JP2012072427A - Case hardened steel and method for manufacturing the same - Google Patents

Case hardened steel and method for manufacturing the same Download PDF

Info

Publication number
JP2012072427A
JP2012072427A JP2010217060A JP2010217060A JP2012072427A JP 2012072427 A JP2012072427 A JP 2012072427A JP 2010217060 A JP2010217060 A JP 2010217060A JP 2010217060 A JP2010217060 A JP 2010217060A JP 2012072427 A JP2012072427 A JP 2012072427A
Authority
JP
Japan
Prior art keywords
less
precipitates
amount
steel
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010217060A
Other languages
Japanese (ja)
Other versions
JP5432105B2 (en
Inventor
Shigeaki Okamoto
成朗 岡本
Mutsuhisa Nagahama
睦久 永濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010217060A priority Critical patent/JP5432105B2/en
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to EP11828635.0A priority patent/EP2623627A4/en
Priority to CN201180046437.3A priority patent/CN103124801B/en
Priority to MX2013003264A priority patent/MX336778B/en
Priority to RU2013119623/02A priority patent/RU2532766C1/en
Priority to PCT/JP2011/068239 priority patent/WO2012043074A1/en
Priority to BR112013006707A priority patent/BR112013006707A2/en
Priority to KR1020137007781A priority patent/KR101413902B1/en
Priority to US13/823,814 priority patent/US9115415B2/en
Publication of JP2012072427A publication Critical patent/JP2012072427A/en
Application granted granted Critical
Publication of JP5432105B2 publication Critical patent/JP5432105B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • B22D11/225Controlling or regulating processes or operations for cooling cast stock or mould for secondary cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Abstract

PROBLEM TO BE SOLVED: To provide a case hardened steel which has favorable cold forgeability and superior impact properties after case hardening processing, and to provide an effective method for manufacturing the case hardened steel.SOLUTION: The case hardened steel contains C, Si, Mn, S, Cr, Al, Ti, Nb, B, and N, the remainder being iron and unavoidable impurities. Precipitates that are at least 20 μmamong precipitates containing Ti and/or Nb have a number density of not greater than 1.0 precipitate/mm, precipitates containing Mn and S that are over 5 μmand less than 20 μmamong the precipitates containing Ti and/or Nb have a number density of more than 0.7 but no greater than 3.0 precipitates per mm, and the fraction of ferrite is over 77 area%.

Description

本発明は、自動車などの輸送機器や、建設機械、その他の産業機械などにおいて、肌焼き処理して使用される機械部品の素材となる肌焼鋼およびその製造方法に関するものであり、特に、歯車(軸付き歯車など)、シャフト類、軸受、CVT用プーリ用に肌焼き処理した際に、優れた衝撃特性を示すと共に、優れた冷間鍛造性を示す肌焼鋼と、その製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a case hardening steel that is a material of a machine part used by case hardening in transport equipment such as automobiles, construction machines, and other industrial machines, and a method for manufacturing the same. (Spindle gears, etc.), shafts, bearings, case hardening steels exhibiting excellent impact characteristics and excellent cold forgeability when subjected to case hardening for CVT pulleys, and methods for producing the same It is.

自動車、建設機械、その他の各種産業機械用として用いられる機械部品のうち、特に高強度が要求される部品には、従来から浸炭、浸炭窒化、窒化などの表面硬化熱処理(肌焼処理)が行われている。これらの用途には通常、SCr、SCM、SNCMなどのJIS規格で定められた肌焼鋼が使用され、切削、鍛造などの機械加工により所望の部品形状に成形した後、上記したような表面硬化熱処理を施し、その後研磨などの仕上げ工程を経て部品へと製造される。   Among machine parts used for automobiles, construction machines, and other various industrial machines, parts that require particularly high strength have been conventionally subjected to surface hardening heat treatment (skin-burning treatment) such as carburizing, carbonitriding, and nitriding. It has been broken. For these applications, case-hardened steels defined by JIS standards such as SCr, SCM, SNCM, etc. are usually used. After forming into a desired part shape by machining such as cutting or forging, surface hardening as described above. After being subjected to heat treatment, it is manufactured into parts through a finishing process such as polishing.

近年、上記のような機械部品には、製造原価の低減、リードタイムの短縮、製造時のCO2排出量削減などが望まれており、部品成形方法は従来の切削や熱間鍛造から、冷間鍛造に変更されつつあり、良好な冷間鍛造性が要求される。また、JIS規格で定められた肌焼鋼では、冷間鍛造後の表面硬化熱処理によって結晶粒粗大化が生じるため、結晶粒の粗大化を抑制することも重要である。結晶粒粗大化の問題を改善するため、従来からAl、Nb、Tiなどの元素を添加することによって、AlN、Nb(CN)、TiCといった析出物を微細に分散させ、この微細析出物によって結晶粒界の移動を停止させる技術が用いられている(例えば特許文献1〜8)。 In recent years, it has been desired to reduce the manufacturing cost, lead time, and CO 2 emission during manufacturing for the above machine parts. It is being changed to hot forging, and good cold forgeability is required. Moreover, in case hardening steel defined by JIS standard, since grain coarsening occurs by surface hardening heat treatment after cold forging, it is also important to suppress grain coarsening. Conventionally, by adding elements such as Al, Nb, and Ti to improve the problem of grain coarsening, precipitates such as AlN, Nb (CN), and TiC are finely dispersed. Techniques for stopping the movement of grain boundaries are used (for example, Patent Documents 1 to 8).

特許文献1〜8はいずれも、所定の粒径や組成を有する、Nbおよび/またはTiを含有する析出物(炭化物、炭窒化物など)の個数を所定範囲に制御することによって、結晶粒の粗大化が防止できる旨を開示しており、結晶粒粗大化防止効果はある程度得られるものの、冷間鍛造性が十分ではなかった。   In each of Patent Documents 1 to 8, by controlling the number of precipitates (carbides, carbonitrides, etc.) containing Nb and / or Ti having a predetermined particle size and composition within a predetermined range, It discloses that coarsening can be prevented, and although the effect of preventing crystal grain coarsening is obtained to some extent, the cold forgeability is not sufficient.

特開2007−217761号公報Japanese Patent Laid-Open No. 2007-217771 特開2006−307271号公報JP 2006-307271 A 特開2006−307270号公報JP 2006-307270 A 特開2007−321211号公報JP 2007-321211 A 特開2004−183064号公報JP 2004-183064 A 特開平11−335777号公報JP-A-11-335777 特開2006−161142号公報JP 2006-161142 A 特開2007−162128号公報JP 2007-162128 A

本発明は上記のような事情に鑑みてなされたものであり、その目的は、従来と同程度の結晶粒粗大化防止特性を確保した上で、良好な冷間鍛造性を有するとともに、上記機械部品に通常要求される肌焼処理後の衝撃特性に優れた肌焼鋼を提供すること、および該肌焼鋼を製造するための有用な方法を提供することにある。   The present invention has been made in view of the circumstances as described above, and its purpose is to ensure the same crystal grain coarsening prevention property as that of the prior art, and to have good cold forgeability and the above machine. An object of the present invention is to provide a case-hardened steel excellent in impact characteristics after case-hardening treatment, which is usually required for parts, and to provide a useful method for producing the case-hardened steel.

上記課題を達成した本発明の肌焼鋼は、C:0.05〜0.3%(質量%の意味。以下、化学組成について同じ。)、Si:0.6%以下(0%を含まない)、Mn:0.20〜1.0%、S:0.001〜0.025%、Cr:1〜2.5%、Al:0.01〜0.10%、Ti:0.01〜0.10%、Nb:0.01〜0.10%、B:0.0005〜0.005%、N:0.002〜0.02%を満たし、残部は鉄および不可避不純物であり、Tiおよび/またはNbを含有する析出物のうち20μm2以上の析出物は、個数密度が1.0個/mm2以下であり、Tiおよび/またはNbを含有する析出物のうち5μm2超、20μm2未満であって、MnおよびSを含有する析出物は、個数密度が0.7個/mm2超、3.0個/mm2以下であり、フェライト分率が77面積%超であることを特徴とするものである。 The case-hardened steel of the present invention that has achieved the above-mentioned problems is C: 0.05 to 0.3% (meaning mass%, hereinafter the same for chemical composition), Si: 0.6% or less (including 0%) Mn: 0.20 to 1.0%, S: 0.001 to 0.025%, Cr: 1 to 2.5%, Al: 0.01 to 0.10%, Ti: 0.01 -0.10%, Nb: 0.01-0.10%, B: 0.0005-0.005%, N: 0.002-0.02% is satisfied, the balance is iron and inevitable impurities, Of the precipitates containing Ti and / or Nb, the precipitates of 20 μm 2 or more have a number density of 1.0 piece / mm 2 or less, and more than 5 μm 2 of the precipitates containing Ti and / or Nb, be less than 20 [mu] m 2, precipitates containing Mn and S, the number density of 0.7 pieces / mm 2, greater than 3.0 pieces / mm 2 or less There, it is characterized in that the ferrite fraction is 77 area percent.

本発明の肌焼鋼は、必要に応じて(a)Mo:2%以下(0%を含まない)や、(b)Cu:0.1%以下(0%を含まない)および/またはNi:0.3%以下(0%を含まない)を含有することも好ましく、含有させる元素の種類に応じて肌焼鋼の特性が更に改善される。   The case-hardened steel according to the present invention has (a) Mo: 2% or less (not including 0%), (b) Cu: 0.1% or less (not including 0%) and / or Ni as necessary. : It is also preferable to contain 0.3% or less (excluding 0%), and the characteristics of the case hardening steel are further improved according to the kind of element to be contained.

本発明は、上記肌焼鋼を製造する方法も包含し、本発明の製造方法は上記のいずれかの化学組成の鋼を、1500℃から800℃までの冷却速度を2.5℃/分以上として鋳造し、加熱温度1100〜1200℃で分塊圧延し、圧延温度970〜1150℃で一回目の熱間圧延をした後、Ac3点〜950℃まで冷却し、さらに圧延温度Ac3点〜950℃で二回目の熱間圧延をすることを特徴とする。 The present invention also includes a method for producing the case-hardened steel, and the production method of the present invention is a steel having any one of the above chemical compositions with a cooling rate from 1500 ° C to 800 ° C of 2.5 ° C / min or more. And after the first hot rolling at a rolling temperature of 970 to 1150 ° C., cooling to Ac 3 point to 950 ° C., and further rolling temperature Ac 3 point to The second hot rolling is performed at 950 ° C.

本発明によれば、鋼の化学組成を所定範囲に調整するとともに、Tiおよび/またはNbを含有する析出物であって、MnおよびSを含有する複合析出物の形態(大きさ)および個数を所定範囲に調製しているため、従来と同程度の結晶粒粗大化防止特性を確保した上で、良好な冷間鍛造性を実現することができるとともに、表面硬化熱処理後に優れた衝撃特性を実現することができる。従って、本発明の肌焼鋼は各種機械部品の素材として有用である。また、本発明の肌焼鋼を使用すれば、切削による部品成形を冷間鍛造に置き換えることができ、部品成形のリードタイム短縮およびコストダウンを達成することができる。   According to the present invention, the chemical composition of steel is adjusted to a predetermined range, and the form (size) and number of composite precipitates containing Ti and / or Nb and containing Mn and S are set. Because it is prepared within the specified range, it can achieve good cold forgeability while ensuring the same level of grain coarsening prevention properties as before, as well as excellent impact properties after surface hardening heat treatment. can do. Therefore, the case-hardened steel of the present invention is useful as a material for various machine parts. Moreover, if the case-hardened steel of the present invention is used, the part forming by cutting can be replaced with cold forging, and lead time reduction and cost reduction of part forming can be achieved.

後記する実施例における、冷間鍛造性測定の試験片の形状を示す概略図である。It is the schematic which shows the shape of the test piece of the cold forgeability measurement in the Example mentioned later. 後記する実施例における、球状化処理の熱処理条件を示すグラフである。It is a graph which shows the heat processing conditions of the spheroidization process in the Example mentioned later. 後記する実施例における、衝撃特性の測定に用いたシャルピー衝撃試験片の形状を表す概略図である。It is the schematic showing the shape of the Charpy impact test piece used for the measurement of an impact characteristic in the Example mentioned later. 後記する実施例における、浸炭処理条件を示すグラフである。It is a graph which shows the carburizing process conditions in the Example mentioned later.

本発明者らは、肌焼鋼の冷間鍛造性を向上させ、かつ表面硬化熱処理後の衝撃特性を確保するべく、特に鋼の化学成分および析出物の存在形態(大きさ、個数など)に着目して検討を重ねた。その結果、C、Si、Mn、S、Cr、Al、Ti、Nb、B、Nの各成分の含有量を適切に制御するとともに、Tiおよび/またはNbを含有する析出物であって、MnおよびSを含有する複合析出物(以下、「(Ti、Nb)系複合析出物」と呼ぶ。)の形態(大きさ)および個数密度を所定範囲に調整すれば、従来と同程度の結晶粒粗大化防止特性を確保した上で、従来よりも優れた冷間鍛造性を実現することができ、さらに表面硬化熱処理後の衝撃特性も確保できることを見出し、本発明を完成した。   In order to improve the cold forgeability of the case-hardened steel and to ensure the impact characteristics after the surface hardening heat treatment, the present inventors particularly set the chemical composition of the steel and the presence form (size, number, etc.) of precipitates. We focused on and examined it. As a result, the content of each component of C, Si, Mn, S, Cr, Al, Ti, Nb, B, and N is appropriately controlled, and is a precipitate containing Ti and / or Nb, If the form (size) and number density of the composite precipitate containing S and S (hereinafter referred to as “(Ti, Nb) -based composite precipitate”) and the number density are adjusted within a predetermined range, It has been found that cold forgeability superior to that of the prior art can be realized while securing the coarsening prevention characteristics, and further, impact characteristics after surface hardening heat treatment can be secured, and the present invention has been completed.

以下、本発明の肌焼鋼の化学成分について説明する。   Hereinafter, the chemical components of the case hardening steel of the present invention will be described.

C:0.05〜0.3%
Cは、部品として必要な芯部硬さを確保する上で重要な元素であり、0.05%未満では、硬さ不足により部品としての静的強度が不足する。一方、C量が過剰になると硬さが過度に高くなり、鍛造性や被削性が低下する。そこで、C量は0.05%以上、0.3%以下と定めた。C量は、好ましくは0.10%以上であり、より好ましくは0.15%以上である。また、C量は、好ましくは0.27%以下であり、より好ましくは0.25%以下である。
C: 0.05-0.3%
C is an important element for securing the core hardness necessary for a component. If it is less than 0.05%, the static strength as a component is insufficient due to insufficient hardness. On the other hand, when the amount of C is excessive, the hardness becomes excessively high, and forgeability and machinability are reduced. Therefore, the C content is determined to be 0.05% or more and 0.3% or less. The amount of C is preferably 0.10% or more, more preferably 0.15% or more. Further, the C amount is preferably 0.27% or less, more preferably 0.25% or less.

Si:0.6%以下(0%を含まない)
Siは、焼戻し処理時の硬さの低下を抑えて、肌焼き後の部品の表面硬さを確保するのに有効な元素である。このような効果は、その含有量が増加するにつれて大きくなるため、Si量は0.01%以上とすることが好ましく、より好ましくは0.05%以上である。一方、Si量が多すぎると、素材の変形抵抗が増し、鍛造性が劣化することとなる。そこでSi量は0.6%以下と定めた。Si量は、好ましくは0.55%以下であり、より好ましくは0.50%以下である。
Si: 0.6% or less (excluding 0%)
Si is an element effective in suppressing the decrease in hardness during the tempering process and ensuring the surface hardness of the part after skin tempering. Since such an effect increases as the content thereof increases, the Si content is preferably 0.01% or more, and more preferably 0.05% or more. On the other hand, when the amount of Si is too large, the deformation resistance of the material increases and the forgeability deteriorates. Therefore, the Si amount is set to 0.6% or less. The amount of Si is preferably 0.55% or less, more preferably 0.50% or less.

Mn:0.20〜1.0%
Mnは、脱酸剤として作用し、酸化物系介在物を低減して鋼材の内部品質を高める作用をするとともに、浸炭焼入れなどの肌焼き時の焼入れ性を著しく高める作用を有している。また、MnSを形成し、Nbおよび/またはTiを含有する炭化物、窒化物、炭窒化物(以下、「炭化物等」と呼ぶ。)と複合析出させることにより、Nbおよび/またはTiを含有する粗大な炭化物等による冷間鍛造性の劣化を抑制することができる。さらに、Mn量が少ないと、赤熱脆性を生じ製造性が低下する。そこでMn量は0.20%以上と定めた。Mn量は、好ましくは0.30%以上であり、より好ましくは0.35%以上である。一方、Mn量が過剰になると、冷間鍛造時の変形抵抗の増大や、縞状の偏析が顕著となり材質のバラツキが大きくなるなどの悪影響が生じる。そこでMn量は1.0%以下と定めた。Mn量は、好ましくは0.85%以下であり、より好ましくは0.80%以下である。
Mn: 0.20 to 1.0%
Mn acts as a deoxidizer, acts to increase the internal quality of the steel by reducing oxide inclusions, and has the effect of significantly enhancing the hardenability during case hardening such as carburizing and quenching. In addition, coarse particles containing Nb and / or Ti are formed by complex precipitation with carbides, nitrides, and carbonitrides (hereinafter referred to as “carbides”) containing Nb and / or Ti. It is possible to suppress the deterioration of cold forgeability due to the carbides and the like. Furthermore, if the amount of Mn is small, red heat embrittlement occurs and productivity decreases. Therefore, the amount of Mn is set to 0.20% or more. The amount of Mn is preferably 0.30% or more, and more preferably 0.35% or more. On the other hand, when the amount of Mn is excessive, there are adverse effects such as an increase in deformation resistance during cold forging and a marked segregation of stripes, resulting in increased material variation. Therefore, the amount of Mn is set to 1.0% or less. The amount of Mn is preferably 0.85% or less, more preferably 0.80% or less.

S:0.001〜0.025%
Sは、MnやTiなどと結合して、MnSやTiSなどを形成し、MnとTiを含有する複合析出物を形成するために必要な元素である。一方、S量が過剰になると衝撃特性に悪影響を及ぼす。そこでS量は0.001〜0.025%と定めた。S量は好ましくは0.005%以上であり、より好ましくは0.010%以上である。また、S量は好ましくは0.022%以下であり、より好ましくは0.020%以下である。
S: 0.001 to 0.025%
S is an element necessary for bonding with Mn, Ti, etc. to form MnS, TiS, etc., and forming a composite precipitate containing Mn and Ti. On the other hand, if the amount of S is excessive, the impact characteristics are adversely affected. Therefore, the S amount is determined to be 0.001 to 0.025%. The amount of S is preferably 0.005% or more, more preferably 0.010% or more. Further, the S amount is preferably 0.022% or less, more preferably 0.020% or less.

Cr:1〜2.5%
Crは、浸炭などの肌焼き時に有効硬化層を得るために必要な元素である。一方、Cr量が過剰になると、過剰浸炭を引き起こし、肌焼き後の部品の摺動特性に悪影響を及ぼすこととなる。そこで、Cr含有量は1〜2.5%と定めた。Cr量は、好ましくは1.2%以上であり、より好ましくは1.3%以上である。また、Cr量は、好ましくは2.2%以下であり、より好ましくは2.0%以下(さらに好ましくは1.9%以下)である。
Cr: 1 to 2.5%
Cr is an element necessary for obtaining an effective hardened layer during case hardening such as carburizing. On the other hand, when the amount of Cr becomes excessive, excessive carburization is caused, which adversely affects the sliding characteristics of the parts after case hardening. Therefore, the Cr content is determined to be 1 to 2.5%. The amount of Cr is preferably 1.2% or more, and more preferably 1.3% or more. Further, the Cr amount is preferably 2.2% or less, more preferably 2.0% or less (more preferably 1.9% or less).

Al:0.01〜0.10%
Alは、Nと結合してAlNを生成し、熱処理時の鋼材の結晶粒成長を抑制するのに有効な元素である。また、後述するTiおよびNbと複合添加することによって、AlNがTiやNbを含有する析出物と複合析出し、単独析出のときよりも安定な結晶粒粗大化防止効果を発揮することとなる。一方、Al量が過剰になると、固溶Al量が増大し、冷間鍛造時の変形抵抗の増大を招く。そこで、Al量は0.01〜0.10%と定めた。Al量は、好ましくは0.02%以上であり、より好ましくは0.03%以上である。また、Al量は、好ましくは0.09%以下であり、より好ましくは0.08%以下である。
Al: 0.01-0.10%
Al is an element effective to combine with N to produce AlN and suppress the grain growth of the steel during heat treatment. Moreover, by adding together with Ti and Nb, which will be described later, AlN is combined with precipitates containing Ti and Nb, and the effect of preventing grain coarsening is more stable than when single precipitation is performed. On the other hand, when the amount of Al becomes excessive, the amount of solute Al increases, leading to an increase in deformation resistance during cold forging. Therefore, the Al amount is determined to be 0.01 to 0.10%. The amount of Al is preferably 0.02% or more, and more preferably 0.03% or more. Moreover, Al amount becomes like this. Preferably it is 0.09% or less, More preferably, it is 0.08% or less.

Ti:0.01〜0.10%
Tiは、鋼中で微細なTiの炭化物等(Ti(C、N))を生成し、肌焼き時の結晶粒粗大化を抑制する効果を有する。一方、Ti量が過剰になると、鋼材の製造コストの上昇や粗大なTi系介在物の生成による冷間鍛造性および衝撃特性(シャルピー吸収エネルギーで表される衝撃強度など)の低下を招く。そこで、Ti量は0.01〜0.10%と定めた。Ti量は、好ましくは0.02%以上であり、より好ましくは0.03%以上である。また、Ti量は、好ましくは0.09%以下であり、より好ましくは0.08%以下である。
Ti: 0.01-0.10%
Ti produces | generates the carbide | carbonized_material etc. (Ti (C, N)) of fine Ti in steel, and has the effect which suppresses the crystal grain coarsening at the time of skin baking. On the other hand, when the amount of Ti is excessive, the production cost of the steel material is increased, and cold forgeability and impact characteristics (impact strength expressed by Charpy absorbed energy, etc.) are reduced due to the generation of coarse Ti-based inclusions. Therefore, the Ti amount is determined to be 0.01 to 0.10%. The amount of Ti is preferably 0.02% or more, and more preferably 0.03% or more. Further, the Ti amount is preferably 0.09% or less, and more preferably 0.08% or less.

Nb:0.01〜0.10%
Nbは、鋼中で微細なNbの炭化物等(Nb(C、N))を生成し、肌焼き時の結晶粒粗大化を抑制する効果を有する。一方、Nb量が過剰になると、鋼材の製造コストの上昇や、粗大なNb系介在物の生成による冷間鍛造性および衝撃特性(衝撃強度など)の低下を招く。そこで、Nb量は0.01〜0.10%と定めた。Nb量は、好ましくは0.02%以上であり、より好ましくは0.03%以上である。また、Nb量は、好ましくは0.09%以下であり、より好ましくは0.08%以下である。
Nb: 0.01 to 0.10%
Nb produces fine Nb carbides and the like (Nb (C, N)) in steel and has an effect of suppressing crystal grain coarsening during case baking. On the other hand, when the amount of Nb becomes excessive, the manufacturing cost of the steel material rises, and cold forgeability and impact characteristics (impact strength, etc.) decrease due to the generation of coarse Nb-based inclusions. Therefore, the Nb amount is determined to be 0.01 to 0.10%. The Nb amount is preferably 0.02% or more, and more preferably 0.03% or more. Further, the Nb amount is preferably 0.09% or less, more preferably 0.08% or less.

B:0.0005〜0.005%
Bは、微量で鋼材の焼入性を大幅に向上させる効果があることに加え、結晶粒界を強化し衝撃強度を高める効果がある。一方、B量が過剰になっても前記効果は飽和するとともに、B窒化物が生成しやすくなり、冷間および熱間加工性が悪化する。そこで、B量は0.0005〜0.005%と定めた。B量は、好ましくは0.0007%以上であり、より好ましくは0.0010%以上である。また、B量は、好ましくは0.004%以下であり、より好ましくは0.0035%以下である。
B: 0.0005 to 0.005%
B has the effect of significantly improving the hardenability of the steel material in a small amount, and also has the effect of strengthening the grain boundaries and increasing the impact strength. On the other hand, even if the amount of B becomes excessive, the effect is saturated and B nitride is easily generated, and cold workability and hot workability are deteriorated. Therefore, the B amount is determined to be 0.0005 to 0.005%. The amount of B is preferably 0.0007% or more, and more preferably 0.0010% or more. Further, the B amount is preferably 0.004% or less, and more preferably 0.0035% or less.

N:0.002〜0.02%
Nは、TiやNbと窒化物、または炭窒化物を生成させるために必要な元素であるが、N量が過剰になるとTi系窒化物が粗大化しやすくなり、その結果衝撃強度の低下や、変形抵抗の増大による冷間鍛造性の低下を招く。そこで、N量は0.002〜0.02%と定めた。N量は、好ましくは0.003%以上であり、より好ましくは0.005%以上である。またN量は、好ましくは0.018%以下であり、より好ましくは0.015%以下である。
N: 0.002 to 0.02%
N is an element necessary for generating Ti or Nb and nitride, or carbonitride, but when the amount of N is excessive, Ti-based nitride is likely to be coarsened, resulting in a decrease in impact strength, This causes a decrease in cold forgeability due to an increase in deformation resistance. Therefore, the N amount is determined to be 0.002 to 0.02%. The amount of N is preferably 0.003% or more, and more preferably 0.005% or more. Further, the N amount is preferably 0.018% or less, and more preferably 0.015% or less.

本発明の肌焼鋼の基本成分は、上記の通りであり、残部は実質的に鉄である。但し、原材料、資材、製造設備等の状況によって持ち込まれる不可避不純物が鋼中に含まれることは当然に許容される。さらに本発明では、本発明の作用効果を阻害しない範囲で、以下の任意元素を含有していても良く、含有させる元素の種類に応じて肌焼鋼の特性を更に向上させることが可能となる。   The basic components of the case hardening steel of the present invention are as described above, and the balance is substantially iron. However, it is naturally allowed that inevitable impurities brought into the steel depending on the situation of raw materials, materials, manufacturing equipment, etc. are contained in the steel. Furthermore, in this invention, in the range which does not inhibit the effect of this invention, you may contain the following arbitrary elements, and it becomes possible to further improve the characteristic of case hardening steel according to the kind of element to contain. .

Mo:2%以下(0%を含まない)
Moは、浸炭焼入などの肌焼き時の焼入性を著しく向上させる効果を有する他、衝撃強度の向上に有効な元素である。そこで、Mo量は0.01%以上とすることが好ましく、より好ましくは0.05%以上である。一方、Mo量が過剰になると、鋼材の硬さが高くなるため被削性が不良となる。そこで、Mo量は2%以下とすることが好ましく、より好ましくは1.5%以下、さらに好ましくは1.0%以下(特に、0.8%以下)である。
Mo: 2% or less (excluding 0%)
Mo has an effect of remarkably improving the hardenability during case hardening such as carburizing and quenching, and is an element effective for improving the impact strength. Therefore, the Mo amount is preferably 0.01% or more, and more preferably 0.05% or more. On the other hand, when the amount of Mo becomes excessive, the machinability becomes poor because the hardness of the steel material increases. Therefore, the Mo amount is preferably 2% or less, more preferably 1.5% or less, and still more preferably 1.0% or less (particularly 0.8% or less).

Cu:0.1%以下(0%を含まない)および/またはNi:0.3%以下(0%を含まない)
CuおよびNiは、いずれもFeより酸化されにくい元素であるため、鋼材の耐食性を向上させる元素である。またNiは、鋼材の耐衝撃性を向上させる効果も有する。そこでCu量およびNi量はいずれも0.01%以上とすることが好ましく、より好ましくは0.05%以上である。一方、Cu量が過剰になると鋼材の熱間延性が低下し、Ni量が過剰になると鋼材のコストの上昇を招く。そこで、Cu量は0.1%以下とすることが好ましく、より好ましくは0.08%以下、さらに好ましくは0.05%以下である。Ni量は0.3%以下とすることが好ましく、より好ましくは0.2%以下、さらに好ましくは0.1%以下である。CuおよびNiは単独で添加してもよいし、併用しても良いが、Cuを添加する場合は、Niも添加することが好ましい。
Cu: 0.1% or less (not including 0%) and / or Ni: 0.3% or less (not including 0%)
Since both Cu and Ni are elements that are less likely to be oxidized than Fe, they are elements that improve the corrosion resistance of the steel material. Ni also has the effect of improving the impact resistance of the steel material. Therefore, both the Cu content and the Ni content are preferably 0.01% or more, and more preferably 0.05% or more. On the other hand, when the amount of Cu is excessive, the hot ductility of the steel material is lowered, and when the amount of Ni is excessive, the cost of the steel material is increased. Therefore, the Cu content is preferably 0.1% or less, more preferably 0.08% or less, and still more preferably 0.05% or less. The amount of Ni is preferably 0.3% or less, more preferably 0.2% or less, and still more preferably 0.1% or less. Cu and Ni may be added alone or in combination, but when Cu is added, it is preferable to add Ni.

本発明は、従来と同等の結晶粒粗大化防止特性を得るとともに、従来よりも高い冷間鍛造性を得、さらに表面硬化熱処理後に優れた衝撃特性を得ることを目的とするものである。本発明者らの検討によれば、優れた衝撃特性を得るためには、結晶粒の粗大化を抑制する必要があると考えられる。結晶粒の粗大化の抑制には、Ti、Nbの炭化物等を微細に分散させる必要があるが、Ti、Nbの炭化物等は全てが微細になるわけではなく、粗大な炭化物等も析出する。このような粗大な炭化物等は、マトリックスよりも硬く冷間鍛造性に悪影響を及ぼすため好ましくない。そこで、本発明者らが検討した結果、粗大な炭化物等であっても、MnSと、Tiの炭化物等および/またはNbの炭化物等の複合析出物((Ti、Nb)系複合析出物)とすれば、マトリックスよりも軟らかいMnSの作用で、冷間鍛造性の悪化を抑制できることが判明した。   It is an object of the present invention to obtain crystal grain coarsening prevention characteristics equivalent to those of the prior art, to obtain higher cold forgeability than before, and to obtain excellent impact characteristics after surface hardening heat treatment. According to the study by the present inventors, it is considered necessary to suppress the coarsening of crystal grains in order to obtain excellent impact characteristics. In order to suppress the coarsening of the crystal grains, it is necessary to finely disperse the carbides of Ti and Nb. However, the carbides of Ti and Nb are not all fine, and coarse carbides and the like are also precipitated. Such coarse carbides are not preferred because they are harder than the matrix and adversely affect cold forgeability. Therefore, as a result of the study by the present inventors, even if it is a coarse carbide or the like, MnS and a composite precipitate such as a carbide of Ti and / or a carbide of Nb ((Ti, Nb) -based composite precipitate) and It has been found that the deterioration of cold forgeability can be suppressed by the action of MnS, which is softer than the matrix.

具体的には、Tiおよび/またはNbを含有する析出物のうち5μm2超、20μm2未満であって、MnおよびSを含有する析出物の個数密度を0.7個/mm2超、3.0個/mm2以下とする。本発明において、5μm2超、20μm2未満のサイズの(Ti、Nb)系複合析出物を対象としたのは、このサイズの複合析出物に含まれるTiおよび/またはNbの炭化物等は結晶粒粗大化防止特性および冷間鍛造性の両特性に与える影響が大きいためである。すなわち、5μm2以下の析出物は、冷間鍛造性に与える影響が少なく、一方、20μm2以上のサイズの析出物はそもそも冷間鍛造性に与える悪影響が非常に大きい。よって、5μm2超、20μm2未満のサイズの析出物によって冷間鍛造性を向上させることにより、結晶粒粗大化防止効果を保持したまま、冷間鍛造性を向上させることができる。Tiおよび/またはNbを含有する析出物自体は硬質であるが、軟質であるMnSを複合析出させて(Ti、Nb)系複合析出物とすることによって析出物1個としての変形能を向上させることができるとともに、Tiおよび/またはNbの炭化物等の作用によって肌焼き時の結晶粒粗大化防止特性を確保することができる。冷間鍛造性および結晶粒粗大化防止特性の向上効果を十分に発揮させるため、Tiおよび/またはNbを含有する析出物のうち5μm2超、20μm2未満であって、MnおよびSを含有する析出物の個数密度は0.7個/mm2超とする。個数密度は好ましくは1.0個/mm2以上であり、より好ましくは1.1個/mm2以上であり、さらに好ましくは1.2個/mm2以上である。一方、このような析出物であっても、過剰に析出すると肌焼き後の強度が不十分となる。そこで個数密度は3.0個/mm2以下とする。個数密度は、好ましくは2.5個/mm2以下であり、より好ましくは2.0個/mm2以下である。また、Tiおよび/またはNbを含有する析出物のうち5μm2超、20μm2未満であって、MnおよびSを含有しないものの個数密度は、概ね1.0〜10.0個/mm2程度である。 Specifically, 5 [mu] m 2 than of the precipitates containing Ti and / or Nb, and less than 20 [mu] m 2, the number density of precipitates containing Mn and S 0.7 pieces / mm 2, greater than 3 0.0 piece / mm 2 or less. In the present invention, 5 [mu] m 2 than, 20 [mu] m 2 less than the size of the (Ti, Nb) to that target based composite precipitates carbides of Ti and / or Nb is included in the complex precipitates in this size grain This is because the influence on both the coarsening prevention characteristics and the cold forgeability is large. That is, precipitates of 5 μm 2 or less have little influence on cold forgeability, while precipitates having a size of 20 μm 2 or more have a very large adverse effect on cold forgeability in the first place. Therefore, by improving the cold forgeability with precipitates having a size of more than 5 μm 2 and less than 20 μm 2 , it is possible to improve the cold forgeability while maintaining the effect of preventing grain coarsening. Although the precipitate containing Ti and / or Nb itself is hard, the deformability as a single precipitate is improved by complex precipitation of soft MnS to form a (Ti, Nb) composite precipitate. In addition, the effect of Ti and / or Nb carbides and the like can ensure crystal grain coarsening prevention characteristics during skin baking. Order to sufficiently exhibit the effect of improving cold forgeability and coarsening prevention properties, 5 [mu] m 2 than of the precipitates containing Ti and / or Nb, and less than 20 [mu] m 2, containing Mn and S The number density of precipitates is more than 0.7 / mm 2 . The number density is preferably 1.0 piece / mm 2 or more, more preferably 1.1 piece / mm 2 or more, and further preferably 1.2 piece / mm 2 or more. On the other hand, even if such a precipitate is deposited excessively, the strength after skin baking becomes insufficient. Therefore, the number density is 3.0 pieces / mm 2 or less. The number density is preferably 2.5 pieces / mm 2 or less, more preferably 2.0 pieces / mm 2 or less. Further, 5 [mu] m 2 than of the precipitates containing Ti and / or Nb, and less than 20 [mu] m 2, the number density of those containing no Mn and S are generally at 1.0 to 10.0 cells / mm 2 approximately is there.

また、Tiおよび/またはNbを含有する析出物のうち、20μm2以上のサイズの析出物(析出物のサイズの上限は、通常30μm2程度)は、冷間鍛造性への悪影響が大きいため、その数をできるだけ少なくすることが必要である。従って、Tiおよび/またはNbを含有する析出物のうち20μm2以上の析出物は、個数密度を1.0個/mm2以下とする。Tiおよび/またはNbを含有する析出物のうち20μm2以上の析出物の、個数密度は、好ましくは0.9個/mm2以下であり、より好ましくは0.8個/mm2以下である。なお、本発明の成分系および後述する製造方法を用いる限り、Tiおよび/またはNbを含有する析出物のうち20μm2以上の析出物は、通常MnおよびSを含まないが、これらを含む場合も悪影響はなく本発明の範囲内である。20μm2以上のサイズの析出物の個数は、鋼に添加するTiおよび/またはNbの量を調整したり、後述する製造方法において、分塊圧延前の加熱温度、加熱時間、また熱間圧延の加工温度等を調整したりすることによって制御できる。 Further, among precipitates containing Ti and / or Nb, precipitates having a size of 20 μm 2 or more (the upper limit of the size of the precipitate is usually about 30 μm 2 ) has a large adverse effect on cold forgeability, It is necessary to reduce the number as much as possible. Therefore, of the precipitates containing Ti and / or Nb, the precipitates of 20 μm 2 or more have a number density of 1.0 pieces / mm 2 or less. Of the precipitates containing Ti and / or Nb, the number density of the precipitates of 20 μm 2 or more is preferably 0.9 pieces / mm 2 or less, more preferably 0.8 pieces / mm 2 or less. . In addition, as long as the component system of the present invention and the production method described later are used, the precipitates of 20 μm 2 or more among the precipitates containing Ti and / or Nb usually do not contain Mn and S, but may contain these. There is no adverse effect and is within the scope of the present invention. The number of precipitates having a size of 20 μm 2 or more can be adjusted by adjusting the amount of Ti and / or Nb added to the steel, or in the production method described later, the heating temperature, heating time, It can be controlled by adjusting the processing temperature or the like.

Tiおよび/またはNbを含有する析出物であって、5μm2以下(但し、後記する実施例で記載の通り、2μm2以上)のものの個数密度は、通常、(i)MnおよびSを含有する複合析出物が0.0〜0.5個/mm2程度であり、(ii)MnおよびSを含有しない析出物が0.1〜1.5個/mm2程度である。 The number density of precipitates containing Ti and / or Nb and having a particle size of 5 μm 2 or less (however, 2 μm 2 or more as described in Examples below) usually contains (i) Mn and S. The composite precipitate is about 0.0 to 0.5 pieces / mm 2 , and (ii) the precipitate containing no Mn and S is about 0.1 to 1.5 pieces / mm 2 .

本発明の肌焼鋼は、フェライト分率が77面積%超である。フェライト分率が低いと、冷間鍛造性を損なうためである。フェライト分率は、好ましくは80面積%以上であり、より好ましくは82面積%以上であり、さらに好ましくは83面積%以上である。また、フェライト組織以外の残部組織は、例えばパーライト、ベイナイト、マルテンサイトなどである。   The case-hardened steel of the present invention has a ferrite fraction exceeding 77 area%. This is because if the ferrite fraction is low, the cold forgeability is impaired. The ferrite fraction is preferably 80 area% or more, more preferably 82 area% or more, and still more preferably 83 area% or more. The remaining structure other than the ferrite structure is, for example, pearlite, bainite, martensite, or the like.

本発明の肌焼鋼を製造するに際しては、溶製、鋳造、均熱処理、分塊圧延、熱間圧延という一連の工程の中で、特に鋳造時の冷却速度を早くし、分塊圧延前の均熱処理温度を高くなりすぎないようにし、熱間圧延は2段階としてそれぞれの温度範囲を適切に制御することが重要である。各工程の詳細な条件は以下の通りである。   In producing the case-hardened steel of the present invention, in a series of processes such as smelting, casting, soaking, split rolling, hot rolling, the cooling rate during casting is particularly fast, It is important to prevent the soaking temperature from becoming too high, and to appropriately control the respective temperature ranges in two stages of hot rolling. Detailed conditions for each step are as follows.

鋳造では、冷却時に晶出するMnSを微細に分散させることが重要であり、具体的には鋳造時の1500℃から800℃までの冷却速度を2.5℃/分以上とする。冷却速度を2.5℃/分以上とするためには、例えば連続鋳造時の冷却帯において吹きかけるミスト量を通常よりも増量すればよい。前記冷却速度は、2.8℃/分以上が好ましく、より好ましくは3.0℃/分以上である。   In casting, it is important to finely disperse MnS that crystallizes during cooling. Specifically, the cooling rate from 1500 ° C. to 800 ° C. during casting is 2.5 ° C./min or more. In order to set the cooling rate to 2.5 ° C./min or more, for example, the amount of mist sprayed in the cooling zone during continuous casting may be increased more than usual. The cooling rate is preferably 2.8 ° C./min or more, more preferably 3.0 ° C./min or more.

分塊圧延前の加熱(均熱)では、前記鋳造時の冷却の際に微細に分散させたMnSを固溶させないようにすることが重要であり、加熱(均熱)温度を1100〜1200℃とする。加熱温度は1180℃以下とすることが好ましく、より好ましくは1170℃以下である。また、分塊圧延後は、5℃/秒以下で室温まで冷却することが好ましく、3℃/秒以下で冷却することがより好ましい。加熱時間は、特に限定されないが、例えば均熱温度において0〜100分程度である。   In the heating (soaking) before the block rolling, it is important not to make the MnS finely dispersed during cooling during the casting cool, and the heating (soaking) temperature is 1100 to 1200 ° C. And The heating temperature is preferably 1180 ° C. or lower, more preferably 1170 ° C. or lower. Moreover, after the partial rolling, it is preferably cooled to room temperature at 5 ° C./second or less, more preferably 3 ° C./second or less. The heating time is not particularly limited, but is, for example, about 0 to 100 minutes at a soaking temperature.

熱間圧延では、温度範囲を変えて二段階で圧延することが重要であり、一回目では鋳造時に微細分散させたMnSにTiおよび/またはNbの炭化物等を複合析出させ、二回目ではフェライト分率を確保する。具体的には、一回目の加工温度を970〜1150℃として熱間圧延をした後、Ac3点〜950℃まで冷却し、二回目は加工温度をAc3点〜950℃として熱間圧延をする。一回目の加工温度は1000〜1130℃が好ましく、より好ましくは1020〜1100℃である。また、二回目の加工温度は、800〜930℃が好ましい。一回目の加工温度から二回目の加工温度への冷却速度は特に限定されないが、例えば10℃/秒程度である。二回目の圧延後の冷却速度は、ベイナイトやマルテンサイトが生成しないように5℃/秒以下とすることが好ましい。 In hot rolling, it is important to perform rolling in two stages by changing the temperature range. In the first time, Ti and / or Nb carbides are complex-precipitated in MnS finely dispersed during casting, and in the second time, the ferrite content is reduced. Secure rate. Specifically, after hot rolling at a first processing temperature of 970 to 1150 ° C., cooling is performed to Ac 3 point to 950 ° C., and the second time is hot rolling at a processing temperature of Ac 3 point to 950 ° C. To do. The first processing temperature is preferably 1000 to 1130 ° C, more preferably 1020 to 1100 ° C. The processing temperature for the second time is preferably 800 to 930 ° C. The cooling rate from the first processing temperature to the second processing temperature is not particularly limited, but is about 10 ° C./second, for example. The cooling rate after the second rolling is preferably 5 ° C./second or less so that bainite and martensite are not generated.

以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited by the following examples, and can of course be implemented with appropriate modifications within a range that can be adapted to the above-described gist. Included in the range.

表1〜3に示す化学成分の鋼を、通常の溶製法に従って溶製し、鋳造後、均熱した後に熱間鍛造(上記した分塊圧延を模擬)を行って室温まで冷却した(冷却速度は5℃/秒)。その後、再加熱して一回目の鍛造(上記した一回目の熱間圧延を模擬)を行い、二回目の鍛造温度(上記した二回目の熱間圧延を模擬)まで冷却した後、二回目の鍛造を行って室温まで冷却し(冷却速度は5℃/秒)、直径30mmの棒鋼を得た。鋳造時の冷却速度(℃/分)、均熱温度(℃)、均熱時間(分)、一回目および二回目の鍛造温度(℃)は、表1〜3に示す。   Steels having chemical components shown in Tables 1 to 3 are melted in accordance with a normal melting method, cast, soaked, and then subjected to hot forging (simulating the above-described partial rolling) and cooled to room temperature (cooling rate) Is 5 ° C./second). Then, after reheating and performing the first forging (simulating the first hot rolling described above) and cooling to the second forging temperature (simulating the second hot rolling described above), the second forging Forging was performed to cool to room temperature (cooling rate was 5 ° C./second) to obtain a steel bar having a diameter of 30 mm. Tables 1 to 3 show the cooling rate (° C / min), the soaking temperature (° C), the soaking time (min), the first and second forging temperatures (° C) during casting.

Figure 2012072427
Figure 2012072427

Figure 2012072427
Figure 2012072427

Figure 2012072427
Figure 2012072427

得られた棒鋼を、以下の方法によって測定した。   The obtained steel bar was measured by the following method.

(1)析出物の測定
得られた棒鋼のD/4位置(Dは棒鋼の直径)の縦断面(軸心と平行な面)を研磨し、任意の10mm×10mmの範囲において自動EPMAにより測定を行った。2μm2以上の介在物について、Ti含有量が5質量%以上である場合を「Tiを含有する」と判断し、Nb含有量が5質量%以上である場合を「Nbを含有する」と判断した。またMnおよびSについても、含有量が5質量%以上である場合を、それぞれ「Mnを含有する」、「Sを含有する」と判断した。詳細な測定条件は以下の通りである。
EPMA分析装置:JXA−8100型電子マイクロプローブアナライザー(日本電気株式会社製)
分析装置(EDS):SystemSix(サーモフィッシャーサイエンティフィック社製)
加速電圧:15kV
操作電流:4nA
観察倍率:200倍
(1) Measurement of precipitates A longitudinal section (surface parallel to the axis) of the obtained steel bar at the D / 4 position (D is the diameter of the steel bar) is polished and measured by an automatic EPMA in an arbitrary range of 10 mm × 10 mm. Went. For inclusions of 2 μm 2 or more, a case where the Ti content is 5% by mass or more is judged as “contains Ti”, and a case where the Nb content is 5% by mass or more is judged as “contains Nb” did. In addition, regarding Mn and S, when the content was 5% by mass or more, it was determined that “contains Mn” and “contains S”, respectively. Detailed measurement conditions are as follows.
EPMA analyzer: JXA-8100 type electronic microprobe analyzer (manufactured by NEC Corporation)
Analyzer (EDS): SystemSix (manufactured by Thermo Fisher Scientific)
Acceleration voltage: 15 kV
Operating current: 4nA
Observation magnification: 200 times

(2)冷間鍛造性の測定
得られた棒鋼から図1に示すように、φ20mm×30mmの試験片を切り出し、該試験片に図2に示す球状化処理、即ち、740℃に加熱して該温度で4時間保持し、650℃まで5℃/時間の冷却速度で冷却し、650℃から室温までは炉冷する熱処理を施した。球状化処理した試験片を、圧下率50%で端面拘束圧縮試験して変形抵抗値(N/mm2)を測定した。
(2) Measurement of cold forgeability As shown in FIG. 1, a test piece of φ20 mm × 30 mm was cut out from the obtained steel bar, and the test piece was spheroidized as shown in FIG. 2, that is, heated to 740 ° C. The temperature was maintained for 4 hours, cooled to 650 ° C. at a cooling rate of 5 ° C./hour, and subjected to a furnace heat treatment from 650 ° C. to room temperature. The test piece subjected to the spheroidization treatment was subjected to an end face constrained compression test at a rolling reduction of 50%, and the deformation resistance value (N / mm 2 ) was measured.

(3)衝撃特性の測定
得られた棒鋼から図3に示す形状の試験片を採取し、該試験片を図4に示す浸炭条件(浸炭期条件は、温度:950℃、時間:100分、カーボンポテンシャル:0.8%、浸炭ガス:プロパン。拡散期条件は、温度:850℃、時間:60分、カーボンポテンシャル:0.8%、浸炭ガス:プロパン。焼入れ条件は、80℃まで油冷。)でガス浸炭し、その後160℃で180分間焼戻した後、空冷した。前記焼戻し後の試験片について、JIS Z2242に従って常温でシャルピー衝撃試験を行い、シャルピー衝撃値(J/cm2)を測定した。
(3) Measurement of impact characteristics A test piece having the shape shown in FIG. 3 was collected from the obtained steel bar, and the test piece was subjected to carburizing conditions shown in FIG. 4 (the carburizing period conditions were temperature: 950 ° C., time: 100 minutes, Carbon potential: 0.8%, carburizing gas: propane, diffusion phase conditions: temperature: 850 ° C, time: 60 minutes, carbon potential: 0.8%, carburizing gas: propane, quenching conditions are oil-cooled to 80 ° C )), Followed by tempering at 160 ° C. for 180 minutes and air cooling. About the test piece after the said tempering, the Charpy impact test was performed at normal temperature according to JISZ2242, and the Charpy impact value (J / cm < 2 >) was measured.

(4)組織の観察
棒鋼のD/4位置(Dは棒鋼の直径)の縦断面(軸心と平行な面)が露出する状態で支持基材内に埋め込み、研磨後、ナイタール液に約5秒間浸漬して腐食させた後、光学顕微鏡によって700μm×900μmの範囲を観察および撮影し、組織の同定および面積率の測定を行った。
(4) Observation of structure The steel bar is embedded in the support substrate in a state where the longitudinal section (surface parallel to the axis) of the D / 4 position (D is the diameter of the steel bar) is exposed. After being immersed for 2 seconds and corroded, the range of 700 μm × 900 μm was observed and photographed with an optical microscope, and the tissue was identified and the area ratio was measured.

(5)結晶粒度の測定
上記棒鋼から、φ20mm×30mmの円柱試験片を採取し、前記円柱試験片を室温で高さ方向に圧縮し(圧縮率:85%、高さ:3mm)、その後上記(3)と同様の条件(図4に記載の条件)で、浸炭および焼戻しを行い、結晶粒度を測定した。結晶粒度の測定は、浸炭および焼戻し処理をした試験片断面の、相当歪1.2となる箇所の浸炭層を検鏡位置としてエッチングを行った後、光学顕微鏡で観察し(倍率:200倍)、JIS G0551に従って旧オーステナイト粒の粒度番号を求めた。
(5) Measurement of crystal grain size A cylindrical test piece of φ20 mm × 30 mm was taken from the steel bar, and the cylindrical test piece was compressed in the height direction at room temperature (compression rate: 85%, height: 3 mm), and then the above Carburization and tempering were performed under the same conditions as (3) (the conditions described in FIG. 4), and the crystal grain size was measured. The crystal grain size is measured by etching with the carburized layer at the location where the equivalent strain is 1.2 on the cross section of the test piece subjected to carburizing and tempering treatment as the speculum position, and then observing with an optical microscope (magnification: 200 times). The particle size number of the prior austenite grains was determined according to JIS G0551.

結果を表4〜6に示す。なお、表4〜6には、Tiおよび/またはNbを含む析出物のうち、本発明で規定するもの以外の個数も合わせて示した。   The results are shown in Tables 4-6. Tables 4 to 6 also show the number of precipitates containing Ti and / or Nb other than those defined in the present invention.

Figure 2012072427
Figure 2012072427

Figure 2012072427
Figure 2012072427

Figure 2012072427
Figure 2012072427

No.1〜49は、成分組成および製造方法が適切に制御されているため、5μm2超、20μm2未満のサイズの(Ti、Nb)系複合析出物および20μm2以上の(Ti、Nb)系析出物が本発明の要件を満たしており、またフェライト分率も77面積%超であるため、良好な冷間鍛造性と衝撃特性を実現している。なお、表4〜6に示す通り、No.1〜49における20μm2以上の(Ti、Nb)系析出物は、いずれもMnおよびSを含有していなかった。 No. 1 to 49, because the component composition and the manufacturing method are appropriately controlled, 5 [mu] m 2 than, 20 [mu] m 2 less than the size of the (Ti, Nb) based composite precipitates and 20 [mu] m 2 or more (Ti, Nb) based precipitates Since the product satisfies the requirements of the present invention and the ferrite fraction is more than 77 area%, good cold forgeability and impact characteristics are realized. In addition, as shown in Tables 4-6, No. None of (Ti, Nb) -based precipitates of 20 μm 2 or more in 1 to 49 contained Mn and S.

一方、No.50〜61は、成分組成および製造方法の少なくともいずれかが本発明の要件を満たしていなかったため、冷間鍛造性および衝撃特性の少なくともいずれかが不十分であった。   On the other hand, no. Nos. 50 to 61 were insufficient in at least one of cold forgeability and impact characteristics because at least one of the component composition and the production method did not satisfy the requirements of the present invention.

No.50は、MnおよびAl量が多く、また熱間圧延に相当する鍛造を、二回目の条件のみでしか行わなかったため、5μm2超、20μm2未満の(Ti、Nb)系複合析出物とフェライト分率が不足し、冷間鍛造性が不十分となった。 No. 50, Mn and Al amount is large, and because the forging corresponding to the hot rolling was not performed only only second time conditions, 5 [mu] m 2 than, 20 [mu] m 2 less than (Ti, Nb) based composite precipitates and ferrite The fraction was insufficient and cold forgeability became insufficient.

No.51は、一回目の鍛造を行わず、また二回目の鍛造温度が高かったため、5μm2超、20μm2未満の(Ti、Nb)系複合析出物とフェライト分率が不足し、また20μm2以上の(Ti、Nb)系析出物が過剰となって、冷間鍛造性が不十分となった。 No. 51, without forging first time, and because the forging temperature of the second time was high, 5 [mu] m 2 than, 20 [mu] m 2 less than (Ti, Nb) based composite precipitates and ferrite fraction is insufficient and also 20 [mu] m 2 or more The (Ti, Nb) -based precipitates became excessive and cold forgeability became insufficient.

No.52は、分塊圧延に相当する鍛造の前の均熱温度が高く、また熱間圧延に相当する鍛造の一回目を行わなかったため、5μm2超、20μm2未満の(Ti、Nb)系複合析出物とフェライト分率が不足し、冷間鍛造性が不十分となった。 No. 52 has a high soaking temperature before forging corresponding to slabbing, but also because they did not take place, the single forging corresponding to hot rolling, 5 [mu] m 2 than, 20 [mu] m 2 less than (Ti, Nb) based composite Precipitates and ferrite fraction were insufficient, and cold forgeability became insufficient.

No.53は、Ti量が多く、また熱間圧延に相当する鍛造の一回目を行わなかったため、5μm2超、20μm2未満の(Ti、Nb)系複合析出物とフェライト分率が不足し、また20μm2以上の(Ti、Nb)系析出物が過剰となって、冷間鍛造性が不十分となった。 No. 53, since the Ti content is large and also was not performed, the single forging corresponding to hot rolling, 5 [mu] m 2 than, 20 [mu] m 2 less than (Ti, Nb) based composite precipitates and ferrite fraction is insufficient and The (Ti, Nb) -based precipitates of 20 μm 2 or more became excessive, and the cold forgeability became insufficient.

No.54は、Cr量が多く、また熱間圧延に相当する鍛造の一回目を行わなかったため、5μm2超、20μm2未満の(Ti、Nb)系複合析出物が不足し、冷間鍛造性が不十分となった。No.55は、Nb量が多く、また熱間圧延に相当する鍛造の一回目を行わなかったため、5μm2超、20μm2未満の(Ti、Nb)系複合析出物とフェライト分率が不足し、冷間鍛造性と衝撃特性が不十分であった。 No. 54, since the amount of Cr is large and also was not performed, the single forging corresponding to hot rolling, 5 [mu] m 2 than, 20 [mu] m 2 less than (Ti, Nb) based composite precipitates is insufficient, cold forgeability It became insufficient. No. 55, since the Nb content is large and also was not performed, the single forging corresponding to hot rolling, 5 [mu] m 2 than, 20 [mu] m 2 less than (Ti, Nb) based composite precipitates and ferrite fraction is insufficient, cold The forgeability and impact properties were insufficient.

No.56は、熱間圧延に相当する鍛造の一回目を行わなかったため、5μm2超、20μm2未満の(Ti、Nb)系複合析出物とフェライト分率が不足し、冷間鍛造性が不十分となった。 No. 56 because it was not performed, the single forging corresponding to hot rolling, 5 [mu] m 2 than, 20 [mu] m 2 less than (Ti, Nb) based composite precipitates and ferrite fraction is insufficient, insufficient cold forgeability It became.

No.57は、熱間圧延に相当する鍛造の一回目を行わなかったため、フェライト分率が不足し、衝撃特性が不十分となった。   No. No. 57 did not perform the first forging corresponding to hot rolling, so the ferrite fraction was insufficient and the impact characteristics were insufficient.

No.58は、鋳造時の冷却速度が遅く、分塊圧延に相当する鍛造の前の均熱温度が高く、また熱間圧延に相当する鍛造の一回目を行わなかったため、5μm2超、20μm2未満の(Ti、Nb)系複合析出物が不足し、冷間鍛造性と衝撃特性が不十分であった。 No. 58, the cooling rate during the casting is slow, slabbing soaking temperature before forging corresponding to rolling is high, and because you did not first-time forging corresponding to hot rolling, 5 [mu] m 2 greater, less than 20 [mu] m 2 The (Ti, Nb) -based composite precipitates were insufficient, and cold forgeability and impact properties were insufficient.

No.59は、分塊圧延に相当する鍛造の前の均熱温度が高かったため、5μm2超、20μm2未満の(Ti、Nb)系複合析出物が不足し、また20μm2以上の(Ti、Nb)系析出物が過剰となって冷間鍛造性が不十分となった。 No. 59, because the soaking temperature before forging corresponding to slabbing was high, 5 [mu] m 2 than, 20 [mu] m 2 less than (Ti, Nb) based composite precipitates is insufficient, also 20 [mu] m 2 or more (Ti, Nb ) System precipitates became excessive and cold forgeability became insufficient.

No.60、61は、分塊圧延に相当する鍛造の前の均熱温度が高く、また熱間圧延に相当する鍛造の一回目を行わなかったため、いずれも5μm2超、20μm2未満の(Ti、Nb)系複合析出物が不足し、No.61はさらに20μm2以上の(Ti、Nb)系析出物が過剰となったため、いずれも冷間鍛造性が不十分となった。 No. 60 and 61, higher soaking temperature before forging corresponding to slabbing, but also because they did not take place, the single forging corresponding to hot rolling, both 5 [mu] m 2 greater, 20 [mu] m 2 less than (Ti, Nb) system composite precipitate is insufficient. No. 61 further had an excess of (Ti, Nb) -based precipitates of 20 μm 2 or more, so that cold forgeability was insufficient in all cases.

Claims (4)

C:0.05〜0.3%(質量%の意味。以下、化学成分組成について同じ。)、
Si:0.6%以下(0%を含まない)、
Mn:0.20〜1.0%、
S:0.001〜0.025%、
Cr:1〜2.5%、
Al:0.01〜0.10%、
Ti:0.01〜0.10%、
Nb:0.01〜0.10%、
B:0.0005〜0.005%、
N:0.002〜0.02%
を満たし、残部は鉄および不可避不純物であり、
Tiおよび/またはNbを含有する析出物のうち20μm2以上の析出物は、個数密度が1.0個/mm2以下であり、
Tiおよび/またはNbを含有する析出物のうち5μm2超、20μm2未満であって、MnおよびSを含有する析出物は、個数密度が0.7個/mm2超、3.0個/mm2以下であり、
フェライト分率が77面積%超であることを特徴とする肌焼鋼。
C: 0.05-0.3% (meaning mass%, hereinafter the same for chemical composition)
Si: 0.6% or less (excluding 0%),
Mn: 0.20 to 1.0%
S: 0.001 to 0.025%,
Cr: 1 to 2.5%
Al: 0.01 to 0.10%,
Ti: 0.01-0.10%,
Nb: 0.01-0.10%,
B: 0.0005 to 0.005%,
N: 0.002 to 0.02%
The balance is iron and inevitable impurities,
Of the precipitates containing Ti and / or Nb, the precipitates of 20 μm 2 or more have a number density of 1.0 piece / mm 2 or less,
5 [mu] m 2 than of the precipitates containing Ti and / or Nb, and less than 20 [mu] m 2, precipitates containing Mn and S, the number density of 0.7 pieces / mm 2, greater than 3.0 groups / mm 2 or less,
A case-hardened steel having a ferrite fraction exceeding 77 area%.
さらに、Mo:2%以下(0%を含まない)を含む請求項1に記載の肌焼鋼。   Furthermore, the case hardening steel of Claim 1 containing Mo: 2% or less (it does not contain 0%). さらにCu:0.1%以下(0%を含まない)および/またはNi:0.3%以下(0%を含まない)を含む請求項1または2に記載の肌焼鋼。   The case hardening steel according to claim 1 or 2, further comprising Cu: 0.1% or less (not including 0%) and / or Ni: 0.3% or less (not including 0%). 請求項1〜3のいずれかに記載の化学成分組成の鋼を、
1500℃から800℃までの冷却速度を2.5℃/分以上として鋳造し、
加熱温度1100〜1200℃で分塊圧延し、
圧延温度970〜1150℃で一回目の熱間圧延をした後、Ac3点〜950℃まで冷却し、さらに圧延温度Ac3点〜950℃で二回目の熱間圧延をすることを特徴とする肌焼鋼の製造方法。
The steel having the chemical composition according to any one of claims 1 to 3,
Casting at a cooling rate from 1500 ° C to 800 ° C at 2.5 ° C / min or more,
Split rolling at a heating temperature of 1100 to 1200 ° C,
After the first hot rolling at a rolling temperature of 970 to 1150 ° C., cooling to Ac 3 point to 950 ° C., and further performing the second hot rolling at a rolling temperature Ac 3 point to 950 ° C. A method for producing case-hardened steel.
JP2010217060A 2010-09-28 2010-09-28 Case-hardened steel and method for producing the same Expired - Fee Related JP5432105B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2010217060A JP5432105B2 (en) 2010-09-28 2010-09-28 Case-hardened steel and method for producing the same
CN201180046437.3A CN103124801B (en) 2010-09-28 2011-08-10 Case hardened steel and method for producing same
MX2013003264A MX336778B (en) 2010-09-28 2011-08-10 Case hardened steel and method for producing same.
RU2013119623/02A RU2532766C1 (en) 2010-09-28 2011-08-10 Surface-hardened steel, and method for its obtaining
EP11828635.0A EP2623627A4 (en) 2010-09-28 2011-08-10 Case hardened steel and method for producing same
PCT/JP2011/068239 WO2012043074A1 (en) 2010-09-28 2011-08-10 Case hardened steel and method for producing same
BR112013006707A BR112013006707A2 (en) 2010-09-28 2011-08-10 cemented steel and method for producing it
KR1020137007781A KR101413902B1 (en) 2010-09-28 2011-08-10 Case hardened steel and method for producing same
US13/823,814 US9115415B2 (en) 2010-09-28 2011-08-10 Case hardened steel and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010217060A JP5432105B2 (en) 2010-09-28 2010-09-28 Case-hardened steel and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012072427A true JP2012072427A (en) 2012-04-12
JP5432105B2 JP5432105B2 (en) 2014-03-05

Family

ID=45892549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010217060A Expired - Fee Related JP5432105B2 (en) 2010-09-28 2010-09-28 Case-hardened steel and method for producing the same

Country Status (9)

Country Link
US (1) US9115415B2 (en)
EP (1) EP2623627A4 (en)
JP (1) JP5432105B2 (en)
KR (1) KR101413902B1 (en)
CN (1) CN103124801B (en)
BR (1) BR112013006707A2 (en)
MX (1) MX336778B (en)
RU (1) RU2532766C1 (en)
WO (1) WO2012043074A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136730A (en) * 2010-12-27 2012-07-19 Sumitomo Metal Ind Ltd Hot processed steel for surface hardening
JP2015108182A (en) * 2013-12-05 2015-06-11 山陽特殊製鋼株式会社 Method for manufacturing steel material for mechanical structure capable of stably controlling generation of coarse grain and steel material for mechanical structure manufactured by the method
JP2015134945A (en) * 2014-01-16 2015-07-27 山陽特殊製鋼株式会社 Carburizing steel
JP2015140449A (en) * 2014-01-28 2015-08-03 山陽特殊製鋼株式会社 Case hardening steel excellent in crystal grain size property at high temperature
WO2015129402A1 (en) * 2014-02-27 2015-09-03 株式会社神戸製鋼所 Case-hardened steel capable of minimizing occurrence of abnormal grains during carburizing, and mechanical structural component using same
WO2015147067A1 (en) * 2014-03-28 2015-10-01 株式会社神戸製鋼所 Steel component for high-temperature carburizing with excellent spalling strength and low-cycle fatigue strength
WO2015146837A1 (en) * 2014-03-27 2015-10-01 株式会社神戸製鋼所 Case-hardened steel having excellent cold forgeability and capable of suppressing abnormal grain growth during carburizing treatment
JP2016188422A (en) * 2015-03-30 2016-11-04 株式会社神戸製鋼所 Carburized component
JP2016204699A (en) * 2015-04-21 2016-12-08 ジヤトコ株式会社 Case hardened steel for cold forging pulley excellent in fatigue peeling property and manufacturing method of pulley using the same
WO2021065713A1 (en) * 2019-09-30 2021-04-08 山陽特殊製鋼株式会社 Method for spheroidizing annealing case-hardening steel
WO2022137697A1 (en) * 2020-12-22 2022-06-30 愛知製鋼株式会社 Case hardened steel for warm forging and forged blank manufactured using same
JP7471068B2 (en) 2019-09-30 2024-04-19 山陽特殊製鋼株式会社 Spheroidizing annealing method for case hardening steel

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6055363B2 (en) * 2013-04-17 2016-12-27 株式会社神戸製鋼所 High strength thick steel plate with excellent cryogenic toughness
EP3158104B1 (en) * 2014-06-20 2019-05-22 ArvinMeritor Technology, LLC Ferrous alloy and its method of manufacture
US10829842B2 (en) 2014-11-18 2020-11-10 Nippon Steel Corporation Rolled steel bar or rolled wire rod for cold-forged component
MX2017005945A (en) * 2014-11-18 2017-06-30 Nippon Steel & Sumitomo Metal Corp Rolled steel bar or rolled wire material for cold-forged component.
JP6226071B2 (en) 2015-01-27 2017-11-08 Jfeスチール株式会社 Case-hardened steel
JP6401143B2 (en) * 2015-10-20 2018-10-03 トヨタ自動車株式会社 Method for producing carburized forging
JP6460069B2 (en) * 2016-05-31 2019-01-30 Jfeスチール株式会社 Case-hardened steel, method for producing the same, and method for producing gear parts
CN109689911B (en) * 2016-09-09 2021-10-12 杰富意钢铁株式会社 Case hardening steel, method for producing same, and method for producing gear member

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0978184A (en) * 1995-09-07 1997-03-25 Daido Steel Co Ltd Case hardening steel excellent ion cold workability and crystalline grain coarsening characteristic
JP2004514792A (en) * 2000-12-01 2004-05-20 ポスコ Steel plate depositing TiN + MnS for welded structure, method for producing the same, and welded structure using the same
JP2004183064A (en) * 2002-12-04 2004-07-02 Nippon Steel Corp Steel for case hardening having excellent cold workability and coarse grain prevention property when carburized, and production method therefor
JP2006291335A (en) * 2005-04-14 2006-10-26 Kobe Steel Ltd Steel for case hardening having excellent high temperature carburizing characteristic and workability
JP2006307271A (en) * 2005-04-27 2006-11-09 Kobe Steel Ltd Case hardening steel having excellent crystal grain coarsening resistance and cold workability and in which softening can be obviated, and method for producing the same

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU196338A1 (en) * 1965-02-22 1967-05-16 Научно исследовательский институт металлургии
JPS5845354A (en) * 1981-09-10 1983-03-16 Daido Steel Co Ltd Case hardening steel
RU2023049C1 (en) * 1992-06-22 1994-11-15 Азербайджанский Технический Университет Structural steel
DE69811200T2 (en) * 1997-07-22 2003-10-09 Nippon Steel Corp TEMPERED STEEL WITH EXCELLENT PREVENTION OF SECONDARY RECRISTALIZATION DURING CARBONING, METHOD FOR THE PRODUCTION THEREOF, SEMI-PRODUCT FOR PARTS TO BE CARBONED
JP3677972B2 (en) * 1997-10-21 2005-08-03 住友金属工業株式会社 Method for producing steel material for cold forging containing boron
JP3764586B2 (en) 1998-05-22 2006-04-12 新日本製鐵株式会社 Manufacturing method of case-hardened steel with excellent cold workability and low carburizing strain characteristics
KR100482216B1 (en) * 2000-12-04 2005-04-21 주식회사 포스코 Method for manufacturing steel plate to be precipitating TiN+MnS by nitriding treatment for welded structures
KR100482208B1 (en) * 2000-11-17 2005-04-21 주식회사 포스코 Method for manufacturing steel plate having superior toughness in weld heat-affected zone by nitriding treatment
CN1223687C (en) * 2002-08-30 2005-10-19 上海宝钢集团公司 Submicron crystalline grain steel plate separated out nanometer and its manufacturing method
FR2868083B1 (en) * 2004-03-24 2006-07-21 Ascometal Sa STEEL FOR MECHANICAL PARTS, PROCESS FOR MANUFACTURING MECHANICAL PARTS USING THE SAME, AND MECHANICAL PARTS THUS PRODUCED
JP4807949B2 (en) 2004-12-10 2011-11-02 株式会社神戸製鋼所 Rolled steel bar for case hardening with excellent high-temperature carburizing characteristics
JP4464861B2 (en) 2005-04-27 2010-05-19 株式会社神戸製鋼所 Case hardening steel with excellent grain coarsening resistance and cold workability
JP4956146B2 (en) 2005-11-15 2012-06-20 株式会社神戸製鋼所 Case-hardened steel excellent in forgeability and prevention of grain coarsening, its manufacturing method, and carburized parts
JP4688691B2 (en) 2006-02-17 2011-05-25 株式会社神戸製鋼所 Case-hardened steel with excellent low cycle fatigue strength
JP4688735B2 (en) 2006-06-01 2011-05-25 株式会社神戸製鋼所 Hot rolled material with excellent grain coarsening prevention properties during high temperature carburizing
JP4964063B2 (en) * 2006-08-28 2012-06-27 株式会社神戸製鋼所 Case-hardened steel with excellent cold forgeability and grain coarsening prevention properties and machine parts obtained therefrom
US20120018063A1 (en) * 2009-04-06 2012-01-26 Masayuki Hashimura Case-hardened steel superiorin cold workability, machinability, and fatigue characteristics after carburized quenching and method of production of same
WO2012108461A1 (en) * 2011-02-10 2012-08-16 新日本製鐵株式会社 Steel for carburizing, carburized steel component, and method for producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0978184A (en) * 1995-09-07 1997-03-25 Daido Steel Co Ltd Case hardening steel excellent ion cold workability and crystalline grain coarsening characteristic
JP2004514792A (en) * 2000-12-01 2004-05-20 ポスコ Steel plate depositing TiN + MnS for welded structure, method for producing the same, and welded structure using the same
JP2004183064A (en) * 2002-12-04 2004-07-02 Nippon Steel Corp Steel for case hardening having excellent cold workability and coarse grain prevention property when carburized, and production method therefor
JP2006291335A (en) * 2005-04-14 2006-10-26 Kobe Steel Ltd Steel for case hardening having excellent high temperature carburizing characteristic and workability
JP2006307271A (en) * 2005-04-27 2006-11-09 Kobe Steel Ltd Case hardening steel having excellent crystal grain coarsening resistance and cold workability and in which softening can be obviated, and method for producing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136730A (en) * 2010-12-27 2012-07-19 Sumitomo Metal Ind Ltd Hot processed steel for surface hardening
JP2015108182A (en) * 2013-12-05 2015-06-11 山陽特殊製鋼株式会社 Method for manufacturing steel material for mechanical structure capable of stably controlling generation of coarse grain and steel material for mechanical structure manufactured by the method
JP2015134945A (en) * 2014-01-16 2015-07-27 山陽特殊製鋼株式会社 Carburizing steel
JP2015140449A (en) * 2014-01-28 2015-08-03 山陽特殊製鋼株式会社 Case hardening steel excellent in crystal grain size property at high temperature
WO2015129402A1 (en) * 2014-02-27 2015-09-03 株式会社神戸製鋼所 Case-hardened steel capable of minimizing occurrence of abnormal grains during carburizing, and mechanical structural component using same
JP2015160979A (en) * 2014-02-27 2015-09-07 株式会社神戸製鋼所 Case-hardening steel in which generation of abnormal grain in carburizing treatment can be suppressed and machine structure component using the same
WO2015146837A1 (en) * 2014-03-27 2015-10-01 株式会社神戸製鋼所 Case-hardened steel having excellent cold forgeability and capable of suppressing abnormal grain growth during carburizing treatment
WO2015147067A1 (en) * 2014-03-28 2015-10-01 株式会社神戸製鋼所 Steel component for high-temperature carburizing with excellent spalling strength and low-cycle fatigue strength
JP2016188422A (en) * 2015-03-30 2016-11-04 株式会社神戸製鋼所 Carburized component
JP2016204699A (en) * 2015-04-21 2016-12-08 ジヤトコ株式会社 Case hardened steel for cold forging pulley excellent in fatigue peeling property and manufacturing method of pulley using the same
WO2021065713A1 (en) * 2019-09-30 2021-04-08 山陽特殊製鋼株式会社 Method for spheroidizing annealing case-hardening steel
JP7471068B2 (en) 2019-09-30 2024-04-19 山陽特殊製鋼株式会社 Spheroidizing annealing method for case hardening steel
WO2022137697A1 (en) * 2020-12-22 2022-06-30 愛知製鋼株式会社 Case hardened steel for warm forging and forged blank manufactured using same
JP2022098655A (en) * 2020-12-22 2022-07-04 愛知製鋼株式会社 Case hardened steel for warm forging and forged blank manufactured using the same
JP7188432B2 (en) 2020-12-22 2022-12-13 愛知製鋼株式会社 Case-hardening steel for warm forging and forged rough shape manufactured using the same

Also Published As

Publication number Publication date
US9115415B2 (en) 2015-08-25
MX2013003264A (en) 2013-10-28
US20130174943A1 (en) 2013-07-11
JP5432105B2 (en) 2014-03-05
RU2013119623A (en) 2014-11-10
RU2532766C1 (en) 2014-11-10
BR112013006707A2 (en) 2016-06-07
EP2623627A4 (en) 2015-09-23
KR101413902B1 (en) 2014-06-30
CN103124801B (en) 2015-05-13
MX336778B (en) 2016-02-02
EP2623627A1 (en) 2013-08-07
CN103124801A (en) 2013-05-29
KR20130051484A (en) 2013-05-20
WO2012043074A1 (en) 2012-04-05

Similar Documents

Publication Publication Date Title
JP5432105B2 (en) Case-hardened steel and method for producing the same
JP4956146B2 (en) Case-hardened steel excellent in forgeability and prevention of grain coarsening, its manufacturing method, and carburized parts
JP4659139B2 (en) Induction hardening steel
JP4725401B2 (en) Steel parts and manufacturing method thereof
JP5385656B2 (en) Case-hardened steel with excellent maximum grain reduction characteristics
JP5556151B2 (en) Manufacturing method of bearing parts with excellent rolling fatigue characteristics under foreign environment
JP4464862B2 (en) Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing.
JP5652844B2 (en) High formability carburized steel sheet
JPWO2015146173A1 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP2010255099A (en) Method for manufacturing bearing-component excellent in rolling fatigue characteristics under foreign matter environment
JP5503170B2 (en) Case-hardened steel with excellent maximum grain reduction characteristics
JP2010070827A (en) Carbonitrided component made of steel
JP4502929B2 (en) Case hardening steel with excellent rolling fatigue characteristics and grain coarsening prevention characteristics
JP4847681B2 (en) Ti-containing case-hardened steel
JP5146063B2 (en) High strength steel with excellent internal fatigue damage resistance and method for producing the same
JP2006291335A (en) Steel for case hardening having excellent high temperature carburizing characteristic and workability
JP4569961B2 (en) Manufacturing method of parts for ball screw or one-way clutch
JP4488228B2 (en) Induction hardening steel
JP2012237052A (en) Case-hardened steel excellent in cold forgeability and suppressing ability of crystal grain coarsening, and method for manufacturing the same
JP7436779B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JP2011208164A (en) Rolled annealed steel sheet of boron steel and method for producing the same
JP2010070831A (en) Carbonitrided component made of steel
JP5151662B2 (en) Method of manufacturing steel for soft nitriding
JP7111029B2 (en) Method for manufacturing steel parts
JP2753998B2 (en) Carburizing steel with few carburized abnormal layers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5432105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees