JP2007291464A - High-strength steel material and its production method - Google Patents

High-strength steel material and its production method Download PDF

Info

Publication number
JP2007291464A
JP2007291464A JP2006122205A JP2006122205A JP2007291464A JP 2007291464 A JP2007291464 A JP 2007291464A JP 2006122205 A JP2006122205 A JP 2006122205A JP 2006122205 A JP2006122205 A JP 2006122205A JP 2007291464 A JP2007291464 A JP 2007291464A
Authority
JP
Japan
Prior art keywords
steel material
less
steel
strength
tempering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006122205A
Other languages
Japanese (ja)
Other versions
JP4983082B2 (en
Inventor
Yuichiro Yamamoto
雄一郎 山本
Hirotatsu Kojima
啓達 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2006122205A priority Critical patent/JP4983082B2/en
Publication of JP2007291464A publication Critical patent/JP2007291464A/en
Application granted granted Critical
Publication of JP4983082B2 publication Critical patent/JP4983082B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide steel types and its production method where, in a high-strength steel material having a high yield ratio, materials can be produced individually per strength level according to production conditions in an easy way even on the same steel type. <P>SOLUTION: A steel having a chemical composition comprising, by mass, 0.05 to 0.45% C, ≤1.0% Si, 0.2 to 3.0% Mn, ≤0.1% P, ≤0.02% S, ≤0.2% Al and ≤0.01% N, and the balance Fe with impurities is made into an austenite single phase state, is thereafter cooled to a temperature range below an Ms point at a cooling rate of the upper critical cooling rate or above, and is then subjected to tempering treatment under the conditions where the parameterλ prescribed by the following formula reaches 11,000 to 16,500: λ=TäLog(t)+20}, wherein T is a tempering temperature (K), and (t) is a tempering time (h), and, the tempering treatment is preferably performed under the conditions where λ satisfies the following inequality: (3,700×C-1.1×TS<SP>QT</SP>+1,760)/0.11≤λ≤(3,700×C-0.9×TS<SP>QT</SP>+1,760)/0.11; wherein, C is the C content (mass%) in the steel, and TS<SP>QT</SP>is its tensile strength (MPa). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、熱処理によって高強度化された降伏比の高い高強度鋼材及びその製造方法に関する。   The present invention relates to a high-strength steel material having a high yield ratio that has been strengthened by heat treatment and a method for producing the same.

乗用車、トラック等の輸送用機器について、軽量化や衝突安全性向上を達成するため、鋼材の高強度化が進められている。そのため近年ハイテンと称される種々の高強度鋼材が開発され、その適用は年々拡大している。しかし高強度鋼材は延性が乏しく、成形荷重の増加や寸法精度の低下等を生じる問題がある。   With regard to transportation equipment such as passenger cars and trucks, steel materials are being strengthened in order to achieve weight reduction and improved collision safety. Therefore, various high-strength steel materials called “HITEN” have been developed in recent years, and their application is expanding year by year. However, high-strength steel materials have poor ductility, and there is a problem that an increase in forming load and a decrease in dimensional accuracy occur.

そこで近年、特許文献1に開示される熱間プレス法のような熱間成形時またはそれに続いて行う後熱処理法の適用が拡大している。上記方法は、成形後の熱処理によって鋼材を高強度化するため、成形性の確保と高強度化とを両立できる。このような後熱処理は焼入れ処理である。   Therefore, in recent years, application of post-heat treatment methods performed during or subsequent to hot forming such as the hot press method disclosed in Patent Document 1 has been expanded. Since the above method increases the strength of the steel material by heat treatment after forming, it is possible to ensure both formability and increase the strength. Such post heat treatment is a quenching treatment.

一方、特許文献2には、そのような後熱処理法において強度と靱性とを両立できる焼入れ材を得る方法が記載されている。これは焼入れ前の加熱温度をAc1点とAc3点の中間の温度とし、焼入れ後のミクロ組織をフェライトとマルテンサイトの二相焼入れ組織とすることで、フルマルテンサイト組織よりも低強度、高靱性の鋼材を製造する方法である。
特開2000−38640号公報 特開2004−52085号公報
On the other hand, Patent Document 2 describes a method of obtaining a quenching material that can achieve both strength and toughness in such a post heat treatment method. This is because the heating temperature before quenching is an intermediate temperature between points A c1 and A c3 , and the microstructure after quenching is a two-phase quenching structure of ferrite and martensite. This is a method for producing a high toughness steel material.
JP 2000-38640 A JP 2004-52085 A

例えば、自動車用の構造材、例えばフレーム材のような骨格部材用としては、強度が高いことのみならず降伏比が高い材料が求められている。しかも、材料コストも含めて製造コストが安価であり、安定して製造・供給できることが必要である。   For example, for a structural material for automobiles, for example, a skeleton member such as a frame material, a material having a high yield ratio as well as a high strength is required. In addition, it is necessary that the manufacturing cost including the material cost is low and that it can be stably manufactured and supplied.

ここで、高強度化に関しては、特許文献1、2に開示された方法のように熱処理により高強度化を図る技術が開示されているが、高降伏比化に関する熱処理については未だ検討されていないのが実状である。   Here, regarding the increase in strength, a technique for increasing the strength by heat treatment, such as the methods disclosed in Patent Documents 1 and 2, has been disclosed, but the heat treatment for increasing the yield ratio has not yet been studied. This is the actual situation.

一方、今日のように材料開発が進展すると、例えば、自動車用材料においては同じ構造部材といっても部位によっては材料特性、特に強度が異なる材料を使用したいときがある。もちろん、それぞれ異なった材料でそのような部材を構成すればよく、その限りでは問題はないが、最近のような材料コスト低減の強い要求の下では、同一鋼種を用いて、いくつかの強度レベルの材料を作り分けることが重要となってきている。   On the other hand, when material development progresses like today, for example, in automobile materials, there are times when it is desired to use materials having different material characteristics, particularly strength, depending on the part even though they are the same structural members. Of course, it is only necessary to construct such a member with different materials, so long as there is no problem, but under the strong demand for material cost reduction as in recent years, the same steel grade is used and several strength levels are used. It has become important to make different materials.

もちろん、そのような各種強度レベルの材料の作り分けは製造方法によるものであるが、またそのような材料の作り分けを許容できる材質そのものを開発する必要がある。
したがって、本発明の一般的課題は、熱処理により得られる高い降伏比と高い強度とを併せ持つ鋼材と、そのような鋼材の簡便な製造方法を提供することである。
Of course, the creation of such materials of various strength levels depends on the manufacturing method, but it is also necessary to develop a material itself that allows the creation of such materials.
Therefore, a general problem of the present invention is to provide a steel material having both a high yield ratio and high strength obtained by heat treatment, and a simple method for producing such a steel material.

さらに、本発明の課題は、そのように高強度化された高い降伏比と高い強度とを併せ持つ高強度鋼材において、同一鋼種であっても製造条件を規定することで簡単に各種強度レベルの材料を高い降伏比を確保しつつ作り分けることのできる鋼種およびそのための製造方法を提供することである。   Furthermore, the object of the present invention is to provide a material with various strength levels by simply defining the manufacturing conditions even in the same steel type in a high strength steel material having both a high yield ratio and a high strength. Is to provide a steel type and a manufacturing method therefor that can be made separately while ensuring a high yield ratio.

かかる課題を解決すべく種々検討を重ねた結果、次のような知見を得た。
熱間成形後の焼入れなどの後熱処理法で製造した鋼材の強度は、鋼中のC含有量によって決定される。しかし、目的とする強度ごとに成分が異なる鋼材を調達するには多大なコストを要する。この問題を解決するため、同一成分で強度をつくり分ける技術が要請されている。
As a result of various studies to solve this problem, the following knowledge was obtained.
The strength of a steel material produced by a post heat treatment method such as quenching after hot forming is determined by the C content in the steel. However, enormous costs are required to procure steel materials having different components for each desired strength. In order to solve this problem, there is a demand for a technique for creating strength with the same component.

一方、前述の特許文献1、2にあっては、当該技術分野におけるコスト面からの要請により焼戻し処理については元来検討されておらず、いずれも焼入れままで使用される。特に、特許文献2に開示の方法では、マルテンサイトとフェライトもしくはパーライトとの量比によって所定強度を与えていることから、焼戻し処理は排除されている。そして、特許文献1、2に開示の方法で製造した鋼材は降伏比が低く、とりわけ特許文献2の開示する方法で製造した鋼材は降伏比が著しく低いため、高い降伏強度(YS)が求められるフレーム等の骨格部材には適さない。また、特許文献2の開示する方法において強度は焼入れ後のマルテンサイト体積率で決まるが、加熱温度のばらつきによってマルテンサイト体積率は大きく変動するため、強度ばらつきの抑制が困難である。   On the other hand, in the above-mentioned Patent Documents 1 and 2, tempering has not been originally studied due to cost requirements in the technical field, and both are used as-quenched. In particular, in the method disclosed in Patent Document 2, since the predetermined strength is given by the quantitative ratio between martensite and ferrite or pearlite, tempering treatment is eliminated. And since the steel materials manufactured by the method disclosed in Patent Documents 1 and 2 have a low yield ratio, and particularly the steel materials manufactured by the method disclosed in Patent Document 2 have a significantly low yield ratio, a high yield strength (YS) is required. It is not suitable for frame members such as frames. Further, in the method disclosed in Patent Document 2, the strength is determined by the martensite volume ratio after quenching. However, since the martensite volume ratio varies greatly due to variations in heating temperature, it is difficult to suppress variations in strength.

そこで、本発明者等は上記課題を解決するために、焼入れ後の焼戻しによって鋼材を低強度化するとともに高降伏比化し、所望の強度と高い降伏比の鋼材を製造する方法について検討した。その結果、次の知見を得た。   In order to solve the above-mentioned problems, the present inventors studied a method for producing a steel material having a desired strength and a high yield ratio by reducing the strength of the steel material by tempering after quenching and increasing the yield ratio. As a result, the following knowledge was obtained.

(1)焼入れ焼戻しによって低強度化を図ると、二相焼入れだけを行った場合に比べ、予想外にも、低い引張強度TSでありながら高い降伏強度YSを持つ、すなわち降伏比YRが高い鋼材を得ることができる。   (1) Compared to the case where only two-phase quenching is performed by reducing the strength by quenching and tempering, the steel material unexpectedly has a high yield strength YS while having a low tensile strength TS, that is, a high yield ratio YR. Can be obtained.

(2)焼戻し後の機械特性は、下記式(1)で規定されるパラメータλによって概ね決定される。すなわち、パラメータλが同じならば焼戻温度や焼戻時間が異なっても略同一の機械特性が得られる。パラメータλが11000〜16500となる条件で焼戻し処理を施すと、降伏比YRが90%以上で引張強さTSが700MPa以上の機械特性を有する鋼材が得られる。   (2) The mechanical characteristics after tempering are generally determined by the parameter λ defined by the following formula (1). That is, if the parameter λ is the same, substantially the same mechanical characteristics can be obtained even if the tempering temperature and the tempering time are different. When the tempering treatment is performed under the condition that the parameter λ is 11000 to 16500, a steel material having a mechanical property with a yield ratio YR of 90% or more and a tensile strength TS of 700 MPa or more is obtained.

λ=T{log(t)+20} (1)
ここで、式中のTは焼戻温度(単位:K)、tは焼戻時間(単位:h)を示す。
(3)パラメータλが11000〜16500となる条件で焼戻し処理を施した鋼材の引張強度TSQT(MPa)は下記式(5)により近似することができ、TSQTに対して0.9×TSQT〜1.1×TSQTの範囲の引張強度を有する鋼材が得られる。
λ = T {log (t) +20} (1)
Here, T in the formula represents a tempering temperature (unit: K), and t represents a tempering time (unit: h).
(3) The tensile strength TS QT (MPa) of the steel material tempered under the condition that the parameter λ is 11000-16500 can be approximated by the following formula (5), and 0.9 × TS with respect to TS QT . A steel material having a tensile strength in the range of QT to 1.1 × TS QT is obtained.

TSQT=−0.11×λ+3700×C+1760 (5)
ここで、式中のCは鋼中のC含有量(単位:質量%)を示す。
したがって、前記TSQTと前記パラメータλとは下記式(2)を満足する。
TS QT = −0.11 × λ + 3700 × C + 1760 (5)
Here, C in a formula shows C content (unit: mass%) in steel.
Therefore, the TS QT and the parameter λ satisfy the following formula (2).

(3700×C−1.1×TSQT+1760)/0.11≦λ≦(3700×C−0.9×TSQT+1760)/0.11 (2)
ここで、式中のCは鋼中のC含有量(単位:質量%)、TSQTは高強度鋼材の引張強度(MPa)を示す。
(3700 × C-1.1 × TS QT + 1760) /1.11≦λ≦ (3700 × C−0.9 × TS QT + 1760) /1.11 (2)
Here, C in the formula indicates the C content (unit: mass%) in the steel, and TS QT indicates the tensile strength (MPa) of the high-strength steel material.

(4)一般に、高強度鋼材については目標引張強度下限TSQT min(MPa)が設定されるから、上記式(5)とその誤差量より、パラメータλが下記式(3)を満足する条件で焼戻し処理を施すことにより、目標引張強度下限TSQT min(MPa)以上の引張強度を有する鋼材を得ることができる。 (4) In general, since the target tensile strength lower limit TS QT min (MPa) is set for high-strength steel materials, from the above equation (5) and its error amount, the parameter λ satisfies the following equation (3). By performing a tempering treatment, a steel material having a tensile strength equal to or higher than the target tensile strength lower limit TS QT min (MPa) can be obtained.

λ≦(3700×C−0.9×TSQT min+1760)/0.11 (3)
ここで、式中のCは鋼中のC含有量(単位:質量%)を示す。
(5)また、高強度鋼材について目標引張強度上限TSQT max(MPa)が設定される場合には、上記式(5)とその誤差量より、パラメータλが下記式(4)を満足する条件で焼戻し処理を施すことにより、目標引張強度上限TSQT max(MPa)以下の引張強度を有する鋼材を得ることができる。
λ ≦ (3700 × C−0.9 × TS QT min + 1760) /0.11 (3)
Here, C in a formula shows C content (unit: mass%) in steel.
(5) When the target tensile strength upper limit TS QT max (MPa) is set for a high-strength steel material, the condition that the parameter λ satisfies the following equation (4) from the above equation (5) and the error amount thereof. By tempering, a steel material having a tensile strength equal to or lower than the target tensile strength upper limit TS QT max (MPa) can be obtained.

λ≧(3700×C−1.1×TSQT min+1760)/0.11 (4)
ここで、式中のCは鋼中のC含有量(単位:質量%)を示す。
本発明は上記の知見に基づいて完成されたものであり、その要旨は下記の通りである。
λ ≧ (3700 × C−1.1 × TS QT min + 1760) /0.11 (4)
Here, C in a formula shows C content (unit: mass%) in steel.
The present invention has been completed based on the above findings, and the gist thereof is as follows.

(1)質量%で、C:0.05〜0.45%、Si:1.0%以下、Mn:0.2〜3.0%、P:0.1%以下、S:0.02%以下、Al:0.2%以下、N:0.01%以下を含有し、残部がFeおよび不純物からなる化学組成を有するとともに、降伏比YRが90%以上で引張強さTSが700MPa以上1700MPa以下の機械特性を有することを特徴とする高強度鋼材。   (1) By mass%, C: 0.05 to 0.45%, Si: 1.0% or less, Mn: 0.2 to 3.0%, P: 0.1% or less, S: 0.02 %, Al: 0.2% or less, N: 0.01% or less, with the balance being a chemical composition comprising Fe and impurities, with a yield ratio YR of 90% or more and a tensile strength TS of 700 MPa or more. A high-strength steel material having mechanical properties of 1700 MPa or less.

(2)前記化学組成が、Feの一部に代えて、B:0.01%以下、Ti:0.1%以下およびCr:1.0%以下からなる群から選ばれた1種または2種以上を含有することを特徴とする上記(1)に記載の高強度鋼材。   (2) The chemical composition is one or two selected from the group consisting of B: 0.01% or less, Ti: 0.1% or less, and Cr: 1.0% or less instead of a part of Fe The high-strength steel material according to (1) above, which contains more than seeds.

(3)前記化学組成が、Feの一部に代えて、Mo:1.0%以下、W:1.0%以下、Ni:1.0%以下、Nb:1.0%以下、V:1.0%以下およびCu:1.0%以下からなる群から選ばれた1種または2種以上を含有することを特徴とする上記(1)または(2)に記載の高強度鋼材。   (3) When the chemical composition is replaced with a part of Fe, Mo: 1.0% or less, W: 1.0% or less, Ni: 1.0% or less, Nb: 1.0% or less, V: The high-strength steel material according to (1) or (2) above, which contains one or more selected from the group consisting of 1.0% or less and Cu: 1.0% or less.

(4)上記(1)〜(3)のいずれかに記載の化学組成を有する鋼材を、オーステナイト単相状態としたのちに、上部臨界冷却速度以上の冷却速度でMs点以下の温度域まで冷却し、次いで下記式(1)で規定されるパラメータλが11000〜16500となる条件で焼戻し処理を施すことを特徴とする高強度鋼材の製造方法。
λ=T{log(t)+20} (1)
ここで、式中のTは焼戻温度(単位:K)、tは焼戻時間(単位:h)を示す。
(4) After the steel material having the chemical composition described in any one of (1) to (3) above is changed to an austenite single phase state, it is cooled to a temperature range below the Ms point at a cooling rate higher than the upper critical cooling rate. Then, a tempering process is performed under the condition that the parameter λ defined by the following formula (1) is 11000-16500.
λ = T {log (t) +20} (1)
Here, T in the formula represents a tempering temperature (unit: K), and t represents a tempering time (unit: h).

(5) 前記パラメータλが下記式(2)を満足することを特徴とする上記(4)に記載の高強度鋼材の製造方法。
(3700×C−1.1×TSQT+1760)/0.11≦λ≦(3700×C−0.9×TSQT+1760)/0.11 (2)
ここで、式中のCは鋼中のC含有量(単位:質量%)、TSQTは高強度鋼材の引張強度(MPa)を示す。
(5) The method for producing a high-strength steel material according to (4), wherein the parameter λ satisfies the following formula (2).
(3700 × C-1.1 × TS QT + 1760) /1.11≦λ≦ (3700 × C−0.9 × TS QT + 1760) /1.11 (2)
Here, C in the formula indicates the C content (unit: mass%) in the steel, and TS QT indicates the tensile strength (MPa) of the high-strength steel material.

(6)高強度鋼材の目標引張強度下限TSQT min(MPa)に基づいて前記パラメータλが下記式(3)を満足する条件で焼戻し処理を施すことを特徴とする上記(4)に記載の高強度鋼材の製造方法。
λ≦(3700×C−0.9×TSQT min+1760)/0.11 (3)
ここで、式中のCは鋼中のC含有量(単位:質量%)を示す。
(6) The tempering treatment is performed on the condition that the parameter λ satisfies the following expression (3) based on a target tensile strength lower limit TS QT min (MPa) of the high-strength steel material. Manufacturing method of high strength steel.
λ ≦ (3700 × C−0.9 × TS QT min + 1760) /0.11 (3)
Here, C in a formula shows C content (unit: mass%) in steel.

(7)高強度鋼材の目標引張強度上限TSQT max(MPa)に基づいて前記パラメータλが下記式(4)を満足する条件で焼戻し処理を施すことを特徴とする上記(4)または(6)に記載の高強度鋼材の製造方法。
λ≧(3700×C−1.1×TSQT max+1760)/0.11 (4)
ここで、式中のCは鋼中のC含有量(単位:質量%)を示す。
(7) The above-described (4) or (6), wherein the tempering treatment is performed on the condition that the parameter λ satisfies the following formula (4) based on the target tensile strength upper limit TS QT max (MPa) of the high-strength steel material. The manufacturing method of the high strength steel materials as described in).
λ ≧ (3700 × C−1.1 × TS QT max +1760) /0.11 (4)
Here, C in a formula shows C content (unit: mass%) in steel.

本発明によれば、熱処理により得られる高い降伏比と高い強度とを併せ持つ鋼材と、そのような鋼材の簡便な製造方法が提供される。さらに、そのように高強度化された高い降伏比と高い強度とを併せ持つ高強度鋼材において、同一鋼種であっても製造条件を規定することで簡単に各種強度レベルの材料を高い降伏比を確保しつつ作り分けることのできる鋼種およびそのための製造方法が提供される。   According to the present invention, a steel material having both a high yield ratio and high strength obtained by heat treatment, and a simple method for producing such a steel material are provided. Furthermore, in high-strength steel materials that have both high yield ratios and high strengths that have been strengthened in this way, it is easy to secure high yield ratios for materials of various strength levels by prescribing manufacturing conditions even for the same steel type. However, a steel type that can be produced separately and a manufacturing method therefor are provided.

本発明に使用する鋼材の成分、製造方法、及び熱処理条件の限定理由について詳述する。本明細書において鋼の化学組成を示す「%」は、いずれも「質量%」である。
(1)鋼の化学組成
C:Cは焼入れ後の鋼の強度を決定する重要な元素であり、C含有量が低すぎると焼入れ後に十分な強度が得られない。一方C含有量が高すぎると、焼入れ前の鋼材の延性が低下し焼入れ前の加工性が損なわれる。従ってC含有量を0.05〜0.45%とする。好ましくは0.09〜0.26%である。
The reasons for limiting the components of the steel used in the present invention, the production method, and the heat treatment conditions will be described in detail. In this specification, “%” indicating the chemical composition of steel is “mass%”.
(1) Chemical composition of steel C: C is an important element that determines the strength of steel after quenching. If the C content is too low, sufficient strength cannot be obtained after quenching. On the other hand, if the C content is too high, the ductility of the steel material before quenching decreases and the workability before quenching is impaired. Therefore, the C content is set to 0.05 to 0.45%. Preferably it is 0.09 to 0.26%.

Si:Siは鋼の焼入れ性を高める元素であり、必要に応じて含有させることができる。ただし過剰な添加は化成処理性やめっき性が低下し、さらにA点が上昇するため、含有量を1.0%以下とする。望ましくは0.1〜0.3%である。 Si: Si is an element that enhances the hardenability of steel, and can be contained as necessary. However excessive addition reduces the chemical conversion treatability and coating property, and is further three points A rises, the content of 1.0% or less. Desirably, the content is 0.1 to 0.3%.

Mn:Mnは鋼の焼入れ性を確保するために重要な元素であり、0.2%以上含有させる。一方過剰な添加は焼入れ前の加工性を劣化させるだけでなく、炭化物が安定化し、焼入れ加熱時に溶け残りやすくなる。従ってMnの含有量を0.2〜3.0%とする。望ましくは0.7〜1.5%である。   Mn: Mn is an important element for securing the hardenability of steel, and is contained by 0.2% or more. On the other hand, excessive addition not only deteriorates the workability before quenching, but also stabilizes the carbide and tends to remain undissolved during quenching heating. Therefore, the Mn content is set to 0.2 to 3.0%. Preferably it is 0.7 to 1.5%.

P:Pは不可避不純物の一つであり、焼入れ前の鋼の加工性および焼入れ後の鋼の靱性を劣化させる。従って含有量は少ないほど好ましく、含有量を0.1%以下とする。望ましくは0.03%以下である。   P: P is one of inevitable impurities, and deteriorates the workability of steel before quenching and the toughness of steel after quenching. Therefore, the smaller the content, the better. The content is 0.1% or less. Desirably, it is 0.03% or less.

S:Sも不可避不純物の一つであり、焼入れ前の鋼の加工性および焼入れ後の鋼の靱性を劣化させる。従って含有量は少ないほど望ましく、含有量を0.02%以下とする。望ましくは0.01%以下である。   S: S is one of the inevitable impurities, and deteriorates the workability of the steel before quenching and the toughness of the steel after quenching. Therefore, the smaller the content, the better, and the content is set to 0.02% or less. Desirably, it is 0.01% or less.

Al:Alは製鋼工程で脱酸を目的として添加することができる。しかし過剰な添加は製造コストの上昇を招くとともに、A点も上昇して製造を困難にする。したがって含有量を0.2%以下とする。望ましくは0.005〜0.1%である。 Al: Al can be added for the purpose of deoxidation in the steelmaking process. But excessive addition with causes an increase in manufacturing cost and A 3-point makes it difficult to manufacture to rise. Therefore, the content is made 0.2% or less. Preferably it is 0.005 to 0.1%.

N:Nは鋼中に不可避に含有される元素であり、焼入れ前の鋼の加工性を劣化させる。そのため含有量を0.01%以下と定めた。望ましくは0.005%以下である。
本発明においては上記元素に加えてさらに以下の元素を少なくとも1種含有させても良い。
N: N is an element inevitably contained in the steel, and deteriorates the workability of the steel before quenching. Therefore, the content is determined to be 0.01% or less. Desirably, it is 0.005% or less.
In the present invention, in addition to the above elements, at least one of the following elements may be contained.

B:Bは焼入れ性を向上させる作用を有するので適宜含有させることができる。しかしながら、過剰な含有は焼入れ処理前の鋼材の加工性を劣化させる。したがってB含有量を0.01%以下とする。より好ましくは0.004%以下である。上記作用による効果を確実に得るには、B含有量を0.0002%以上とすることが好ましく、0.0005%以上とすることがより好ましい。   B: Since B has the effect | action which improves hardenability, it can be contained suitably. However, excessive inclusion deteriorates the workability of the steel before quenching. Therefore, the B content is set to 0.01% or less. More preferably, it is 0.004% or less. In order to surely obtain the effect by the above action, the B content is preferably 0.0002% or more, and more preferably 0.0005% or more.

Ti:Tiは焼入れ性を向上させる作用を有するので適宜含有させることができる。Tiはそのような作用ばかりでなく、さらに鋼中の固溶Nを析出固定して焼入れ前の鋼材の成形性を向上させることができる。しかしながら過剰に含有するとTiCの析出量が増し、焼入れ処理前の鋼材の加工性が低下するので、Ti含有量を0.1%以下とする。より好ましくは0.04%以下である。上記作用による効果を確実に得るには、Ti含有量を0.002%以上とすることが好ましく、0.01%以上であることがより好ましい。
また、TiはBNの析出を抑制し、Bの焼入れ性を高める作用を有するので、Ti≧48/11×B(TiおよびBは各元素の鋼中の含有量(質量%)を示す)となるようにTiとBとを同時に含有させることが望ましい。
Ti: Ti has an effect of improving hardenability, and therefore can be appropriately contained. Ti not only has such an effect, but can also precipitate and fix solute N in the steel to improve the formability of the steel before quenching. However, if excessively contained, the amount of TiC precipitated increases and the workability of the steel before quenching decreases, so the Ti content is set to 0.1% or less. More preferably, it is 0.04% or less. In order to surely obtain the effect by the above action, the Ti content is preferably 0.002% or more, and more preferably 0.01% or more.
Further, since Ti has the effect of suppressing the precipitation of BN and enhancing the hardenability of B, Ti ≧ 48/11 × B (Ti and B indicate the content (mass%) of each element in the steel) and It is desirable to contain Ti and B at the same time.

Cr:Crは焼入れ性を向上させる作用を有するので適宜含有させることができる。しかしながら、過剰な含有は焼入れ前の鋼材の加工性を劣化させるので、Cr含有量を1.0%以下とする。好ましくは0.6%以下である。上記作用による効果を確実に得るにはCr含有量を0.02%以上とすることが好ましい。   Cr: Cr has a function of improving hardenability, and therefore can be appropriately contained. However, excessive content degrades the workability of the steel before quenching, so the Cr content is 1.0% or less. Preferably it is 0.6% or less. In order to surely obtain the effect by the above action, the Cr content is preferably 0.02% or more.

Mo、W、Ni、Nb、V、Cu:
これらの元素も焼入れ性を向上させる作用を有するので適宜含有させることができる。しかしながら過剰な含有は焼入れ前の鋼材の加工性を劣化させる。したがって各元素の含有量を1.0%以下と定めた。一方、上記作用による効果を確実に得るには、何れかの元素の含有量を0.02%以上とすることが望ましい。より望ましくは、これらの元素の合計含有量を0.05〜1.0%とすることである。
Mo, W, Ni, Nb, V, Cu:
Since these elements also have the effect of improving the hardenability, they can be appropriately contained. However, excessive inclusion deteriorates the workability of the steel before quenching. Therefore, the content of each element is determined to be 1.0% or less. On the other hand, in order to reliably obtain the effect by the above action, it is desirable that the content of any element is 0.02% or more. More desirably, the total content of these elements is set to 0.05 to 1.0%.

(2)鋼材の機械特性
降伏比YR:90%以上、引張強さTS:700MPa以上1700MPa以下
鋼材の降伏比が低いと高い降伏比が要求されるフレーム等の骨格部材への適用が制限される。したがって降伏比YRは90%以上とする。好ましくは95%以上である。また、鋼材の引張強さが700MPa未満では高強度鋼材としては強度が不十分である。したがって、引張強さを700MPa以上とする。好ましくは、850MPa以上、さらに好ましくは1000MPa以上である。一方、引張強さが高過ぎる場合には充分な靭性を確保することが困難となる。したがって、鋼材の引張強さを1700MPa以下とする。好ましくは、1500MPa以下、さらに好ましくは1350MPa以下である。
(2) Mechanical properties of steel materials Yield ratio YR: 90% or more, Tensile strength TS: 700 MPa or more and 1700 MPa or less If the yield ratio of steel materials is low, application to frame members such as frames that require a high yield ratio is restricted. . Therefore, the yield ratio YR is 90% or more. Preferably it is 95% or more. Further, if the tensile strength of the steel material is less than 700 MPa, the strength is insufficient as a high-strength steel material. Accordingly, the tensile strength is set to 700 MPa or more. Preferably, it is 850 MPa or more, more preferably 1000 MPa or more. On the other hand, if the tensile strength is too high, it is difficult to ensure sufficient toughness. Therefore, the tensile strength of the steel material is set to 1700 MPa or less. Preferably, it is 1500 MPa or less, more preferably 1350 MPa or less.

(3)鋼材の製造方法
本発明は、所定の化学組成を備える鋼材をオーステナイト単相状態とする熱処理を施すことにより目的とする強度を付与するものであるから、熱処理前の鋼材の製造方法は特に限定されることはなく常法で構わない。また、当該鋼材の形状は、板、帯、棒、パイプ等のいずれでも構わないし、これらにプレス成形等の加工を施したものであっても構わない。当該鋼材が鋼板もしくは鋼板を素材として加工が施された鋼材である場合には、当該鋼板は、熱間圧延ままの熱間圧延鋼板や酸洗等により脱スケール処理が施された熱間圧延鋼板であってもよく、熱間圧延鋼板に冷間圧延が施された冷間圧延鋼板であってもよい。また、鋼材の表面には、耐食性向上や熱処理におけるスケール形成の抑制を目的としてZn系めっき、Al系めっき、耐酸化コーティング等が施されていても構わない。焼入れを施す鋼材が加工を施された鋼材である場合であって、加工前の素材の強度が高く加工が困難な場合には、当該素材に焼鈍を施して軟質化させてもよい。当該素材が鋼板の場合には箱焼鈍や連続焼鈍を適用することができる。
(3) Manufacturing method of steel material Since this invention provides the intensity | strength intended by giving the heat processing which makes the steel material provided with a predetermined | prescribed chemical composition the austenite single phase state, the manufacturing method of the steel material before heat processing is the following. There is no particular limitation and a conventional method may be used. Further, the shape of the steel material may be any of a plate, a band, a rod, a pipe, or the like, or may be obtained by processing such as press molding. When the steel material is a steel plate or a steel material processed by using a steel plate, the steel plate is a hot-rolled steel plate that has been hot-rolled or a hot-rolled steel plate that has been descaled by pickling or the like. It may be a cold rolled steel sheet obtained by cold rolling a hot rolled steel sheet. In addition, the surface of the steel material may be subjected to Zn-based plating, Al-based plating, oxidation-resistant coating, or the like for the purpose of improving corrosion resistance or suppressing scale formation during heat treatment. If the steel material to be quenched is a processed steel material, and the strength of the material before processing is high and processing is difficult, the material may be annealed to be softened. When the material is a steel plate, box annealing or continuous annealing can be applied.

(3)熱処理方法
上記の方法により製造した鋼材に焼入れ焼戻しの熱処理を施す。
焼入れ処理は、鋼材をオーステナイト単相状態としたのちに、上部臨界冷却速度以上の冷却速度でMs点以下の温度域まで冷却して行う。
(3) Heat treatment method The steel material manufactured by said method is heat-treated by quenching and tempering.
The quenching treatment is performed by bringing the steel material into an austenite single phase state and then cooling it to a temperature range below the Ms point at a cooling rate equal to or higher than the upper critical cooling rate.

オーステナイト単相状態とする際に加熱する場合の加熱方法は炉加熱、高周波加熱、通電加熱等の公知の方法の何れであってもよい。また、鋼材が加工を施されたものである場合には、熱間プレス法のようにオーステナイト単相状態としたのちに素材に加工を施して鋼材としたのちに、オーステナイト単相状態を保持したまま加熱すること無しに焼入れ処理を施してもよい。また、オーステナイト単相状態とするのは必ずしも鋼材全体である必要はなく、鋼材の目的に応じて鋼材全体を焼入れたり部分的に焼入れたりすることができる。   The heating method for heating in the austenite single phase state may be any of known methods such as furnace heating, high-frequency heating, and electric heating. In addition, when the steel material is processed, the austenite single phase state was maintained after processing the material into a steel material after making the austenite single phase state as in the hot press method. Quenching may be performed without heating. The austenite single phase state does not necessarily need to be the entire steel material, and the entire steel material can be quenched or partially quenched depending on the purpose of the steel material.

オーステナイト単相状態としたのちに、上部臨界冷却速度以上の冷却速度でMs点以下の温度域まで冷却するが、当該冷却速度が上部臨界冷却速度未満の場合には焼戻し処理後の鋼材について機械的特性のばらつきが生じる。従って10℃/s以上で冷却し、焼戻し後の鋼材の中心部のビッカース硬度Hvを全厚で測定した引張強度TS(MPa)/4以上とするのが望ましい。一方、冷却速度が高過ぎると焼割れが生じる可能性があるので冷却速度は1000℃/s以下とすることが望ましい。十分な冷却速度が確保できれば水冷、油冷、ガス冷、あるいはプレス冷却等のいずれの方法で冷却しても構わない。   After the austenite single phase state, the steel is cooled to a temperature range below the Ms point at a cooling rate higher than the upper critical cooling rate. If the cooling rate is lower than the upper critical cooling rate, the steel material after tempering is mechanically Variations in characteristics occur. Therefore, it is desirable to cool at 10 ° C./s or more and to set the Vickers hardness Hv at the center of the steel material after tempering to a tensile strength TS (MPa) / 4 or more as measured by the total thickness. On the other hand, if the cooling rate is too high, there is a possibility that burning cracks may occur, so the cooling rate is preferably 1000 ° C./s or less. If a sufficient cooling rate can be ensured, the cooling may be performed by any method such as water cooling, oil cooling, gas cooling, or press cooling.

焼入処理後に焼戻処理を行うが、下記式(1)に表されるパラメータλが11000未満だと降伏比YRを90%以上とすることが困難となる。一方、パラメータλが16500超だと引張強度TSを700MPa以上とすることが困難となり、充分な鋼材の強度向上を図ることができない場合がある。したがって11000≦λ≦16500となる範囲で焼戻し処理を施す。なお降伏比YRは高い方が望ましく、YRが95%以上となる条件で焼戻し処理を施すことが望ましい。また焼戻し後の強度が高すぎると靱性が低いため、焼戻し後の引張強度が1350MPa以下となる条件で焼戻し処理を施すことが望ましい。
λ=T{log(t)+20} (1)
ここで、式中のTは焼戻温度(単位:K)、tは焼戻時間(単位:h)を示す。
A tempering process is performed after the quenching process. If the parameter λ represented by the following formula (1) is less than 11000, it is difficult to set the yield ratio YR to 90% or more. On the other hand, if the parameter λ exceeds 16500, it will be difficult to make the tensile strength TS 700 MPa or more, and it may not be possible to sufficiently improve the strength of the steel material. Therefore, the tempering process is performed in the range of 11000 ≦ λ ≦ 16500. A higher yield ratio YR is desirable, and it is desirable to perform tempering under conditions where YR is 95% or more. Moreover, since the toughness is low when the strength after tempering is too high, it is desirable to perform the tempering treatment under the condition that the tensile strength after tempering is 1350 MPa or less.
λ = T {log (t) +20} (1)
Here, T in the formula represents a tempering temperature (unit: K), and t represents a tempering time (unit: h).

焼戻し処理における加熱方法は、焼入れと同じく、炉加熱、高周波加熱、通電加熱等のいずれの方法でも構わない。また鋼材全体を焼戻しても、部分的に焼戻しても構わない。
焼戻時間が短すぎると、パラメータλの制御が困難であり、かつ焼戻温度を高温とする必要があるため1秒間以上とすることが望ましい。一方焼戻時間が長すぎると焼戻処理に要するコストが嵩み、生産性が低下するため、1000秒間以下とすることが望ましい。焼戻処理後の冷却方法は、水冷、油冷、ガス冷、あるいはプレス冷却等のいずれの方法で冷却しても構わない。冷却速度は特に規定しないが高いほうが望ましい。
The heating method in the tempering process may be any method such as furnace heating, high-frequency heating, and electric heating as in the case of quenching. Further, the entire steel material may be tempered or partially tempered.
If the tempering time is too short, it is difficult to control the parameter λ, and the tempering temperature needs to be high. On the other hand, if the tempering time is too long, the cost required for the tempering process increases and the productivity is lowered. As a cooling method after the tempering treatment, cooling may be performed by any method such as water cooling, oil cooling, gas cooling, or press cooling. Although the cooling rate is not particularly specified, a higher one is desirable.

このようにして得られた本発明にかかる鋼材の組織は、一般には焼戻しマルテンサイト組織であるが、化学組成によっては、また上記熱処理条件の範囲内でも一部ベイナイトが生じることがある。   The structure of the steel material according to the present invention thus obtained is generally a tempered martensite structure, but depending on the chemical composition, some bainite may be generated even within the range of the heat treatment conditions.

ここに、「焼戻し温度」は、鋼材の温度を計測する直接的方法により求めることが好ましいが、困難な場合には加熱媒体の温度を計測する間接的方法により求めてもよい。「焼戻し時間」は、上記方法によって計測される温度が目標温度に保持されている時間を言う。なお、焼戻し処理が連続的温度変化を伴う場合には、日本熱処理技術協会発行(2002)雑誌「熱処理」42(3)P163に記載の方法でパラメータλを補正する。 Here, the “tempering temperature” is preferably obtained by a direct method of measuring the temperature of the steel material, but if difficult, it may be obtained by an indirect method of measuring the temperature of the heating medium. “Tempering time” refers to the time during which the temperature measured by the above method is maintained at the target temperature. In addition, the tempering process is to be accompanied by continuous temperature change corrects the parameter λ in accordance with the method described in Japanese heat treatment technology Association of issuance (2002) magazine "heat treatment" 42 (3) P163.

焼戻し処理後の鋼材の引張強度TSQT(MPa)は下記式(5)により近似することができ、パラメータλを11000〜16500となる条件で焼戻し処理を施すと、TSQTに対して0.9×TSQT〜1.1×TSQTの範囲の強度を持つ鋼材が得られる。
TSQT=−0.11×λ+3700×C+1760 (5)
ここで、式中のCは鋼中のC含有量(単位:質量%)を示す。
The tensile strength of the steel after tempering TS QT (MPa) can be approximated by the following equation (5), when subjected to a tempering treatment under the conditions to be from 11,000 to 16,500 parameters lambda, 0.9 against TS QT A steel material having a strength in the range of × TS QT to 1.1 × TS QT is obtained.
TS QT = −0.11 × λ + 3700 × C + 1760 (5)
Here, C in a formula shows C content (unit: mass%) in steel.

したがって、前記TSQTと前記パラメータλとは下記式(2)を満足する。
(3700×C−1.1×TSQT+1760)/0.11≦λ≦(3700×C−0.9×TSQT+1760)/0.11 (2)
ここで、式中のCは鋼中のC含有量(単位:質量%)、TSQTは高強度鋼材の引張強度(MPa)を示す。
Therefore, the TS QT and the parameter λ satisfy the following formula (2).
(3700 × C-1.1 × TS QT + 1760) /1.11≦λ≦ (3700 × C−0.9 × TS QT + 1760) /1.11 (2)
Here, C in the formula indicates the C content (unit: mass%) in the steel, and TS QT indicates the tensile strength (MPa) of the high-strength steel material.

一般に、高強度鋼材については目標引張強度下限TSQT min(MPa)が設定されるから、上記式(5)とその誤差量より、パラメータλが下記式(3)を満足する条件で焼戻し処理を施すことにより、目標引張強度下限TSQT min(MPa)以上の引張強度を有する鋼材を得ることができる。
λ≦(3700×C−0.9×TSQT min+1760)/0.11 (3)
ここで、式中のCは鋼中のC含有量(単位:質量%)を示す。
In general, since the target tensile strength lower limit TS QT min (MPa) is set for high-strength steel materials, the tempering treatment is performed under the condition that the parameter λ satisfies the following formula (3) from the above formula (5) and the error amount. By applying, a steel material having a tensile strength equal to or higher than the target tensile strength lower limit TS QT min (MPa) can be obtained.
λ ≦ (3700 × C−0.9 × TS QT min + 1760) /0.11 (3)
Here, C in a formula shows C content (unit: mass%) in steel.

また、高強度鋼材について目標引張強度上限TSQT max(MPa)が設定される場合には、上記式(5)とその誤差量より、パラメータλが下記式(4)を満足する条件で焼戻し処理を施すことにより、目標引張強度上限TSQT max(MPa)以下の引張強度を有する鋼材を得ることができる。
λ≧(3700×C−1.1×TSQT min+1760)/0.11 (4)
ここで、式中のCは鋼中のC含有量(単位:質量%)を示す。
Further, when the target tensile strength upper limit TS QT max (MPa) is set for the high-strength steel material, the tempering process is performed under the condition that the parameter λ satisfies the following expression (4) from the above expression (5) and the error amount. By applying the above, it is possible to obtain a steel material having a tensile strength equal to or lower than the target tensile strength upper limit TS QT max (MPa).
λ ≧ (3700 × C−1.1 × TS QT min + 1760) /0.11 (4)
Here, C in a formula shows C content (unit: mass%) in steel.

表1の化学組成を有する鋼を溶製し、鍛造、熱間圧延して板厚2.6tの鋼材を作成した。この鋼材を加熱速度100℃/sで900℃のオーステナイト単相域まで昇温し、10s保持した後、水焼入れした。この鋼材を加熱温度550℃まで再び昇温し、10s保持した後、水冷することにより、式(1)のλ=14356に相当する焼戻し処理を行った。なお、このときの温度(K)、時間(t)は前述のようにして求めたものである。
熱処理前の鋼材、焼入れ後及び焼戻し後の鋼材をJIS5号引張試験片に加工し、引張速度3mm/minで引張試験を行った。
Steel having the chemical composition shown in Table 1 was melted, forged and hot-rolled to produce a steel material having a thickness of 2.6 t. The steel material was heated to an austenite single phase region of 900 ° C. at a heating rate of 100 ° C./s, held for 10 s, and then water quenched. The steel material was heated again to a heating temperature of 550 ° C., held for 10 s, and then water-cooled to perform a tempering treatment corresponding to λ = 14356 of formula (1). The temperature (K) and time (t) at this time are obtained as described above.
The steel material before heat treatment, the steel material after quenching and after tempering were processed into a JIS No. 5 tensile test piece, and a tensile test was performed at a tensile speed of 3 mm / min.

熱処理前の鋼材、焼入れ後、及び焼戻し後の鋼材の引張特性を表2に示す。   Table 2 shows the tensile properties of the steel before heat treatment, after quenching, and after tempering.

Figure 2007291464
Figure 2007291464

Figure 2007291464
本発明の範囲よりC量が低い試番1は、焼入れ後の引張強度が低く、高強度化が見込めない。
Figure 2007291464
Sample No. 1 having a C content lower than the range of the present invention has a low tensile strength after quenching and cannot be expected to increase in strength.

本発明の範囲よりC量及びMn量が高い試番3と試番5は、熱処理前の降伏強度YSが500MPaを超え、加工が困難である。
本発明の範囲よりMn量が低い試番4は、焼入れ性が低く、焼入れ焼戻し後に十分な機械特性が得られない。
Sample No. 3 and No. 5 having a C amount and Mn amount higher than the range of the present invention have a yield strength YS before heat treatment exceeding 500 MPa, and are difficult to process.
Sample No. 4 having an Mn content lower than the range of the present invention has low hardenability and does not provide sufficient mechanical properties after quenching and tempering.

鋼材の化学成分が本発明の範囲内である試番2、及び試番6〜16は、熱処理前の加工性は十分であり、焼戻し後にYR:90%以上、TS:700MPa以上の機械的特性を持つ。   Sample Nos. 2 and 6 to 16 in which the chemical composition of the steel material is within the scope of the present invention have sufficient workability before heat treatment, and mechanical properties of YR: 90% or more and TS: 700 MPa or more after tempering. have.

C:0.22%、Si:0.25%、Mn:1.28%、P:0.009%、S:0.002%、Al:0.043%、N:0.003%、Cr:0.18%、Ti:0.021%、B:0.0018%を含有する鋼を溶製し、鍛造、熱間圧延して板厚2.6tの鋼材を作成した。得られた鋼材を、表3に示す条件で二相焼入れまたは焼入れ焼戻しの熱処理を行った。得られた鋼材をJIS5号引張試験片に加工し、引張速度3mm/minで引張試験を行った。   C: 0.22%, Si: 0.25%, Mn: 1.28%, P: 0.009%, S: 0.002%, Al: 0.043%, N: 0.003%, Cr : Steel containing 0.18%, Ti: 0.021%, B: 0.0019% was melted and forged and hot-rolled to produce a steel material having a thickness of 2.6 t. The obtained steel was subjected to heat treatment of two-phase quenching or quenching and tempering under the conditions shown in Table 3. The obtained steel material was processed into a JIS No. 5 tensile test piece, and a tensile test was performed at a tensile speed of 3 mm / min.

Figure 2007291464
試験材の機械的特性を図1、2に示す。
図示結果から分かるように、比較例として示す二相焼入れ材は、引張強度TSは高いが、降伏強度YSが低く、YR90%未満である。図1、図2参照。
Figure 2007291464
The mechanical properties of the test material are shown in FIGS.
As can be seen from the illustrated results, the two-phase hardened material shown as a comparative example has a high tensile strength TS but a low yield strength YS, which is less than 90% YR. See FIG. 1 and FIG.

一方、マルテンサイト単相域からの焼入れ材を、λが本発明で規定する11000≦λ≦16500の範囲内で焼戻すと、図1からも分かるように、本発明の範囲内の700MPa以上の任意の目標引張強度の焼戻し材が得られ、しかも、図2からも分かるように、この範囲において特異的に降伏比YRが90%以上で引張強度TSが700MPa以上の機械的特性を持つ鋼材が得られる。しかし、λが本発明の範囲より小さい条件で焼戻すとYRが90%未満であり、大きい条件で焼戻すとTSが700MPa未満である。   On the other hand, when the tempered material from the martensite single phase region is tempered within the range of 11000 ≦ λ ≦ 16500 defined by the present invention, as can be seen from FIG. A tempered material having an arbitrary target tensile strength can be obtained, and, as can be seen from FIG. 2, a steel material having a mechanical property with a yield ratio YR of 90% or more and a tensile strength TS of 700 MPa or more specifically in this range. can get. However, if λ is tempered under a condition smaller than the range of the present invention, YR is less than 90%, and if tempered under a larger condition, TS is less than 700 MPa.

さらにλが本発明で規定する11000≦λ≦16500の範囲内で焼戻すと、焼戻し処理後の鋼材の引張強度は下記式(5)で表されるTSQT(MPa)に対して0.9×TSQT〜1.1×TSQTの範囲である。
TSQT=−0.11×λ+3700×C+1760 (5)
ここで、式中のCは鋼中のC含有量(単位:質量%)を示す。
Further, if λ is tempered within the range of 11000 ≦ λ ≦ 16500 defined in the present invention, the tensile strength of the steel material after the tempering treatment is 0.9 with respect to TS QT (MPa) represented by the following formula (5). × is in the range of TS QT ~1.1 × TS QT.
TS QT = −0.11 × λ + 3700 × C + 1760 (5)
Here, C in a formula shows C content (unit: mass%) in steel.

したがって、式(5)の関係を利用することで、目標の引張強度レベルであって、かつ90%以上の降伏比の鋼材が得られることが分かる。
なお、本例では、鋼の化学組成がCr、Ti、Bを含有するものであるが、実施例1の結果を参照すれば、鋼種2、6ないし7と、鋼種8以降が同じ傾向を示すことから、図1、図2の関係は鋼種2、6ないし7においても同様に成立し、目標強度レベルにおいていずれも90%以上という高い降伏比を実現できることが分かる。
Therefore, it can be seen that a steel material having a target tensile strength level and a yield ratio of 90% or more can be obtained by utilizing the relationship of the formula (5).
In addition, in this example, although the chemical composition of steel contains Cr, Ti, and B, referring to the results of Example 1, steel types 2, 6 to 7, and steel types 8 and later show the same tendency. From the above, it can be seen that the relationship between FIG. 1 and FIG. 2 is similarly established for steel types 2, 6 to 7, and that a high yield ratio of 90% or more can be realized at the target strength level.

焼戻し後の引張強度TSに及ぼす焼戻しパラメータλの影響を示すグラフ。The graph which shows the influence of tempering parameter (lambda) on the tensile strength TS after tempering. 焼戻し後の降伏比YRに及ぼす焼戻しパラメータλの影響を示すグラフ。The graph which shows the influence of tempering parameter (lambda) on the yield ratio YR after tempering.

Claims (7)

質量%で、C:0.05〜0.45%、Si:1.0%以下、Mn:0.2〜3.0%、P:0.1%以下、S:0.02%以下、Al:0.2%以下、N:0.01%以下を含有し、残部がFeおよび不純物からなる化学組成を有するとともに、降伏比YRが90%以上で引張強さTSが700MPa以上、1700MPa以下の機械特性を有することを特徴とする高強度鋼材。   In mass%, C: 0.05 to 0.45%, Si: 1.0% or less, Mn: 0.2 to 3.0%, P: 0.1% or less, S: 0.02% or less, Al: not more than 0.2%, N: not more than 0.01%, with the balance being a chemical composition consisting of Fe and impurities, with a yield ratio YR of 90% or more and a tensile strength TS of 700 MPa or more and 1700 MPa or less A high-strength steel material having the following mechanical properties. 前記化学組成が、Feの一部に代えて、B:0.01%以下、Ti:0.1%以下およびCr:1.0%以下からなる群から選ばれた1種または2種以上を含有することを特徴とする請求項1に記載の高強度鋼材。   The chemical composition is one or more selected from the group consisting of B: 0.01% or less, Ti: 0.1% or less, and Cr: 1.0% or less, instead of part of Fe. The high-strength steel material according to claim 1, which is contained. 前記化学組成が、Feの一部に代えて、Mo:1.0%以下、W:1.0%以下、Ni:1.0%以下、Nb:1.0%以下、V:1.0%以下およびCu:1.0%以下からなる群から選ばれた1種または2種以上を含有することを特徴とする請求項1または2に記載の高強度鋼材。   When the chemical composition is replaced with a part of Fe, Mo: 1.0% or less, W: 1.0% or less, Ni: 1.0% or less, Nb: 1.0% or less, V: 1.0 The high-strength steel material according to claim 1 or 2, comprising one or more selected from the group consisting of% or less and Cu: 1.0% or less. 請求項1〜3のいずれかに記載の化学組成を有する鋼材を、オーステナイト単相状態としたのちに、上部臨界冷却速度以上の冷却速度でMs点以下の温度域まで冷却し、次いで下記式(1)で規定されるパラメータλが11000〜16500となる条件で焼戻し処理を施すことを特徴とする高強度鋼材の製造方法。
λ=T{log(t)+20} (1)
ここで、式中のTは焼戻温度(単位:K)、tは焼戻時間(単位:h)を示す。
After the steel material having the chemical composition according to any one of claims 1 to 3 is made into an austenite single phase state, the steel material is cooled to a temperature range below the Ms point at a cooling rate equal to or higher than the upper critical cooling rate, and then the following formula ( A method for producing a high-strength steel material, characterized in that a tempering treatment is performed under the condition that the parameter λ defined in 1) is 11000-16500.
λ = T {log (t) +20} (1)
Here, T in the formula represents a tempering temperature (unit: K), and t represents a tempering time (unit: h).
前記パラメータλが下記式(2)を満足することを特徴とする請求項4に記載の高強度鋼材の製造方法。
(3700×C−1.1×TSQT+1760)/0.11≦λ≦(3700×C−0.9×TSQT+1760)/0.11 (2)
ここで、式中のCは鋼中のC含有量(単位:質量%)、TSQTは高強度鋼材の引張強度(MPa)を示す。
The method for producing a high-strength steel material according to claim 4, wherein the parameter λ satisfies the following formula (2).
(3700 × C-1.1 × TS QT + 1760) /1.11≦λ≦ (3700 × C−0.9 × TS QT + 1760) /1.11 (2)
Here, C in the formula indicates the C content (unit: mass%) in the steel, and TS QT indicates the tensile strength (MPa) of the high-strength steel material.
高強度鋼材の目標引張強度下限TSQT min(MPa)に基づいて前記パラメータλが下記式(3)を満足する条件で焼戻し処理を施すことを特徴とする請求項4に記載の高強度鋼材の製造方法。
λ≦(3700×C−0.9×TSQT min+1760)/0.11 (3)
ここで、式中のCは鋼中のC含有量(単位:質量%)を示す。
The tempering treatment is performed on the condition that the parameter λ satisfies the following formula (3) based on a target tensile strength lower limit TS QT min (MPa) of the high-strength steel material. Production method.
λ ≦ (3700 × C-0.9 × TS QT min +1760) /0.11 (3)
Here, C in a formula shows C content (unit: mass%) in steel.
高強度鋼材の目標引張強度上限TSQT max(MPa)に基づいて前記パラメータλが下記式(4)を満足する条件で焼戻し処理を施すことを特徴とする請求項4または6に記載の高強度鋼材の製造方法。
λ≧(3700×C−1.1×TSQT max+1760)/0.11 (4)
ここで、式中のCは鋼中のC含有量(単位:質量%)を示す。
The high strength according to claim 4 or 6, wherein the tempering treatment is performed on the condition that the parameter λ satisfies the following formula (4) based on the target tensile strength upper limit TS QT max (MPa) of the high strength steel material. Steel manufacturing method.
λ ≧ (3700 × C−1.1 × TS QT max +1760) /0.11 (4)
Here, C in a formula shows C content (unit: mass%) in steel.
JP2006122205A 2006-04-26 2006-04-26 High-strength steel and manufacturing method thereof Active JP4983082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006122205A JP4983082B2 (en) 2006-04-26 2006-04-26 High-strength steel and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006122205A JP4983082B2 (en) 2006-04-26 2006-04-26 High-strength steel and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007291464A true JP2007291464A (en) 2007-11-08
JP4983082B2 JP4983082B2 (en) 2012-07-25

Family

ID=38762360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006122205A Active JP4983082B2 (en) 2006-04-26 2006-04-26 High-strength steel and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4983082B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248565A (en) * 2009-04-15 2010-11-04 Jfe Steel Corp Ultrahigh-strength cold-rolled steel sheet superior in formability for extension flange, and method for manufacturing the same
JP4927236B1 (en) * 2011-03-09 2012-05-09 新日本製鐵株式会社 Steel sheet for hot stamping, manufacturing method thereof, and manufacturing method of high-strength parts
CN102877001A (en) * 2012-10-29 2013-01-16 北京科技大学 Low-carbon tempering-free all-bainite structure plastic mould steel and preparation method thereof
WO2014196645A1 (en) 2013-06-07 2014-12-11 新日鐵住金株式会社 Heat-treated steel material and method for producing same
KR101797316B1 (en) * 2015-12-21 2017-11-14 주식회사 포스코 Part for automobile having high strength and excellent durability and manufacturing method therefor
KR20170133495A (en) 2015-04-08 2017-12-05 신닛테츠스미킨 카부시키카이샤 Heat treated steel sheet member and method for manufacturing the same
KR20170134680A (en) 2015-04-08 2017-12-06 신닛테츠스미킨 카부시키카이샤 Steel sheet for heat treatment
JP2019529717A (en) * 2016-07-08 2019-10-17 東北大学Northeastern University Hot stamp forming steel, hot stamp forming method, and hot stamp forming member
US11041225B2 (en) 2015-04-08 2021-06-22 Nippon Steel Corporation Heat-treated steel sheet member and method for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306460A (en) * 1993-04-16 1994-11-01 Nippon Steel Corp Production of hot forged product with high fatigue strength
JPH0967645A (en) * 1995-08-29 1997-03-11 Kobe Steel Ltd Thin steel sheet excellent in stretch-flanging property after shearing and sheet stock using the same thin steel sheet
JPH11131134A (en) * 1997-10-30 1999-05-18 Kobe Steel Ltd Production of high strength formed part made of non-refining steel
JP2001123224A (en) * 1999-10-27 2001-05-08 Sumitomo Metal Ind Ltd Method for producing high strength and high toughness non-heattreated parts
JP2001131680A (en) * 1999-11-10 2001-05-15 Sumitomo Metal Ind Ltd High strength and high toughness non-heattreated cold formed parts and method for producing same
JP2005133181A (en) * 2003-10-31 2005-05-26 Sumitomo Metal Ind Ltd High-strength cold-rolled steel sheet and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306460A (en) * 1993-04-16 1994-11-01 Nippon Steel Corp Production of hot forged product with high fatigue strength
JPH0967645A (en) * 1995-08-29 1997-03-11 Kobe Steel Ltd Thin steel sheet excellent in stretch-flanging property after shearing and sheet stock using the same thin steel sheet
JPH11131134A (en) * 1997-10-30 1999-05-18 Kobe Steel Ltd Production of high strength formed part made of non-refining steel
JP2001123224A (en) * 1999-10-27 2001-05-08 Sumitomo Metal Ind Ltd Method for producing high strength and high toughness non-heattreated parts
JP2001131680A (en) * 1999-11-10 2001-05-15 Sumitomo Metal Ind Ltd High strength and high toughness non-heattreated cold formed parts and method for producing same
JP2005133181A (en) * 2003-10-31 2005-05-26 Sumitomo Metal Ind Ltd High-strength cold-rolled steel sheet and manufacturing method therefor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248565A (en) * 2009-04-15 2010-11-04 Jfe Steel Corp Ultrahigh-strength cold-rolled steel sheet superior in formability for extension flange, and method for manufacturing the same
JP4927236B1 (en) * 2011-03-09 2012-05-09 新日本製鐵株式会社 Steel sheet for hot stamping, manufacturing method thereof, and manufacturing method of high-strength parts
KR101536703B1 (en) * 2011-03-09 2015-07-14 신닛테츠스미킨 카부시키카이샤 Steel sheets for hot stamping, method for manufacturing same, and method for manufacturing high-strength parts
CN102877001A (en) * 2012-10-29 2013-01-16 北京科技大学 Low-carbon tempering-free all-bainite structure plastic mould steel and preparation method thereof
WO2014196645A1 (en) 2013-06-07 2014-12-11 新日鐵住金株式会社 Heat-treated steel material and method for producing same
KR20160003263A (en) 2013-06-07 2016-01-08 신닛테츠스미킨 카부시키카이샤 Heat-treated steel material and method for producing same
US10435761B2 (en) 2013-06-07 2019-10-08 Nippon Steel Corporation Heat-treated steel material and method of manufacturing the same
KR20170134680A (en) 2015-04-08 2017-12-06 신닛테츠스미킨 카부시키카이샤 Steel sheet for heat treatment
KR20170133495A (en) 2015-04-08 2017-12-05 신닛테츠스미킨 카부시키카이샤 Heat treated steel sheet member and method for manufacturing the same
US10563281B2 (en) 2015-04-08 2020-02-18 Nippon Steel Corporation Heat-treated steel sheet member and method for producing the same
US10822680B2 (en) 2015-04-08 2020-11-03 Nippon Steel Corporation Steel sheet for heat treatment
US11041225B2 (en) 2015-04-08 2021-06-22 Nippon Steel Corporation Heat-treated steel sheet member and method for producing the same
KR101797316B1 (en) * 2015-12-21 2017-11-14 주식회사 포스코 Part for automobile having high strength and excellent durability and manufacturing method therefor
JP2019529717A (en) * 2016-07-08 2019-10-17 東北大学Northeastern University Hot stamp forming steel, hot stamp forming method, and hot stamp forming member
JP2022023165A (en) * 2016-07-08 2022-02-07 東北大学 Steel material for hot stamp forming, hot stamp forming method, and hot stamp forming member
US11377703B2 (en) 2016-07-08 2022-07-05 Northeastern University Steel material for hot stamping, hot stamping process and hot stamped component

Also Published As

Publication number Publication date
JP4983082B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
CN110832098B (en) Hot-rolled steel sheet and method for producing same
EP3239339B1 (en) Product formed from heat treatable steel having ultra high strength and excellent durability, and method for manufacturing same
JP6341214B2 (en) Hot-formed steel plate member, method for producing the same, and hot-formed steel plate
JP6306711B2 (en) Martensitic steel with delayed fracture resistance and manufacturing method
JP4947176B2 (en) Manufacturing method of ultra-high strength cold-rolled steel sheet
KR101621639B1 (en) Steel sheet, plated steel sheet, method for producing steel sheet, and method for producing plated steel sheet
JP4983082B2 (en) High-strength steel and manufacturing method thereof
CN104513927B (en) A kind of tensile strength 800MPa grade high-strength high-tenacity steel plate and its manufacture method
WO2015102051A1 (en) Hot-formed member and process for manufacturing same
EP3653736B1 (en) Hot-rolled steel strip and manufacturing method
MXPA97008775A (en) Process to produce steel pipe without seams of great strength having excellent resistance to the fissure by tensions by sulf
JP6229736B2 (en) Hot-formed member and method for producing the same
WO2014061270A1 (en) High-strength cold-rolled steel sheet and method for manufacturing same
JP2007031733A (en) STEEL HAVING EXCELLENT DELAYED FRACTURE RESISTANCE AND TENSILE STRENGTH IN CLASS OF &gt;=1,600 MPa, AND METHOD FOR PRODUCING FORMING THEREOF
EP2562272B1 (en) Method for producing steel product or steel component having excellent mechanical properties, steel product produced by the method and use of steel pipe made of strain hardened steel
WO2015004906A1 (en) High-carbon hot-rolled steel sheet and production method for same
CN107747039A (en) A kind of high reaming performance cold-rolled biphase steel and preparation method thereof
KR20240000646A (en) Hot rolled steel sheet with high hole expansion ratio and manufacturing process thereof
JP5857913B2 (en) Hot-formed steel plate member, method for producing the same, and hot-formed steel plate
KR102209555B1 (en) Hot rolled and annealed steel sheet having low strength-deviation, formed member, and manufacturing method of therefor
JP2005240135A (en) Method for manufacturing wear-resistant steel having excellent bendability, and wear-resistant steel
JP4265582B2 (en) Hot-rolled steel sheet with excellent impact properties after quenching and method for producing the same
JP5228963B2 (en) Cold rolled steel sheet and method for producing the same
JP5363867B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
JP4265583B2 (en) Cold-rolled steel sheet having excellent toughness after quenching and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

R150 Certificate of patent or registration of utility model

Ref document number: 4983082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350