents, and comparative steel E has Mo contents. Since the temper softening resistance is less than the lower limit of the invention, a tensile strength of 1700 MPa or more could not be obtained by tempering treatment at 500 ° C. or more. However, even with the invention steel A, when the tempered martensite volume fraction was less than 90%, it was impossible to obtain a tensile strength of 1700 MPa or more.
The tensile test piece used was a JIS No. 4 or No. 14 A round bar test piece defined in JIS Z 2201, and the tensile test piece method conformed to JIS Z 2241.

図2は、ねじ底部の形状を模擬した切欠を入れた引張試験片の形状および寸法を示す。
表3に、切欠き底の曲率半径rと応力集中係数の関係を示す。
FIG. 2 shows the shape and dimensions of a tensile test piece with a notch simulating the shape of the screw bottom.
Table 3 shows the relationship between the radius of curvature r of the notch bottom and the stress concentration factor.

Figure 2013139631
Figure 2013139631

例えば、図3は発明鋼A、発明鋼B、並びに比較鋼Dの切欠試験片の応力集中係数と切欠引張強さとの関係を示す。なお、ここでは万能型引張試験を用いて、クロスヘッドスピードが0.5mm/minで試験片を破断するまで引張試験した。比較鋼Dと比べて、発明鋼A,Bの方で切欠引張強さの応力集中係数依存性が高く、応力集中係数を低くすることによってより高い切欠引張強さを得ることができる。   For example, FIG. 3 shows the relationship between the stress concentration factor and the notch tensile strength of the notched specimens of Invention Steel A, Invention Steel B, and Comparative Steel D. Here, a universal type tensile test was used, and a tensile test was performed until the test piece was broken at a crosshead speed of 0.5 mm / min. Compared with the comparative steel D, the invention steels A and B have higher stress concentration factor dependency of the notch tensile strength, and higher notch tensile strength can be obtained by lowering the stress concentration factor.

例えば、図4は、前記切欠試験について、発明鋼A、比較鋼D、比較鋼Eの水素割感受性試験の結果である。なお、本試験の手順を図5に示す。鋼中の水素量は昇温脱離分析法により測定し、100℃/時間で試験片を加熱し300℃までに放出される水素量を拡散性水素量として定義した。
同じ負荷荷重で拡散性水素の許容量を比べた場合、例えば負荷荷重1400MPaでは、図中に矢印で示すように比較鋼D、比較鋼Eよりも発明鋼Aの方で水素許容量が高い。発明鋼Aでは切欠底の応力集中係数を小さくすること、すなわちねじ部への応力集中を小さくすることでさらに水素許容量を高くできる。
For example, FIG. 4 shows the results of the hydrogen split sensitivity test of Invention Steel A, Comparative Steel D, and Comparative Steel E for the notch test. The procedure of this test is shown in FIG. The amount of hydrogen in the steel was measured by thermal desorption analysis, and the amount of hydrogen released up to 300 ° C. when the test piece was heated at 100 ° C./hour was defined as the amount of diffusible hydrogen.
When the allowable amount of diffusible hydrogen is compared with the same load load, for example, at a load load of 1400 MPa, the hydrogen allowable amount is higher in the inventive steel A than in the comparative steel D and the comparative steel E as indicated by arrows in the figure. In invention steel A, the allowable hydrogen amount can be further increased by reducing the stress concentration factor at the notch bottom, that is, by reducing the stress concentration on the threaded portion.

発明鋼Bの直径22mmの棒材について、鋼材に球状化焼鈍処理を施した後、種々の軸形状でトルシア型ボルトを作製した。ボルト頭部は既存のボルトフォーマーにより冷間で作製した。ボルト成形体は940℃で1時間のオーステナイト化処理後、焼入れし、540℃で1時間の焼戻処理を施した。ボルト製品から切り出したJIS4号試験片の引張強さが1815MPaであった。   About the bar material of 22 mm in diameter of the invention steel B, after carrying out the spheroidizing annealing process to the steel material, the torcia type | mold bolt was produced with various shaft shape. The bolt head was cold produced by an existing bolt former. The bolt molded body was austenitized at 940 ° C. for 1 hour, quenched, and tempered at 540 ° C. for 1 hour. The tensile strength of the JIS No. 4 test piece cut out from the bolt product was 1815 MPa.

図6は、首下形状を変えたボルトの形状を示す。なお、ねじ形状は既存のF10TやS10Tボルトと同じである。   FIG. 6 shows the shape of the bolt with the neck shape changed. The screw shape is the same as that of the existing F10T or S10T bolt.

図7に加力概要図を示す。加力はアムスラー型万能試験機により圧縮力を加え、冶具を介して試験体に引張力を作用させた。変位計を鋼板の4辺に取付け、上下の鋼板の相対変位を試験体が破断するまで測定した。なお、試験は、事前にキャリブレーション試験を行い、張力管理により、締め付けを行って、ボルト製品のねじ部の降伏耐力の0.75倍に相当する初期張力(=0.75×降伏強さ×Ae)を導入した。   FIG. 7 shows a schematic diagram of the applied force. The applied force was a compressive force applied by an Amsler universal testing machine, and a tensile force was applied to the specimen through a jig. A displacement meter was attached to the four sides of the steel plate, and the relative displacement of the upper and lower steel plates was measured until the specimen broke. The test is performed in advance by performing a calibration test, tightening by tension control, and initial tension corresponding to 0.75 times the yield strength of the threaded portion of the bolt product (= 0.75 × yield strength × Ae) was introduced.

この試験により、ボルトの変位量と荷重の関係を調査した(図8)。なお、図中の荷重変位曲線の右端が破断点である。荷重変位関係より、S値が1.25及び1.05の試験体では終局時にねじ部破断が生じている。ただし、S値が1.05では1.25のボルトと比べて最大変位が改善されており、これはボルトのねじ部3への応力集中が緩和されていることを示している。
さらに、S値が1.00から0.85の試験体では終局時に軸部破断が生じており、ねじ部3への応力集中が緩和されることに加えて、耐力が維持されかつ変形能力も大きいことが分かる。発明ボルトが優れたエネルギー吸収能力を発揮していることが認められる。なお、S値が0.8では最大荷重が430kNまで低下している。
By this test, the relationship between the displacement of the bolt and the load was investigated (FIG. 8). The right end of the load displacement curve in the figure is the breaking point. From the load-displacement relationship, in the specimens with S values of 1.25 and 1.05, the thread part breaks at the end. However, when the S value is 1.05, the maximum displacement is improved as compared with the bolt of 1.25, which indicates that the stress concentration on the screw portion 3 of the bolt is alleviated.
Further, in the specimen having an S value of 1.00 to 0.85, the shaft portion was broken at the end, and in addition to the stress concentration on the screw portion 3 being relaxed, the proof stress was maintained and the deformation capability was also improved. You can see that it ’s big. It can be seen that the inventive bolts exhibit excellent energy absorption capabilities. When the S value is 0.8, the maximum load is reduced to 430 kN.

表4は、ボルトの引張変形特性とS値(=Ab/Ae)との関係を示す。   Table 4 shows the relationship between the tensile deformation characteristics of the bolt and the S value (= Ab / Ae).

Figure 2013139631
Figure 2013139631

既存のF10TボルトのS値は1.25から1.28である。S値を本発明の1.25未満、0.85以上の範囲内とすることでボルト製品の引張強さをあまり損なうことなくボルトの変形能を上げることができる。   The S value of existing F10T bolts is 1.25 to 1.28. By making the S value less than 1.25 of the present invention and within the range of 0.85 or more, the deformability of the bolt can be increased without significantly reducing the tensile strength of the bolt product.

本発明の高力ボルトを使用すれば、従来の1000〜1100MPa級の高力ボルトに比べて、(1)接合部のコンパクト化かつ軽量化、(2)より高強度かつ厚肉鋼板のボルト接合が可能になり、設計の自由度が増す。その結果、省資源化、省力化、省エネルギー化、そしてCO削減を念頭に置いた新しい土木建築構造物が開発できる。 If the high-strength bolt of the present invention is used, compared with the conventional high-strength bolt of 1000 to 1100 MPa class, (1) the joint portion is made compact and lightweight, and (2) the bolt strength is higher than that of the thick steel plate. This increases the degree of freedom in design. As a result, it is possible to develop a new civil engineering building structure with resource saving, labor saving, energy saving and CO 2 reduction in mind.

1 頭部
2 軸部
3 ねじ部
1 Head 2 Shaft 3 Screw

Claims (2)

質量%で
C:0.35〜0.70%、
Si:0.50〜2.50%、
Mn:0.10〜1.00%、
Cr:0.30〜3.00%、
Mo:0.50〜1.50%、
Al:0.001〜0.1%
を含有し、残部がFe及び不可避不純物から成る高力ボルトであって、ボルト頭部からねじ部までの部位における内部金属組織の90体積%以上が焼戻マルテンサイト組織であると共に、当該部位の引張強さが1700MPa以上であり、次式(1)で表される軸部形状パラメータSが0.85以上1.25未満の値であることを特徴とする高力ボルト。
S=Ab/Ae ・・・ (1)
(式中のAbは軸部の有効断面積、Aeはねじ部の有効断面積を示す)
In mass% C: 0.35 to 0.70%,
Si: 0.50 to 2.50%,
Mn: 0.10 to 1.00%,
Cr: 0.30 to 3.00%
Mo: 0.50 to 1.50%,
Al: 0.001 to 0.1%
The balance is a high-strength bolt composed of Fe and inevitable impurities, and 90% by volume or more of the internal metal structure in the portion from the bolt head to the screw portion is a tempered martensite structure, A high-strength bolt having a tensile strength of 1700 MPa or more and a shaft shape parameter S represented by the following formula (1) having a value of 0.85 or more and less than 1.25.
S = Ab / Ae (1)
(Ab in the formula represents the effective sectional area of the shaft portion, and Ae represents the effective sectional area of the threaded portion)
請求項1に記載の高力ボルトの製造方法であって、素材をボルトに成形した後、850℃〜1050℃の温度範囲内でオーステナイト化処理を施した後に焼入れして内部金属組織の90体積%以上をマルテンサイト組織とした後、500℃〜650℃の温度範囲で焼戻処理を施すことを特徴とする高力ボルトの製造方法。   It is a manufacturing method of the high strength bolt of Claim 1, Comprising: After shape | molding a raw material into a volt | bolt, it hardened after performing the austenitizing process within the temperature range of 850 degreeC-1050 degreeC, and 90 volume of an internal metal structure. % Or more is made into a martensite structure, and then a tempering treatment is performed in a temperature range of 500 ° C. to 650 ° C.
JP2012269066A 2011-12-09 2012-12-10 High strength bolt and manufacturing method thereof Expired - Fee Related JP6051031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012269066A JP6051031B2 (en) 2011-12-09 2012-12-10 High strength bolt and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011269868 2011-12-09
JP2011269868 2011-12-09
JP2012269066A JP6051031B2 (en) 2011-12-09 2012-12-10 High strength bolt and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013139631A true JP2013139631A (en) 2013-07-18
JP6051031B2 JP6051031B2 (en) 2016-12-21

Family

ID=49037350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012269066A Expired - Fee Related JP6051031B2 (en) 2011-12-09 2012-12-10 High strength bolt and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6051031B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104625617A (en) * 2014-12-13 2015-05-20 海盐双赢管件制造有限公司 High-strength bolt production process
JP2016114233A (en) * 2014-12-18 2016-06-23 トヨタ自動車株式会社 Temporary fastener for member to be held and holding unit
JP2017066428A (en) * 2015-09-28 2017-04-06 大同特殊鋼株式会社 Steel for high strength bolt excellent in delayed fracture resistance and cold workability and method of manufacturing high strength bolt using the same
EP3187610A4 (en) * 2014-08-29 2018-01-17 Nissan Motor Co., Ltd Steel for high-strength bolt, and high-strength bolt
JP2020084276A (en) * 2018-11-27 2020-06-04 大同特殊鋼株式会社 Steel for high-strength bolt and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08120408A (en) * 1994-10-18 1996-05-14 Nippon Steel Corp High strength bolt steel excellent in delayed fracture resistance
JP2006291295A (en) * 2005-04-11 2006-10-26 Nippon Steel Corp High-strength bolt superior in delayed fracture resistance and manufacturing method therefor
JP2006336067A (en) * 2005-06-01 2006-12-14 Toyota Motor Corp Method for manufacturing non-heat treated high-strength bolt
JP2011058576A (en) * 2009-09-10 2011-03-24 National Institute For Materials Science High-strength bolt

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08120408A (en) * 1994-10-18 1996-05-14 Nippon Steel Corp High strength bolt steel excellent in delayed fracture resistance
JP2006291295A (en) * 2005-04-11 2006-10-26 Nippon Steel Corp High-strength bolt superior in delayed fracture resistance and manufacturing method therefor
JP2006336067A (en) * 2005-06-01 2006-12-14 Toyota Motor Corp Method for manufacturing non-heat treated high-strength bolt
JP2011058576A (en) * 2009-09-10 2011-03-24 National Institute For Materials Science High-strength bolt

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3187610A4 (en) * 2014-08-29 2018-01-17 Nissan Motor Co., Ltd Steel for high-strength bolt, and high-strength bolt
US10913993B2 (en) 2014-08-29 2021-02-09 Nissan Motor Co., Ltd. Steel for high-strength bolt, and high-strength bolt
CN104625617A (en) * 2014-12-13 2015-05-20 海盐双赢管件制造有限公司 High-strength bolt production process
JP2016114233A (en) * 2014-12-18 2016-06-23 トヨタ自動車株式会社 Temporary fastener for member to be held and holding unit
CN105715648A (en) * 2014-12-18 2016-06-29 丰田自动车株式会社 Temporary Attachment And A Holder For A Member To Be Held
US9689419B2 (en) 2014-12-18 2017-06-27 Toyota Jidosha Kabushiki Kaisha Temporary attachment and a holder for a member to be held
JP2017066428A (en) * 2015-09-28 2017-04-06 大同特殊鋼株式会社 Steel for high strength bolt excellent in delayed fracture resistance and cold workability and method of manufacturing high strength bolt using the same
JP2020084276A (en) * 2018-11-27 2020-06-04 大同特殊鋼株式会社 Steel for high-strength bolt and method for manufacturing the same
JP7200627B2 (en) 2018-11-27 2023-01-10 大同特殊鋼株式会社 High-strength bolt steel and its manufacturing method

Also Published As

Publication number Publication date
JP6051031B2 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
JP4427012B2 (en) High strength bolt excellent in delayed fracture resistance and method for producing the same
JP5334769B2 (en) High strength bolt
KR20080017365A (en) High-strength steel excellent in delayed fracture resistance characteristics and metal bolts
JP6051031B2 (en) High strength bolt and manufacturing method thereof
KR20080090424A (en) Spring steel, method for producing a spring using said steel and a spring made from such steel
JP5156453B2 (en) High strength steel plate with excellent bending workability and tensile strength of 980 MPa or more
KR20230116043A (en) Non-quenched and tempered circular steel with high strength, high toughness and easy cutting and manufacturing method thereof
CN102345076B (en) Steel for creeper tread with tensile strength of 1,500MPa and manufacturing method thereof
KR20200136068A (en) Steel Material for Structural Fastening with Improved Delayed-Fracture Resistance and Manufacturing Method of Structural Fastener Using by This
AU2017418679B2 (en) Low yield strength ratio, high strength and ductility thick gauge steel plate and manufacturing method therefor
CN106560522B (en) Component using age-hardening bainite non-heat-treated steel and method for producing same
WO2018025674A1 (en) High-strength steel plate and manufacturing method thereof
JP4411253B2 (en) Hot forged parts with excellent delayed fracture resistance and method for producing the same
JP6017944B2 (en) High strength bolt and manufacturing method thereof
WO2015045951A1 (en) Steel for high-strength bolts which has excellent delayed fracture resistance and bolt moldability, and bolt
JP4728884B2 (en) Induction contour hardened steel and induction contour hardened parts with excellent low cycle fatigue characteristics
CN108913992B (en) Steel for bolt and application thereof
KR20100057823A (en) Steel for producing machine components formed from solid stock
JP3718369B2 (en) Steel for high strength bolt and method for producing high strength bolt
JPH04371547A (en) Production of high strength and high toughness steel
KR100516518B1 (en) Steel having superior cold formability and delayed fracture resistance, and method for manufacturing working product made of it
JP2019123921A (en) High strength bolt and manufacturing method therefor
JPH0247240A (en) Medium carbon tough and hard steel
KR101191763B1 (en) Secondary hardening alloy steel containing tungsten superior in strength and fracture toughness and method for producing the same
KR100554752B1 (en) Method for manufacturing high carbon working product having a earthquake property

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161128

R150 Certificate of patent or registration of utility model

Ref document number: 6051031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees