WO2015147067A1 - Steel component for high-temperature carburizing with excellent spalling strength and low-cycle fatigue strength - Google Patents

Steel component for high-temperature carburizing with excellent spalling strength and low-cycle fatigue strength Download PDF

Info

Publication number
WO2015147067A1
WO2015147067A1 PCT/JP2015/059152 JP2015059152W WO2015147067A1 WO 2015147067 A1 WO2015147067 A1 WO 2015147067A1 JP 2015059152 W JP2015059152 W JP 2015059152W WO 2015147067 A1 WO2015147067 A1 WO 2015147067A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
strength
cycle fatigue
steel
fatigue strength
Prior art date
Application number
PCT/JP2015/059152
Other languages
French (fr)
Japanese (ja)
Inventor
武浩 酒道
新堂 陽介
藤田 学
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2015147067A1 publication Critical patent/WO2015147067A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Definitions

  • the present invention relates to a steel part for high-temperature carburizing excellent in spalling strength and low cycle fatigue strength.
  • steel parts used after high-temperature carburizing treatment especially carburizing steel parts useful as materials for gears, bearings, shafts and power transmission parts such as CVT (Continuously Variable Transmission) pulleys.
  • CVT Continuous Variable Transmission
  • spalling strength The carburized steel parts used for the various applications described above are required to have excellent strength against spalling (this is referred to as “spalling strength”).
  • spalling when there is little or no sliding between parts, a shearing stress is generated by sliding contact load, and a crack is generated in the inside, and it develops, and fatigue failure that leads to delamination It is a phenomenon.
  • the damage form is changing from the conventional surface-origin type damage (pitching) to the spalling due to the increase in the load load accompanying the increase in output and miniaturization of the power transmission component.
  • Patent Document 1 While containing a relatively large amount of S and controlling the atomic ratio of Mn and S within a predetermined range, 5,000 sulfide inclusions per unit area of MnS as a main component are contained per mm. A technique for improving the strength of parts by providing two or more has been proposed.
  • Patent Document 3 the Nb content is reduced to 0.04% or less, and the relationship between the content of Mo, Ni, B, Si, P, and V, the carburization concentration of the steel surface layer, and the surface hardness is a predetermined relationship. It has been proposed to achieve carburized and hardened steel and carburized parts that are excellent in low cycle fatigue properties by defining the formula so as to satisfy the equation.
  • Patent Document 4 proposes a gear component that achieves both tooth root strength and tooth surface strength by appropriately controlling the chemical composition while reducing the Ti content to 0.05% or less. Yes.
  • Patent Document 1 since the S content is large, the spalling strength is decreased. As described in the above-mentioned Patent Document 2, if the content of Ti or N is only specified, the coarsening of crystal grains is inevitable, and the strength of the steel material tends to decrease. Further, Ti remaining without being bonded to C tends to precipitate as coarse TiN in a normal manufacturing method, and the spalling strength tends to decrease.
  • the technique of the above-mentioned Patent Document 3 basically has a low Nb content, so that coarsening of crystal grains cannot be avoided, and there is a problem that the strength of the steel material is reduced.
  • the present invention has been made in view of the above circumstances, and its purpose is to exhibit excellent low cycle fatigue strength without reducing spalling strength, such as gears, bearings, shafts, and CVT pulleys.
  • the object is to provide steel parts for high-temperature carburizing that are useful as materials for power transmission parts and the like.
  • the steel parts for high-temperature carburizing of the present invention that can solve the above-mentioned problems are, by mass%, C: 0.10 to 0.3%, Si: 0.03 to 1.50%, Mn: 0.2 to 1.8%, P: more than 0% and 0.03% or less, S: more than 0% and 0.03% or less, Cr: 0.30 to 2.50%, Al: more than 0% and 0.08% or less, N : More than 0% and 0.0150% or less, Nb: 0.05 to 0.3%, Ti: 0.05 to 0.1% and B: 0.0005 to 0.005%, respectively, the balance being Iron and inevitable impurities, the average C concentration from the surface to a depth of 0.05 mm is 0.50% or more, and the following A, B and C are defined by the following formulas (1) to (3), respectively.
  • A exp ⁇ Dm / 10 + Nm 1/2 / 50 ⁇ ⁇ exp ⁇ Dt / 15 + Nt 1/2 / 50 ⁇ (1)
  • B exp ⁇ Hs / 650 + ECD 1/2 + Hi / 250 ⁇ (2)
  • C exp [Hs / 650 ⁇ ECD ⁇ ⁇ (0.89 ⁇ Hi ⁇ 202.16) / 250 ⁇ 2 ] (3) 3.7 ⁇ A ⁇ 0.47 ⁇ B + 1.14 ⁇ 0 (4) C ⁇ 0.66 (5)
  • Dm is the average equivalent circle diameter ( ⁇ m) of MnS in the non-carburized part
  • Nm is the number density (pieces / mm 2 ) of MnS in the non-carburized part
  • Dt is the average circle of TiN in the non-carburized part.
  • Hs Vickers hardness (HV) at a depth of 0.05 mm from the surface measured with a test force of 300 gf
  • ECD indicates the effective hardened layer depth (mm)
  • Hi indicates the Vickers hardness (HV) at the non-carburized portion measured at a test force of 300 gf.
  • the average equivalent circle diameter of MnS and TiN means the average of the diameters (equivalent circle diameters) when the sizes of MnS and TiN are converted into circles of the same area.
  • the “non-carburized portion” means a portion 0.5 to 2.0 mm deeper than the effective hardened layer depth ECD (position opposite to the hardened layer). It means the inner side (center side) from the 1/4 position.
  • the effective hardened layer depth ECD means the carburized hardened layer depth specified in JIS G 0557 (2006).
  • the Vickers hardness Hs at a depth of 0.05 mm from the surface measured with a test force of 300 gf is 650 HV or more, the effective hardened layer depth ECD is 0.4 mm or more, and the test force is 300 gf. It is preferable that the Vickers hardness Hi in the non-carburized part measured by (1) is 300 HV or more.
  • the steel part for high-temperature carburizing of the present invention may further contain at least one of Ni: more than 0% and not more than 2.0% and Mo: more than 0% and not more than 1.00% by mass as necessary. preferable.
  • the chemical composition is appropriately defined, the average C concentration from the surface to a depth of 0.05 mm is 0.50% or more, and the size and number density of MnS and TiN are different at each part of the component.
  • a steel part for high-temperature carburizing excellent in spalling strength and low cycle fatigue strength can be obtained.
  • Such steel parts for high-temperature carburizing are useful as materials for power transmission parts such as gears, bearings, shafts, and CVT pulleys.
  • FIG. 1 is a pattern diagram showing carburizing heat treatment conditions in the examples.
  • FIG. 2 is a pattern diagram showing tempering process conditions.
  • FIG. 3 is a graph showing the relationship between the precipitation ratio of TiN and MnS and the temperature.
  • FIG. 4 is a schematic explanatory view showing the shape of the test piece used in the roller pitching test.
  • FIG. 5 is a schematic explanatory diagram showing the implementation status of the roller pitching test.
  • FIG. 6 is a schematic explanatory view showing the shape of a test piece used in the four-point bending fatigue test.
  • FIG. 7 is a schematic explanatory view showing an implementation status of a four-point bending fatigue test.
  • FIG. 1 is a pattern diagram showing carburizing heat treatment conditions in the examples.
  • FIG. 2 is a pattern diagram showing tempering process conditions.
  • FIG. 3 is a graph showing the relationship between the precipitation ratio of TiN and MnS and the temperature.
  • FIG. 4 is a schematic explanatory view showing
  • FIG. 8 is a graph showing the relationship between the value (3.7 ⁇ A ⁇ 0.47 ⁇ B + 1.14) on the left side of equation (4) and the spalling intensity in the first embodiment.
  • FIG. 9 is a graph showing the relationship between the value of C defined by the equation (3) and the low cycle fatigue strength in Example 1.
  • FIG. 10 is a graph showing the relationship between the value (3.7 ⁇ A ⁇ 0.47 ⁇ B + 1.14) on the left side of equation (4) and the spalling intensity in the second embodiment.
  • FIG. 11 is a graph showing the relationship between the value of C defined by the expression (3) and the low cycle fatigue strength in Example 2.
  • the present inventors have studied from various angles in order to realize a steel part for high-temperature carburizing excellent in both properties of spalling strength and low cycle fatigue strength. In particular, intensive investigations were made on the influence of the size and number density of MnS and TiN on the above-mentioned properties of parts.
  • the chemical composition is appropriately defined, the average C concentration from the surface to a depth of 0.05 mm is 0.50% or more, and the sizes (Dm, Dt) of MnS and TiN in the non-carburized part Based on the number density (Nm, Nt), when A to C are defined by the above equations (1) to (3), respectively, these satisfy the above equations (4) and (5)
  • the inventors have found that the above object can be achieved by controlling the present invention and completed the present invention.
  • the value of A defined by the above equation (1) indicates the sensitivity of the occurrence and propagation of internal cracks by inclusions, and the value of A increases as the size of inclusions increases and the number density increases. The low cycle fatigue strength decreases.
  • the above formula (1) defines such a relationship.
  • the Vickers hardness Hs at a depth of 0.05 mm from the surface hereinafter sometimes referred to as “surface hardness Hs” and the non-carburized portion.
  • the lower the hardness Hi hereinafter sometimes referred to as “core hardness Hi”
  • the value of B defined by the above equation (2) indicates the resistance to the occurrence and propagation of internal cracks due to shear stress.
  • the above formula (2) defines such a relationship.
  • the surface hardness Hs is less than 650 HV, the core hardness Hi is less than 300 HV, or the effective hardened layer depth ECD is less than 0.4 mm, spalling does not occur.
  • the surface of the part may sink and the low cycle fatigue strength may further decrease.
  • the surface hardness Hs is preferably 650 HV or more, the core hardness Hi is 300 HV or more, and the effective hardened layer depth ECD is preferably 0.4 mm or more.
  • the surface hardness Hs is more preferably 680 HV or more, and still more preferably 700 HV or more. From the viewpoint of reduction in machinability after carburizing, the surface hardness Hs is preferably 850 HV or less.
  • core part hardness Hi becomes like this.
  • the core hardness Hi is preferably 500 HV or less.
  • the effective hardened layer depth ECD is more preferably 0.7 mm or more, and further preferably 1.0 mm or more. From the viewpoint of an increase in cost associated with a longer carburizing process, the effective hardened layer depth ECD is preferably 1.5 mm or less.
  • the value of C defined by the above equation (3) indicates the resistance to crack initiation and propagation due to a load in a low cycle, and increases as the surface hardness Hs increases, while the effective hardened layer depth is increased. The deeper the ECD and the smaller the core hardness Hi, the smaller it becomes. Further, when the surface hardness Hs is lowered or the core hardness Hi is lowered, plastic deformation may occur before the occurrence of cracks, and the low cycle fatigue strength may further decrease.
  • the above equation (3) defines such a relationship.
  • the preferable range of the surface hardness Hs is the same as described above.
  • the core hardness Hi is preferably 250 HV or higher, more preferably 300 HV or higher, from the viewpoint of not causing “plastic deformation” (described later). From the viewpoint of preventing the occurrence of “brittle fracture” as described later, the core hardness Hi is preferably 450 HV or less.
  • the effective hardened layer depth ECD is preferably 0.25 mm or more, more preferably 0.5 mm or more. From the viewpoint of not causing “brittle fracture”, the effective hardened layer depth ECD is preferably 1.30 mm or less.
  • the surface hardness Hs and the core hardness Hi are values when measured with a test force of 300 gf, that is, 300 ⁇ 9.8 N.
  • the value on the left side of the formula (4) is preferably ⁇ 5.0 or less, more preferably ⁇ 10.0 or less.
  • the lower limit of the value on the left side of the equation (4) is determined based on the A value and the B value, but is preferably ⁇ 20 or more, more preferably ⁇ 15 or more.
  • the value of C is preferably 0.80 or more, and more preferably 1.00 or more.
  • the upper limit of the value of C is preferably 2.00 or less, more preferably 1.50 or less.
  • the carburized layer is composed of martensite, retained austenite and partly troostite or bainite structure, and the non-carburized layer is composed of martensite and partly bainite or It consists of a ferrite structure.
  • the steel component for high-temperature carburizing of the present invention has an appropriate chemical composition in order to exhibit required mechanical properties when applied to materials for power transmission components such as gears, bearings, shafts, and CVT pulleys. It is necessary to adjust to.
  • the basic chemical composition is as follows.
  • C (C: 0.10 to 0.3%) C is an element necessary for ensuring the core hardness Hi of the final product. However, if contained excessively, the workability is lowered and the low cycle fatigue strength is lowered. Therefore, it is necessary to be 0.3% or less. If the amount of C is less than 0.10%, the core hardness Hi becomes too low, and sufficient spalling strength cannot be obtained. From this point of view, the C content is 0.10 to 0.3%.
  • the minimum with preferable C amount is 0.13% or more, More preferably, it is 0.15% or more.
  • the upper limit with the preferable amount of C is 0.27% or less, More preferably, it is 0.25% or less.
  • Si 0.03-1.50%
  • Si is an element effective for suppressing the hardness reduction during the tempering treatment and improving the hardenability of the steel material to ensure the core hardness Hi of the final product.
  • the upper limit was made 1.50% or less.
  • the amount of Si is less than 0.03%, it is insufficient for improving the core hardness Hi. From this point of view, the Si content is set to 0.03 to 1.50%.
  • the minimum with the preferable amount of Si is 0.05% or more, More preferably, it is 0.07% or more.
  • the upper limit with the preferable amount of Si is 1.0% or less, More preferably, it is 0.60% or less.
  • Mn is an element effective for securing the core hardness of the final product by combining with S to suppress the formation of FeS and to suppress the deterioration of forgeability during rolling and to enhance the hardenability of the steel material.
  • Mn content is set to 1.8% or less.
  • the amount of Mn is less than 0.2%, the formation of FeS and the core hardness are insufficient.
  • the minimum with the preferable amount of Mn is 0.30% or more, More preferably, it is 0.35% or more.
  • the upper limit with the preferable amount of Mn is 1.70% or less, More preferably, it is 1.60% or less.
  • P more than 0% and 0.03% or less
  • P is segregated at the grain boundaries to lower the low cycle fatigue strength, so the smaller the content, the better. From this point of view, the P content is 0.03% or less.
  • the amount of P is preferably 0.020% or less, and more preferably 0.015% or less.
  • P is an element inevitably contained in steel, and the production cost increases as the purity is increased. Therefore, the amount of P is preferably 0.001% or more, more preferably 0.005%. That's it.
  • the upper limit of the amount of S is set to 0.03% or less.
  • the amount of S is preferably 0.025% or less, and more preferably 0.020% or less.
  • S is an element inevitably contained in the steel, and the production amount increases as the purity is increased, and in addition, the machinability is lowered, so the S amount is preferably 0.001% or more, More preferably, it is 0.005% or more.
  • Cr 0.30-2.50%
  • Cr is an element effective for improving the hardenability of the steel material and ensuring the core hardness Hi of the final product.
  • the Cr content is less than 0.30%, the core hardness Hi of the final product cannot be sufficiently obtained.
  • the minimum with the preferable amount of Cr is 0.50% or more, More preferably, it is 0.80% or more.
  • the upper limit with the preferable amount of Cr is 2.00% or less, More preferably, it is 1.80% or less.
  • Al more than 0% and 0.08% or less
  • bonds with N in steel materials produces
  • excessive addition produces Al 2 O 3 and reduces workability.
  • the Al content is set to 0.08% or less.
  • the amount of Al is preferably 0.060% or less, more preferably 0.050% or less.
  • Al is useful as a deoxidizing action, and is an element inevitably contained in the steel material. As the purity is increased, the manufacturing cost increases, and further the coarsening of crystal grains is promoted.
  • the content is preferably 001% or more, more preferably 0.005% or more.
  • N (N: more than 0% and 0.0150% or less) N combines with Al and Ti in the steel material to form a nitride, and serves as a starting point for spalling to lower the low cycle fatigue strength. Further, when the amount of N is more than 0.3 times the amount of Ti, N that could not be combined with Ti combines with B to form BN, not only lowering the hardenability of the steel material, but also pinning. Since TiC which is a particle
  • Nb 0.05-0.3%)
  • Nb combines with C and N in the steel material to form Nb (CN), which acts as pinning particles, and is an element effective for preventing crystal grain coarsening during carburization.
  • the Nb amount is set to 0.3% or less.
  • the Nb amount is preferably 0.20% or less, and more preferably 0.10% or less.
  • the Nb amount is set to 0.05% or more.
  • the Nb amount is preferably 0.06% or more, and more preferably 0.07% or more.
  • Ti 0.05-0.1%)
  • Ti combines with C in the steel material to form TiC and acts as pinning particles in the same manner as Nb (CN), and is an element effective in preventing crystal grain coarsening during carburization.
  • the Ti amount is 0.1% or less. did.
  • the amount of Ti is preferably 0.09% or less, and more preferably 0.08% or less. On the other hand, if the amount of Ti is less than 0.05%, a sufficient pinning action cannot be obtained, and the crystal grains become coarse, resulting in a decrease in strength.
  • the Ti amount is set to 0.05% or more.
  • the amount of Ti is preferably 0.06% or more, and more preferably 0.07% or more.
  • B is an element effective for improving the impact strength while greatly improving the hardenability of the steel material in a small amount.
  • the amount of B is preferably 0.004% or less, and more preferably 0.003% or less.
  • the B content is less than 0.0005%, the above effect cannot be obtained.
  • the amount of B is preferably 0.0010% or more, more preferably 0.0015% or more.
  • the basic components in the steel parts for high-temperature carburizing of the present invention are as described above, and the balance is substantially iron. However, it is naturally allowed that inevitable impurities brought into the steel depending on the situation of raw materials, materials, manufacturing equipment, etc. are contained in the steel.
  • the steel part for high-temperature carburizing according to the present invention may further include, if necessary, mass%, Ni: more than 0% and not more than 2.0% and Mo: 0. It is also preferable to contain at least one of more than% and 1.00% or less. The reason for setting the range when these are contained is as follows.
  • Ni more than 0% and 2.0% or less
  • Ni has the effect of improving the toughness of the carburized layer.
  • the upper limit is preferably made 2.0% or less.
  • the amount of Ni is more preferably 1.80% or less, and still more preferably 1.60% or less.
  • Ni amount is 0.01% or more, More preferably, it is 0.05% or more.
  • Mo more than 0% and 1.00% or less
  • Mo is an element that improves the hardenability of the steel material, and has the effect of improving the toughness of the carburized layer.
  • the upper limit is preferably made 1.00% or less.
  • the amount of Mo is more preferably 0.80% or less, and still more preferably 0.60% or less.
  • Mo amount is 0.01% or more, More preferably, it is 0.05% or more.
  • Ni and Mo are both effective elements for improving the toughness of steel parts, and each of them may be used alone or in combination of two kinds.
  • the average C concentration from the surface to a depth of 0.05 mm is 0.50% or more. It is. When the average C concentration is lower than 0.50%, the surface hardness Hs is increased, and good spalling strength cannot be secured.
  • the average C concentration is preferably 0.60% or more, more preferably 0.70% or more.
  • the upper limit of the average C concentration is naturally determined by carburizing conditions such as carbon potential.
  • the size and number density of MnS and TiN satisfy the above formulas (4) and (5) in relation to the hardness (Vickers hardness) at each part of the parts. It is characterized by controlling as follows. In order to satisfy such requirements, it is preferable to appropriately control the conditions in the steel material production stage and the carburizing and quenching treatment conditions.
  • These conditions are preferably controlled as follows. However, it is not necessary to satisfy all of these conditions (a) to (c), and the steel part for high-temperature carburizing of the present invention can be obtained by combining one or more conditions if necessary. It is done.
  • the average cooling rate when solidifying molten steel is preferably 0.06 ° C / second or more. MnS and TiN crystallize in the molten steel and become finer as the average cooling rate when the molten steel is solidified is higher. From such a viewpoint, the average cooling rate when solidifying molten steel is more preferably 0.08 ° C./second or more, and further preferably 0.10 ° C./second or more.
  • the upper limit of the average cooling rate when solidifying the molten steel is not particularly limited, but is usually about 0.01 ° C./second.
  • the forging pressure ratio is preferably 25 or more.
  • MnS and TiN become finer as the final size (diameter for shaft parts) is smaller, that is, the forging pressure ratio is larger, and the value of A is smaller.
  • the forging pressure ratio is more preferably 50 or more.
  • the upper limit of the forging pressure ratio is not particularly limited, but is about 500, for example.
  • the forging pressure ratio means “cross-sectional area perpendicular to the casting direction of the slab / cross-sectional area perpendicular to the processing direction of the rolled material or forged material”.
  • the soaking temperature is preferably 1100 to 1300 ° C.
  • the crystallized MnS and TiN are refined, and the value A is reduced. If the soaking temperature is less than 1100 ° C., MnS and TiN are not dissolved, whereas if the soaking temperature exceeds 1300 ° C., the slab surface may be melted during holding. From such a viewpoint, the more preferable lower limit of the soaking temperature is 1150 ° C. or more, and the more preferable upper limit is 1250 ° C. or less.
  • the soaking time is preferably about 0.5 to 3 hours. If the holding time is less than 0.5 hour, the miniaturization of MnS and TiN becomes insufficient. On the other hand, if the holding time exceeds 3 hours, productivity is lowered and cost is increased.
  • the holding time is more preferably 1 hour or more and 2 hours or less.
  • the above-mentioned soaking process is performed before the partial rolling, if the partial rolling is not performed, the soaking process may be performed before rolling or forging.
  • the steel material obtained by rolling or forging may be carburized and quenched in a carburizing furnace after being processed into a predetermined shape.
  • the average C concentration from the surface to 0.05 mm depth is 0.50% or more, and the effective hardened layer depth ECD (EffectiveffCase. Depth) is 0.40 to 1.5 mm.
  • the carbon potential CP, the carburizing temperature, and the carburizing time in the atmosphere may be appropriately controlled. Specifically, the carbon potential CP in the atmosphere is adjusted to 0.50 or more and held at 800 to 1000 ° C. for 0.5 hours or more and less than 5 hours, and then the carbon potential CP is kept at 0.50 or more. And quenching immediately after holding at 800 to 900 ° C. for 0.5 to 2 hours.
  • a mixed gas of modified gas (RX gas) and propane gas may be used.
  • Example 1 A steel ingot having the chemical composition shown in Table 1 below was melted in a converter and a small melting furnace having a capacity of 50 kg or 150 kg. In Table 1, “-” means no addition.
  • the slab was heated and held in a heating furnace at 1250 ° C. for 60 minutes to perform a soaking process, or subjected to block rolling without heating and holding. Further, hot rolling was performed to a predetermined diameter of 32 to 80 mm at a forging pressure ratio shown in Table 2 below.
  • the obtained steel material (hot rolled material or hot forged material) was processed into a predetermined shape, and then carburized and quenched in a gas carburizing furnace.
  • a gas carburizing gas a mixed gas of RX gas and propane gas was used.
  • an average C concentration from the surface to a depth of 0.05 mm (hereinafter sometimes referred to as “surface layer C concentration Cs”): 0.60%
  • effective hardened layer depth ECD 0.75 mm
  • the carbon potential CP in the atmosphere was adjusted to 0.65, held at 950 ° C. for 0.4 to 3.0 hours, and then held at 850 ° C. for 0.5 hours without changing the carbon potential CP.
  • Table 5 shows specific carburizing conditions.
  • FIG. 1 is a pattern diagram showing the carburizing heat treatment conditions at this time.
  • FIG. 2 is a pattern diagram showing tempering processing conditions.
  • the general carburizing temperature is about 920 ° C., and the above 950 ° C. is a holding temperature at which the crystal grains tend to become coarse.
  • the longitudinal section of the carburized part obtained above was investigated, and a sample of 10 mm (radial direction) ⁇ 10 mm (longitudinal direction) was cut out in the longitudinal direction (corresponding to the rolling direction) from 1/4 position of the diameter D of each sample.
  • the cross section was polished.
  • the composition analysis is performed with EPMA (Electron Probe Micro Analyzer) for inclusions with a minor axis of 3 ⁇ m or more existing in an area of 15 ⁇ m 2 scanned from an arbitrary position on the polished surface, and MnS and TiN are determined by using EPMA (Electron Probe Micro Analyzer). Identified.
  • EPMA Electro Probe Micro Analyzer
  • the area and number of MnS and TiN were measured, the number density (number per 1 mm 2 : Nm, Nt) was evaluated by (each detected number / scanning area), and the average equivalent circle diameter (Dm, Dt) was Each was calculated from the average area per piece.
  • FIG. 3 shows the results of calculating the temperature change of the precipitation ratio of MnS and TiN using thermodynamic calculation software “Thermo-calc” (trade name: manufactured by Thermo-calc software). This result supports that it does not dissolve in the temperature range of the carburizing treatment.
  • the measurement conditions of EPMA at this time are as follows (1) to (4).
  • EPMA device JXA 8500F (trade name: manufactured by JEOL Ltd.)
  • EDS analysis energy dispersive X-ray analysis: Thermo Fisher Scientific system six
  • Acceleration voltage 15 kV
  • Scanning current 1.76 nA
  • the spalling strength and low cycle fatigue strength were evaluated by the following methods, and the hardness, the effective hardened layer depth ECD, and the surface layer C concentration Cs were measured. As the hardness, surface hardness Hs and core hardness Hi were measured.
  • the test was conducted using a “RP-201” roller pitching tester (trade name: manufactured by Komatsu Engineering Co., Ltd.). At this time, the life until spalling occurs at a surface pressure of 2.0 to 6.3 GPa is measured, and the test surface pressure when the life reaches 2 million cycles by single regression is defined as the spalling strength (GPa). Calculated.
  • the test piece used in this test was manufactured by processing it into the shape shown in FIG. 4, subjecting it to carburizing and quenching, and polishing the sliding surface.
  • FIG. 5 shows a state in which the test piece 1 (roller) and the load roller 2 roll in contact with each other as a test appearance (implementation status of a roller pitching test).
  • the test conditions are as follows. (1) Rotation speed: 2000rpm (2) Slip rate: 0% (life is judged to be due to spalling only) (3) Load roller: JIS G4805 (2013) high carbon chrome bearing steel SUJ2 (4) Test oil temperature: 120 ° C
  • FIG. 7 shows the external appearance of a four-point bending test (the portion indicated by ⁇ is a support point).
  • 3 is a test piece
  • 4 is a jig
  • 5 is a direction of load. A single swing load was applied from the back while two horizontal portions on the test piece notch side were supported. The frequency at this time was 20 Hz.
  • the roller pitching test piece was cut so as to cross the center of the sliding portion, the cut surface was polished, and the hardness was measured.
  • the surface hardness Hs was an average value obtained by measuring five points from the surface in a depth direction of 0.05 mm.
  • core part hardness Hi was made into the average value which measured the 1/4 position of the diameter D 5 points
  • the effective hardened layer depth ECD was calculated according to JIS G0557.
  • the surface layer C concentration Cs was measured by EPMA analysis. At this time, measurement was performed at a pitch of 0.005 mm from the surface to a position of 0.05 mm in the depth direction, and the average value was defined as the surface layer C concentration Cs.
  • Table 3 shows the average equivalent circle diameter Dm of MnS, the average equivalent circle diameter Dt of TiN, the number density Nm of MnS, and the number density Nt of TiN, together with the steel types used and the production conditions.
  • the spalling strength and low cycle fatigue strength, steel type used, manufacturing conditions, carburizing conditions, carburized parts material (surface C concentration Cs, surface hardness Hs, core hardness Hi, effective hardened layer depth ECD ), Parameters (values of A, B and C), and the value on the left side of equation (4) (3.7 ⁇ A ⁇ 0.47 ⁇ B + 1.14) are shown in Table 4 below.
  • test no. Examples 1 to 3, 5 to 9, 12 to 14, 16 to 19, and 21 are examples that satisfy the requirements defined in the present invention. It can be seen that the spalling strength is 3.70 GPa or more, the low cycle fatigue strength is 2.10 GPa or more, and both the spalling strength and the low cycle fatigue strength are excellent.
  • test no. 4, 10, 11, 15, 20, 22 to 27 are comparative examples in which any of the requirements of the present invention was not satisfied, and it can be seen that at least the spalling strength is reduced.
  • Test No. Nos. 23 to 27 are steel grades Nos. It is a comparative example using the steel materials 6 and 7, regardless of the manufacturing conditions and carburizing conditions, the relationship of the formula (4) is not satisfied, and the spalling strength is deteriorated.
  • FIG. 8 shows the relationship between the value on the left side of equation (4) (3.7 ⁇ A ⁇ 0.47 ⁇ B + 1.14) and the spalling intensity. Moreover, the relationship between the value of C prescribed
  • Example 2 Steel ingots having chemical composition shown in Table 6 below were melted, and the production conditions No. 1 shown in Table 2 above were obtained. In 4 the steel material was obtained. Further, hot rolling was performed to a predetermined diameter of 32 to 80 mm.
  • the steel type No. shown in Table 6 below. 1 to 5 are steel types No. 1 shown in Table 1 above. Same as 1-5.
  • carburizing and quenching treatment was performed in a gas carburizing furnace (carburizing gas: RX gas + propane gas) in the same manner as in Example 1 above.
  • carburizing gas a mixed gas of RX gas and propane gas was used.
  • the carbon potential CP in the atmosphere is adjusted so that the surface layer C concentration Cs from the surface to a depth of 0.05 mm is 0.44 to 0.80% and the effective hardened layer depth ECD is 0.29 to 1.33 mm. Is adjusted to a range of 0.45 to 0.75, held at 930 to 960 ° C. for 0.3 to 6.0 hours, and then held at 850 ° C. for 0.5 hours without changing the carbon potential CP. Quenched immediately after.
  • Table 5 also shows specific carburizing conditions. Furthermore, after holding at 170 degreeC for 2 hours, it stood to cool and tempered.
  • Table 7 shows the average circle equivalent diameter Dm of MnS, the average equivalent circle diameter Dt of TiN, the number density Nm of MnS, and the number density Nt of TiN together with the steel types used.
  • “Depression”, “plastic deformation”, “brittle fracture” and “GG” shown in the “Remarks” section of Table 8 below mean that the following phenomenon occurred.
  • test no. 32, 34, 35, 37 to 39, 42 to 45, 48, and 49 satisfy all of the requirements defined in the present invention. It can be seen that the spalling strength is 3.70 GP or more, the low cycle fatigue strength is 2.10 GPa or more, and both the spalling strength and the low cycle fatigue strength are excellent.
  • test no. Reference numerals 31, 33, 36, 40, 41, 46, 47, and 50 to 70 are examples in which any of the requirements of the present invention is not satisfied.
  • Test No. No. 31 has a low surface layer C concentration Cs and a surface hardness Hs lower than the preferred lower limit for the low cycle fatigue strength, causing the above-mentioned “depression” and “plastic deformation”, and the spalling strength and low cycle fatigue strength. Both are falling.
  • Test No. No. 36 the surface layer C concentration Cs decreases, the surface hardness Hs is lower than the preferred lower limit for the low cycle fatigue strength, the value of C defined by the formula (3) is small, and the low cycle fatigue strength decreases. is doing. Test No. In No. 36, the surface hardness Hs is low, but no depression occurs because the core hardness Hi is relatively high.
  • Test No. No. 40 has a lower surface layer C concentration Cs and a lower surface hardness Hs than the preferred lower limit for the low cycle fatigue strength, and does not satisfy the formula (4). Both are falling.
  • the effective hardened layer depth ECD is shallower than the preferred lower limit for the low cycle fatigue strength and does not satisfy the formula (4), and the spalling strength is lowered.
  • Test No. in 46 the value of C defined by the expression (3) is small, and the low cycle fatigue strength is low.
  • Test No. Nos. 50 to 70 are steel grades Nos. This is an example using 8 to 17 steel materials. Of these, test no. No. 50, the surface layer C concentration Cs decreases and the surface hardness Hs is lower than the preferred lower limit for the low cycle fatigue strength, the value of C defined by the equation (3) is small, and the low cycle fatigue strength decreases. ing. Test No. No. 50 has a surface hardness Hs lower than the preferred lower limit for the low cycle fatigue strength, but no depression occurs because the core hardness Hi is much higher than the preferred upper limit for the low cycle fatigue strength.
  • the effective hardened layer depth ECD becomes shallower than the preferred lower limit for the low cycle fatigue strength.
  • No. 52 has a small C value defined by the expression (3), and the core hardness Hi is higher than the preferred upper limit for the low cycle fatigue strength. As a result, all have low cycle fatigue strength.
  • Test No. Nos. 53 to 55 are steel types Nos. Having a low C content.
  • the core hardness Hi is lower than the preferred lower limit for the low cycle fatigue strength.
  • test no. 53 the effective hardened layer depth ECD is shallower than the preferred lower limit for the low cycle fatigue strength, does not satisfy the formula (4), and the spalling strength is lowered.
  • Test No. No. 54 does not satisfy the formula (4), and the spalling strength is lowered.
  • Test No. In No. 55 the effective hardened layer depth ECD is deeper than the preferred upper limit for the low cycle fatigue strength, and the low cycle fatigue strength is reduced. In addition, brittle fracture occurred.
  • Test No. Nos. 56 and 57 are steel types having excessive Si amounts. In this example, the surface layer C concentration Cs is lowered due to poor carburization. Of these, test no. 56, the effective hardened layer depth ECD is shallower than the preferred lower limit for the low cycle fatigue strength, and does not satisfy the formula (4), and the spalling strength and the low cycle fatigue strength are reduced. Sinking and plastic deformation also occurred. Test No. In 57, the value of C defined by the expression (3) is small, and the low cycle fatigue strength is low.
  • Test No. Nos. 58 and 59 are steel types with excessive Mn amounts. This is an example using 11 steel materials.
  • Test No. 58 the effective hardened layer depth ECD becomes shallower than the preferred lower limit for the low cycle fatigue strength.
  • No. 59 has a small C value defined by the expression (3), and the low cycle fatigue strength is low in all cases.
  • Test No. Nos. 60 to 62 are steel types Nos. Having excessive amounts of Ni as preferred components. This is an example using 12 steel materials. Of these, test no. In No. 60, since the core hardness Hi is higher than the preferred upper limit for the low cycle fatigue strength, the low cycle fatigue strength is reduced due to brittle fracture. Test No. In Nos. 61 and 62, the core hardness Hi is higher than the preferable upper limit for the low cycle fatigue strength, and the value of C defined by the equation (3) is small, and the low cycle fatigue strength is reduced.
  • Test No. Nos. 63 and 64 are steel types with excessive Cr content. This is an example using 13 steel materials. Test No. No. 63, the effective hardened layer depth ECD becomes shallower than the preferred lower limit for the low cycle fatigue strength. In 64, the value of C defined by the expression (3) is small, and the low cycle fatigue strength is low in all cases.
  • Test No. Nos. 65 and 66 are steel type Nos. With a small amount of Cr. This is an example using 14 steel materials. Of these, test no. No. 65 does not satisfy the formula (4), and the low cycle fatigue strength is lowered. Test No. In 66, the effective hardened layer depth ECD is deeper than the preferred upper limit for the low cycle fatigue strength, and the low cycle fatigue strength is reduced. In addition, brittle fracture occurred.
  • Test No. Nos. 67 and 68 are steel grades No. 6 and No. 6 that have an excessive amount of Mo as a preferred component. This is an example using 15 steel materials.
  • Test No. No. 67 the effective hardened layer depth ECD becomes shallower than the preferred lower limit for the low cycle fatigue strength.
  • the value of C defined by the expression (3) is small, and the low cycle fatigue strength is reduced in all cases.
  • Test No. No. 69 is a steel type No. with a small amount of Ti. Although it is an example using 16 steel materials, the coarsening (GG) of a crystal grain generate
  • Test No. No. 70 is a steel type No. with a small amount of Nb. Although it is an example using 17 steel materials, crystal grain coarsening (GG) generate
  • GG crystal grain coarsening
  • FIG. 10 shows the relationship between the value on the left side of equation (4) (3.7 ⁇ A ⁇ 0.47 ⁇ B + 1.14) and the spalling intensity.
  • FIG. 11 shows the relationship between the value of C defined by equation (3) and the low cycle fatigue strength.
  • FIG. Examples Nos. 32, 34, 35, 37 to 39, 42 to 45, 48, 49 Comparative examples of 31, 33, 36, 40, 41, 46, 47, and 50 to 70 are indicated by ⁇ .
  • Test piece 2 Load roller 3 Test piece 4 Jig 5 Load direction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

This steel component for high-temperature carburizing which has excellent spalling strength and low-cycle fatigue strength and which is useful as a material for power transmission components, etc., is provided by suitably adjusting the chemical component composition, setting the average C concentration up to a depth of 0.05mm from the surface to 0.50% or greater, and controlling the average circle equivalent diameter Dm(μm) and the number density Nm (number/mm2) of MnS in a non-carburized portion, the average circle equivalent diameter Dt(μm) and the number density Nt (number/mm2) of TiN in the non-carburized portion, the Vickers hardness Hs (HV) at a position 0.05mm deep from the surface and the Vickers hardness Hi (HV) at the non-carburized portion measured with a test force of 300gf, and the effective hardened layer depth ECD (mm) so as to satisfy the expressions A=exp{Dm/10+Nm1/2/50}×exp{Dt/15+Nt1/2/50}, B=exp{Hs/650+ECD1/2+Hi/250}, C=exp[Hs/650-ECD-{(0.89×Hi-202.16)/250}2], 3.7×A-0.47×B+1.14≦0, and C≧0.66.

Description

スポーリング強度および低サイクル疲労強度に優れた高温浸炭用鋼製部品High temperature carburizing steel parts with excellent spalling strength and low cycle fatigue strength
 本発明は、スポーリング強度および低サイクル疲労強度に優れた高温浸炭用鋼製部品に関する。詳細には、高温浸炭処理して用いられる鋼製部品、特に歯車、軸受、シャフトおよびCVT(Continuously Variable Transmission:無段変速機)プーリー等の動力伝達部品等の素材として有用な浸炭用鋼製部品に関する。 The present invention relates to a steel part for high-temperature carburizing excellent in spalling strength and low cycle fatigue strength. Specifically, steel parts used after high-temperature carburizing treatment, especially carburizing steel parts useful as materials for gears, bearings, shafts and power transmission parts such as CVT (Continuously Variable Transmission) pulleys. About.
 上記各種用途に用いられる浸炭用鋼製部品には、スポーリング発生に対する強度(これを「スポーリング強度」と呼ぶ)に優れていることが要求される。スポーリングとは、部品同士ですべりが発生しない、或いは少ない場合に、摺動接触荷重によって内部にせん断応力が発生し、それに伴って内部に亀裂が生じ、それが進展して剥離に至る疲労破壊現象である。近年、動力伝達部品の高出力化および小型化に伴う負荷荷重の増大により、従来の表面起点型損傷(ピッチング)からスポーリングに損傷形態が変化しつつある。 The carburized steel parts used for the various applications described above are required to have excellent strength against spalling (this is referred to as “spalling strength”). In spalling, when there is little or no sliding between parts, a shearing stress is generated by sliding contact load, and a crack is generated in the inside, and it develops, and fatigue failure that leads to delamination It is a phenomenon. In recent years, the damage form is changing from the conventional surface-origin type damage (pitching) to the spalling due to the increase in the load load accompanying the increase in output and miniaturization of the power transmission component.
 スポーリング強度を向上させる方策として、一般的には有効硬化層深さ(浸炭硬化層深さ)の増大および芯部硬さの向上(焼入れ性の向上)が有効とされている。しかしながら、その一方で低サイクル疲労強度および部品加工性の低下が生じる。特に、上記のような用途で用いられる鋼製部品には、サイクル数が104~105回程度での低サイクルでの疲労強度に優れていることも必要である。 In general, increasing the effective hardened layer depth (carburized hardened layer depth) and improving the core hardness (improving hardenability) are effective as measures for improving the spalling strength. However, on the other hand, low cycle fatigue strength and part workability are reduced. In particular, steel parts used in the above-described applications are required to have excellent fatigue strength in a low cycle with a cycle number of about 10 4 to 10 5 times.
 近年では、生産性向上や部品コスト低減を目的に浸炭処理の高温化が指向されている。浸炭処理の高温化を図ることによって、鋼材表面にC(炭素)が侵入および拡散する速度が増し、所定の材料特性(表面硬さ、有効硬化層深さ)が得られるまでの処理時間の短縮が可能となる。しかしながら、高温化によりオーステナイト結晶粒が粗大化すると、低サイクル疲労強度が低下する傾向を示す。 In recent years, increasing the temperature of carburizing is aimed at improving productivity and reducing parts costs. By increasing the temperature of the carburizing process, the rate at which C (carbon) penetrates and diffuses into the steel surface increases, and the processing time required for obtaining the specified material properties (surface hardness, effective hardened layer depth) is shortened. Is possible. However, when the austenite crystal grains become coarse due to high temperature, the low cycle fatigue strength tends to decrease.
 高温浸炭して得られる鋼製部品の特性を改善するための、材料側からの対策としては、(i)介在物の析出状態を制御する、(ii)浸炭後の材質を制御する、(iii)例えばNbやTiなどの結晶粒粗大化防止元素の添加等が主な対策となっている。 As measures from the material side to improve the properties of steel parts obtained by high-temperature carburizing, (i) control the precipitation state of inclusions, (ii) control the material after carburizing, (iii) ) For example, the addition of crystal grain coarsening preventing elements such as Nb and Ti is the main countermeasure.
 このような観点から、鋼製部品の特性を改善するための技術として、これまでにも様々提案されている。例えば特許文献1では、Sを比較的多く含有させると共に、MnとSの原子比を所定の範囲に制御することによって、MnSを主成分とする硫化物系介在物を単位面積当たり5000個/mm2以上存在させ、部品の強度向上を図る技術が提案されている。 From this point of view, various techniques have been proposed so far for improving the characteristics of steel parts. For example, in Patent Document 1, while containing a relatively large amount of S and controlling the atomic ratio of Mn and S within a predetermined range, 5,000 sulfide inclusions per unit area of MnS as a main component are contained per mm. A technique for improving the strength of parts by providing two or more has been proposed.
 また特許文献2では、冷間鍛造性および結晶粒粗大化防止特性に優れた肌焼鋼を実現するという観点から、所定量のTiを含有させると共に、TiとNの含有比率を規定することによって、TiをできるだけTiCとして析出させる技術が提案されている。 Moreover, in patent document 2, from the viewpoint of implement | achieving the case hardening steel excellent in cold forgeability and a crystal grain coarsening prevention characteristic, while containing predetermined amount Ti, by prescribing | regulating the content ratio of Ti and N A technique for precipitating Ti as TiC as much as possible has been proposed.
 特許文献3には、Nb量を0.04%以下に低減すると共に、Mo,Ni,B,Si,P,Vの含有量と、鋼材表層の浸炭濃度や表面硬さの関係を所定の関係式を満足するように規定することによって、低サイクル疲労特性に優れた浸炭焼入れ鋼および浸炭焼入れ部品を実現することが提案されている。 In Patent Document 3, the Nb content is reduced to 0.04% or less, and the relationship between the content of Mo, Ni, B, Si, P, and V, the carburization concentration of the steel surface layer, and the surface hardness is a predetermined relationship. It has been proposed to achieve carburized and hardened steel and carburized parts that are excellent in low cycle fatigue properties by defining the formula so as to satisfy the equation.
 一方、特許文献4には、Ti含有量を0.05%以下に低減しつつ化学成分組成を適切に制御することによって、歯元強度と歯面強度の両立を図った歯車部品について提案されている。 On the other hand, Patent Document 4 proposes a gear component that achieves both tooth root strength and tooth surface strength by appropriately controlling the chemical composition while reducing the Ti content to 0.05% or less. Yes.
特開2005-105390号公報JP 2005-105390 A 特開2008-81841号公報JP 2008-81841 A 特開2011-63886号公報JP 2011-63886 A 特開2010-1527号公報JP 2010-1527 A
 上記特許文献1の技術では、Sの含有量が多いので、スポーリング強度は却って低下する。上記特許文献2に記載のように、TiやNの含有量を規定するだけでは、結晶粒の粗大化は避けられず、鋼材の強度が低下する傾向を示す。また、Cと結合しないで残存したTiは、通常の製造方法では粗大なTiNとして析出しやすく、スポーリング強度が低下する傾向を示す。上記特許文献3の技術は基本的にNbの含有量が少ないものであり、結晶粒の粗大化は避けられず、鋼材の強度が低下するという問題がある。上記特許文献4の技術では、Ti含有量が基本的に少ないため、結晶粒の粗大化防止を図ることができず、歯車自体の強度が低下する。また、この技術では、BNが形成されやすくなり、焼入性低下による芯部硬さの低下によって、スポーリング強度が低下する傾向を示す。 In the technique of Patent Document 1, since the S content is large, the spalling strength is decreased. As described in the above-mentioned Patent Document 2, if the content of Ti or N is only specified, the coarsening of crystal grains is inevitable, and the strength of the steel material tends to decrease. Further, Ti remaining without being bonded to C tends to precipitate as coarse TiN in a normal manufacturing method, and the spalling strength tends to decrease. The technique of the above-mentioned Patent Document 3 basically has a low Nb content, so that coarsening of crystal grains cannot be avoided, and there is a problem that the strength of the steel material is reduced. In the technique of Patent Document 4 described above, since the Ti content is basically small, it is impossible to prevent the coarsening of crystal grains, and the strength of the gear itself is reduced. Moreover, in this technique, BN tends to be formed, and the spalling strength tends to decrease due to a decrease in core hardness due to a decrease in hardenability.
 このように、これまで鋼製部品の特性を改善するための技術は、様々提案されており、鋼材強度向上や低サイクル疲労強度のいずれかを改善するという面からはそれなりの成果が認められている。しかし、スポーリング強度と低サイクル疲労強度の両立を図った技術は確立されていない。 Thus, various techniques for improving the properties of steel parts have been proposed so far, and some results have been recognized in terms of improving either steel strength or low cycle fatigue strength. Yes. However, no technology has been established to achieve both spalling strength and low cycle fatigue strength.
 本発明は上記のような事情に鑑みてなされたものであり、その目的は、スポーリング強度を低下させることなく、優れた低サイクル疲労強度を発揮させ、歯車、軸受、シャフトおよびCVTプーリー等の動力伝達部品等の素材として有用な高温浸炭用鋼製部品を提供することにある。 The present invention has been made in view of the above circumstances, and its purpose is to exhibit excellent low cycle fatigue strength without reducing spalling strength, such as gears, bearings, shafts, and CVT pulleys. The object is to provide steel parts for high-temperature carburizing that are useful as materials for power transmission parts and the like.
 上記課題を解決し得た本発明の高温浸炭用鋼製部品は、質量%で、C:0.10~0.3%、Si:0.03~1.50%、Mn:0.2~1.8%、P:0%超0.03%以下、S:0%超0.03%以下、Cr:0.30~2.50%、Al:0%超0.08%以下、N:0%超0.0150%以下、Nb:0.05~0.3%、Ti:0.05~0.1%およびB:0.0005~0.005%、を夫々含有し、残部が鉄および不可避不純物であり、表面から0.05mm深さまでの平均C濃度が0.50%以上であり、且つ下記A、BおよびCを、夫々下記(1)式~(3)式で規定したとき、これらが下記(4)式および(5)式を満足することを特徴とする。
A=exp{Dm/10+Nm1/2/50}×exp{Dt/15+Nt1/2/50} …(1)
B=exp{Hs/650+ECD1/2+Hi/250} …(2)
C=exp[Hs/650-ECD-{(0.89×Hi-202.16)/250}2]…(3)
3.7×A-0.47×B+1.14≦0 …(4)
C≧0.66 …(5)
 但し、Dmは非浸炭部でのMnSの平均円相当径(μm)を、Nmは非浸炭部でのMnSの個数密度(個/mm2)を、Dtは非浸炭部でのTiNの平均円相当径(μm)を、Ntは非浸炭部でのTiNの個数密度(個/mm2)を、Hsは試験力300gfで測定した表面から深さ0.05mm位置でのビッカース硬さ(HV)を、ECDは有効硬化層深さ(mm)を、Hiは試験力300gfで測定した非浸炭部でのビッカース硬さ(HV)を夫々示す。
The steel parts for high-temperature carburizing of the present invention that can solve the above-mentioned problems are, by mass%, C: 0.10 to 0.3%, Si: 0.03 to 1.50%, Mn: 0.2 to 1.8%, P: more than 0% and 0.03% or less, S: more than 0% and 0.03% or less, Cr: 0.30 to 2.50%, Al: more than 0% and 0.08% or less, N : More than 0% and 0.0150% or less, Nb: 0.05 to 0.3%, Ti: 0.05 to 0.1% and B: 0.0005 to 0.005%, respectively, the balance being Iron and inevitable impurities, the average C concentration from the surface to a depth of 0.05 mm is 0.50% or more, and the following A, B and C are defined by the following formulas (1) to (3), respectively. These are characterized by satisfying the following expressions (4) and (5).
A = exp {Dm / 10 + Nm 1/2 / 50} × exp {Dt / 15 + Nt 1/2 / 50} (1)
B = exp {Hs / 650 + ECD 1/2 + Hi / 250} (2)
C = exp [Hs / 650−ECD − {(0.89 × Hi−202.16) / 250} 2 ] (3)
3.7 × A−0.47 × B + 1.14 ≦ 0 (4)
C ≧ 0.66 (5)
However, Dm is the average equivalent circle diameter (μm) of MnS in the non-carburized part, Nm is the number density (pieces / mm 2 ) of MnS in the non-carburized part, and Dt is the average circle of TiN in the non-carburized part. Equivalent diameter (μm), Nt is the number density of TiN in non-carburized part (pieces / mm 2 ), Hs is Vickers hardness (HV) at a depth of 0.05 mm from the surface measured with a test force of 300 gf , ECD indicates the effective hardened layer depth (mm), and Hi indicates the Vickers hardness (HV) at the non-carburized portion measured at a test force of 300 gf.
 尚、MnSおよびTiNの平均円相当径とは、MnSおよびTiNの大きさを同一面積の円に換算したときの直径(円相当径)の平均を意味する。また、上記「非浸炭部」とは、有効硬化層深さECDから更に0.5~2.0mm深いところ(硬化層と反対側の位置)の意味であるが、例えばシャフト部品では、直径Dの1/4の位置から内部側(中心側)を意味する。更に、有効硬化層深さECDは、JIS G 0557(2006)に規定される浸炭硬化層深さを意味する。 The average equivalent circle diameter of MnS and TiN means the average of the diameters (equivalent circle diameters) when the sizes of MnS and TiN are converted into circles of the same area. The “non-carburized portion” means a portion 0.5 to 2.0 mm deeper than the effective hardened layer depth ECD (position opposite to the hardened layer). It means the inner side (center side) from the 1/4 position. Furthermore, the effective hardened layer depth ECD means the carburized hardened layer depth specified in JIS G 0557 (2006).
 本発明の高温浸炭用鋼製部品では、試験力300gfで測定した表面から深さ0.05mm位置でのビッカース硬さHsが650HV以上、有効硬化層深さECDが0.4mm以上、試験力300gfで測定した非浸炭部でのビッカース硬さHiが300HV以上であることが好ましい。 In the steel parts for high-temperature carburizing of the present invention, the Vickers hardness Hs at a depth of 0.05 mm from the surface measured with a test force of 300 gf is 650 HV or more, the effective hardened layer depth ECD is 0.4 mm or more, and the test force is 300 gf. It is preferable that the Vickers hardness Hi in the non-carburized part measured by (1) is 300 HV or more.
 本発明の高温浸炭用鋼製部品は、必要によって、更に、質量%で、Ni:0%超2.0%以下およびMo:0%超1.00%以下の少なくとも1種を含有することも好ましい。 The steel part for high-temperature carburizing of the present invention may further contain at least one of Ni: more than 0% and not more than 2.0% and Mo: more than 0% and not more than 1.00% by mass as necessary. preferable.
 本発明によれば、化学成分組成を適切に規定すると共に、表面から0.05mm深さまでの平均C濃度を0.50%以上とし、且つMnSおよびTiNの大きさや個数密度が、部品各部位でのビッカース硬さとの関係で所定の式を満足するように制御することによって、スポーリング強度および低サイクル疲労強度に優れた高温浸炭用鋼製部品を得ることができる。このような高温浸炭用鋼製部品は、歯車、軸受、シャフトおよびCVTプーリー等の動力伝達部品の素材として有用である。 According to the present invention, the chemical composition is appropriately defined, the average C concentration from the surface to a depth of 0.05 mm is 0.50% or more, and the size and number density of MnS and TiN are different at each part of the component. By controlling so as to satisfy the predetermined formula in relation to the Vickers hardness, a steel part for high-temperature carburizing excellent in spalling strength and low cycle fatigue strength can be obtained. Such steel parts for high-temperature carburizing are useful as materials for power transmission parts such as gears, bearings, shafts, and CVT pulleys.
図1は、実施例における浸炭熱処理条件を示すパターン図である。FIG. 1 is a pattern diagram showing carburizing heat treatment conditions in the examples. 図2は、焼戻し処理条件を示すパターン図である。FIG. 2 is a pattern diagram showing tempering process conditions. 図3は、TiNおよびMnSの析出割合と温度の関係を示すグラフである。FIG. 3 is a graph showing the relationship between the precipitation ratio of TiN and MnS and the temperature. 図4は、ローラーピッチング試験で用いた試験片形状を示す概略説明図である。FIG. 4 is a schematic explanatory view showing the shape of the test piece used in the roller pitching test. 図5は、ローラーピッチング試験の実施状況を示す概略説明図である。FIG. 5 is a schematic explanatory diagram showing the implementation status of the roller pitching test. 図6は、4点曲げ疲労試験で用いた試験片形状を示す概略説明図である。FIG. 6 is a schematic explanatory view showing the shape of a test piece used in the four-point bending fatigue test. 図7は、4点曲げ疲労試験の実施状況を示す概略説明図である。FIG. 7 is a schematic explanatory view showing an implementation status of a four-point bending fatigue test. 図8は、実施例1において、(4)式の左辺の値(3.7×A-0.47×B+1.14)とスポーリング強度の関係を示すグラフである。FIG. 8 is a graph showing the relationship between the value (3.7 × A−0.47 × B + 1.14) on the left side of equation (4) and the spalling intensity in the first embodiment. 図9は、実施例1において、(3)式で規定されるCの値と低サイクル疲労強度の関係を示すグラフである。FIG. 9 is a graph showing the relationship between the value of C defined by the equation (3) and the low cycle fatigue strength in Example 1. 図10は、実施例2において、(4)式の左辺の値(3.7×A-0.47×B+1.14)とスポーリング強度の関係を示すグラフである。FIG. 10 is a graph showing the relationship between the value (3.7 × A−0.47 × B + 1.14) on the left side of equation (4) and the spalling intensity in the second embodiment. 図11は、実施例2において、(3)式で規定されるCの値と低サイクル疲労強度の関係を示すグラフである。FIG. 11 is a graph showing the relationship between the value of C defined by the expression (3) and the low cycle fatigue strength in Example 2.
 本発明者らは、スポーリング強度および低サイクル疲労強度の両特性に優れた高温浸炭用鋼製部品を実現すべく、様々な角度から検討した。特に、MnSおよびTiNの大きさや個数密度が、部品の上記特性に与える影響について鋭意調査した。その結果、化学成分組成を適切に規定すると共に、表面から0.05mm深さまでの平均C濃度を0.50%以上とし、且つ非浸炭部でのMnSおよびTiNの大きさ(Dm、Dt)や個数密度(Nm、Nt)に基づいて、夫々上記(1)式~(3)式で規定されるA~Cとしたとき、これらが上記(4)式および(5)式を満足させるように制御すれば、上記目的が達成されることを見出し、本発明を完成した。 The present inventors have studied from various angles in order to realize a steel part for high-temperature carburizing excellent in both properties of spalling strength and low cycle fatigue strength. In particular, intensive investigations were made on the influence of the size and number density of MnS and TiN on the above-mentioned properties of parts. As a result, the chemical composition is appropriately defined, the average C concentration from the surface to a depth of 0.05 mm is 0.50% or more, and the sizes (Dm, Dt) of MnS and TiN in the non-carburized part Based on the number density (Nm, Nt), when A to C are defined by the above equations (1) to (3), respectively, these satisfy the above equations (4) and (5) The inventors have found that the above object can be achieved by controlling the present invention and completed the present invention.
 まず、上記(1)式~(5)式を規定した理由について説明する。 First, the reason for defining the above equations (1) to (5) will be described.
 鋼材中に介在物が存在すると、応力を負荷したときに、介在物近傍に応力が集中して内部亀裂の発生および進展が促進されるため、スポーリング強度が低下する。上記(1)式で規定されるAの値は、介在物による内部亀裂の発生および進展の感受性を示しており、介在物のサイズが大きいほど、また個数密度が大きいほどAの値が大きくなり、低サイクル疲労強度は低下する。このような関係を規定したのが、上記(1)式である。 If inclusions are present in the steel material, when stress is applied, the stress concentrates in the vicinity of the inclusions and the generation and propagation of internal cracks are promoted, so that the spalling strength is reduced. The value of A defined by the above equation (1) indicates the sensitivity of the occurrence and propagation of internal cracks by inclusions, and the value of A increases as the size of inclusions increases and the number density increases. The low cycle fatigue strength decreases. The above formula (1) defines such a relationship.
 スポーリングは、有効硬化層深さECDが浅いほど、表面から深さ0.05mm位置でのビッカース硬さHs(以下、「表面硬さHs」と呼ぶことがある)と、非浸炭部での硬さHi(以下、「芯部硬さHi」と呼ぶことがある)が低いほど発生しやすく、スポーリング強度は低下する。上記(2)式で規定されるBの値は、せん断応力による内部亀裂発生および進展の抵抗性を示しており、表面硬さHs、芯部硬さHiが高いほど、および有効硬化層深さECDが深いほど、Bの値は大きくなる。このような関係を規定したのが、上記(2)式である。 As for the spalling, as the effective hardened layer depth ECD is shallower, the Vickers hardness Hs at a depth of 0.05 mm from the surface (hereinafter sometimes referred to as “surface hardness Hs”) and the non-carburized portion. The lower the hardness Hi (hereinafter sometimes referred to as “core hardness Hi”), the easier it is to occur and the spalling strength decreases. The value of B defined by the above equation (2) indicates the resistance to the occurrence and propagation of internal cracks due to shear stress. The higher the surface hardness Hs and the core hardness Hi, and the effective hardened layer depth. The deeper the ECD, the greater the value of B. The above formula (2) defines such a relationship.
 また、表面硬さHsが650HV未満になったり、芯部硬さHiが300HV未満になったり、或いは有効硬化層深さECDが0.4mm未満の場合には、スポーリングが発生しなくても部品表面が陥没し、低サイクル疲労強度が更に低下することがある。こうしたことから、表面硬さHsは650HV以上、芯部硬さHiは300HV以上、および有効硬化層深さECDは0.4mm以上であることが好ましい。表面硬さHsは、より好ましくは680HV以上、更に好ましくは700HV以上である。浸炭後の切削性低下という観点からすれば表面硬さHsは、850HV以下であることが好ましい。また芯部硬さHiは、より好ましくは350HV以上、更に好ましくは400HV以上である。内部亀裂進展の促進によりスポーリング強度が飽和するという観点からすれば芯部硬さHiは、500HV以下であることが好ましい。有効硬化層深さECDは、より好ましくは0.7mm以上、更に好ましくは1.0mm以上である。浸炭処理の長時間化に伴うコスト増加という観点からすれば有効硬化層深さECDは、1.5mm以下であることが好ましい。 Further, when the surface hardness Hs is less than 650 HV, the core hardness Hi is less than 300 HV, or the effective hardened layer depth ECD is less than 0.4 mm, spalling does not occur. The surface of the part may sink and the low cycle fatigue strength may further decrease. For these reasons, the surface hardness Hs is preferably 650 HV or more, the core hardness Hi is 300 HV or more, and the effective hardened layer depth ECD is preferably 0.4 mm or more. The surface hardness Hs is more preferably 680 HV or more, and still more preferably 700 HV or more. From the viewpoint of reduction in machinability after carburizing, the surface hardness Hs is preferably 850 HV or less. Moreover, core part hardness Hi becomes like this. More preferably, it is 350 HV or more, More preferably, it is 400 HV or more. From the viewpoint that the spalling strength is saturated by the promotion of internal crack propagation, the core hardness Hi is preferably 500 HV or less. The effective hardened layer depth ECD is more preferably 0.7 mm or more, and further preferably 1.0 mm or more. From the viewpoint of an increase in cost associated with a longer carburizing process, the effective hardened layer depth ECD is preferably 1.5 mm or less.
 低サイクルにおける負荷環境下では、衝撃的な荷重が動力伝達部品にかかるため、有効硬化層深さECDが深い、或いは芯部硬さHiが高い場合には、亀裂の発生および進展が促進されるため、低サイクル疲労強度は低下する。上記(3)式で規定されるCの値は、低サイクルでの荷重による亀裂発生および進展の抵抗性を示しており、表面硬さHsが高いほど大きくなり、その一方で有効硬化層深さECDが深いほど、および芯部硬さHiが顕著に高くなると小さくなる。また表面硬さHsが低くなったり、芯部硬さHiが低くなったりした場合には、亀裂発生の前に塑性変形し、低サイクル疲労強度は更に低下することがある。このような関係を規定したのが、上記(3)式である。尚、(3)式においても、表面硬さHsの好ましい範囲は上記と同じである。一方、芯部硬さHiは、「塑性変形」(後述する)を発生させないという観点から好ましくは250HV以上、より好ましくは300HV以上である。後述するように「脆性破断」を発生させないという観点からすれば芯部硬さHiは、450HV以下であることが好ましい。有効硬化層深さECDは、好ましくは0.25mm以上、より好ましくは0.5mm以上である。「脆性破断」を発生させないという観点からすれば有効硬化層深さECDは、1.30mm以下であることが好ましい。 Under a load environment in a low cycle, an impact load is applied to the power transmission component. Therefore, when the effective hardened layer depth ECD is deep or the core hardness Hi is high, the generation and propagation of cracks are promoted. Therefore, the low cycle fatigue strength decreases. The value of C defined by the above equation (3) indicates the resistance to crack initiation and propagation due to a load in a low cycle, and increases as the surface hardness Hs increases, while the effective hardened layer depth is increased. The deeper the ECD and the smaller the core hardness Hi, the smaller it becomes. Further, when the surface hardness Hs is lowered or the core hardness Hi is lowered, plastic deformation may occur before the occurrence of cracks, and the low cycle fatigue strength may further decrease. The above equation (3) defines such a relationship. In the formula (3), the preferable range of the surface hardness Hs is the same as described above. On the other hand, the core hardness Hi is preferably 250 HV or higher, more preferably 300 HV or higher, from the viewpoint of not causing “plastic deformation” (described later). From the viewpoint of preventing the occurrence of “brittle fracture” as described later, the core hardness Hi is preferably 450 HV or less. The effective hardened layer depth ECD is preferably 0.25 mm or more, more preferably 0.5 mm or more. From the viewpoint of not causing “brittle fracture”, the effective hardened layer depth ECD is preferably 1.30 mm or less.
 なお、本明細書において、表面硬さHsおよび芯部硬さHiは、試験力300gf、即ち、300×9.8Nで測定したときの値である。 In this specification, the surface hardness Hs and the core hardness Hi are values when measured with a test force of 300 gf, that is, 300 × 9.8 N.
 上記パラメータA、BおよびCを組み合わせることで、スポーリング強度および低サイクル疲労強度と、高い相関関係が得られることが判明し、介在物形態および材質を適正化して、下記(4)式および(5)式を満足することによって、スポーリング強度および低サイクル疲労強度の両特性に優れた高温浸炭用鋼製部品を実現できる。尚、(4)式の左辺の値は、好ましくは-5.0以下であり、より好ましくは-10.0以下である。(4)式の左辺の値の下限は、上記A値およびB値に基づいて決定されるが、好ましくは-20以上であり、より好ましくは-15以上である。またCの値は、好ましくは0.80以上であり、より好ましくは1.00以上である。Cの値の上限は、好ましくは2.00以下であり、より好ましくは1.50以下である。
3.7×A-0.47×B+1.14≦0 …(4)
C≧0.66 …(5)
By combining the above parameters A, B and C, it was found that a high correlation was obtained with the spalling strength and the low cycle fatigue strength. The inclusion form and material were optimized, and the following formula (4) and ( By satisfying the formula (5), it is possible to realize a steel part for high-temperature carburizing excellent in both spalling strength and low cycle fatigue strength. The value on the left side of the formula (4) is preferably −5.0 or less, more preferably −10.0 or less. The lower limit of the value on the left side of the equation (4) is determined based on the A value and the B value, but is preferably −20 or more, more preferably −15 or more. The value of C is preferably 0.80 or more, and more preferably 1.00 or more. The upper limit of the value of C is preferably 2.00 or less, more preferably 1.50 or less.
3.7 × A−0.47 × B + 1.14 ≦ 0 (4)
C ≧ 0.66 (5)
 高温浸炭用鋼製部品の組織(浸炭焼入れ焼戻し処理後の組織)については、浸炭層はマルテンサイト、残留オーステナイトおよび一部トルースタイト或いはベイナイト組織からなり、非浸炭層はマルテンサイトおよび一部ベイナイトもしくはフェライト組織からなる。 Regarding the structure of steel parts for high-temperature carburizing (structure after carburizing and quenching and tempering), the carburized layer is composed of martensite, retained austenite and partly troostite or bainite structure, and the non-carburized layer is composed of martensite and partly bainite or It consists of a ferrite structure.
 本発明の高温浸炭用鋼製部品は、歯車、軸受、シャフトおよびCVTプーリー等の動力伝達部品の素材に適用したときに、要求される機械的特性を発揮させる上から、その化学成分組成も適切に調整する必要がある。その基本的な化学成分組成は以下の通りである。 The steel component for high-temperature carburizing of the present invention has an appropriate chemical composition in order to exhibit required mechanical properties when applied to materials for power transmission components such as gears, bearings, shafts, and CVT pulleys. It is necessary to adjust to. The basic chemical composition is as follows.
 (C:0.10~0.3%)
 Cは、最終製品の芯部硬さHiを確保するために必要な元素である。但し、過剰に含有すると加工性が低下すると共に、低サイクル疲労強度が低下するため、0.3%以下とする必要がある。C量が0.10%未満では、芯部硬さHiが低くなりすぎて、十分なスポーリング強度が得られない。こうした観点からC量は、0.10~0.3%とした。C量の好ましい下限は0.13%以上であり、より好ましくは0.15%以上である。またC量の好ましい上限は0.27%以下であり、より好ましくは0.25%以下である。
(C: 0.10 to 0.3%)
C is an element necessary for ensuring the core hardness Hi of the final product. However, if contained excessively, the workability is lowered and the low cycle fatigue strength is lowered. Therefore, it is necessary to be 0.3% or less. If the amount of C is less than 0.10%, the core hardness Hi becomes too low, and sufficient spalling strength cannot be obtained. From this point of view, the C content is 0.10 to 0.3%. The minimum with preferable C amount is 0.13% or more, More preferably, it is 0.15% or more. Moreover, the upper limit with the preferable amount of C is 0.27% or less, More preferably, it is 0.25% or less.
 (Si:0.03~1.50%)
 Siは、焼戻し処理時の硬さ低下を抑制すると共に、鋼材の焼入性を向上させて最終製品の芯部硬さHiを確保するために有効な元素である。但し、過剰に含有すると、浸炭時のC侵入を阻害し、浸炭不良を招くと共に、フェライト強化により加工性を低下させるため、その上限は1.50%以下とした。Si量が0.03%未満では、芯部硬さHiの向上に不十分である。こうした観点からSi量は、0.03~1.50%とした。Si量の好ましい下限は0.05%以上であり、より好ましくは0.07%以上である。またSi量の好ましい上限は1.0%以下であり、より好ましくは0.60%以下である。
(Si: 0.03-1.50%)
Si is an element effective for suppressing the hardness reduction during the tempering treatment and improving the hardenability of the steel material to ensure the core hardness Hi of the final product. However, if contained excessively, C penetration during carburization is inhibited, carburization failure is caused, and workability is reduced by strengthening ferrite, so the upper limit was made 1.50% or less. If the amount of Si is less than 0.03%, it is insufficient for improving the core hardness Hi. From this point of view, the Si content is set to 0.03 to 1.50%. The minimum with the preferable amount of Si is 0.05% or more, More preferably, it is 0.07% or more. Moreover, the upper limit with the preferable amount of Si is 1.0% or less, More preferably, it is 0.60% or less.
 (Mn:0.2~1.8%)
 Mnは、Sと結合してFeSの生成を抑制し、圧延時の鍛造性低下を抑えると共に、鋼材の焼入性を高めて最終製品の芯部硬さ確保に有効な元素である。但し、過剰な添加は縞状偏析による材質のバラツキを顕在化させ、またマルテンサイト変態開始温度(Ms点)を低下させることにより、浸炭後の残留オーステナイト量を増加させて表面硬さを低下させる。こうしたことから、Mn量は1.8%以下とした。一方、Mn量が0.2%未満では、FeSの形成や芯部硬さが不十分となる。Mn量の好ましい下限は0.30%以上であり、より好ましくは0.35%以上である。またMn量の好ましい上限は1.70%以下であり、より好ましくは1.60%以下である。
(Mn: 0.2-1.8%)
Mn is an element effective for securing the core hardness of the final product by combining with S to suppress the formation of FeS and to suppress the deterioration of forgeability during rolling and to enhance the hardenability of the steel material. However, excessive addition reveals material variations due to striped segregation, and lowers the surface hardness by increasing the amount of retained austenite after carburization by lowering the martensitic transformation start temperature (Ms point). . For these reasons, the Mn content is set to 1.8% or less. On the other hand, if the amount of Mn is less than 0.2%, the formation of FeS and the core hardness are insufficient. The minimum with the preferable amount of Mn is 0.30% or more, More preferably, it is 0.35% or more. Moreover, the upper limit with the preferable amount of Mn is 1.70% or less, More preferably, it is 1.60% or less.
 (P:0%超0.03%以下)
 Pは、結晶粒界に偏析して低サイクル疲労強度を低下させるため、その含有量は少なければ少ないほど好ましい。こうした観点から、P量は0.03%以下とする。P量は、好ましくは0.020%以下であり、より好ましくは0.015%以下である。その一方で、Pは鋼中に不可避的に含まれる元素であり、純度を高めるほど製造コストが増加するため、P量は0.001%以上とすることが好ましく、より好ましくは0.005%以上である。
(P: more than 0% and 0.03% or less)
P is segregated at the grain boundaries to lower the low cycle fatigue strength, so the smaller the content, the better. From this point of view, the P content is 0.03% or less. The amount of P is preferably 0.020% or less, and more preferably 0.015% or less. On the other hand, P is an element inevitably contained in steel, and the production cost increases as the purity is increased. Therefore, the amount of P is preferably 0.001% or more, more preferably 0.005%. That's it.
 (S:0%超0.03%以下)
 Sは、Mnと結合してMnS介在物となり低サイクル疲労強度を低下させるため、なるべく低減させることが望ましく、こうした観点からS量の上限は0.03%以下とした。S量は、好ましくは0.025%以下であり、より好ましくは0.020%以下である。その一方で、Sは鋼中に不可避的に含まれる元素であり、純度を高めるほど製造コストが増加し、しかも切削性を低下させるため、S量は0.001%以上とすることが好ましく、より好ましくは0.005%以上である。
(S: more than 0% and 0.03% or less)
Since S combines with Mn to become MnS inclusions and lowers the low cycle fatigue strength, it is desirable to reduce it as much as possible. From this viewpoint, the upper limit of the amount of S is set to 0.03% or less. The amount of S is preferably 0.025% or less, and more preferably 0.020% or less. On the other hand, S is an element inevitably contained in the steel, and the production amount increases as the purity is increased, and in addition, the machinability is lowered, so the S amount is preferably 0.001% or more, More preferably, it is 0.005% or more.
 (Cr:0.30~2.50%)
 Crは、Mnと同様に鋼材の焼入性を向上させて最終製品の芯部硬さHiを確保するのに有効な元素である。但し、過剰に含有させると浸炭時に粗大炭化物の形成を促して低サイクル疲労強度を低下させるため、2.50%以下とした。一方、Cr量が0.30%未満では最終製品の芯部硬さHiが十分に得られない。Cr量の好ましい下限は0.50%以上であり、より好ましくは0.80%以上である。またCr量の好ましい上限は2.00%以下であり、より好ましくは1.80%以下である。
(Cr: 0.30-2.50%)
Cr, like Mn, is an element effective for improving the hardenability of the steel material and ensuring the core hardness Hi of the final product. However, if excessively contained, the formation of coarse carbides is promoted during carburizing, and the low cycle fatigue strength is lowered. On the other hand, if the Cr content is less than 0.30%, the core hardness Hi of the final product cannot be sufficiently obtained. The minimum with the preferable amount of Cr is 0.50% or more, More preferably, it is 0.80% or more. Moreover, the upper limit with the preferable amount of Cr is 2.00% or less, More preferably, it is 1.80% or less.
 (Al:0%超0.08%以下)
 Alは、鋼材中のNと結合してAlNを生成し、浸炭時の結晶粒粗大化を抑制する。しかしながら、過剰な添加はAl23を生成し、加工性を低下させる。こうした観点から、Al量は0.08%以下とした。Al量は、好ましくは0.060%以下であり、より好ましくは0.050%以下である。一方、Alは脱酸作用として有用であり、鋼材中に不可避的に含まれる元素であり、純度を高めるほど製造コストが増加し、更に結晶粒粗大化が促進されるため、Al量は0.001%以上とすることが好ましく、より好ましくは0.005%以上である。
(Al: more than 0% and 0.08% or less)
Al couple | bonds with N in steel materials, produces | generates AlN, and suppresses the crystal grain coarsening at the time of carburizing. However, excessive addition produces Al 2 O 3 and reduces workability. From such a viewpoint, the Al content is set to 0.08% or less. The amount of Al is preferably 0.060% or less, more preferably 0.050% or less. On the other hand, Al is useful as a deoxidizing action, and is an element inevitably contained in the steel material. As the purity is increased, the manufacturing cost increases, and further the coarsening of crystal grains is promoted. The content is preferably 001% or more, more preferably 0.005% or more.
 (N:0%超0.0150%以下)
 Nは、鋼材中のAlやTiと結合して窒化物を形成し、スポーリングの起点となって低サイクル疲労強度を低下させる。また、N量が、Ti量の0.3倍よりも多くなると、Tiと結合しきれなかったNがBと結合してBNを形成し、鋼材の焼入性が低下するだけでなく、ピンニング粒子であるTiCが析出しないため結晶粒が粗大化し、スポーリング強度が低下する。こうした観点から、N量は0.0150%以下とした。N量は好ましくは0.010%以下であり、より好ましくは0.008%以下である。Nは、鋼材中に不可避的に含まれる元素であり、純度を高めるほど製造コストが増加するため、N量は0.001%以上とすることが好ましく、より好ましくは0.002%以上である。
(N: more than 0% and 0.0150% or less)
N combines with Al and Ti in the steel material to form a nitride, and serves as a starting point for spalling to lower the low cycle fatigue strength. Further, when the amount of N is more than 0.3 times the amount of Ti, N that could not be combined with Ti combines with B to form BN, not only lowering the hardenability of the steel material, but also pinning. Since TiC which is a particle | grain does not precipitate, a crystal grain coarsens and a spalling intensity | strength falls. From such a viewpoint, the N content is set to 0.0150% or less. The amount of N is preferably 0.010% or less, more preferably 0.008% or less. N is an element inevitably contained in the steel material, and the production cost increases as the purity increases. Therefore, the N content is preferably 0.001% or more, more preferably 0.002% or more. .
 (Nb:0.05~0.3%)
 Nbは、鋼材中のCおよびNと結合してNb(CN)を形成し、これがピンニング粒子として作用し、浸炭時の結晶粒粗大化を防止するのに有効な元素である。しかしながら、過剰に含有させても結晶粒粗大化防止特性は飽和し、鋼材コストが増大するほか、粗大な晶出物により鍛造性が低下するため、Nb量は0.3%以下とした。Nb量は、好ましくは0.20%以下であり、より好ましくは0.10%以下である。一方、Nb量が0.05%未満では十分なピンニング力が得られず結晶粒が粗大化し、それに伴ってスポーリング強度および低サイクル疲労強度が低下する。こうした観点から、Nb量は0.05%以上とした。Nb量は好ましくは0.06%以上であり、より好ましくは0.07%以上である。
(Nb: 0.05-0.3%)
Nb combines with C and N in the steel material to form Nb (CN), which acts as pinning particles, and is an element effective for preventing crystal grain coarsening during carburization. However, even if contained excessively, the crystal grain coarsening prevention characteristic is saturated, the steel material cost is increased, and forgeability is lowered due to the coarse crystallized product, so the Nb amount is set to 0.3% or less. The Nb amount is preferably 0.20% or less, and more preferably 0.10% or less. On the other hand, if the Nb content is less than 0.05%, a sufficient pinning force cannot be obtained and the crystal grains become coarse, and accordingly, the spalling strength and the low cycle fatigue strength are lowered. From such a viewpoint, the Nb amount is set to 0.05% or more. The Nb amount is preferably 0.06% or more, and more preferably 0.07% or more.
 (Ti:0.05~0.1%)
 Tiは鋼材中のCと結合してTiCを形成し、Nb(CN)と同等にピンニング粒子として作用し、浸炭時の結晶粒粗大化を防止するのに有効な元素である。但し、過剰に含有させても結晶粒粗大化防止特性は飽和し、鋼材コストの増大や、粗大な晶出物が生成されて鍛造性の低下を招くため、Ti量は0.1%以下とした。Ti量は、好ましくは0.09%以下であり、より好ましくは0.08%以下である。一方、Ti量が0.05%未満では、十分なピンニング作用が得られず結晶粒が粗大化することで強度が低下する。またTiと結合しきれずに残ったNがBNとして生成され、鋼材の焼入性が著しく低下し、強度低下を招くため、Ti量は0.05%以上とした。Ti量は好ましくは0.06%以上であり、より好ましくは0.07%以上である。
(Ti: 0.05-0.1%)
Ti combines with C in the steel material to form TiC and acts as pinning particles in the same manner as Nb (CN), and is an element effective in preventing crystal grain coarsening during carburization. However, even if contained excessively, the crystal grain coarsening prevention characteristics are saturated, and steel costs increase and coarse crystallized products are generated, resulting in a decrease in forgeability. Therefore, the Ti amount is 0.1% or less. did. The amount of Ti is preferably 0.09% or less, and more preferably 0.08% or less. On the other hand, if the amount of Ti is less than 0.05%, a sufficient pinning action cannot be obtained, and the crystal grains become coarse, resulting in a decrease in strength. Further, the remaining N which cannot be combined with Ti is produced as BN, and the hardenability of the steel material is remarkably lowered and the strength is lowered. Therefore, the Ti amount is set to 0.05% or more. The amount of Ti is preferably 0.06% or more, and more preferably 0.07% or more.
 (B:0.0005~0.005%)
 Bは、微量で鋼材の焼入性を大幅に向上させると共に、衝撃強度の向上に有効な元素である。但し、B量が0.005%を超えると、その効果が飽和すると共に、部品加工性を低下させるため、0.005%以下とした。B量は、好ましくは0.004%以下であり、より好ましくは0.003%以下である。一方、B量が0.0005%未満では上記効果が得られないため、0.0005%以上とした。B量は、好ましくは0.0010%以上であり、より好ましくは0.0015%以上である。
(B: 0.0005-0.005%)
B is an element effective for improving the impact strength while greatly improving the hardenability of the steel material in a small amount. However, when the amount of B exceeds 0.005%, the effect is saturated and the workability of the parts is lowered. The amount of B is preferably 0.004% or less, and more preferably 0.003% or less. On the other hand, if the B content is less than 0.0005%, the above effect cannot be obtained. The amount of B is preferably 0.0010% or more, more preferably 0.0015% or more.
 本発明の高温浸炭用鋼製部品における基本成分は上記の通りであり、残部は実質的に鉄である。但し、原料、資材、製造設備等の状況によって持ち込まれる不可避不純物が鋼中に含まれることは当然に許容される。 The basic components in the steel parts for high-temperature carburizing of the present invention are as described above, and the balance is substantially iron. However, it is naturally allowed that inevitable impurities brought into the steel depending on the situation of raw materials, materials, manufacturing equipment, etc. are contained in the steel.
 また本発明の高温浸炭用鋼製部品には、鋼製部品としての特性を更に向上させるため、必要に応じて、更に、質量%で、Ni:0%超2.0%以下およびMo:0%超1.00%以下の少なくとも1種を含有することも好ましい。これらを含有させるときの範囲設定理由は下記の通りである。 Moreover, in order to further improve the characteristics as a steel part, the steel part for high-temperature carburizing according to the present invention may further include, if necessary, mass%, Ni: more than 0% and not more than 2.0% and Mo: 0. It is also preferable to contain at least one of more than% and 1.00% or less. The reason for setting the range when these are contained is as follows.
 (Ni:0%超2.0%以下)
 Niは、浸炭層の靭性を向上させる効果がある。但し、過剰に含有させると鋼材コストを増大させると共に、加工性の低下や芯部硬さHiの増加に伴う低サイクル疲労強度の低下を招く。こうした観点から、Niを含有させるときには、その上限を2.0%以下とすることが好ましい。Ni量は、より好ましくは1.80%以下であり、更に好ましくは1.60%以下である。尚、Niによる上記効果を発揮させるためには、Ni量は0.01%以上であることが好ましく、より好ましくは0.05%以上である。
(Ni: more than 0% and 2.0% or less)
Ni has the effect of improving the toughness of the carburized layer. However, if it is contained excessively, the steel material cost is increased, and the low cycle fatigue strength is reduced due to a decrease in workability and an increase in core hardness Hi. From such a viewpoint, when Ni is contained, the upper limit is preferably made 2.0% or less. The amount of Ni is more preferably 1.80% or less, and still more preferably 1.60% or less. In addition, in order to exhibit the said effect by Ni, it is preferable that Ni amount is 0.01% or more, More preferably, it is 0.05% or more.
 (Mo:0%超1.00%以下)
 Moは、鋼材の焼入性を向上させる元素であり、浸炭層の靭性を向上させる効果がある。但し、過剰に含有させると鋼材コストを増大させると共に、加工性の低下や芯部硬さHiの増加に伴う低サイクル疲労強度の低下を招く。こうした観点から、Moを含有させるときには、その上限を1.00%以下とすることが好ましい。Mo量は、より好ましくは0.80%以下であり、更に好ましくは0.60%以下である。尚、Moによる上記効果を発揮させるためには、Mo量は0.01%以上であることが好ましく、より好ましくは0.05%以上である。
(Mo: more than 0% and 1.00% or less)
Mo is an element that improves the hardenability of the steel material, and has the effect of improving the toughness of the carburized layer. However, if it is contained excessively, the steel material cost is increased, and the low cycle fatigue strength is reduced due to a decrease in workability and an increase in core hardness Hi. From such a viewpoint, when Mo is contained, the upper limit is preferably made 1.00% or less. The amount of Mo is more preferably 0.80% or less, and still more preferably 0.60% or less. In addition, in order to exhibit the said effect by Mo, it is preferable that Mo amount is 0.01% or more, More preferably, it is 0.05% or more.
 尚、NiおよびMoは、いずれも鋼製部品の靭性を向上させる上で有効な元素であり、夫々単独で、または2種を併用して含有させてもよい。 Ni and Mo are both effective elements for improving the toughness of steel parts, and each of them may be used alone or in combination of two kinds.
 本発明の高温浸炭用鋼製部品においては、表面硬さHsを大きくしてスポーリング強度を高める上で、表面から0.05mm深さまでの平均C濃度が0.50%以上であることも必要である。この平均C濃度が0.50%より低くなると、表面硬さHsを大きくして良好なスポーリング強度が確保できなくなる。平均C濃度は好ましくは0.60%以上であり、より好ましくは0.70%以上である。尚、平均C濃度の上限は、カーボンポテンシャル等の浸炭条件によって、自ずと決定される。 In the steel parts for high-temperature carburizing of the present invention, in order to increase the surface hardness Hs and increase the spalling strength, it is also necessary that the average C concentration from the surface to a depth of 0.05 mm is 0.50% or more. It is. When the average C concentration is lower than 0.50%, the surface hardness Hs is increased, and good spalling strength cannot be secured. The average C concentration is preferably 0.60% or more, more preferably 0.70% or more. The upper limit of the average C concentration is naturally determined by carburizing conditions such as carbon potential.
 本発明の高温浸炭用鋼製部品は、MnSおよびTiNの大きさや個数密度が、部品各部位での硬さ(ビッカース硬さ)の関係で上記式(4)および上記式(5)を満足するように制御することを特徴とするものである。このような要件を満足させるには、鋼材製造段階での条件および浸炭焼入れ処理条件を適切に制御するのがよい。 In the steel parts for high-temperature carburizing of the present invention, the size and number density of MnS and TiN satisfy the above formulas (4) and (5) in relation to the hardness (Vickers hardness) at each part of the parts. It is characterized by controlling as follows. In order to satisfy such requirements, it is preferable to appropriately control the conditions in the steel material production stage and the carburizing and quenching treatment conditions.
 鋼材製造段階での条件としては、
(a)溶鋼を凝固させるときの平均冷却速度、
(b)鋳片から所定の大きさに圧延または鍛造するときの鍛圧比、
(c)分塊圧延前の均熱処理(ソーキング処理)
等の条件を下記のように制御することが好ましい。但し、これらの条件(a)~(c)の全てを満足させる必要はなく、必要に応じて、1つ以上の条件を組み合わせて製造することによって、本発明の高温浸炭用鋼製部品が得られる。
As conditions at the steel production stage,
(A) Average cooling rate when solidifying molten steel,
(B) Forging pressure ratio when rolling or forging from a slab to a predetermined size,
(C) Soaking process before soaking (soaking process)
These conditions are preferably controlled as follows. However, it is not necessary to satisfy all of these conditions (a) to (c), and the steel part for high-temperature carburizing of the present invention can be obtained by combining one or more conditions if necessary. It is done.
 (a)溶鋼を凝固させるときの平均冷却速度
 溶鋼を凝固させるときの平均冷却速度は、0.06℃/秒以上であることが好ましい。MnSおよびTiNは、溶鋼内に晶出し、溶鋼を凝固させるときの平均冷却速度が速いほど微細となる。こうした観点から溶鋼を凝固させるときの平均冷却速度は、より好ましくは0.08℃/秒以上であり、更に好ましくは0.10℃/秒以上である。溶鋼を凝固させるときの平均冷却速度の上限は特に限定されないが、通常、0.01℃/秒程度である。
(A) Average cooling rate when solidifying molten steel The average cooling rate when solidifying molten steel is preferably 0.06 ° C / second or more. MnS and TiN crystallize in the molten steel and become finer as the average cooling rate when the molten steel is solidified is higher. From such a viewpoint, the average cooling rate when solidifying molten steel is more preferably 0.08 ° C./second or more, and further preferably 0.10 ° C./second or more. The upper limit of the average cooling rate when solidifying the molten steel is not particularly limited, but is usually about 0.01 ° C./second.
 (b)鋳片から所定の大きさに圧延または鍛造するときの鍛圧比
 鍛圧比は25以上であることが好ましい。鋳片から所定の大きさに圧延または鍛造する際に、最終大きさ(シャフト部品であれば直径)が小さいほど、即ち鍛圧比が大きいほど、MnSやTiNは微細化し、上記Aの値は小さくなる。こうした観点から鍛圧比は、より好ましくは50以上である。上記鍛圧比の上限は特に限定されないが、例えば、500程度である。上記鍛圧比とは、「鋳片の鋳造方向に垂直な断面積/圧延材若しくは鍛造材の加工方向に垂直な断面積」を意味する。
(B) Forging pressure ratio when rolling or forging from a slab to a predetermined size The forging pressure ratio is preferably 25 or more. When rolling or forging from a slab to a predetermined size, MnS and TiN become finer as the final size (diameter for shaft parts) is smaller, that is, the forging pressure ratio is larger, and the value of A is smaller. Become. From such a viewpoint, the forging pressure ratio is more preferably 50 or more. The upper limit of the forging pressure ratio is not particularly limited, but is about 500, for example. The forging pressure ratio means “cross-sectional area perpendicular to the casting direction of the slab / cross-sectional area perpendicular to the processing direction of the rolled material or forged material”.
 (c)分塊圧延前の均熱処理(ソーキング処理)
 ソーキング処理温度は、1100~1300℃とすることが好ましい。分塊圧延前にソーキング処理を施すと、晶出したMnSおよびTiNは微細化し、上記Aの値は小さくなる。ソーキング処理温度が1100℃未満では、MnSおよびTiNは固溶せず、その一方でソーキング処理温度が1300℃を超えると、保持中に鋳片表面が融解するおそれがある。こうした観点からソーキング処理温度のより好ましい下限は1150℃以上であり、より好ましい上限は1250℃以下である。
(C) Soaking process before soaking (soaking process)
The soaking temperature is preferably 1100 to 1300 ° C. When a soaking process is performed before the block rolling, the crystallized MnS and TiN are refined, and the value A is reduced. If the soaking temperature is less than 1100 ° C., MnS and TiN are not dissolved, whereas if the soaking temperature exceeds 1300 ° C., the slab surface may be melted during holding. From such a viewpoint, the more preferable lower limit of the soaking temperature is 1150 ° C. or more, and the more preferable upper limit is 1250 ° C. or less.
 また、ソーキング処理の保持時間は、0.5~3時間程度が好ましい。保持時間が0.5時間未満では、MnSおよびTiNの微細化が不十分となる。また保持時間が3時間を超えると、生産性低下およびコスト増加を招く。保持時間は、より好ましくは1時間以上、2時間以下である。 The soaking time is preferably about 0.5 to 3 hours. If the holding time is less than 0.5 hour, the miniaturization of MnS and TiN becomes insufficient. On the other hand, if the holding time exceeds 3 hours, productivity is lowered and cost is increased. The holding time is more preferably 1 hour or more and 2 hours or less.
 なお、上記ソーキング処理は、分塊圧延前に行なうが、分塊圧延を行なわない場合は、圧延または鍛造の前にソーキング処理を行なえばよい。 In addition, although the above-mentioned soaking process is performed before the partial rolling, if the partial rolling is not performed, the soaking process may be performed before rolling or forging.
 圧延または鍛造して得られた鋼材は、所定の形状に加工した後、浸炭炉にて浸炭焼入れ処理を行なえばよい。 The steel material obtained by rolling or forging may be carburized and quenched in a carburizing furnace after being processed into a predetermined shape.
 浸炭焼入れ処理条件としては、例えば、表面から0.05mm深さまでの平均C濃度が0.50%以上、有効硬化層深さECD(Effective Case. Depth)が0.40~1.5mmとなるように、雰囲気中のカーボンポテンシャルCP、浸炭温度、および浸炭時間を適切に制御すればよい。具体的には、雰囲気中のカーボンポテンシャルCPを0.50以上に調整し、800~1000℃にて0.5時間以上5時間未満保持し、その後、カーボンポテンシャルCPを0.50以上としたまま、800~900℃にて0.5~2時間保持した直後に焼入れすればよい。 As carburizing and quenching treatment conditions, for example, the average C concentration from the surface to 0.05 mm depth is 0.50% or more, and the effective hardened layer depth ECD (EffectiveffCase. Depth) is 0.40 to 1.5 mm. In addition, the carbon potential CP, the carburizing temperature, and the carburizing time in the atmosphere may be appropriately controlled. Specifically, the carbon potential CP in the atmosphere is adjusted to 0.50 or more and held at 800 to 1000 ° C. for 0.5 hours or more and less than 5 hours, and then the carbon potential CP is kept at 0.50 or more. And quenching immediately after holding at 800 to 900 ° C. for 0.5 to 2 hours.
 浸炭ガスとしては、例えば、変性ガス(RXガス)とプロパンガスの混合ガスを用いればよい。 As the carburizing gas, for example, a mixed gas of modified gas (RX gas) and propane gas may be used.
 浸炭焼入後は、100~250℃にて0.5~3時間保持した後に放冷し、焼戻し処理を行えばよい。 After carburizing and quenching, holding at 100 to 250 ° C. for 0.5 to 3 hours, allowing to cool, and then performing tempering treatment.
 本願は、2014年3月28日に出願された日本国特許出願第2014-069866号に基づく優先権の利益を主張するものである。日本国特許出願第2014-069866号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2014-0669866 filed on Mar. 28, 2014. The entire contents of the specification of Japanese Patent Application No. 2014-069866 are incorporated herein by reference.
 以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に含まれる。 Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited by the following examples, and can of course be implemented with appropriate modifications within a range that can be adapted to the above-described gist. Included in the range.
 (実施例1)
 下記表1に示す化学成分組成を有する鋼塊を、転炉および容量が50kgまたは150kgの小型溶解炉にて溶製した。尚、表1中、「-」は無添加を意味する。
Example 1
A steel ingot having the chemical composition shown in Table 1 below was melted in a converter and a small melting furnace having a capacity of 50 kg or 150 kg. In Table 1, “-” means no addition.
 これらの鋼塊について、下記表2に示す製造条件No.1~11を組み合わせて後記表3、表4の試験No.1~27の鋼材を得た。 For these steel ingots, the production condition No. shown in Table 2 below. Test Nos. 1 and 2 in Table 3 and Table 4 below are combined. 1 to 27 steel materials were obtained.
 このとき転炉で溶製した転炉材においては、鋳片を加熱炉にて1250℃×60分加熱保持してソーキング処理を行なうか、若しくは加熱保持せずに、分塊圧延を実施した。更に、直径:32~80mmの所定の径に下記表2に示す鍛圧比で熱間圧延した。 At this time, in the converter material melted in the converter, the slab was heated and held in a heating furnace at 1250 ° C. for 60 minutes to perform a soaking process, or subjected to block rolling without heating and holding. Further, hot rolling was performed to a predetermined diameter of 32 to 80 mm at a forging pressure ratio shown in Table 2 below.
 また、小型溶解炉で溶製した少量溶製材(下記表2においては、50kgのもの「少量1」、150kgのものを「少量2、少量3」と表記)においても、加熱炉にて1250℃×60分加熱保持してソーキング処理を行なうか、若しくは加熱保持せずに直径:32~80mmの所定の径に下記表2に示す鍛圧比で熱間鍛造した。なお、少量2と少量3の容量は同じであるが、下記表2に示すように凝固時の平均冷却速度を変化させた。 In addition, even in a small amount of smelting material melted in a small melting furnace (in Table 2 below, 50 kg of “small amount 1” and 150 kg of “ small amount 2, 3”) are also heated in a heating furnace at 1250 ° C. The soaking process was carried out by heating for 60 minutes, or hot forging was carried out at a forging ratio shown in Table 2 below to a predetermined diameter of 32 to 80 mm without heating and holding. Although the small volume 2 and the small volume 3 have the same capacity, the average cooling rate during solidification was changed as shown in Table 2 below.
 得られた鋼材(熱間圧延材または熱間鍛造材)を、所定の形状に加工した後、ガス浸炭炉にて浸炭焼入れ処理を行った。浸炭ガスは、RXガスとプロパンガスとの混合ガスを用いた。このとき、表面から0.05mm深さまでの平均C濃度(以下、「表層C濃度Cs」と表記することがある):0.60%、有効硬化層深さECD:0.75mmとなるように、雰囲気中のカーボンポテンシャルCPを0.65に調整し、950℃にて0.4~3.0時間保持し、その後、カーボンポテンシャルCPを変えずに、850℃にて0.5時間保持した直後に焼入れた。下記表5に具体的な浸炭条件を示す。更に、170℃にて2時間保持した後に放冷し、焼戻し処理を行った。図1は、このときの浸炭熱処理条件を示すパターン図である。また図2は、焼戻し処理条件を示すパターン図である。尚、一般的な浸炭温度は920℃程度であり、上記950℃は結晶粒が粗大化しやすい保持温度である。 The obtained steel material (hot rolled material or hot forged material) was processed into a predetermined shape, and then carburized and quenched in a gas carburizing furnace. As the carburizing gas, a mixed gas of RX gas and propane gas was used. At this time, an average C concentration from the surface to a depth of 0.05 mm (hereinafter sometimes referred to as “surface layer C concentration Cs”): 0.60%, effective hardened layer depth ECD: 0.75 mm The carbon potential CP in the atmosphere was adjusted to 0.65, held at 950 ° C. for 0.4 to 3.0 hours, and then held at 850 ° C. for 0.5 hours without changing the carbon potential CP. Immediately after quenching. Table 5 below shows specific carburizing conditions. Furthermore, after holding at 170 degreeC for 2 hours, it stood to cool and tempered. FIG. 1 is a pattern diagram showing the carburizing heat treatment conditions at this time. FIG. 2 is a pattern diagram showing tempering processing conditions. The general carburizing temperature is about 920 ° C., and the above 950 ° C. is a holding temperature at which the crystal grains tend to become coarse.
 上記で得られた浸炭部品の縦断面を調査し、各サンプルの直径Dの1/4位置から長手方向(圧延方向に相当)に10mm(半径方向)×10mm(長手方向)の試料を切り出して断面を研磨した。研磨面における任意の位置から走査した面積15μm2に存在する短径3μm以上の介在物に対してEPMA(Electron Probe Micro Analyzer:電子線プローブ微小分析器)にて組成分析を行い、MnSおよびTiNを同定した。更に、MnSおよびTiNの面積および個数を測定し、個数密度(1mm2当たりの個数:Nm、Nt)は、(各検出個数/走査面積)で評価し、平均円相当径(Dm、Dt)は1個当たりの平均面積から夫々算出した。 The longitudinal section of the carburized part obtained above was investigated, and a sample of 10 mm (radial direction) × 10 mm (longitudinal direction) was cut out in the longitudinal direction (corresponding to the rolling direction) from 1/4 position of the diameter D of each sample. The cross section was polished. The composition analysis is performed with EPMA (Electron Probe Micro Analyzer) for inclusions with a minor axis of 3 μm or more existing in an area of 15 μm 2 scanned from an arbitrary position on the polished surface, and MnS and TiN are determined by using EPMA (Electron Probe Micro Analyzer). Identified. Further, the area and number of MnS and TiN were measured, the number density (number per 1 mm 2 : Nm, Nt) was evaluated by (each detected number / scanning area), and the average equivalent circle diameter (Dm, Dt) was Each was calculated from the average area per piece.
 調査対象は圧延材および鍛伸材であるが、MnSおよびTiNは晶出物であり、融点は1500~2000℃程度と非常に高く、浸炭処理の温度範囲では固溶しないため、浸炭前後でそれらの径および個数密度は変化しない。参考として、図3に、熱力学計算ソフト「Thermo-calc」(商品名:Thermo-calc software社製)にて、MnSおよびTiNの析出量割合の温度変化を計算した結果を示す。この結果は、浸炭処理の温度範囲では固溶しないことを支持している。このときのEPMAの測定条件は、下記(1)~(4)の通りである。
(1)EPMA装置:JXA 8500F(商品名:日本電子株式会社製)
(2)EDS分析(エネルギー分散型X線分析):サーモフィッシャーサイエンティフィック system six
(3)加速電圧:15kV
(4)走査電流:1.76nA
The investigation targets are rolled and forged materials, but MnS and TiN are crystallized products, and their melting points are very high, about 1500-2000 ° C, and they do not dissolve in the carburizing temperature range. There is no change in the diameter and number density. As a reference, FIG. 3 shows the results of calculating the temperature change of the precipitation ratio of MnS and TiN using thermodynamic calculation software “Thermo-calc” (trade name: manufactured by Thermo-calc software). This result supports that it does not dissolve in the temperature range of the carburizing treatment. The measurement conditions of EPMA at this time are as follows (1) to (4).
(1) EPMA device: JXA 8500F (trade name: manufactured by JEOL Ltd.)
(2) EDS analysis (energy dispersive X-ray analysis): Thermo Fisher Scientific system six
(3) Acceleration voltage: 15 kV
(4) Scanning current: 1.76 nA
 上記で得られた浸炭部品について、下記の方法でスポーリング強度および低サイクル疲労強度を評価すると共に、硬さ、有効硬化層深さECDおよび表層C濃度Csを測定した。硬さは、表面硬さHsおよび芯部硬さHiを測定した。 For the carburized parts obtained above, the spalling strength and low cycle fatigue strength were evaluated by the following methods, and the hardness, the effective hardened layer depth ECD, and the surface layer C concentration Cs were measured. As the hardness, surface hardness Hs and core hardness Hi were measured.
 (スポーリング強度の評価)
 「RP-201型」ローラーピッチング試験機(商品名:コマツエンジニアリング株式会社製)を用いて試験を実施した。このとき2.0~6.3GPaの面圧にてスポーリングが発生するまでの寿命を測定し、単回帰により寿命が200万サイクルとなるときの試験面圧を、スポーリング強度(GPa)として算出した。この試験で用いた試験片は、図4に示す形状に加工後、浸炭焼入れ処理を施し、更に摺動面を研磨して作製した。図5に、試験外観として試験片1(ローラー)と荷重ローラー2が接触しながら転動する様子(ローラーピッチング試験の実施状況)を示す。試験条件は以下の通りである。
(1)回転数:2000rpm
(2)すべり率:0%(寿命は、スポーリングだけによるものと判断)
(3)荷重ローラー:JIS G4805(2013)の高炭素クロム軸受鋼SUJ2
(4)試験油温:120℃
(Evaluation of spalling strength)
The test was conducted using a “RP-201” roller pitching tester (trade name: manufactured by Komatsu Engineering Co., Ltd.). At this time, the life until spalling occurs at a surface pressure of 2.0 to 6.3 GPa is measured, and the test surface pressure when the life reaches 2 million cycles by single regression is defined as the spalling strength (GPa). Calculated. The test piece used in this test was manufactured by processing it into the shape shown in FIG. 4, subjecting it to carburizing and quenching, and polishing the sliding surface. FIG. 5 shows a state in which the test piece 1 (roller) and the load roller 2 roll in contact with each other as a test appearance (implementation status of a roller pitching test). The test conditions are as follows.
(1) Rotation speed: 2000rpm
(2) Slip rate: 0% (life is judged to be due to spalling only)
(3) Load roller: JIS G4805 (2013) high carbon chrome bearing steel SUJ2
(4) Test oil temperature: 120 ° C
 (低サイクル疲労強度)
 油圧サーボ試験機(株式会社島津製作所製)および4点曲げ支持となる治具を用いて、1.0~3.0GPaの応力にて試験片が折損するまでの寿命を測定し、単回帰により2000サイクルにて折損する強度を低サイクル疲労強度(GPa)として算出した。試験片は、図6に示す形状に加工後、浸炭焼入れ処理を施して作製した。図7には、4点曲げ試験の外観を示す(○で示した部分は支持点)。図7において、3は試験片、4は治具、5は荷重の方向を示している。試験片ノッチ側の水平部を2点支持した状態で背面から片振り荷重を印加した。このときの周波数は20Hzとした。
(Low cycle fatigue strength)
Using a hydraulic servo tester (manufactured by Shimadzu Corporation) and a jig that supports 4-point bending, the life until the specimen breaks at a stress of 1.0 to 3.0 GPa is measured. The strength to break at 2000 cycles was calculated as low cycle fatigue strength (GPa). The test piece was fabricated by carburizing and quenching after processing into the shape shown in FIG. FIG. 7 shows the external appearance of a four-point bending test (the portion indicated by ◯ is a support point). In FIG. 7, 3 is a test piece, 4 is a jig, and 5 is a direction of load. A single swing load was applied from the back while two horizontal portions on the test piece notch side were supported. The frequency at this time was 20 Hz.
 (硬さ(表面硬さHs、芯部硬さHi)、および有効硬化層深さECDの評価)
 ローラーピッチング試験片を、摺動部中央を横断するように切断し、切断面を研磨した後、硬さを測定した。硬さは、試験力:300gf(300×9.8N)でビッカース硬さHVを測定した。表面硬さHsは、表面から深さ方向0.05mm位置を5点測定した平均値とした。また、芯部硬さHiは、ローラーピッチング試験片において直径Dの1/4位置を5点測定した平均値とした。また、有効硬化層深さECDはJIS G0557に則って算出した。
(Evaluation of hardness (surface hardness Hs, core hardness Hi), and effective hardened layer depth ECD)
The roller pitching test piece was cut so as to cross the center of the sliding portion, the cut surface was polished, and the hardness was measured. Hardness measured Vickers hardness HV by test force: 300gf (300 * 9.8N). The surface hardness Hs was an average value obtained by measuring five points from the surface in a depth direction of 0.05 mm. Moreover, core part hardness Hi was made into the average value which measured the 1/4 position of the diameter D 5 points | pieces in the roller pitching test piece. The effective hardened layer depth ECD was calculated according to JIS G0557.
 (表層C濃度Csの測定)
 断面調査したサンプルにて金を蒸着後、EPMA分析により、表層C濃度Csを測定した。このとき、表面から深さ方向に0.05mmの位置まで0.005mmピッチで測定し、その平均値を表層C濃度Csとした。
(Measurement of surface layer C concentration Cs)
After depositing gold on the cross-sectional sample, the surface layer C concentration Cs was measured by EPMA analysis. At this time, measurement was performed at a pitch of 0.005 mm from the surface to a position of 0.05 mm in the depth direction, and the average value was defined as the surface layer C concentration Cs.
 用いた鋼種および製造条件と共に、MnSの平均円相当径Dm、TiNの平均円相当径Dt、MnSの個数密度Nm、TiNの個数密度Ntを下記表3に示す。また、スポーリング強度および低サイクル疲労強度を、用いた鋼種、製造条件、および浸炭条件、浸炭部品の材質(表層C濃度Cs、表面硬さHs、芯部硬さHi、有効硬化層深さECD)、パラメータ(A、BおよびCの値)、(4)式の左辺の値(3.7×A-0.47×B+1.14)と共に下記表4に示す。 Table 3 shows the average equivalent circle diameter Dm of MnS, the average equivalent circle diameter Dt of TiN, the number density Nm of MnS, and the number density Nt of TiN, together with the steel types used and the production conditions. In addition, the spalling strength and low cycle fatigue strength, steel type used, manufacturing conditions, carburizing conditions, carburized parts material (surface C concentration Cs, surface hardness Hs, core hardness Hi, effective hardened layer depth ECD ), Parameters (values of A, B and C), and the value on the left side of equation (4) (3.7 × A−0.47 × B + 1.14) are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 これらの結果から、次のように考察できる。まず試験No.1~3、5~9、12~14、16~19、21は、本発明で規定する要件を満足する実施例である。スポーリング強度が3.70GPa以上、低サイクル疲労強度が2.10GPa以上で、スポーリング強度および低サイクル疲労強度のいずれも優れていることが分かる。 From these results, it can be considered as follows. First, test no. Examples 1 to 3, 5 to 9, 12 to 14, 16 to 19, and 21 are examples that satisfy the requirements defined in the present invention. It can be seen that the spalling strength is 3.70 GPa or more, the low cycle fatigue strength is 2.10 GPa or more, and both the spalling strength and the low cycle fatigue strength are excellent.
 これに対し、試験No.4、10、11、15、20、22~27は、本発明の要件のいずれかが満たされていなかった比較例であり、少なくともスポーリング強度が低下していることが分かる。 In contrast, test no. 4, 10, 11, 15, 20, 22 to 27 are comparative examples in which any of the requirements of the present invention was not satisfied, and it can be seen that at least the spalling strength is reduced.
 試験No.4、11、15、20、22は、製造条件が本発明で推奨する条件を外れ、(4)式の関係を満足できず、スポーリング強度が劣化している。 Test No. In 4, 11, 15, 20, and 22, the manufacturing conditions deviate from the conditions recommended in the present invention, the relationship of the expression (4) cannot be satisfied, and the spalling strength is deteriorated.
 試験No.10は、浸炭条件が本発明で推奨する条件を外れ、(4)式の関係を満足できず、スポーリング強度が劣化している。 Test No. No. 10, carburizing conditions deviate from the conditions recommended in the present invention, the relationship of the formula (4) cannot be satisfied, and the spalling strength is deteriorated.
 試験No.23~27は、本発明で規定する化学成分組成を満足しない鋼種No.6、7の鋼材を用いた比較例であり、製造条件および浸炭条件の如何に係わらず、(4)式の関係を満足しないものとなって、スポーリング強度が劣化している。 Test No. Nos. 23 to 27 are steel grades Nos. It is a comparative example using the steel materials 6 and 7, regardless of the manufacturing conditions and carburizing conditions, the relationship of the formula (4) is not satisfied, and the spalling strength is deteriorated.
 これらの結果に基づき、(4)式の左辺の値(3.7×A-0.47×B+1.14)とスポーリング強度の関係を図8に示す。また、(3)式で規定するCの値と低サイクル疲労強度の関係を図9に示す。図8、図9において、試験No.1~3、5~9、12~14、16~19、21の実施例を◇、試験No.4、10、11、15、20、22~27の比較例を◆で示す。これらの結果から明らかなように、(4)式を満足させることはスポーリング強度を向上させる上で有効であることが分かる。また(3)式で規定されるCの値を0.66以上とすることは、低サイクル疲労強度を確保する上で有効であることが分かる。 Based on these results, FIG. 8 shows the relationship between the value on the left side of equation (4) (3.7 × A−0.47 × B + 1.14) and the spalling intensity. Moreover, the relationship between the value of C prescribed | regulated by (3) Formula and low cycle fatigue strength is shown in FIG. 8 and 9, the test No. Examples 1-3, 5-9, 12-14, 16-19, 21 Comparative examples of 4, 10, 11, 15, 20, 22 to 27 are indicated by ◆. As is clear from these results, it is understood that satisfying the expression (4) is effective in improving the spalling strength. It can also be seen that setting the value of C defined by equation (3) to 0.66 or more is effective in securing low cycle fatigue strength.
 (実施例2)
 下記表6に示す化学成分組成を有する鋼塊を溶製し、前記表2に示した製造条件No.4で鋼材を得た。更に、直径:32~80mmの所定の径に熱間圧延した。なお、下記表6に示した鋼種No.1~5は、上記表1に示した鋼種No.1~5と同じである。
(Example 2)
Steel ingots having chemical composition shown in Table 6 below were melted, and the production conditions No. 1 shown in Table 2 above were obtained. In 4 the steel material was obtained. Further, hot rolling was performed to a predetermined diameter of 32 to 80 mm. In addition, the steel type No. shown in Table 6 below. 1 to 5 are steel types No. 1 shown in Table 1 above. Same as 1-5.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 得られた鋼材(熱間圧延材)を、所定の形状に加工した後、上記実施例1と同様に、ガス浸炭炉(浸炭ガス:RXガス+プロパンガス)にて浸炭焼入れ処理を行った。浸炭ガスは、RXガスとプロパンガスとの混合ガスを用いた。このとき、表面から0.05mm深さまでの表層C濃度Cs:0.44~0.80%、有効硬化層深さECD:0.29~1.33mmとなるように、雰囲気中のカーボンポテンシャルCPを0.45~0.75の範囲に調整し、930~960℃にて0.3~6.0時間保持し、その後、カーボンポテンシャルCPを変えずに、850℃にて0.5時間保持した直後に焼入れた。上記表5に具体的な浸炭条件を併せて示す。更に、170℃にて2時間保持した後に放冷し、焼戻し処理を行った。 After the obtained steel material (hot rolled material) was processed into a predetermined shape, carburizing and quenching treatment was performed in a gas carburizing furnace (carburizing gas: RX gas + propane gas) in the same manner as in Example 1 above. As the carburizing gas, a mixed gas of RX gas and propane gas was used. At this time, the carbon potential CP in the atmosphere is adjusted so that the surface layer C concentration Cs from the surface to a depth of 0.05 mm is 0.44 to 0.80% and the effective hardened layer depth ECD is 0.29 to 1.33 mm. Is adjusted to a range of 0.45 to 0.75, held at 930 to 960 ° C. for 0.3 to 6.0 hours, and then held at 850 ° C. for 0.5 hours without changing the carbon potential CP. Quenched immediately after. Table 5 also shows specific carburizing conditions. Furthermore, after holding at 170 degreeC for 2 hours, it stood to cool and tempered.
 上記で得られた浸炭部品について、上記実施例1と同様にして、MnSおよびTiNの形態の評価、およびスポーリング強度および低サイクル疲労強度を評価すると共に、硬さ(表面硬さHs、芯部硬さHi)、有効硬化層深さECDおよび表面から0.05mm深さまでの表層C濃度Csを測定した。 About the carburized parts obtained above, in the same manner as in Example 1 above, evaluation of the form of MnS and TiN, and evaluation of spalling strength and low cycle fatigue strength, as well as hardness (surface hardness Hs, core portion) Hardness Hi), effective hardened layer depth ECD, and surface layer C concentration Cs from the surface to a depth of 0.05 mm were measured.
 用いた鋼種と共に、MnSの平均円相当径Dm、TiNの平均円相当径Dt、MnSの個数密度Nm、TiNの個数密度Ntを下記表7に示す。また、スポーリング強度および低サイクル疲労強度を、用いた鋼種、浸炭条件、浸炭部品の材質(表層C濃度Cs、表面硬さHs、芯部硬さHi、有効硬化層深さECD)、パラメータ(A、BおよびCの値)、(4)式の左辺の値(3.7×A-0.47×B+1.14)と共に下記表8に示す。尚、下記表8の「備考」の項で示した「陥没」、「塑性変形」、「脆性破断」および「GG」は、下記の現象が発生したことを意味する。 Table 7 shows the average circle equivalent diameter Dm of MnS, the average equivalent circle diameter Dt of TiN, the number density Nm of MnS, and the number density Nt of TiN together with the steel types used. In addition, the spalling strength and low cycle fatigue strength, steel type used, carburizing conditions, carburized parts material (surface C concentration Cs, surface hardness Hs, core hardness Hi, effective hardened layer depth ECD), parameters ( Table 8 below shows the values of A, B, and C) and the value on the left side of equation (4) (3.7 × A−0.47 × B + 1.14). “Depression”, “plastic deformation”, “brittle fracture” and “GG” shown in the “Remarks” section of Table 8 below mean that the following phenomenon occurred.
 (陥没)
 ローラーピッチング試験片において、試験力300gfで測定した表面硬さHsが650HVよりも低い場合、(4)式を満足するにも係わらず、試験中に摺動表面が陥没して面全体が早期剥離することがある。
(Depression)
In a roller pitching test piece, when the surface hardness Hs measured with a test force of 300 gf is lower than 650 HV, the sliding surface is depressed during the test and the entire surface is prematurely peeled even though the equation (4) is satisfied. There are things to do.
 (塑性変形)
 4点曲げ試験片において、試験力300gfで測定した表面硬さHsが650HVよりも低い場合、或いは試験力300gfで測定した芯部硬さHiが300HVよりも低い場合には、(3)式で規定するCの値が0.66以上で、(5)式を満足するにも係わらず、試験中に試験片が荷重方向に塑性変形して早期破断する。通常は、塑性変形することなく亀裂が表面に発生、芯部方向に進展して、最終的に破断に至る。
(Plastic deformation)
When the surface hardness Hs measured with a test force of 300 gf is lower than 650 HV or the core hardness Hi measured with a test force of 300 gf is lower than 300 HV, Although the value of C to be defined is 0.66 or more and the equation (5) is satisfied, the test piece undergoes plastic deformation in the load direction and breaks early during the test. Usually, cracks are generated on the surface without plastic deformation, progress in the direction of the core, and finally break.
 (脆性破断)
 4点曲げ試験片において、試験力300gfで測定した芯部硬さHiが450HVよりも硬くなった場合、(3)式で規定するCの値が0.66以上で、(5)式を満足するにも係わらず早期破断し、そのときの破断面は脆性破面となる。
(Brittle fracture)
In the 4-point bending test piece, when the core hardness Hi measured with a test force of 300 gf is harder than 450 HV, the value of C defined by the expression (3) is 0.66 or more, and the expression (5) is satisfied. Nevertheless, it breaks early and the fracture surface at that time becomes a brittle fracture surface.
 (GG:結晶粒粗大化)
 浸炭処理後の試験片の最大結晶粒度が6.0番以下のものを結晶粒粗大化(GG)とし、結晶粒が粗大化している。こうした試験片においては、(4)式および(5)式を満足するにも関わらず、早期破断する。
(GG: grain coarsening)
When the maximum grain size of the test piece after the carburizing treatment is 6.0 or less is defined as grain coarsening (GG), the grain is coarsened. Such a test piece breaks early despite satisfying the equations (4) and (5).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 これらの結果から、次のように考察できる。まず試験No.32、34、35、37~39、42~45、48、49は、本発明で規定する要件のいずれをも満足するものである。スポーリング強度が3.70GP以上、低サイクル疲労強度が2.10GPa以上で、スポーリング強度および低サイクル疲労強度のいずれも優れていることが分かる。 From these results, it can be considered as follows. First, test no. 32, 34, 35, 37 to 39, 42 to 45, 48, and 49 satisfy all of the requirements defined in the present invention. It can be seen that the spalling strength is 3.70 GP or more, the low cycle fatigue strength is 2.10 GPa or more, and both the spalling strength and the low cycle fatigue strength are excellent.
 これに対し、試験No.31、33、36、40、41、46、47、50~70は、本発明の要件のいずれかが満たされなかった例である。 In contrast, test no. Reference numerals 31, 33, 36, 40, 41, 46, 47, and 50 to 70 are examples in which any of the requirements of the present invention is not satisfied.
 試験No.31は、表層C濃度Csが低く、表面硬さHsが低サイクル疲労強度に対する好ましい下限よりも低くなって、前述の「陥没」や「塑性変形」が生じて、スポーリング強度および低サイクル疲労強度のいずれも低下している。 Test No. No. 31 has a low surface layer C concentration Cs and a surface hardness Hs lower than the preferred lower limit for the low cycle fatigue strength, causing the above-mentioned “depression” and “plastic deformation”, and the spalling strength and low cycle fatigue strength. Both are falling.
 試験No.33は、(3)式で規定するCの値が小さくなって(5)式を満足せず、低サイクル疲労強度が低下している。 Test No. In No. 33, the value of C defined by equation (3) is small and does not satisfy equation (5), and the low cycle fatigue strength is reduced.
 試験No.36は、表層C濃度Csが低くなると共に、表面硬さHsが低サイクル疲労強度に対する好ましい下限よりも低く、(3)式で規定するCの値が小さくなっており、低サイクル疲労強度が低下している。尚、試験No.36では、表面硬さHsが低いものであるが、芯部硬さHiが比較的高いために陥没は発生していない。 Test No. No. 36, the surface layer C concentration Cs decreases, the surface hardness Hs is lower than the preferred lower limit for the low cycle fatigue strength, the value of C defined by the formula (3) is small, and the low cycle fatigue strength decreases. is doing. Test No. In No. 36, the surface hardness Hs is low, but no depression occurs because the core hardness Hi is relatively high.
 試験No.40は、表層C濃度Csが低くなると共に、表面硬さHsが低サイクル疲労強度に対する好ましい下限よりも低く、(4)式を満足しないものとなっており、スポーリング強度および低サイクル疲労強度のいずれも低下している。 Test No. No. 40 has a lower surface layer C concentration Cs and a lower surface hardness Hs than the preferred lower limit for the low cycle fatigue strength, and does not satisfy the formula (4). Both are falling.
 試験No.41、47は、有効硬化層深さECDが低サイクル疲労強度に対する好ましい下限よりも浅く、(4)式を満足しないものとなっており、スポーリング強度が低下している。 Test No. In Nos. 41 and 47, the effective hardened layer depth ECD is shallower than the preferred lower limit for the low cycle fatigue strength and does not satisfy the formula (4), and the spalling strength is lowered.
 試験No.46は、(3)式で規定するCの値が小さくなっており、低サイクル疲労強度が低下している。 Test No. In 46, the value of C defined by the expression (3) is small, and the low cycle fatigue strength is low.
 試験No.50~70は、本発明で規定する化学成分組成を満足しない鋼種No.8~17の鋼材を用いた例である。このうち試験No.50は、表層C濃度Csが低くなると共に表面硬さHsが低サイクル疲労強度に対する好ましい下限よりも低く、(3)式で規定するCの値が小さくなっており、低サイクル疲労強度が低下している。尚、試験No.50は、表面硬さHsが低サイクル疲労強度に対する好ましい下限よりも低いものであるが、芯部硬さHiが低サイクル疲労強度に対する好ましい上限よりも非常に高いために陥没は発生していない。 Test No. Nos. 50 to 70 are steel grades Nos. This is an example using 8 to 17 steel materials. Of these, test no. No. 50, the surface layer C concentration Cs decreases and the surface hardness Hs is lower than the preferred lower limit for the low cycle fatigue strength, the value of C defined by the equation (3) is small, and the low cycle fatigue strength decreases. ing. Test No. No. 50 has a surface hardness Hs lower than the preferred lower limit for the low cycle fatigue strength, but no depression occurs because the core hardness Hi is much higher than the preferred upper limit for the low cycle fatigue strength.
 試験No.51は、有効硬化層深さECDが低サイクル疲労強度に対する好ましい下限よりも浅くなり、試験No.52は、(3)式で規定するCの値が小さくなっており、いずれも芯部硬さHiが低サイクル疲労強度に対する好ましい上限よりも高くなっている。その結果、いずれも低サイクル疲労強度が低下している。 Test No. No. 51, the effective hardened layer depth ECD becomes shallower than the preferred lower limit for the low cycle fatigue strength. No. 52 has a small C value defined by the expression (3), and the core hardness Hi is higher than the preferred upper limit for the low cycle fatigue strength. As a result, all have low cycle fatigue strength.
 試験No.53~55は、C量が低い鋼種No.9の鋼材を用いた例であり、基本的に芯部硬さHiが低サイクル疲労強度に対する好ましい下限よりも低くなっている。このうち試験No.53は、有効硬化層深さECDが低サイクル疲労強度に対する好ましい下限よりも浅く、(4)式を満足しないものとなっており、スポーリング強度が低下している。試験No.54は、(4)式を満足しないものとなっており、スポーリング強度が低下している。試験No.55は、有効硬化層深さECDが低サイクル疲労強度に対する好ましい上限よりも深くなっており、低サイクル疲労強度が低下している。また、脆性破断も発生した。 Test No. Nos. 53 to 55 are steel types Nos. Having a low C content. In this example, the core hardness Hi is lower than the preferred lower limit for the low cycle fatigue strength. Of these, test no. 53, the effective hardened layer depth ECD is shallower than the preferred lower limit for the low cycle fatigue strength, does not satisfy the formula (4), and the spalling strength is lowered. Test No. No. 54 does not satisfy the formula (4), and the spalling strength is lowered. Test No. In No. 55, the effective hardened layer depth ECD is deeper than the preferred upper limit for the low cycle fatigue strength, and the low cycle fatigue strength is reduced. In addition, brittle fracture occurred.
 試験No.56、57は、Si量が過剰な鋼種No.10の鋼材を用いた例であり、いずれも浸炭不良によって表層C濃度Csが低下している。このうち試験No.56は、有効硬化層深さECDが低サイクル疲労強度に対する好ましい下限よりも浅く、(4)式を満足しないものとなっており、スポーリング強度および低サイクル疲労強度が低下している。また、陥没および塑性変形も発生した。試験No.57は、(3)式で規定するCの値が小さくなっており、低サイクル疲労強度が低下している。 Test No. Nos. 56 and 57 are steel types having excessive Si amounts. In this example, the surface layer C concentration Cs is lowered due to poor carburization. Of these, test no. 56, the effective hardened layer depth ECD is shallower than the preferred lower limit for the low cycle fatigue strength, and does not satisfy the formula (4), and the spalling strength and the low cycle fatigue strength are reduced. Sinking and plastic deformation also occurred. Test No. In 57, the value of C defined by the expression (3) is small, and the low cycle fatigue strength is low.
 試験No.58、59は、Mn量が過剰な鋼種No.11の鋼材を用いた例である。試験No.58は、有効硬化層深さECDが低サイクル疲労強度に対する好ましい下限よりも浅くなり、試験No.59は、(3)式で規定するCの値が小さくなっており、いずれも低サイクル疲労強度が低下している。 Test No. Nos. 58 and 59 are steel types with excessive Mn amounts. This is an example using 11 steel materials. Test No. 58, the effective hardened layer depth ECD becomes shallower than the preferred lower limit for the low cycle fatigue strength. No. 59 has a small C value defined by the expression (3), and the low cycle fatigue strength is low in all cases.
 試験No.60~62は、好ましい成分であるNi量が過剰な鋼種No.12の鋼材を用いた例である。このうち試験No.60は、芯部硬さHiが低サイクル疲労強度に対する好ましい上限よりも高いため、脆性破断により低サイクル疲労強度が低下している。試験No.61、62は、芯部硬さHiが低サイクル疲労強度に対する好ましい上限よりも高く、且つ(3)式で規定するCの値が小さくなって、低サイクル疲労強度が低下している。 Test No. Nos. 60 to 62 are steel types Nos. Having excessive amounts of Ni as preferred components. This is an example using 12 steel materials. Of these, test no. In No. 60, since the core hardness Hi is higher than the preferred upper limit for the low cycle fatigue strength, the low cycle fatigue strength is reduced due to brittle fracture. Test No. In Nos. 61 and 62, the core hardness Hi is higher than the preferable upper limit for the low cycle fatigue strength, and the value of C defined by the equation (3) is small, and the low cycle fatigue strength is reduced.
 試験No.63、64は、Cr量が過剰な鋼種No.13の鋼材を用いた例である。試験No.63は、有効硬化層深さECDが低サイクル疲労強度に対する好ましい下限よりも浅くなり、試験No.64は、(3)式で規定するCの値が小さくなっており、いずれも低サイクル疲労強度が低下している。 Test No. Nos. 63 and 64 are steel types with excessive Cr content. This is an example using 13 steel materials. Test No. No. 63, the effective hardened layer depth ECD becomes shallower than the preferred lower limit for the low cycle fatigue strength. In 64, the value of C defined by the expression (3) is small, and the low cycle fatigue strength is low in all cases.
 試験No.65、66は、Cr量が少ない鋼種No.14の鋼材を用いた例である。このうち試験No.65は、(4)式を満足しないものとなっており、低サイクル疲労強度が低下している。試験No.66では、有効硬化層深さECDが低サイクル疲労強度に対する好ましい上限よりも深くなっており、低サイクル疲労強度が低下している。また、脆性破断も発生した。 Test No. Nos. 65 and 66 are steel type Nos. With a small amount of Cr. This is an example using 14 steel materials. Of these, test no. No. 65 does not satisfy the formula (4), and the low cycle fatigue strength is lowered. Test No. In 66, the effective hardened layer depth ECD is deeper than the preferred upper limit for the low cycle fatigue strength, and the low cycle fatigue strength is reduced. In addition, brittle fracture occurred.
 試験No.67、68は、好ましい成分であるMo量が過剰な鋼種No.15の鋼材を用いた例である。試験No.67は、有効硬化層深さECDが低サイクル疲労強度に対する好ましい下限よりも浅くなり、試験No.68は、(3)式で規定するCの値が小さくなって、いずれも低サイクル疲労強度が低下している。 Test No. Nos. 67 and 68 are steel grades No. 6 and No. 6 that have an excessive amount of Mo as a preferred component. This is an example using 15 steel materials. Test No. No. 67, the effective hardened layer depth ECD becomes shallower than the preferred lower limit for the low cycle fatigue strength. In 68, the value of C defined by the expression (3) is small, and the low cycle fatigue strength is reduced in all cases.
 試験No.69は、Ti量が少ない鋼種No.16の鋼材を用いた例であるが、結晶粒の粗大化(GG)が発生して、スポーリング強度および低サイクル疲労強度のいずれも低下している。 Test No. No. 69 is a steel type No. with a small amount of Ti. Although it is an example using 16 steel materials, the coarsening (GG) of a crystal grain generate | occur | produces and both the spalling strength and the low cycle fatigue strength are falling.
 試験No.70は、Nb量が少ない鋼種No.17の鋼材を用いた例であるが、結晶粒粗大化(GG)が発生して、低サイクル疲労強度が低下している。 Test No. No. 70 is a steel type No. with a small amount of Nb. Although it is an example using 17 steel materials, crystal grain coarsening (GG) generate | occur | produces and the low cycle fatigue strength is falling.
 これらの結果に基づき、(4)式の左辺の値(3.7×A-0.47×B+1.14)とスポーリング強度の関係を図10に示す。図10において、試験No.32、34、35、37~39、42~45、48、49の実施例を◇、試験No.31、33、36、40、41、46、47、50~70の比較例を◆で示す。 Based on these results, FIG. 10 shows the relationship between the value on the left side of equation (4) (3.7 × A−0.47 × B + 1.14) and the spalling intensity. In FIG. Examples Nos. 32, 34, 35, 37 to 39, 42 to 45, 48, 49 Comparative examples of 31, 33, 36, 40, 41, 46, 47, and 50 to 70 are indicated by ◆.
 また、(3)式で規定するCの値と低サイクル疲労強度の関係を図11に示す。図11において、試験No.32、34、35、37~39、42~45、48、49の実施例を◇、試験No.31、33、36、40、41、46、47、50~70の比較例を◆で示す。 Also, FIG. 11 shows the relationship between the value of C defined by equation (3) and the low cycle fatigue strength. In FIG. Examples Nos. 32, 34, 35, 37 to 39, 42 to 45, 48, 49 Comparative examples of 31, 33, 36, 40, 41, 46, 47, and 50 to 70 are indicated by ◆.
 これらの結果から明らかなように、(4)式を満足させることはスポーリング強度を向上させる上で有効であることが分かる。また(3)式で規定するCの値を0.66以上とすることは、低サイクル疲労強度を確保する上で有効であることが分かる。 As is clear from these results, it can be seen that satisfying the expression (4) is effective in improving the spalling strength. It can also be seen that setting the value of C defined by equation (3) to 0.66 or more is effective in securing low cycle fatigue strength.
 1 試験片
 2 荷重ローラー
 3 試験片
 4 治具
 5 荷重の方向
1 Test piece 2 Load roller 3 Test piece 4 Jig 5 Load direction

Claims (3)

  1.  質量%で、
     C :0.10~0.3%、
     Si:0.03~1.50%、
     Mn:0.2~1.8%、
     P :0%超0.03%以下、
     S :0%超0.03%以下、
     Cr:0.30~2.50%、
     Al:0%超0.08%以下、
     N :0%超0.0150%以下、
     Nb:0.05~0.3%、
     Ti:0.05~0.1%および
     B :0.0005~0.005%、
    を夫々含有し、残部が鉄および不可避不純物であり、
     表面から0.05mm深さまでの平均C濃度が0.50%以上であり、且つ
     下記A、BおよびCを、夫々下記(1)式~(3)式で規定したとき、これらが下記(4)式および(5)式を満足することを特徴とするスポーリング強度および低サイクル疲労強度に優れた高温浸炭用鋼製部品。
    A=exp{Dm/10+Nm1/2/50}×exp{Dt/15+Nt1/2/50} …(1)
    B=exp{Hs/650+ECD1/2+Hi/250} …(2)
    C=exp[Hs/650-ECD-{(0.89×Hi-202.16)/250}2]…(3)
    3.7×A-0.47×B+1.14≦0 …(4)
    C≧0.66 …(5)
     但し、Dmは非浸炭部でのMnSの平均円相当径(μm)を、Nmは非浸炭部でのMnSの個数密度(個/mm2)を、Dtは非浸炭部でのTiNの平均円相当径(μm)を、Ntは非浸炭部でのTiNの個数密度(個/mm2)を、Hsは試験力300gfで測定した表面から深さ0.05mm位置でのビッカース硬さ(HV)を、ECDは有効硬化層深さ(mm)を、Hiは試験力300gfで測定した非浸炭部でのビッカース硬さ(HV)を夫々示す。
    % By mass
    C: 0.10 to 0.3%,
    Si: 0.03-1.50%,
    Mn: 0.2-1.8%
    P: more than 0% and 0.03% or less,
    S: more than 0% and 0.03% or less,
    Cr: 0.30 to 2.50%,
    Al: more than 0% and 0.08% or less,
    N: more than 0% and 0.0150% or less,
    Nb: 0.05 to 0.3%,
    Ti: 0.05 to 0.1% and B: 0.0005 to 0.005%,
    Each of which is iron and inevitable impurities,
    When the average C concentration from the surface to a depth of 0.05 mm is 0.50% or more, and the following A, B and C are defined by the following formulas (1) to (3), these are the following (4 Steel parts for high-temperature carburizing excellent in spalling strength and low cycle fatigue strength, characterized by satisfying the formulas (5) and (5).
    A = exp {Dm / 10 + Nm 1/2 / 50} × exp {Dt / 15 + Nt 1/2 / 50} (1)
    B = exp {Hs / 650 + ECD 1/2 + Hi / 250} (2)
    C = exp [Hs / 650−ECD − {(0.89 × Hi−202.16) / 250} 2 ] (3)
    3.7 × A−0.47 × B + 1.14 ≦ 0 (4)
    C ≧ 0.66 (5)
    However, Dm is the average equivalent circle diameter (μm) of MnS in the non-carburized part, Nm is the number density (pieces / mm 2 ) of MnS in the non-carburized part, and Dt is the average circle of TiN in the non-carburized part. Equivalent diameter (μm), Nt is the number density of TiN in non-carburized part (pieces / mm 2 ), Hs is Vickers hardness (HV) at a depth of 0.05 mm from the surface measured with a test force of 300 gf , ECD indicates the effective hardened layer depth (mm), and Hi indicates the Vickers hardness (HV) at the non-carburized portion measured at a test force of 300 gf.
  2.  試験力300gfで測定した表面から深さ0.05mm位置でのビッカース硬さHsが650HV以上、
     有効硬化層深さECDが0.4mm以上、
     試験力300gfで測定した非浸炭部でのビッカース硬さHiが300HV以上
    である請求項1に記載の高温浸炭用鋼製部品。
    Vickers hardness Hs at a depth of 0.05 mm from the surface measured with a test force of 300 gf is 650 HV or more,
    Effective hardened layer depth ECD is 0.4 mm or more,
    The steel part for high-temperature carburizing according to claim 1, wherein the Vickers hardness Hi at the non-carburized portion measured at a test force of 300 gf is 300 HV or more.
  3.  更に、質量%で、
     Ni:0%超2.0%以下および
     Mo:0%超1.00%以下の少なくとも1種を含有する請求項1または2に記載の高温浸炭用鋼製部品。
    Furthermore, in mass%,
    The steel part for high-temperature carburizing according to claim 1 or 2, comprising at least one of Ni: more than 0% and 2.0% or less and Mo: more than 0% and 1.00% or less.
PCT/JP2015/059152 2014-03-28 2015-03-25 Steel component for high-temperature carburizing with excellent spalling strength and low-cycle fatigue strength WO2015147067A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-069866 2014-03-28
JP2014069866 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015147067A1 true WO2015147067A1 (en) 2015-10-01

Family

ID=54195578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059152 WO2015147067A1 (en) 2014-03-28 2015-03-25 Steel component for high-temperature carburizing with excellent spalling strength and low-cycle fatigue strength

Country Status (3)

Country Link
JP (1) JP2015193929A (en)
TW (1) TWI545205B (en)
WO (1) WO2015147067A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3418411A4 (en) * 2016-02-19 2019-08-21 Nippon Steel Corporation Steel
US11078961B2 (en) * 2018-04-02 2021-08-03 Nsk Ltd. Intermediary race member of rolling bearing, race, rolling bearing and production method therefor
US20220106671A1 (en) * 2018-12-28 2022-04-07 Nippon Steel Corporation Steel material
US11326244B2 (en) * 2016-07-15 2022-05-10 Aisin Corporation Steel material for CVT sheave, CVT sheave, and method for manufacturing CVT sheave

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6828593B2 (en) * 2017-05-25 2021-02-10 日本製鉄株式会社 Carburized parts
US20220177991A1 (en) * 2019-04-10 2022-06-09 Nippon Steel Corporation Steel shaft component

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028568A (en) * 2004-07-14 2006-02-02 Kobe Steel Ltd Steel for high temperature carburizing and its production method
JP2007162128A (en) * 2005-11-15 2007-06-28 Kobe Steel Ltd Case hardening steel having excellent forgeability and crystal grain-coarsening prevention property, its production method and carburized component
JP2007217761A (en) * 2006-02-17 2007-08-30 Kobe Steel Ltd Case hardening steel having excellent low cycle fatigue strength
JP2010285689A (en) * 2009-05-13 2010-12-24 Nippon Steel Corp Carburized steel component excellent in low-cycle bending fatigue strength
JP2012072427A (en) * 2010-09-28 2012-04-12 Kobe Steel Ltd Case hardened steel and method for manufacturing the same
WO2012108460A1 (en) * 2011-02-10 2012-08-16 新日本製鐵株式会社 Steel for carburizing, carburized steel component, and method for producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028568A (en) * 2004-07-14 2006-02-02 Kobe Steel Ltd Steel for high temperature carburizing and its production method
JP2007162128A (en) * 2005-11-15 2007-06-28 Kobe Steel Ltd Case hardening steel having excellent forgeability and crystal grain-coarsening prevention property, its production method and carburized component
JP2007217761A (en) * 2006-02-17 2007-08-30 Kobe Steel Ltd Case hardening steel having excellent low cycle fatigue strength
JP2010285689A (en) * 2009-05-13 2010-12-24 Nippon Steel Corp Carburized steel component excellent in low-cycle bending fatigue strength
JP2012072427A (en) * 2010-09-28 2012-04-12 Kobe Steel Ltd Case hardened steel and method for manufacturing the same
WO2012108460A1 (en) * 2011-02-10 2012-08-16 新日本製鐵株式会社 Steel for carburizing, carburized steel component, and method for producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3418411A4 (en) * 2016-02-19 2019-08-21 Nippon Steel Corporation Steel
US11326244B2 (en) * 2016-07-15 2022-05-10 Aisin Corporation Steel material for CVT sheave, CVT sheave, and method for manufacturing CVT sheave
US11078961B2 (en) * 2018-04-02 2021-08-03 Nsk Ltd. Intermediary race member of rolling bearing, race, rolling bearing and production method therefor
US20220106671A1 (en) * 2018-12-28 2022-04-07 Nippon Steel Corporation Steel material

Also Published As

Publication number Publication date
JP2015193929A (en) 2015-11-05
TWI545205B (en) 2016-08-11
TW201542841A (en) 2015-11-16

Similar Documents

Publication Publication Date Title
JP5927868B2 (en) Carburizing steel excellent in cold forgeability and method for producing the same
WO2015147067A1 (en) Steel component for high-temperature carburizing with excellent spalling strength and low-cycle fatigue strength
US9890446B2 (en) Steel for induction hardening roughly shaped material for induction hardening
JP4632931B2 (en) Induction hardening steel excellent in cold workability and its manufacturing method
JP5886119B2 (en) Case-hardened steel
JP5258458B2 (en) Gears with excellent surface pressure resistance
JP2010007120A (en) Method for manufacturing high-strength carburized component
JP5381171B2 (en) Manufacturing method of high strength case hardening steel parts
JP2012062536A (en) Case-hardening steel and method for producing the same
JP5643622B2 (en) Case-hardened steel and machine structural parts using the same
JP3550886B2 (en) Manufacturing method of gear steel for induction hardening excellent in machinability and fatigue strength
JP4488228B2 (en) Induction hardening steel
JP2018165403A (en) Steel for carburizing having excellent low cycle fatigue strength and machinability, and carburized component
JP6521089B2 (en) Machine structural steels and induction hardened steel parts
JP2009299165A (en) Method for manufacturing high-strength carburized component by induction hardening
JP6109730B2 (en) Steel material excellent in bending fatigue characteristics after carburizing, manufacturing method thereof and carburized parts
TW201739933A (en) Case hardened steel
JP5821512B2 (en) NITRIDED COMPONENT AND MANUFACTURING METHOD THEREOF
JP3236883B2 (en) Case hardening steel and method for manufacturing steel pipe using the same
JP2012001765A (en) Bar steel for steering rack bar and method for manufacturing bar steel
JP5335523B2 (en) Gear shaft steel and gear shaft excellent in bending fatigue resistance and peeling resistance
JP6085210B2 (en) Case-hardened steel with excellent rolling fatigue characteristics and method for producing the same
TWI609090B (en) A steel for carburizing and a carburized component
JP2009299146A (en) Method for manufacturing high-strength carburized component
EP2980242B9 (en) Case hardening steel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15769889

Country of ref document: EP

Kind code of ref document: A1