JP2004183064A - Steel for case hardening having excellent cold workability and coarse grain prevention property when carburized, and production method therefor - Google Patents

Steel for case hardening having excellent cold workability and coarse grain prevention property when carburized, and production method therefor Download PDF

Info

Publication number
JP2004183064A
JP2004183064A JP2002353073A JP2002353073A JP2004183064A JP 2004183064 A JP2004183064 A JP 2004183064A JP 2002353073 A JP2002353073 A JP 2002353073A JP 2002353073 A JP2002353073 A JP 2002353073A JP 2004183064 A JP2004183064 A JP 2004183064A
Authority
JP
Japan
Prior art keywords
less
steel
rolling
precipitates
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002353073A
Other languages
Japanese (ja)
Other versions
JP3738003B2 (en
Inventor
Tatsuro Ochi
達朗 越智
Manabu Kubota
学 久保田
Shuji Ozawa
修司 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002353073A priority Critical patent/JP3738003B2/en
Publication of JP2004183064A publication Critical patent/JP2004183064A/en
Application granted granted Critical
Publication of JP3738003B2 publication Critical patent/JP3738003B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel for case hardening which exhibits improved cold workability and prevents the occurrence of coarse grains when carburized, and to provide a production method therefor. <P>SOLUTION: A slab produced by a process where steel having a composition comprising, by mass%, 0.1 to 0.3% C, 0.01 to 0.15% Si, 0.2 to 0.65% Mn, 0.005 to 0.15% S, 0.4 to 1.25% Cr, 0.0005 to 0.005% B, 0.015 to 0.05% Al, and 0.03 to 0.15% Ti, a restricted content of N, P and O and the balance iron with inevitable impurities is cast, and is thereafter subjected to blooming without being cooled to an A3 point or below is hot-rolled into a wire rod or a bar steel under the conditions where the heating temperature is controlled to 900 to 1,070°C, the finishing temperature is controlled to 800 to 970°C, and successively to the hot rolling, slow cooling is performed at a cooling rate of ≤1°C/s in the temperature range of 800 to 500°C. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、冷間加工性に優れ、かつ浸炭時の粗大粒防止特性に優れた肌焼用鋼材およびその製造方法に関する。
【0002】
【従来の技術】
歯車、シャフト、CVJ部品は、通常、例えばJIS G 4052、JISG 4104、JIS G 4105、JIS G 4106などに規定されている中炭素の機械構造用合金鋼を使用し、冷間鍛造(転造も含む)−切削により所定の形状に加工された後、浸炭焼入れを行う工程で製造されている。冷間鍛造は、製品の表面肌、寸法精度が良く、熱間鍛造に比べて製造コストが低く、歩留まりも良好であるため、従来は熱間鍛造で製造されていた部品を、冷間鍛造へ切り替える傾向が強くなっており、冷鍛−浸炭工程で製造される浸炭部品の対象は近年顕著に増加している。ここで、熱間鍛造から冷間鍛造への切り替えに際しては、鋼材の冷間変形抵抗の低減と限界圧縮率の向上が重要な課題である。これは、前者は、鍛造工具の寿命を確保するためであり、後者は冷間鍛造時の鋼材の割れを防止するためである。このような冷間鍛造に適した鋼材として、ボロン鋼の適用が検討されている。しかしながら、ボロン鋼は浸炭加熱時に一部のオーステナイト結晶粒が粗大化する現象を起こしやすい。このような粗大粒が発生した部品では、浸炭焼入れ後に熱処理歪みを発生し、例えば、歯車やCVJ部品ではこの浸炭歪みが大きければ、騒音や振動の原因となる。こうした経緯から、冷間加工性に優れ、かつ低浸炭歪み特性に優れた、つまり浸炭時に粗大粒を生じないボロン鋼が強く求められている。
【0003】
本出願人は、先に冷間加工性に優れ、かつ浸炭時に粗大粒の発生を防止できて低浸炭歪み特性に優れた肌焼ボロン鋼とその製造方法の発明を提供した(特許文献1)。
【0004】
この発明では、鋼の化学成分を制限するのみでは、粗大粒を防止できないので、熱間加工後の鋼材のAlNの固溶状態や、Nb(CN)、Ti(CN)等の微細析出物の析出量を制御して、NbC、TiC析出物をピン止め粒子として活用する手段等を採用している。
【0005】
即ち、圧延加熱温度を1150℃以上の高温にして、熱間加工後の鋼材の状態でAlNの析出量を制限し、また、圧延加熱温度を1150℃以上の高温とすることによりNbの析出物、Tiの析出物を一旦溶体化し、熱間圧延後にこれらの析出物の析出温度域を徐冷することにより、熱間圧延後の鋼材に一定量以上のNbの析出物、Tiの析出物を多量微細分散させるものである。
【0006】
また、本出願人は、冷間鍛造時には冷間加工性に優れ、浸炭時に粗大粒の発生と表面から深さ0.2〜0.7mmに生成する不完全焼入れ組織の生成を防止することができる肌焼ボロン鋼とその製造方法の発明を提供した(特許文献2)。
【0007】
この発明は、化学組成を制限した鋼を加熱温度を高温の1150℃以上とし、熱間圧延の仕上温度を840〜1000℃、熱間圧延に引き続いて800〜500℃の温度範囲を1℃/秒以下の冷却速度で徐冷することを特徴としている。
【0008】
上記いずれの発明も、圧延加熱温度を1150℃以上の高温としてTiの析出物、Nbの析出物を一旦溶体化し、熱間圧延後に析出温度域を徐冷することにより、これらの析出物を多量微細分散させているものである。しかしながら、これらの方法でも浸炭時の粗大粒の防止が必ずしも十分でない場合があり、さらに、圧延加熱温度を1150℃以上の高温にすると、圧延ままで硬くなり、冷間加工性が不十分となり、また、全脱炭が顕著になるといった問題点を有している。
【0009】
【特許文献1】
特開平11−335777号公報
【特許文献2】
特開2001−303172号公報
【発明が解決しようとする課題】
本発明は、冷間加工性を向上させ、かつ浸炭時の粗大粒の発生を防止することができる肌焼用鋼材及びその製造方法を提供することを課題とするものである。
【0010】
【課題を解決しようとする手段】
本発明者は、肌焼用ボロン鋼の冷間加工性の向上及び浸炭時の粗大粒防止特性の向上を図るべく鋭意研究を進めた。その結果、従来のように圧延加熱温度を1150℃以上の高温として、全脱炭が顕著になると、その後の浸炭時に脱炭部から粗大粒が発生するため、粗大粒防止特性が不十分となることを見出した。さらに、従来のように圧延加熱温度を1150℃以上の高温として、Tiの析出物、Nbの析出物を一旦溶体化しなくても、鋳造後、A3点温度以下に冷却することなくHCRで分塊圧延をした鋼片を低温加熱圧延すれば、全脱炭の低減をすることができ、これにより粗大粒の生成を防止でき、かつ、析出強化量の低減による軟質化により冷間加工性が向上できることを見出して、本発明を完成した。
【0011】
本発明の要旨は、次のとおりである。
【0012】
(1) 質量%で、
C:0.1〜0.3%、
Si:0.01〜0.15%、
Mn:0.2〜0.65%、
S:0.005〜0.15%、
Cr:0.4〜1.25%、
B:0.0005〜0.005%、
Al:0.015〜0.05%、
Ti:0.03〜0.15%、
N:0.005%未満(0%を含む)、
P:0.025%以下(0%を含む)、
O:0.0025%以下(0%を含む)
を含有し、残部が鉄および不可避的不純物からなり、熱間圧延後の組織のマトリックス中に直径0.2μm以下のTiの析出物を10個/μm以上を有し、硬さ指数Hを下記式で定義すると、硬さがHVでH+30以下であり、JISG0558で規定する脱炭深さ:DM−T0.2mm以下であることを特徴とする冷間加工性と浸炭時の粗大粒防止特性に優れた肌焼用鋼材。
H=273.5C%+39.1Si%+54.7Mn%+30.4Cr%+136.7Mo%+18.2Ni%
【0013】
(2) 質量%で、
C:0.1〜0.3%、
Si:0.01〜0.15%、
Mn:0.2〜0.65%、
S:0.005〜0.15%、
Cr:0.4〜1.25%、
B:0.0005〜0.005%、
Al:0.015〜0.05%、
Ti:0.03〜0.15%、
Nb:0.002〜0.05%、
N:0.005%未満(0%を含む)、
P:0.025%以下(0%を含む)、
O:0.0025%以下(0%を含む)
を含有し、残部が鉄および不可避的不純物からなり、熱間圧延後の組織のマトリックス中に直径0.2μm以下のNbの析出物、Tiの析出物、またはNbとTiの複合組成からなる析出物のその合計で10個/μm以上を有し、硬さ指数Hを下記式で定義すると、硬さがHVでH+30以下であり、JISG0558で規定する脱炭深さ:DM−T0.2mm以下であることを特徴とする冷間加工性と浸炭時の粗大粒防止特性に優れた肌焼用鋼材。
H=273.5C%+39.1Si%+54.7Mn%+30.4Cr%+136.7Mo%+18.2Ni%
【0014】
(3) さらに、質量%で、
Mo:0.3%以下、
Ni:2.5%以下
のうちの1種または2種を含有することを特徴とする上記(1)または(2)記載の冷間加工性と浸炭時の粗大粒防止特性に優れた肌焼用鋼材。
【0015】
(4) 質量%で、
C:0.1〜0.3%、
Si:0.01〜0.15%、
Mn:0.2〜0.65%、
S:0.005〜0.15%、
Cr:0.4〜1.25%、
B:0.0005〜0.005%、
Al:0.015〜0.05%、
Ti:0.03〜0.15%、
N:0.005%未満(0%を含む)、
P:0.025%以下(0%を含む)、
O:0.0025%以下(0%を含む)
を含有し、残部が鉄および不可避的不純物からなる鋼を鋳造後A3点温度以下に冷却することなく分塊圧延を行う工程により製造された鋼片を用い、加熱温度を900〜1070℃、熱間圧延の仕上温度を800〜970℃、熱間圧延に引き続いて800〜500℃の温度範囲を1℃/秒以下の冷却速度で徐冷する条件により線材または棒鋼に熱間圧延し、熱間圧延後の組織のマトリックス中に直径0.2μm以下のTiの析出物を10個/μm以上とし、硬さ指数Hを下記式で定義すると、硬さがHVでH+30以下であり、JISG0558で規定する脱炭深さ:DM−T0.2mm以下であることを特徴とする冷間加工性と浸炭時の粗大粒防止特性に優れた肌焼用鋼材の製造方法。
H=273.5C%+39.1Si%+54.7Mn%+30.4Cr%+136.7Mo%+18.2Ni%
【0016】
(5) 質量%で、
C:0.1〜0.3%、
Si:0.01〜0.15%、
Mn:0.2〜0.65%、
S:0.005〜0.15%、
Cr:0.4〜1.25%、
B:0.0005〜0.005%、
Al:0.015〜0.05%、
Ti:0.03〜0.15%、
Nb:0.002〜0.05%、
N:0.005%未満(0%を含む)、
P:0.025%以下(0%を含む)、
O:0.0025%以下(0%を含む)
を含有し、残部が鉄および不可避的不純物からなる鋼を鋳造後A3点温度以下に冷却することなく分塊圧延を行う工程により製造された鋼片を用い、加熱温度を900〜1070℃、熱間圧延の仕上温度を800〜970℃、熱間圧延に引き続いて800〜500℃の温度範囲を1℃/秒以下の冷却速度で徐冷する条件により線材または棒鋼に熱間圧延し、熱間圧延後の組織のマトリックス中に直径0.2μm以下のNbの析出物、Tiの析出物、またはNbとTiの複合組成からなる析出物のその合計で10個/μm以上を有し、硬さ指数Hを下記式で定義すると、硬さがHVでH+30以下であり、JISG0558で規定する脱炭深さ:DM−T0.2mm以下であることを特徴とする冷間加工性と浸炭時の粗大粒防止特性に優れた肌焼用鋼材の製造方法。
H=273.5C%+39.1Si%+54.7Mn%+30.4Cr%+136.7Mo%+18.2Ni%
【0017】
(6) さらに、質量%で、
Mo:0.3%以下、
Ni:2.5%以下
のうちの1種または2種を含有することを特徴とする上記(4)または(5)記載の冷間加工性と浸炭時の粗大粒防止特性に優れた肌焼用鋼材の製造方法。
【0018】
【発明の実施の形態】
以下、本発明について詳細に説明する。
【0019】
本発明では、HCR(Hot Charge Rolling)により鋼を鋳造後A3点温度以下に冷却することなく分塊圧延を行って製造した鋼片を用い、棒鋼線材圧延に際して低温加熱圧延すると、TiCの微細析出物がそのまま析出した状態で保持される。析出強化量は、高温で固溶体から析出された析出強化量よりも低減する。また、全脱炭量も低減し、JIS G 0558で規定する脱炭深さ:DM−T0.2mm以下とすることができる。これによって粗大粒の発生を防止できると共に軟質化により冷間加工性が向上できる。
【0020】
まず、成分の限定理由について説明する。
【0021】
Cは鋼に必要な強度を与えるのに有効な元素であるが、0.1%未満では必要な引張強さを確保することができず、0.3%を超えると硬くなって冷間加工性が劣化するとともに、浸炭後の芯部靭性が劣化するので、0.1〜0.3%の範囲内にする必要がある。
【0022】
Siは鋼の脱酸に有効な元素であるとともに、鋼に必要な強度、焼入れ性を与え、焼戻し軟化抵抗を向上するのに有効な元素であるが、0.01%未満ではその効果は不十分である。一方、0.15%を超えると、硬さの上昇を招き冷間鍛造性が劣化する。以上の理由から、その含有量を0.01〜0.15%の範囲内にする必要がある。好適範囲は0.02〜0.1%である。
【0023】
Mnは鋼の脱酸に有効な元素であるとともに、鋼に必要な強度、焼入れ性を与えるのに有効な元素であるが、0.2%未満では効果は不十分であり、0.65%を超えるとその効果は飽和するのみならず、硬さの上昇を招き冷間鍛造性が劣化するので、0.2〜0.65%の範囲内にする必要がある。好適範囲は0.3〜0.6%である。
【0024】
Sは鋼中でMnSを形成し、これによる被削性の向上を目的として添加するが、0.005%未満ではその効果は不十分である。一方、0.15%を超えるとその効果は飽和し、むしろ粒界偏析を起こし粒界脆化を招く。以上の理由から、Sの含有量を0.005〜0.15%の範囲内にする必要がある。好適範囲は0.005〜0.04%である。
【0025】
Crは鋼に強度、焼入れ性を与えるのに有効な元素であるが、0.4%未満ではその効果は不十分であり、1.25%を超えて添加すると硬さの上昇を招き冷間鍛造性が劣化する。以上の理由から、その含有量を0.4〜1.25%の範囲内にする必要がある。好適範囲は0.6〜1.0%である。
【0026】
Bは次の3点を狙いとして添加する。▲1▼棒鋼・線材圧延において、圧延後の冷却過程でボロン鉄炭化物を生成することにより、フェライトの成長速度を増加させ、圧延ままでの軟質化を促進する。▲2▼浸炭焼入れに際して、鋼に焼入れ性を付与する。▲3▼浸炭材の粒界強度を向上させることにより、浸炭部品としての疲労強度・衝撃強度を向上させる。0.0005%未満の添加では、上記の効果は不十分であり、0.005%を超えるとその効果は飽和するので、その含有量を0.0005〜0.005%の範囲内にする必要がある。好適範囲は0.001〜0.003%である。
【0027】
Alは脱酸剤として添加する。0.015%未満ではその効果は不十分である。一方、0.05%を超えると、AlNが圧延加熱時に溶体化しないで残存し、NbやTiの析出物の析出サイトとなり、これらの析出物の微細分散を阻害し、結晶粒の粗大化を助長する。以上の理由から、その含有量を0.015〜0.05%の範囲内にする必要がある。好適範囲は0.025〜0.04%である。
【0028】
Tiは鋼中でNと結合してTiNを生成するが、これによる固溶Nの固定によるBNの析出防止、つまり固溶Bの確保を目的として添加する。しかしながら、0.03%未満ではその効果は不十分である。一方、Tiを0.15%を超えて添加すると、TiCによる析出硬化が顕著になり、冷間加工性が顕著に劣化する。好適範囲は、0.03〜0.13%である。
【0029】
Nbは浸炭加熱の際に鋼中のC、Nと結びついてNb(CN)を形成し、結晶粒の粗大化抑制に有効な元素である。0.002%未満ではその効果は不十分である。一方、0.05%を超えると、素材の硬さが硬くなって冷間鍛造性が劣化するとともに、棒鋼・線材圧延加熱時の溶体化が困難になる。以上の理由から、その含有量を0.002〜0.05%の範囲内にする必要がある。好適範囲は、0.005〜0.03%である。
【0030】
Nは以下の2点の理由から極力制限することが望ましい。▲1▼Bは上記のように焼入れ性向上、粒界強化等を目的として添加するが、これらのBの効果は鋼中で固溶Bの状態で初めて効果を発現するため、N量を低減してBNの生成を抑制することが必須である。▲2▼また、Nは鋼中のTiと結びつくと粒制御にほとんど寄与しない粗大なTiNを生成し、これがNbC、NbC主体のNb(CN)とTiC、TiC主体のTi(CN)の析出サイトとなり、これらのTiの炭窒化物、Nbの炭窒化物の微細析出を阻害し粗大粒の生成を促進する。上記の悪影響はN量が0.005%以上の場合特に顕著である。以上の理由から、その含有量を0.005%未満にする必要がある。
【0031】
次に、本発明では必要に応じて、Mo、Niの1種または2種を含有する。
【0032】
Moは鋼に強度、焼入れ性を与えるのに有効な元素であるが、0.3%を超えて添加すると硬さの上昇を招き冷間加工性が劣化する。以上の理由から、Moは0.3%以下としたが、その含有量を0.02〜0.3%の範囲内にすることが好ましい。
【0033】
Niも鋼に強度、焼入れ性を与えるのに有効な元素であるが、2.5%を超えて添加すると硬さの上昇を招き冷間鍛造性が劣化する。したがって、Niは2.5%以下としたが、その含有量を0.1〜2.5%の範囲内にすることが好ましい。
【0034】
Pは冷間鍛造時の変形抵抗を高め、靭性を劣化させる元素であるため、冷間鍛造性が劣化する。また、焼入れ、焼戻し後の部品の結晶粒界を脆化させることによって、疲労強度を劣化させるのでできるだけ低減することが望ましい。従ってその含有量を0.025%以下(0%を含む)に制限する必要がある。好適範囲は0.015%以下である。
【0035】
また、Oは鋼中でAlのような酸化物系介在物を形成する。酸化物系介在物が鋼中に多量に存在すると、Nbの析出物、Tiの析出物の析出サイトとなり、熱間加工時にNbの析出物、Tiの析出物が粗大に析出し、浸炭時に結晶粒の粗大化を抑制できなくなる。そのため、O量はできるだけ低減することが望ましい。図1にO量と結晶粒粗大化温度との関係を示す。圧下率50%の据え込みを行った後、各温度で5時間保定して浸炭シミュレーションを行った結果である。O含有量が0.0025%を超えると粗大粒発生温度が950℃以下になり、実用的には粗大粒の発生が懸念される。以上の理由から、その含有量を0.0025%以下(0%を含む)に制限する必要がある。好適範囲は0.002%以下である。
【0036】
次に本発明では、熱間圧延後のマトリックス中に直径0.2μm以下のTiの析出物を10個/μm以上を有するが、このように限定した理由を以下に述べる。
【0037】
結晶粒の粗大化を抑制するためには、結晶粒界をピン止めする粒子を多量、微細に分散させることが有効であり、粒子の直径が小さいほど、また量が多いほどピン止め粒子の数が増加するため好ましい。本発明でいうTiの析出物はTiC、TiN、Ti(CN)をさす。熱間加工後の直径0.2μm以下のTiの析出物の個数と結晶粒粗大化温度との関係を図2に示す。圧下率50%の据え込みを行った後、各温度で5時間浸炭シミュレーションを行った結果である。図2からあきらかなように、直径0.2μm以下のTiの微細析出物をその合計で10個/μm以上分散させると実用上の浸炭加熱温度域において結晶粒の粗大化が生じず、優れた結晶粒粗大防止特性が得られる。以上から、マトリックス中に直径0.2μm以下のTiの析出物を10個/μm以上分散していることが必要である。好適範囲は20個/μm以上である。
【0038】
次に本発明では、熱間加工材の硬さHVを下記式で定義する硬さ指数HでH+30以下の範囲に制限するが、このように限定した理由を以下に述べる。
H=273.5C%+39.1Si%+54.7Mn%+30.4Cr%+136.7Mo%+18.2Ni%
【0039】
本発明の請求項1または2では、浸炭時の粗大粒を防止するために、TiC主体のTiの炭窒化物またはさらにNbC主体のNbの炭窒化物を浸炭時に微細分散させることを特徴としている。これらのTi、Nbの炭窒化物の大部分は鋼片圧延の冷却過程で析出し、その後の棒鋼線材圧延の加熱時に一部が固溶し、析出物がオストワルド成長する。析出物がオストワルド成長すると浸炭時の粗大粒防止特性は劣化する。また、棒鋼線材圧延の加熱時にTi、Nbが一部固溶すると、棒鋼線材圧延後の冷却過程で、オーステナイトからフェライト変態時に、Ti、Nbの炭窒化物が相界面析出し、これによる析出硬化により硬さが増加する。逆に言うと、棒鋼線材圧延材の硬さは、棒鋼線材圧延の加熱時に固溶するTi、Nbの炭窒化物の量の程度を反映しており、棒鋼線材圧延材の硬さが硬いほど、棒鋼線材圧延の加熱時に固溶するTi、Nbの炭窒化物の量が多く、析出物のオストワルド成長が顕著になり、その後の浸炭時の粗大粒防止特性は劣化する。上記の理由から合金元素(Ti、Nbを除く)に応じて棒鋼線材圧延材の硬さの上限値を制限することにより、棒鋼線材圧延時の冷却過程でのTi、Nbによる析出硬化を小さくすることができ、これにより、浸炭時のTi、Nbの析出物の微細分散が可能になり、浸炭時の粗大粒の防止が可能になる。さらに、鋼材の硬さの上限値を制限することにより、圧延ままでの冷間加工性は向上する。以上の技術思想から、Ti、Nbを除く成分系によって決まる硬さ指数を導入し、熱間加工材の硬さの上限値を規定した。硬さ指数Hは、熱間加工材の硬さに及ぼす合金成分の影響を定式化した指数であり、単位はHVである。硬さ指数HにはTi、Nbは含まれていない。つまり、繰り返しになるが、本願発明の規定を満たす鋼材においては、棒鋼線材圧延による冷却過程でのTi、Nbによる析出硬化量が実質的に小さいことを意味している。また、硬さ指数Hを定義した前提条件として、熱間加工材にベイナイト組織が実質的に含まれないことを前提としている。
【0040】
熱間加工材の硬さがHVでH+30を超えると熱間加工材の硬さが硬くなり冷間加工性が劣化するとともに浸炭時の粗大粒防止特性も劣化するので、熱間加工材の硬さをHVでH+30以下の範囲に制限した。好適範囲は、H−20〜H+25の範囲である。
【0041】
なお、本発明で規定する硬さ(HV)は、熱間加工材の表面脱炭層を除く最表層の硬さである。
【0042】
次に本願発明では、粗大粒防止の目的で、脱炭深さの上限を規定している。本要件は、本発明の技術の最も重要な特徴である。表1に脱炭深さと浸炭粗大粒発生温度の関係を示す。粗大粒発生温度は、圧下率50%の据え込みを行った後、各温度で5時間浸炭シミュレーションを行って求めた。本出願人は、脱炭深さが、DM−T0.2mmを超えると、浸炭時に粗大粒が発生しやすくなることを初めて発見した。これは、浸炭加熱の昇温時に表層の脱炭部から混粒が生じ、これが粗大粒成長のきっかけになるためである。以上の理由から、脱炭深さ:DM−T0.2mm以下に制限する。このような脱炭深さは後述する低温加熱圧延を行うことによって達成できる。
【0043】
【表1】

Figure 2004183064
【0044】
次に熱間圧延条件について説明する。
【0045】
本発明成分からなる鋼を、転炉、電気炉等の通常の方法によって溶製し、成分調整を行い、鋳造後、A3点以下に冷却することなく分塊圧延工程を経て、線材または棒鋼に以下の低温加熱圧延を行う。
【0046】
即ち、加熱温度は900〜1070℃のAr点直上の温度として、熱間圧延の仕上げ温度を800〜970℃の熱間圧延を行う。熱間圧延に引き続いて800〜500℃の温度範囲を1℃/秒以下の冷却速度で徐冷する条件で線材または棒鋼に熱間加工する。
【0047】
加熱温度を900〜1070℃のAr点直上の温度とするのは、鋳造後にA3点温度以下に冷却することなしに分塊圧延することによって生成した微細TiC析出物をマトリックスに固溶させないようにするためであり、900℃未満では圧延温度がフェライト域圧延となるので好ましくなく、また1070℃を超えると析出物がマトリックスに固溶し、微細TiC析出物の数が減るので好ましくない。また、加熱温度が1070℃を超えると全脱炭が顕著になり、この点からも粗大粒防止特性は劣化する。以上のように、微細TiC析出物を微細なままの状態で保持することにより、浸炭時に粗大粒の発生を抑制することができるようにするため、加熱温度を900〜1070℃とした。
【0048】
次に、熱間圧延の仕上げ温度を800〜970℃とするのは次の理由による。仕上げ温度が800℃未満では、圧延材のフェライト脱炭が進行するために、結果的に全脱炭も顕著になり、浸炭時に粗大粒が発生しやすくなる。一方、仕上げ温度が970℃を超えると、圧延材の硬さが硬くなって冷間鍛造性が劣化する。以上の理由から、熱間圧延の仕上げ温度を800〜970℃とする。好適温度は850〜960℃である。
【0049】
次に、熱間圧延に引き続いて800〜500℃の温度範囲を1℃/秒以下の冷却速度で徐冷するのは次の理由による。冷却速度が1℃/秒を超えると、ベイナイトの組織分率が大きくなり、浸炭時に粗大粒が発生しやすくなる。さらに、ベイナイトの組織分率が大きくなると、圧延材の硬さが上昇し冷間鍛造性が劣化する。そのため、冷却速度1℃/秒以下に制限する。好適範囲は0.7℃/秒以下である。なお、冷却速度を小さくする方法としては、圧延ラインの後方に保温カバーまたは熱源付き保温カバーを設置し、これにより、徐冷を行う方法が挙げられる。
【0050】
本発明では、鋳片のサイズ、凝固時の冷却速度については特に限定するものではなく、本発明の要件を満足すればいずれの条件でも良い。また、本発明鋼は、圧延ままの棒鋼を冷間鍛造で部品に成形する工程だけでなく、冷間鍛造の前に焼鈍工程や温・熱間鍛造を経由する場合、温・熱間鍛造工程で部品に成形される場合、切削工程で部品に成形される場合にも適用できる。
【0051】
【実施例】
以下に、本発明の効果を実施例により、さらに具体的に示す。
【0052】
表2に示す組成を有する転炉溶製鋼を連続鋳造し、鋳造後、鋼をA3点温度以下に冷却することなく分塊圧延を行い、162mm角の鋼片(圧延素材)とした(分塊圧延条件I)。比較鋼a、bについては、連続鋳造後、鋼を一旦常温まで冷却した後、再度A3点以上に加熱して分塊圧延を行い、162mm角の鋼片(圧延素材)とした(分塊圧延条件II)。
【0053】
続いて、熱間加工により、直径34mmの棒鋼を製造した。熱間加工条件を表3に示す。熱間加工後の冷却速度は冷却床に設置した徐冷カバーを用いて調整した。比較鋼Y、ZはJISのSCr420およびSCM420である。
【0054】
熱間加工後の棒鋼のTiの析出物、Nbの析出物の分散状態を調べるために、棒鋼のマトリックス中に存在する析出物を抽出レプリカ法によって採取し、透過型電子顕微鏡で観察した。観察方法は30000倍で20視野程度観察し、1視野中の直径0.2μm以下のTiの析出物、Nbの析出物、TiとNbの複合組成からなる析出物の数を数え、1平方μm当たりの数に換算した。
【0055】
圧延後の棒鋼のビッカース硬さを測定した。また、ミクロ観察、全脱炭深さの調査も行った。さらに、圧延ままの棒鋼から、据え込み試験片を作成し、冷間加工性の指標として、冷間変形抵抗と限界圧縮率を求めた。冷間変形抵抗は相当歪み1.0における変形抵抗で代表させた。
【0056】
次に、圧延ままの棒鋼から据え込み試験片を作成し、圧下率50%の据え込みを行った後、浸炭シミュレーションを行った。浸炭シミュレーションの条件は、910℃〜1010℃に5時間加熱−水冷である。その後、切断面に研磨−腐食を行い、旧オーステナイト粒径を観察して粗大粒発生温度(結晶粒粗大化温度)を求めた。浸炭処理は通常930〜950℃の温度域で行われるため、粗大粒発生温度が950℃以下のものは、結晶粒粗大化特性に劣ると判定した。なお、旧オーステナイト粒度の測定はJIS G 0551に準じて行い、400倍で10視野程度観察し、粒度番号5番以下の粗粒が1つでも存在すれば粗大粒発生と判定した。
【0057】
さらに、直径30mmの棒鋼を削り出し、直径22mmへ引き抜きを行った後、940℃×4時間の条件で浸炭焼き入れを行い、γ粒度を測定した。
【0058】
これらの調査結果を熱間加工条件とあわせて表3に示す。
【0059】
比較例25、26はJISのSCr420およびSCM420の特性であるが、本発明例の冷間変形抵抗は、比較例25、26に比較して顕著に小さく、また限界据え込み率も優れている。また、本発明例の結晶粒粗大化温度は970℃以上であり、通常の上限の浸炭条件である950℃では、粗大粒の発生を防止できることが明らかである。
【0060】
次に、表3において、比較例19はSiの含有量が本願規定の範囲を上回った場合であり、本発明例に比較して、冷間加工性は劣る。
【0061】
比較例20はTiの含有量が本願規定の範囲を下回った場合であり、比較例21はNの含有量が本願規定の範囲を上回った場合であり、比較例22はOの含有量が本願規定の範囲を上回った場合であり、いずれも粗大粒防止特性は劣っている。
【0062】
比較例23はTiの含有量が本願規定の範囲を上回った場合であり、比較例24はNbの含有量が本願規定の範囲を上回った場合であり、いずれも本発明例に比較して、冷間加工性は劣る。
【0063】
比較例27,28は鋼片の製造方法が本願発明と異なり、鋳造後、鋼をA3点温度以下に一旦冷却した後分塊圧延を行う方法で製造した場合であり、いずれも粗大粒防止特性は劣っている。
【0064】
比較例29は熱間加工の加熱温度が本願規定の範囲を上回った場合であり、析出物個数は本願発明の範囲を下回り、圧延後の硬さは本願規定の範囲を上回り、全脱炭深さも本願発明の範囲を上回り、粗大粒防止特性は劣っている。
【0065】
比較例30は熱間加工の仕上げ温度が本願規定の範囲を上回った場合であり、本発明例4に比較して冷間加工性は劣る。比較例31は熱間加工の仕上げ温度が本願規定の範囲を下回った場合であり、全脱炭深さは本願発明の範囲を上回り、粗大粒防止特性は劣っている。比較例32は熱間加工後の冷却速度が本願規定の範囲を上回った場合であり、粗大粒防止特性が劣るとともに、冷間加工性も劣る。
【0066】
【表2】
Figure 2004183064
【0067】
【表3】
Figure 2004183064
【0068】
【発明の効果】
本発明の冷間加工性と低浸炭歪み特性に優れた肌焼鋼とその製造方法を用いれば、冷間鍛造時には冷間加工性に優れ、同時に冷間鍛造工程で製造しても、浸炭時に粗大粒の発生を安定的に抑制することができ、これにより、歪みや曲がりの発生を防止することができる。そのため、これまで、粗大粒の問題から冷鍛化が困難であった部品の冷鍛化が可能になり、さらに冷鍛後の焼鈍を省略することも可能になり、本発明による産業上の効果は極めて顕著なるものがある。
【図面の簡単な説明】
【図1】O量と結晶粒粗大化温度との関係を示す図である。
【図2】熱間加工後の直径0.2μm以下のTiの析出物の個数と結晶粒粗大化温度との関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a case-hardening steel material excellent in cold workability and excellent in preventing coarse grains during carburizing, and a method for producing the same.
[0002]
[Prior art]
Gears, shafts, and CVJ parts are usually made of medium carbon alloy steel for machine structural use as defined in JIS G 4052, JIS G 4104, JIS G 4105, JIS G 4106, etc., and cold forging (also rolling) -It is manufactured in a process of carburizing and quenching after being processed into a predetermined shape by cutting. Cold forging has good surface texture and dimensional accuracy of the product, has a lower manufacturing cost than hot forging, and has a good yield, so parts that were conventionally manufactured by hot forging are now cold forged. The tendency to switch is increasing, and the number of carburized parts manufactured in the cold forging-carburizing process has increased significantly in recent years. Here, when switching from hot forging to cold forging, it is important to reduce the cold deformation resistance of steel and to improve the critical compression ratio. This is because the former is for ensuring the life of the forging tool, and the latter is for preventing cracking of the steel during cold forging. As a steel material suitable for such cold forging, application of boron steel has been studied. However, boron steel tends to cause a phenomenon in which some austenite crystal grains become coarse during carburizing heating. Parts with such coarse particles generate heat treatment distortion after carburizing and quenching. For example, gears and CVJ parts with large carburizing distortion may cause noise and vibration. Under these circumstances, there is a strong demand for boron steel that has excellent cold workability and excellent low carburizing strain characteristics, that is, does not generate coarse grains during carburizing.
[0003]
The present applicant has previously provided an invention of a case-hardened boron steel excellent in cold workability and capable of preventing the generation of coarse grains during carburization and excellent in low carburizing distortion characteristics and a method for producing the same (Patent Document 1). .
[0004]
In this invention, coarse grains cannot be prevented only by limiting the chemical composition of the steel. Therefore, the solid solution state of AlN in the steel material after hot working and fine precipitates such as Nb (CN) and Ti (CN) A means of controlling the amount of precipitation and utilizing NbC and TiC precipitates as pinning particles is adopted.
[0005]
That is, the rolling heating temperature is set to a high temperature of 1150 ° C. or higher, the precipitation amount of AlN is limited in the state of the steel material after hot working, and the Nb precipitate is set to a high heating temperature of 1150 ° C. or higher. The Ti precipitates are once in solution, and after the hot rolling, the precipitation temperature range of these precipitates is gradually cooled, so that a certain amount of Nb precipitates and Ti precipitates are added to the steel after hot rolling. A large amount is finely dispersed.
[0006]
In addition, the present applicant is excellent in cold workability during cold forging, and can prevent generation of coarse grains during carburization and formation of an incompletely quenched structure formed to a depth of 0.2 to 0.7 mm from the surface. The invention of the case hardening boron steel which can be performed, and its manufacturing method was provided (patent document 2).
[0007]
In this invention, the heating temperature of steel with a limited chemical composition is set to a high temperature of 1150 ° C. or higher, the finishing temperature of hot rolling is 840 to 1000 ° C., and the temperature range of 800 to 500 ° C. is 1 ° C. / It is characterized by slow cooling at a cooling rate of less than a second.
[0008]
In any of the above inventions, the heating temperature for rolling is set to a high temperature of 1150 ° C. or higher, and Ti precipitates and Nb precipitates are once solutionized. Finely dispersed. However, even in these methods, the prevention of coarse grains during carburizing may not always be sufficient, and when the rolling heating temperature is set to a high temperature of 1150 ° C. or higher, the rolling becomes hard and the cold workability becomes insufficient. In addition, there is a problem that total decarburization becomes prominent.
[0009]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-335777 [Patent Document 2]
JP 2001-303172 A [Problems to be solved by the invention]
It is an object of the present invention to provide a case-hardening steel material capable of improving cold workability and preventing the generation of coarse grains during carburizing and a method for producing the same.
[0010]
[Means to solve the problem]
The present inventor has intensively studied to improve the cold workability of the case-hardening boron steel and to improve the characteristics of preventing coarse grains during carburizing. As a result, when the rolling heating temperature is set to a high temperature of 1150 ° C. or higher as in the conventional case, when the total decarburization becomes significant, coarse particles are generated from the decarburized portion at the time of subsequent carburization, and thus the coarse particle prevention characteristics are insufficient. I found out. Further, the rolling heating temperature is set to a high temperature of 1150 ° C. or higher as in the prior art, and even if the Ti precipitate and the Nb precipitate are not once solutionized, the HCR is divided without cooling to the A3 point temperature or less after casting. By rolling the rolled steel slab at low temperature, it is possible to reduce total decarburization, thereby preventing the formation of coarse grains and improving cold workability by softening by reducing the precipitation strengthening amount. The present invention has been completed by finding out what can be done.
[0011]
The gist of the present invention is as follows.
[0012]
(1) In mass%,
C: 0.1 to 0.3%
Si: 0.01 to 0.15%,
Mn: 0.2 to 0.65%,
S: 0.005 to 0.15%,
Cr: 0.4 to 1.25%,
B: 0.0005 to 0.005%,
Al: 0.015 to 0.05%,
Ti: 0.03-0.15%,
N: less than 0.005% (including 0%),
P: 0.025% or less (including 0%),
O: 0.0025% or less (including 0%)
Containing the balance being iron and unavoidable impurities, hot precipitates diameter 0.2μm following Ti in the matrix of the tissue after rolling has 10 / [mu] m 2 or more, the hardness index H When defined by the following formula, the hardness is HV and H + 30 or less, the decarburization depth specified by JISG0558: DM-T 0.2 mm or less, cold workability and coarse grain prevention characteristics during carburizing Excellent steel for case hardening.
H = 273.5C% + 39.1Si% + 54.7Mn% + 30.4Cr% + 136.7Mo% + 18.2Ni%
[0013]
(2) By mass%
C: 0.1 to 0.3%
Si: 0.01 to 0.15%,
Mn: 0.2 to 0.65%,
S: 0.005 to 0.15%,
Cr: 0.4 to 1.25%,
B: 0.0005 to 0.005%,
Al: 0.015 to 0.05%,
Ti: 0.03-0.15%,
Nb: 0.002 to 0.05%,
N: less than 0.005% (including 0%),
P: 0.025% or less (including 0%),
O: 0.0025% or less (including 0%)
In which the balance consists of iron and inevitable impurities, and the precipitate is composed of Nb precipitates having a diameter of 0.2 μm or less, Ti precipitates, or a composite composition of Nb and Ti in the matrix of the structure after hot rolling. The total of the products has 10 pieces / μm 2 or more, and when the hardness index H is defined by the following formula, the hardness is HV and H + 30 or less, and the decarburization depth specified by JISG0558: DM-T 0.2 mm A case-hardening steel excellent in cold workability and preventing coarse grains during carburizing, characterized by the following:
H = 273.5C% + 39.1Si% + 54.7Mn% + 30.4Cr% + 136.7Mo% + 18.2Ni%
[0014]
(3) Furthermore, in mass%,
Mo: 0.3% or less,
Ni: Skin hardening excellent in cold workability and coarse grain prevention property at the time of carburizing described in (1) or (2) above, containing one or two of 2.5% or less Steel material.
[0015]
(4) By mass%
C: 0.1 to 0.3%
Si: 0.01 to 0.15%,
Mn: 0.2 to 0.65%,
S: 0.005 to 0.15%,
Cr: 0.4 to 1.25%,
B: 0.0005 to 0.005%,
Al: 0.015 to 0.05%,
Ti: 0.03-0.15%,
N: less than 0.005% (including 0%),
P: 0.025% or less (including 0%),
O: 0.0025% or less (including 0%)
Steel, the balance of which is made of iron and inevitable impurities, and a steel slab manufactured by a step of performing a batch rolling without cooling to below the A3 point temperature after casting, a heating temperature of 900 to 1070 ° C., heat Hot rolling to 800 to 970 ° C. and hot rolling to wire or bar steel under conditions where the temperature range from 800 to 500 ° C. is gradually cooled at a cooling rate of 1 ° C./second or less. When the number of Ti precipitates having a diameter of 0.2 μm or less is 10 / μm 2 or more in the matrix of the structure after rolling and the hardness index H is defined by the following formula, the hardness is HV and H + 30 or less, according to JISG0558 Decarburization depth to be defined: DM-T 0.2 mm or less A method for producing a case-hardening steel material excellent in cold workability and preventing coarse grains during carburizing.
H = 273.5C% + 39.1Si% + 54.7Mn% + 30.4Cr% + 136.7Mo% + 18.2Ni%
[0016]
(5) By mass%
C: 0.1 to 0.3%
Si: 0.01 to 0.15%,
Mn: 0.2 to 0.65%,
S: 0.005 to 0.15%,
Cr: 0.4 to 1.25%,
B: 0.0005 to 0.005%,
Al: 0.015 to 0.05%,
Ti: 0.03-0.15%,
Nb: 0.002 to 0.05%,
N: less than 0.005% (including 0%),
P: 0.025% or less (including 0%),
O: 0.0025% or less (including 0%)
Steel, the balance of which is made of iron and inevitable impurities, and a steel slab manufactured by a step of performing a batch rolling without cooling to below the A3 point temperature after casting, a heating temperature of 900 to 1070 ° C., heat Hot rolling to 800 to 970 ° C. and hot rolling to wire or bar steel under conditions where the temperature range from 800 to 500 ° C. is gradually cooled at a cooling rate of 1 ° C./second or less. In the matrix of the structure after rolling, a total of 10 N / μm 2 of Nb precipitates having a diameter of 0.2 μm or less, Ti precipitates, or precipitates composed of a composite composition of Nb and Ti, When the hardness index H is defined by the following formula, the hardness is HV and H + 30 or less, and the decarburization depth specified by JISG0558: DM-T 0.2 mm or less. Excellent coarse grain prevention properties Method of manufacturing a baked for steel.
H = 273.5C% + 39.1Si% + 54.7Mn% + 30.4Cr% + 136.7Mo% + 18.2Ni%
[0017]
(6) Furthermore, in mass%,
Mo: 0.3% or less,
Ni: Skin hardening excellent in cold workability and coarse grain prevention property at the time of carburizing described in (4) or (5) above, containing one or two of 2.5% or less Steel manufacturing method.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0019]
In the present invention, when steel strip produced by HCR (Hot Charge Rolling) is used to produce steel pieces that have been subjected to lump rolling without being cooled to A3 point temperature or lower after steel casting, when steel bar wire rolling is performed at low temperature and hot rolling, fine precipitation of TiC A thing is kept in the state which precipitated as it is. The precipitation strengthening amount is lower than the precipitation strengthening amount precipitated from the solid solution at a high temperature. Further, the total decarburization amount is also reduced, and the decarburization depth specified in JIS G 0558: DM-T can be 0.2 mm or less. As a result, the generation of coarse grains can be prevented, and the cold workability can be improved by softening.
[0020]
First, the reasons for limiting the components will be described.
[0021]
C is an effective element for imparting the necessary strength to the steel, but if it is less than 0.1%, the necessary tensile strength cannot be secured, and if it exceeds 0.3%, it becomes hard and cold work is performed. The core portion toughness after carburization is deteriorated as well as the property is deteriorated, so it is necessary to be within the range of 0.1 to 0.3%.
[0022]
Si is an element effective for deoxidation of steel and is an element effective for imparting necessary strength and hardenability to steel and improving temper softening resistance. However, if it is less than 0.01%, the effect is ineffective. It is enough. On the other hand, if it exceeds 0.15%, the hardness is increased and the cold forgeability is deteriorated. For the above reasons, the content needs to be in the range of 0.01 to 0.15%. The preferred range is 0.02 to 0.1%.
[0023]
Mn is an element effective for deoxidation of steel and is an element effective for imparting necessary strength and hardenability to the steel, but if less than 0.2%, the effect is insufficient, 0.65% If it exceeds, the effect is not only saturated, but also the hardness is increased and the cold forgeability deteriorates, so it is necessary to be within the range of 0.2 to 0.65%. The preferred range is 0.3-0.6%.
[0024]
S forms MnS in the steel and is added for the purpose of improving machinability. However, if it is less than 0.005%, its effect is insufficient. On the other hand, if it exceeds 0.15%, the effect is saturated, and rather, grain boundary segregation occurs, leading to grain boundary embrittlement. For these reasons, the S content needs to be in the range of 0.005 to 0.15%. The preferred range is 0.005 to 0.04%.
[0025]
Cr is an element effective for imparting strength and hardenability to steel, but if it is less than 0.4%, the effect is insufficient, and if added over 1.25%, it causes an increase in hardness and cold. Forgeability deteriorates. For the above reasons, the content needs to be in the range of 0.4 to 1.25%. The preferred range is 0.6-1.0%.
[0026]
B is added for the following three points. (1) In steel bar / wire rolling, boron iron carbide is generated in the cooling process after rolling, thereby increasing the growth rate of ferrite and promoting softening during rolling. (2) When carburizing and quenching, impart hardenability to the steel. (3) Improve the fatigue strength and impact strength of carburized parts by improving the grain boundary strength of the carburized material. When the amount is less than 0.0005%, the above effect is insufficient. When the amount exceeds 0.005%, the effect is saturated, so the content needs to be within the range of 0.0005 to 0.005%. There is. The preferred range is 0.001 to 0.003%.
[0027]
Al is added as a deoxidizer. If it is less than 0.015%, the effect is insufficient. On the other hand, if it exceeds 0.05%, AlN remains without being melted during rolling and heating, and becomes a precipitation site of Nb and Ti precipitates, which inhibits fine dispersion of these precipitates and coarsens the crystal grains. To encourage. For the above reasons, the content needs to be in the range of 0.015 to 0.05%. The preferred range is 0.025 to 0.04%.
[0028]
Ti combines with N in the steel to produce TiN, and is added for the purpose of preventing precipitation of BN by fixing solid solution N, that is, securing solid solution B. However, if it is less than 0.03%, the effect is insufficient. On the other hand, if Ti is added in an amount exceeding 0.15%, precipitation hardening due to TiC becomes remarkable, and cold workability is remarkably deteriorated. The preferred range is 0.03 to 0.13%.
[0029]
Nb combines with C and N in steel during carburizing heating to form Nb (CN), and is an element effective for suppressing coarsening of crystal grains. If it is less than 0.002%, the effect is insufficient. On the other hand, if it exceeds 0.05%, the hardness of the material becomes hard and the cold forgeability deteriorates, and it becomes difficult to form a solution during heating of the steel bar and wire rod. For the above reasons, the content needs to be in the range of 0.002 to 0.05%. The preferred range is 0.005 to 0.03%.
[0030]
It is desirable to limit N as much as possible for the following two reasons. (1) B is added for the purpose of improving hardenability and strengthening grain boundaries as described above. However, since the effect of these B is manifested only in the state of solid solution B in steel, the amount of N is reduced. Therefore, it is essential to suppress the generation of BN. (2) When N is combined with Ti in steel, it produces coarse TiN that hardly contributes to grain control. This is the precipitation site of NbC, NbC-based Nb (CN) and TiC, TiC-based Ti (CN). Thus, the fine precipitation of these Ti carbonitrides and Nb carbonitrides is inhibited, and the formation of coarse particles is promoted. The above adverse effect is particularly remarkable when the N amount is 0.005% or more. For the above reasons, the content needs to be less than 0.005%.
[0031]
Next, in this invention, 1 type or 2 types of Mo and Ni are contained as needed.
[0032]
Mo is an element effective for imparting strength and hardenability to steel, but if added over 0.3%, the hardness increases and cold workability deteriorates. For these reasons, the Mo content is set to 0.3% or less, but the content is preferably within the range of 0.02 to 0.3%.
[0033]
Ni is also an effective element for imparting strength and hardenability to steel, but if added over 2.5%, the hardness is increased and cold forgeability is deteriorated. Therefore, although Ni was made into 2.5% or less, it is preferable to make the content into the range of 0.1-2.5%.
[0034]
Since P is an element that increases deformation resistance during cold forging and deteriorates toughness, cold forgeability deteriorates. Further, since the fatigue strength is deteriorated by embrittlement of the grain boundaries of the parts after quenching and tempering, it is desirable to reduce them as much as possible. Therefore, it is necessary to limit the content to 0.025% or less (including 0%). The preferred range is 0.015% or less.
[0035]
O forms oxide inclusions such as Al 2 O 3 in the steel. When a large amount of oxide inclusions are present in the steel, it becomes a precipitation site for Nb precipitates and Ti precipitates, Nb precipitates and Ti precipitates are coarsely deposited during hot working, and crystallized during carburization. Grain coarsening cannot be suppressed. Therefore, it is desirable to reduce the amount of O as much as possible. FIG. 1 shows the relationship between the amount of O and the crystal grain coarsening temperature. This is the result of carburizing simulation after holding up at a rolling reduction of 50% and holding at each temperature for 5 hours. When the O content exceeds 0.0025%, the coarse particle generation temperature becomes 950 ° C. or less, and there is a concern that the generation of coarse particles is practically concerned. For the above reasons, the content needs to be limited to 0.0025% or less (including 0%). The preferred range is 0.002% or less.
[0036]
Next, in the present invention, the hot-rolled matrix has 10 precipitates / μm 2 or more of Ti having a diameter of 0.2 μm or less. The reason for this limitation will be described below.
[0037]
In order to suppress the coarsening of crystal grains, it is effective to disperse a large amount and finely the particles that pin the crystal grain boundaries. The smaller the diameter of the particles and the larger the amount, the more pinned particles. Is preferable because of an increase. The Ti precipitate referred to in the present invention refers to TiC, TiN, and Ti (CN). FIG. 2 shows the relationship between the number of Ti precipitates having a diameter of 0.2 μm or less after hot working and the crystal grain coarsening temperature. This is a result of performing a carburization simulation for 5 hours at each temperature after upsetting at a rolling reduction of 50%. As is clear from FIG. 2, when fine precipitates of Ti having a diameter of 0.2 μm or less are dispersed in a total of 10 particles / μm 2 or more, the coarsening of crystal grains does not occur in a practical carburizing heating temperature range, which is excellent. The crystal grain coarseness preventing property is obtained. From the above, it is necessary to disperse 10 precipitates / μm 2 or more of Ti having a diameter of 0.2 μm or less in the matrix. A preferable range is 20 pieces / μm 2 or more.
[0038]
Next, in the present invention, the hardness HV of the hot-worked material is limited to a range of H + 30 or less with a hardness index H defined by the following formula. The reason for this limitation will be described below.
H = 273.5C% + 39.1Si% + 54.7Mn% + 30.4Cr% + 136.7Mo% + 18.2Ni%
[0039]
Claim 1 or 2 of the present invention is characterized in that TiC-based Ti carbonitride or further NbC-based Nb carbonitride is finely dispersed during carburizing in order to prevent coarse grains during carburizing. . Most of these Ti and Nb carbonitrides precipitate in the cooling process of the steel slab rolling, and partly dissolve in the subsequent heating of the bar steel wire rolling, and the precipitates grow Ostwald. When the precipitate grows through Ostwald, the coarse grain prevention characteristics during carburization deteriorate. Also, if Ti and Nb are partly dissolved during heating of the steel bar wire rolling, Ti and Nb carbonitrides precipitate at the interfacial phase during the transformation of austenite to ferrite in the cooling process after the steel bar wire rolling, and precipitation hardening occurs thereby. Increases the hardness. In other words, the hardness of the rolled steel bar reflects the amount of Ti and Nb carbonitrides that are dissolved during heating of the rolled steel bar, and the harder the rolled steel bar is, the harder it is. In addition, the amount of Ti and Nb carbonitrides that are solid-dissolved during heating of the steel rod rolling is large, and the Ostwald growth of precipitates becomes significant, and the coarse grain prevention characteristics during subsequent carburizing deteriorate. For the above reasons, by limiting the upper limit value of the hardness of the rolled steel bar according to the alloying elements (excluding Ti and Nb), the precipitation hardening due to Ti and Nb in the cooling process at the time of rolling the steel bar is reduced. This makes it possible to finely disperse precipitates of Ti and Nb at the time of carburizing, and to prevent coarse particles at the time of carburizing. Furthermore, by limiting the upper limit value of the hardness of the steel material, the cold workability as it is rolled is improved. From the above technical idea, the hardness index determined by the component system excluding Ti and Nb was introduced to define the upper limit value of the hardness of the hot-worked material. The hardness index H is an index that formulates the influence of the alloy component on the hardness of the hot-worked material, and its unit is HV. The hardness index H does not contain Ti or Nb. That is, although it repeats, in the steel material which satisfy | fills the prescription | regulation of this invention, it means that the precipitation hardening amount by Ti and Nb in the cooling process by steel bar wire rod rolling is substantially small. As a precondition for defining the hardness index H, it is assumed that the hot-worked material does not substantially contain a bainite structure.
[0040]
If the hardness of the hot work material is HV and exceeds H + 30, the hardness of the hot work material becomes hard and the cold workability deteriorates, and the coarse grain prevention property at the time of carburizing also deteriorates. The thickness was limited to a range of H + 30 or less in HV. The preferred range is H-20 to H + 25.
[0041]
In addition, the hardness (HV) prescribed | regulated by this invention is the hardness of the outermost layer except the surface decarburization layer of a hot work material.
[0042]
Next, in this invention, the upper limit of the decarburization depth is prescribed | regulated for the purpose of coarse grain prevention. This requirement is the most important feature of the technology of the present invention. Table 1 shows the relationship between the decarburization depth and the carburized coarse particle generation temperature. The coarse grain generation temperature was determined by performing a carburization simulation for 5 hours at each temperature after upsetting at a rolling reduction of 50%. The present applicant has discovered for the first time that when the decarburization depth exceeds DM-T 0.2 mm, coarse grains are likely to be generated during carburizing. This is because mixed grains are generated from the decarburized portion of the surface layer at the time of raising the temperature of the carburizing heating, and this is a trigger for coarse grain growth. For the above reasons, the decarburization depth is limited to DM-T 0.2 mm or less. Such a decarburization depth can be achieved by performing low-temperature heating rolling described later.
[0043]
[Table 1]
Figure 2004183064
[0044]
Next, hot rolling conditions will be described.
[0045]
The steel of the present invention is melted by a usual method such as a converter, electric furnace, etc., the components are adjusted, and after casting, it is subjected to a block rolling process without cooling to the A3 point or lower, to a wire rod or bar steel. The following low temperature heating rolling is performed.
[0046]
That is, hot rolling is performed at a finishing temperature of 800 to 970 ° C. with a heating temperature of 900 to 1070 ° C. just above the Ar 3 point. Subsequent to hot rolling, the wire or steel bar is hot worked under the condition that the temperature range of 800 to 500 ° C. is gradually cooled at a cooling rate of 1 ° C./second or less.
[0047]
To the heating temperature and the temperature just above the Ar 3 point of 900 to 1,070 ° C. is not to fine TiC precipitates produced by slabbing without cooling after the A3 point temperature below the casting form a solid solution in the matrix If the temperature is lower than 900 ° C., the rolling temperature becomes ferrite region rolling, which is not preferable, and if it exceeds 1070 ° C., the precipitates are dissolved in the matrix and the number of fine TiC precipitates is decreased. Further, when the heating temperature exceeds 1070 ° C., total decarburization becomes remarkable, and from this point, the coarse grain prevention characteristics deteriorate. As described above, the heating temperature is set to 900 to 1070 ° C. in order to suppress the generation of coarse particles during carburization by holding the fine TiC precipitate in a fine state.
[0048]
Next, the finishing temperature of hot rolling is set to 800 to 970 ° C. for the following reason. If the finishing temperature is less than 800 ° C., ferrite decarburization of the rolled material proceeds, and as a result, total decarburization becomes prominent, and coarse particles are likely to be generated during carburizing. On the other hand, when the finishing temperature exceeds 970 ° C., the hardness of the rolled material becomes hard and the cold forgeability deteriorates. For the above reasons, the hot rolling finishing temperature is set to 800 to 970 ° C. The preferred temperature is 850 to 960 ° C.
[0049]
Next, following the hot rolling, the temperature range of 800 to 500 ° C. is gradually cooled at a cooling rate of 1 ° C./second or less for the following reason. When the cooling rate exceeds 1 ° C./second, the structure fraction of bainite increases, and coarse grains are likely to be generated during carburizing. Furthermore, when the structure fraction of bainite increases, the hardness of the rolled material increases and the cold forgeability deteriorates. Therefore, the cooling rate is limited to 1 ° C./second or less. The preferred range is 0.7 ° C./second or less. In addition, as a method of reducing the cooling rate, a method of installing a heat insulating cover or a heat insulating cover with a heat source behind the rolling line and thereby performing slow cooling can be mentioned.
[0050]
In the present invention, the size of the slab and the cooling rate during solidification are not particularly limited, and any condition may be used as long as the requirements of the present invention are satisfied. In addition, the steel of the present invention is not only a process for forming an as-rolled steel bar into parts by cold forging, but also a warm / hot forging process when passing through an annealing process or warm / hot forging before cold forging. It can also be applied to the case where it is formed into a part by the cutting process.
[0051]
【Example】
Hereinafter, the effects of the present invention will be described more specifically by way of examples.
[0052]
Converter molten steel having the composition shown in Table 2 is continuously cast, and after casting, the steel is subjected to partial rolling without cooling to a temperature below the A3 point temperature to obtain a 162 mm square steel slab (rolling material). Rolling conditions I). For the comparative steels a and b, after continuous casting, the steel was once cooled to room temperature, and then heated again to the A3 point or higher and subjected to split rolling to obtain a 162 mm square steel slab (rolling material). Condition II).
[0053]
Subsequently, a steel bar having a diameter of 34 mm was manufactured by hot working. Table 3 shows the hot working conditions. The cooling rate after hot working was adjusted using a slow cooling cover installed on the cooling bed. The comparative steels Y and Z are JIS SCr420 and SCM420.
[0054]
In order to investigate the dispersion state of Ti precipitates and Nb precipitates in the steel bar after hot working, the precipitates present in the bar steel matrix were collected by the extraction replica method and observed with a transmission electron microscope. The observation method is to observe about 20 fields of view at 30000 times, and count the number of Ti precipitates having a diameter of 0.2 μm or less in one field of view, Nb precipitates, and precipitates composed of a composite composition of Ti and Nb per square μm. Converted to a number.
[0055]
The Vickers hardness of the rolled steel bar was measured. Microscopic observation and total decarburization depth were also investigated. Furthermore, an upsetting test piece was prepared from the rolled steel bar, and the cold deformation resistance and the critical compressibility were obtained as indicators of cold workability. The cold deformation resistance was represented by the deformation resistance at an equivalent strain of 1.0.
[0056]
Next, an upsetting test piece was prepared from the rolled steel bar, and after upsetting with a reduction ratio of 50%, carburization simulation was performed. The conditions for the carburizing simulation are heating to 910 ° C. to 1010 ° C. for 5 hours and water cooling. Thereafter, the cut surface was polished and corroded, and the prior austenite grain size was observed to determine the coarse grain generation temperature (crystal grain coarsening temperature). Since the carburizing process is normally performed in a temperature range of 930 to 950 ° C., those having a coarse grain generation temperature of 950 ° C. or less were determined to be inferior in crystal grain coarsening characteristics. The prior austenite grain size was measured in accordance with JIS G 0551, observed at 400 magnifications for about 10 fields of view, and if any coarse grain having a grain size number of 5 or less was present, it was determined that coarse grains were generated.
[0057]
Furthermore, after cutting out a steel bar having a diameter of 30 mm and drawing it to a diameter of 22 mm, carburizing and quenching was performed under conditions of 940 ° C. × 4 hours, and the γ particle size was measured.
[0058]
These survey results are shown in Table 3 together with hot working conditions.
[0059]
Comparative examples 25 and 26 are the characteristics of JIS SCr420 and SCM420, but the cold deformation resistance of the examples of the present invention is remarkably smaller than that of comparative examples 25 and 26, and the limit upsetting rate is also excellent. Further, the crystal grain coarsening temperature of the present invention example is 970 ° C. or higher, and it is clear that the generation of coarse grains can be prevented at 950 ° C., which is a normal upper limit carburizing condition.
[0060]
Next, in Table 3, Comparative Example 19 is a case where the Si content exceeds the range specified in the present application, and the cold workability is inferior compared to the inventive example.
[0061]
Comparative Example 20 is a case where the Ti content falls below the range stipulated in the present application, Comparative Example 21 is a case where the N content exceeds the range stipulated by the present application, and Comparative Example 22 is a case where the content of O is the present level. It is a case where it exceeds the specified range, and in all cases, the coarse grain preventing property is inferior.
[0062]
Comparative Example 23 is a case where the Ti content exceeds the range specified in the present application, and Comparative Example 24 is a case where the Nb content exceeds the range specified in the present application. Cold workability is poor.
[0063]
Comparative Examples 27 and 28 differ from the present invention in the method of manufacturing the steel slab, and are the cases where the steel is manufactured by a method of performing batch rolling after the steel is once cooled to the A3 point temperature or less after casting, both of which have coarse grain prevention characteristics. Is inferior.
[0064]
Comparative Example 29 is a case where the heating temperature of hot working exceeds the range specified in the present application, the number of precipitates is below the range of the present invention, the hardness after rolling exceeds the range specified in the present application, and the total decarburization depth. Moreover, it exceeds the range of the present invention, and the coarse grain preventing property is inferior.
[0065]
Comparative Example 30 is a case where the hot working finishing temperature exceeds the range specified in the present application, and the cold workability is inferior to that of Invention Example 4. The comparative example 31 is a case where the finishing temperature of hot working falls below the range specified in the present application, the total decarburization depth exceeds the range of the present invention, and the coarse grain prevention property is inferior. The comparative example 32 is a case where the cooling rate after hot working exceeds the range specified in the present application, and the coarse grain prevention property is inferior and the cold workability is also inferior.
[0066]
[Table 2]
Figure 2004183064
[0067]
[Table 3]
Figure 2004183064
[0068]
【The invention's effect】
By using the case-hardened steel excellent in cold workability and low carburizing distortion characteristics and its manufacturing method of the present invention, it is excellent in cold workability at the time of cold forging. Generation | occurrence | production of a coarse grain can be suppressed stably and, thereby, generation | occurrence | production of a distortion and bending can be prevented. Therefore, it is possible to cold forge parts that have been difficult to cold forge due to the problem of coarse particles, and it is also possible to omit the annealing after cold forging, the industrial effect of the present invention Is extremely prominent.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the amount of O and the crystal grain coarsening temperature.
FIG. 2 is a diagram showing the relationship between the number of Ti precipitates having a diameter of 0.2 μm or less after hot working and the crystal grain coarsening temperature.

Claims (6)

質量%で、
C:0.1〜0.3%、
Si:0.01〜0.15%、
Mn:0.2〜0.65%、
S:0.005〜0.15%、
Cr:0.4〜1.25%、
B:0.0005〜0.005%、
Al:0.015〜0.05%、
Ti:0.03〜0.15%、
N:0.005%未満(0%を含む)、
P:0.025%以下(0%を含む)、
O:0.0025%以下(0%を含む)
を含有し、残部が鉄および不可避的不純物からなり、熱間圧延後の組織のマトリックス中に直径0.2μm以下のTiの析出物を10個/μm以上を有し、硬さ指数Hを下記式で定義すると、硬さがHVでH+30以下であり、JISG0558で規定する脱炭深さ:DM−T0.2mm以下であることを特徴とする冷間加工性と浸炭時の粗大粒防止特性に優れた肌焼用鋼材。
H=273.5C%+39.1Si%+54.7Mn%+30.4Cr%+136.7Mo%+18.2Ni%
% By mass
C: 0.1 to 0.3%
Si: 0.01 to 0.15%,
Mn: 0.2 to 0.65%,
S: 0.005 to 0.15%,
Cr: 0.4 to 1.25%,
B: 0.0005 to 0.005%,
Al: 0.015 to 0.05%,
Ti: 0.03-0.15%,
N: less than 0.005% (including 0%),
P: 0.025% or less (including 0%),
O: 0.0025% or less (including 0%)
The balance consists of iron and inevitable impurities, and has a precipitate of Ti having a diameter of 0.2 μm or less in a matrix of a structure after hot rolling of 10 pieces / μm 2 or more, and a hardness index H When defined by the following formula, the hardness is HV and H + 30 or less, the decarburization depth specified by JISG0558: DM-T 0.2 mm or less, cold workability and coarse grain prevention characteristics during carburizing Excellent steel for case hardening.
H = 273.5C% + 39.1Si% + 54.7Mn% + 30.4Cr% + 136.7Mo% + 18.2Ni%
質量%で、
C:0.1〜0.3%、
Si:0.01〜0.15%、
Mn:0.2〜0.65%、
S:0.005〜0.15%、
Cr:0.4〜1.25%、
B:0.0005〜0.005%、
Al:0.015〜0.05%、
Ti:0.03〜0.15%、
Nb:0.002〜0.05%、
N:0.005%未満(0%を含む)、
P:0.025%以下(0%を含む)、
O:0.0025%以下(0%を含む)
を含有し、残部が鉄および不可避的不純物からなり、熱間圧延後の組織のマトリックス中に直径0.2μm以下のNbの析出物、Tiの析出物、またはNbとTiの複合組成からなる析出物のその合計で10個/μm以上を有し、硬さ指数Hを下記式で定義すると、硬さがHVでH+30以下であり、JISG0558で規定する脱炭深さ:DM−T0.2mm以下であることを特徴とする冷間加工性と浸炭時の粗大粒防止特性に優れた肌焼用鋼材。
H=273.5C%+39.1Si%+54.7Mn%+30.4Cr%+136.7Mo%+18.2Ni%
% By mass
C: 0.1 to 0.3%
Si: 0.01 to 0.15%,
Mn: 0.2 to 0.65%,
S: 0.005 to 0.15%,
Cr: 0.4 to 1.25%,
B: 0.0005 to 0.005%,
Al: 0.015 to 0.05%,
Ti: 0.03-0.15%,
Nb: 0.002 to 0.05%,
N: less than 0.005% (including 0%),
P: 0.025% or less (including 0%),
O: 0.0025% or less (including 0%)
In which the balance consists of iron and inevitable impurities, and the precipitate is composed of Nb precipitates having a diameter of 0.2 μm or less, Ti precipitates, or a composite composition of Nb and Ti in the matrix of the structure after hot rolling. The total of the products has 10 pieces / μm 2 or more, and when the hardness index H is defined by the following formula, the hardness is HV and H + 30 or less, and the decarburization depth specified by JISG0558: DM-T 0.2 mm A case-hardening steel excellent in cold workability and preventing coarse grains during carburizing, characterized by the following:
H = 273.5C% + 39.1Si% + 54.7Mn% + 30.4Cr% + 136.7Mo% + 18.2Ni%
さらに、質量%で、
Mo:0.3%以下、
Ni:2.5%以下
のうちの1種または2種を含有することを特徴とする請求項1または2記載の冷間加工性と浸炭時の粗大粒防止特性に優れた肌焼用鋼材。
Furthermore, in mass%,
Mo: 0.3% or less,
The steel for skin hardening excellent in cold workability and coarse grain prevention characteristics during carburization according to claim 1 or 2, characterized by containing one or two of Ni: 2.5% or less.
質量%で、
C:0.1〜0.3%、
Si:0.01〜0.15%、
Mn:0.2〜0.65%、
S:0.005〜0.15%、
Cr:0.4〜1.25%、
B:0.0005〜0.005%、
Al:0.015〜0.05%、
Ti:0.03〜0.15%、
N:0.005%未満(0%を含む)、
P:0.025%以下(0%を含む)、
O:0.0025%以下(0%を含む)
を含有し、残部が鉄および不可避的不純物からなる鋼を鋳造後A3点温度以下に冷却することなく分塊圧延を行う工程により製造された鋼片を用い、加熱温度を900〜1070℃、熱間圧延の仕上温度を800〜970℃、熱間圧延に引き続いて800〜500℃の温度範囲を1℃/秒以下の冷却速度で徐冷する条件により線材または棒鋼に熱間圧延し、熱間圧延後の組織のマトリックス中に直径0.2μm以下のTiの析出物を10個/μm以上とし、硬さ指数Hを下記式で定義すると、硬さがHVでH+30以下であり、JISG0558で規定する脱炭深さ:DM−T0.2mm以下であることを特徴とする冷間加工性と浸炭時の粗大粒防止特性に優れた肌焼用鋼材の製造方法。
H=273.5C%+39.1Si%+54.7Mn%+30.4Cr%+136.7Mo%+18.2Ni%
% By mass
C: 0.1 to 0.3%
Si: 0.01 to 0.15%,
Mn: 0.2 to 0.65%,
S: 0.005 to 0.15%,
Cr: 0.4 to 1.25%,
B: 0.0005 to 0.005%,
Al: 0.015 to 0.05%,
Ti: 0.03-0.15%,
N: less than 0.005% (including 0%),
P: 0.025% or less (including 0%),
O: 0.0025% or less (including 0%)
Steel, the balance of which is made of iron and inevitable impurities, and a steel slab manufactured by a step of performing a batch rolling without cooling to below the A3 point temperature after casting, a heating temperature of 900 to 1070 ° C., heat Hot rolling to 800 to 970 ° C. and hot rolling to wire or bar steel under conditions where the temperature range from 800 to 500 ° C. is gradually cooled at a cooling rate of 1 ° C./second or less. When the number of Ti precipitates having a diameter of 0.2 μm or less is 10 / μm 2 or more in the matrix of the structure after rolling and the hardness index H is defined by the following formula, the hardness is HV and H + 30 or less, according to JISG0558 Decarburization depth to be defined: DM-T 0.2 mm or less A method for producing a case-hardening steel material excellent in cold workability and preventing coarse grains during carburizing.
H = 273.5C% + 39.1Si% + 54.7Mn% + 30.4Cr% + 136.7Mo% + 18.2Ni%
質量%で、
C:0.1〜0.3%、
Si:0.01〜0.15%、
Mn:0.2〜0.65%、
S:0.005〜0.15%、
Cr:0.4〜1.25%、
B:0.0005〜0.005%、
Al:0.015〜0.05%、
Ti:0.03〜0.15%、
Nb:0.002〜0.05%、
N:0.005%未満(0%を含む)、
P:0.025%以下(0%を含む)、
O:0.0025%以下(0%を含む)
を含有し、残部が鉄および不可避的不純物からなる鋼を鋳造後A3点温度以下に冷却することなく分塊圧延を行う工程により製造された鋼片を用い、加熱温度を900〜1070℃、熱間圧延の仕上温度を800〜970℃、熱間圧延に引き続いて800〜500℃の温度範囲を1℃/秒以下の冷却速度で徐冷する条件により線材または棒鋼に熱間圧延し、熱間圧延後の組織のマトリックス中に直径0.2μm以下のNbの析出物、Tiの析出物、またはNbとTiの複合組成からなる析出物のその合計で10個/μm以上を有し、硬さ指数Hを下記式で定義すると、硬さがHVでH+30以下であり、JISG0558で規定する脱炭深さ:DM−T0.2mm以下であることを特徴とする冷間加工性と浸炭時の粗大粒防止特性に優れた肌焼用鋼材の製造方法。
H=273.5C%+39.1Si%+54.7Mn%+30.4Cr%+136.7Mo%+18.2Ni%
% By mass
C: 0.1 to 0.3%
Si: 0.01 to 0.15%,
Mn: 0.2 to 0.65%,
S: 0.005 to 0.15%,
Cr: 0.4 to 1.25%,
B: 0.0005 to 0.005%,
Al: 0.015 to 0.05%,
Ti: 0.03-0.15%,
Nb: 0.002 to 0.05%,
N: less than 0.005% (including 0%),
P: 0.025% or less (including 0%),
O: 0.0025% or less (including 0%)
Steel, the balance of which is made of iron and inevitable impurities, and a steel slab manufactured by a step of performing a batch rolling without cooling to below the A3 point temperature after casting, a heating temperature of 900 to 1070 ° C., heat Hot rolling to 800 to 970 ° C. and hot rolling to wire or bar steel under conditions where the temperature range from 800 to 500 ° C. is gradually cooled at a cooling rate of 1 ° C./second or less. In the matrix of the structure after rolling, a total of 10 N / μm 2 of Nb precipitates having a diameter of 0.2 μm or less, Ti precipitates, or precipitates composed of a composite composition of Nb and Ti, When the hardness index H is defined by the following formula, the hardness is HV and H + 30 or less, and the decarburization depth specified by JISG0558: DM-T 0.2 mm or less. Excellent coarse grain prevention properties Method of manufacturing a baked for steel.
H = 273.5C% + 39.1Si% + 54.7Mn% + 30.4Cr% + 136.7Mo% + 18.2Ni%
さらに、質量%で、
Mo:0.3%以下、
Ni:2.5%以下
のうちの1種または2種を含有することを特徴とする請求項4または5記載の冷間加工性と浸炭時の粗大粒防止特性に優れた肌焼用鋼材の製造方法。
Furthermore, in mass%,
Mo: 0.3% or less,
Ni: One or two of 2.5% or less is contained, The steel for skin hardening excellent in cold workability and coarse grain prevention characteristics at the time of carburizing according to claim 4 or 5 Production method.
JP2002353073A 2002-12-04 2002-12-04 Steel for case hardening excellent in cold workability and properties of preventing coarse grains during carburizing and method for producing the same Expired - Fee Related JP3738003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002353073A JP3738003B2 (en) 2002-12-04 2002-12-04 Steel for case hardening excellent in cold workability and properties of preventing coarse grains during carburizing and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002353073A JP3738003B2 (en) 2002-12-04 2002-12-04 Steel for case hardening excellent in cold workability and properties of preventing coarse grains during carburizing and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004183064A true JP2004183064A (en) 2004-07-02
JP3738003B2 JP3738003B2 (en) 2006-01-25

Family

ID=32754482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002353073A Expired - Fee Related JP3738003B2 (en) 2002-12-04 2002-12-04 Steel for case hardening excellent in cold workability and properties of preventing coarse grains during carburizing and method for producing the same

Country Status (1)

Country Link
JP (1) JP3738003B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001940A (en) * 2006-06-21 2008-01-10 Kobe Steel Ltd Method for designing component in alternative steel for chromium-molybdenum steel
JP2008081841A (en) * 2006-08-28 2008-04-10 Kobe Steel Ltd Case hardening steel having excellent cold forgeability and crystal grain coarsening prevention property, and machine part obtained therefrom
JP4528363B1 (en) * 2009-04-06 2010-08-18 新日本製鐵株式会社 Case-hardened steel with excellent cold workability, machinability, and fatigue characteristics after carburizing and quenching, and method for producing the same
WO2010116555A1 (en) 2009-04-06 2010-10-14 新日本製鐵株式会社 Steel for case hardening which has excellent cold workability and machinability and which exhibits excellent fatigue characteristics after carburizing and quenching, and process for production of same
WO2012043074A1 (en) 2010-09-28 2012-04-05 株式会社神戸製鋼所 Case hardened steel and method for producing same
WO2012132786A1 (en) * 2011-03-29 2012-10-04 株式会社神戸製鋼所 Case hardening steel, method for producing same, and mechanical structural part using case hardening steel
EP2514847A1 (en) * 2010-03-19 2012-10-24 Nippon Steel Corporation Steel for case-hardening treatment, case-hardened steel component, and method for producing same
CN102864377A (en) * 2012-09-10 2013-01-09 山西太钢不锈钢股份有限公司 Hot rolled strip steel and manufacturing method thereof
US8673094B2 (en) 2010-10-06 2014-03-18 Nippon Steel & Sumitomo Metal Corporation Case hardening steel and manufacturing method thereof
CN105088089A (en) * 2015-08-24 2015-11-25 武汉钢铁(集团)公司 Cold-rolled shifting fork steel member for automobile and producing method
US10689721B2 (en) 2014-01-30 2020-06-23 Daido Steel Co., Ltd. Case hardening steel and carburized component obtained therefrom
CN114990430A (en) * 2022-05-08 2022-09-02 江阴兴澄特种钢铁有限公司 Steel for annealing-free cold heading gear and manufacturing method thereof

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001940A (en) * 2006-06-21 2008-01-10 Kobe Steel Ltd Method for designing component in alternative steel for chromium-molybdenum steel
JP2008081841A (en) * 2006-08-28 2008-04-10 Kobe Steel Ltd Case hardening steel having excellent cold forgeability and crystal grain coarsening prevention property, and machine part obtained therefrom
JP4528363B1 (en) * 2009-04-06 2010-08-18 新日本製鐵株式会社 Case-hardened steel with excellent cold workability, machinability, and fatigue characteristics after carburizing and quenching, and method for producing the same
WO2010116555A1 (en) 2009-04-06 2010-10-14 新日本製鐵株式会社 Steel for case hardening which has excellent cold workability and machinability and which exhibits excellent fatigue characteristics after carburizing and quenching, and process for production of same
CN102378822B (en) * 2009-04-06 2014-05-14 新日铁住金株式会社 Steel for case hardening which has excellent cold workability and machinability and which exhibits excellent fatigue characteristics after carburizing and quenching, and process for production of same
EP2514847A1 (en) * 2010-03-19 2012-10-24 Nippon Steel Corporation Steel for case-hardening treatment, case-hardened steel component, and method for producing same
EP2514847A4 (en) * 2010-03-19 2013-08-28 Nippon Steel & Sumitomo Metal Corp Steel for case-hardening treatment, case-hardened steel component, and method for producing same
CN103124801A (en) * 2010-09-28 2013-05-29 株式会社神户制钢所 Case hardened steel and method for producing same
KR101413902B1 (en) 2010-09-28 2014-06-30 가부시키가이샤 고베 세이코쇼 Case hardened steel and method for producing same
US9115415B2 (en) 2010-09-28 2015-08-25 Kobe Steel, Ltd. Case hardened steel and method for producing same
CN103124801B (en) * 2010-09-28 2015-05-13 株式会社神户制钢所 Case hardened steel and method for producing same
JP2012072427A (en) * 2010-09-28 2012-04-12 Kobe Steel Ltd Case hardened steel and method for manufacturing the same
WO2012043074A1 (en) 2010-09-28 2012-04-05 株式会社神戸製鋼所 Case hardened steel and method for producing same
US8673094B2 (en) 2010-10-06 2014-03-18 Nippon Steel & Sumitomo Metal Corporation Case hardening steel and manufacturing method thereof
JP2012207244A (en) * 2011-03-29 2012-10-25 Kobe Steel Ltd Case hardening steel, method for producing the same, and mechanical structural part using the case hardening steel
WO2012132786A1 (en) * 2011-03-29 2012-10-04 株式会社神戸製鋼所 Case hardening steel, method for producing same, and mechanical structural part using case hardening steel
KR101520208B1 (en) 2011-03-29 2015-05-13 가부시키가이샤 고베 세이코쇼 Case hardening steel, method for producing same, and mechanical structural part using case hardening steel
US9297051B2 (en) 2011-03-29 2016-03-29 Kobe Steel, Ltd. Case hardening steel, method for producing same, and mechanical structural part using case hardening steel
CN102864377B (en) * 2012-09-10 2015-05-20 山西太钢不锈钢股份有限公司 Hot rolled strip steel and manufacturing method thereof
CN102864377A (en) * 2012-09-10 2013-01-09 山西太钢不锈钢股份有限公司 Hot rolled strip steel and manufacturing method thereof
US10689721B2 (en) 2014-01-30 2020-06-23 Daido Steel Co., Ltd. Case hardening steel and carburized component obtained therefrom
CN105088089A (en) * 2015-08-24 2015-11-25 武汉钢铁(集团)公司 Cold-rolled shifting fork steel member for automobile and producing method
CN114990430A (en) * 2022-05-08 2022-09-02 江阴兴澄特种钢铁有限公司 Steel for annealing-free cold heading gear and manufacturing method thereof

Also Published As

Publication number Publication date
JP3738003B2 (en) 2006-01-25

Similar Documents

Publication Publication Date Title
KR101965520B1 (en) Rolled steel bar or rolled wire material for cold-forged component
JP4808828B2 (en) Induction hardening steel and method of manufacturing induction hardening steel parts
WO2016148037A1 (en) Steel sheet for carburization having excellent cold workability and toughness after carburizing heat treatment
JP3764586B2 (en) Manufacturing method of case-hardened steel with excellent cold workability and low carburizing strain characteristics
CN103154293A (en) Carburizing steel having excellent cold forgeability, and production method thereof
JP4464862B2 (en) Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing.
CN108315637B (en) High carbon hot-rolled steel sheet and method for producing same
EP3222743A1 (en) Rolled steel bar or rolled wire material for cold-forged component
JP3738003B2 (en) Steel for case hardening excellent in cold workability and properties of preventing coarse grains during carburizing and method for producing the same
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP3460659B2 (en) Soft high carbon steel strip with small heat treatment distortion and method for producing the same
JP3879459B2 (en) Manufacturing method of high hardenability high carbon hot rolled steel sheet
JP4057930B2 (en) Machine structural steel excellent in cold workability and method for producing the same
JP3764627B2 (en) Case-hardened boron steel for cold forging that does not generate abnormal structure during carburizing and its manufacturing method
JP4448047B2 (en) A steel for skin hardening that has excellent grain coarsening resistance and cold workability, and can omit softening annealing.
JP6977880B2 (en) High carbon hot-rolled steel sheet and its manufacturing method
JP5153221B2 (en) Soft nitriding non-tempered machine parts
JP4556770B2 (en) Carburizing steel and method for producing the same
JP3774697B2 (en) Steel material for high strength induction hardening and method for manufacturing the same
JP4488228B2 (en) Induction hardening steel
JP6390685B2 (en) Non-tempered steel and method for producing the same
JP2019011510A (en) Steel sheet for carburization excellent in cold workability and toughness after carburization heat treatment
JP3077567B2 (en) Method of manufacturing steel for low-temperature rebar
JPH1150191A (en) Carburized axial parts and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051028

R151 Written notification of patent or utility model registration

Ref document number: 3738003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees